1/*	$OpenBSD: mc146818reg.h,v 1.8 2019/04/29 15:46:11 cheloha Exp $	*/
2/*	$NetBSD: mc146818reg.h,v 1.1 1995/05/04 19:31:18 cgd Exp $	*/
3
4/*
5 * Copyright (c) 1995 Carnegie-Mellon University.
6 * All rights reserved.
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * Definitions for the Motorola MC146818A Real Time Clock.
31 * They also apply for the (compatible) Dallas Semiconductor DS1287A RTC.
32 *
33 * Though there are undoubtedly other (better) sources, this material was
34 * culled from the DEC "KN121 System Module Programmer's Reference
35 * Information."
36 *
37 * The MC146818A has 16 registers.  The first 10 contain time-of-year
38 * and alarm data.  The rest contain various control and status bits.
39 *
40 * To read or write the registers, one writes the register number to
41 * the RTC's control port, then either reads from or writes the new
42 * data to the RTC's data port.  Since the locations of these ports
43 * and the method used to access them can be machine-dependent, the
44 * low-level details of reading and writing the RTC's registers are
45 * handled by machine-specific functions.
46 *
47 * The time-of-year and alarm data can be expressed in either binary
48 * or BCD, and they are selected by a bit in register B.
49 *
50 * The "hour" time-of-year and alarm fields can either be expressed in
51 * AM/PM format, or in 24-hour format.  If AM/PM format is chosen, the
52 * hour fields can have the values: 1-12 and 81-92 (the latter being
53 * PM).  If the 24-hour format is chosen, they can have the values
54 * 0-24.  The hour format is selectable by a bit in register B.
55 * (XXX IS AM/PM MODE DESCRIPTION CORRECT?)
56 *
57 * It is assumed the if systems are going to use BCD (rather than
58 * binary) mode, or AM/PM hour format, they'll do the appropriate
59 * conversions in machine-dependent code.  Also, if the clock is
60 * switched between BCD and binary mode, or between AM/PM mode and
61 * 24-hour mode, the time-of-day and alarm registers are NOT
62 * automatically reset; they must be reprogrammed with correct values.
63 */
64
65/*
66 * The registers, and the bits within each register.
67 */
68
69#define	MC_SEC		0x0	/* Time of year: seconds (0-59) */
70#define	MC_ASEC		0x1	/* Alarm: seconds */
71#define	MC_MIN		0x2	/* Time of year: minutes (0-59) */
72#define	MC_AMIN		0x3	/* Alarm: minutes */
73#define	MC_HOUR		0x4	/* Time of year: hour (see above) */
74#define	MC_AHOUR	0x5	/* Alarm: hour */
75#define	MC_DOW		0x6	/* Time of year: day of week (1-7) */
76#define	MC_DOM		0x7	/* Time of year: day of month (1-31) */
77#define	MC_MONTH	0x8	/* Time of year: month (1-12) */
78#define	MC_YEAR		0x9	/* Time of year: year in century (0-99) */
79
80#define	MC_REGA		0xa	/* Control register A */
81
82#define	 MC_REGA_RSMASK	0x0f	/* Interrupt rate select mask (see below) */
83#define	 MC_REGA_DVMASK	0x70	/* Divisor select mask (see below) */
84#define	 MC_REGA_UIP	0x80	/* Update in progress; read only. */
85
86#define	MC_REGB		0xb	/* Control register B */
87
88#define	 MC_REGB_DSE	0x01	/* Daylight Saving Enable */
89#define	 MC_REGB_24HR	0x02	/* 24-hour mode (AM/PM mode when clear) */
90#define	 MC_REGB_BINARY	0x04	/* Binary mode (BCD mode when clear) */
91#define	 MC_REGB_SQWE	0x08	/* Square wave enable, ONLY in BQ3285E */
92#define	 MC_REGB_UIE	0x10	/* Update End interrupt enable */
93#define	 MC_REGB_AIE	0x20	/* Alarm interrupt enable */
94#define	 MC_REGB_PIE	0x40	/* Periodic interrupt enable */
95#define	 MC_REGB_SET	0x80	/* Allow time to be set; stops updates */
96
97#define	MC_REGC		0xc	/* Control register C */
98
99/*	 MC_REGC_UNUSED	0x0f	UNUSED */
100#define	 MC_REGC_UF	0x10	/* Update End interrupt flag */
101#define	 MC_REGC_AF	0x20	/* Alarm interrupt flag */
102#define	 MC_REGC_PF	0x40	/* Periodic interrupt flag */
103#define	 MC_REGC_IRQF	0x80	/* Interrupt request pending flag */
104
105#define	MC_REGD		0xd	/* Control register D */
106
107/*	 MC_REGD_UNUSED	0x7f	UNUSED */
108#define	 MC_REGD_VRT	0x80	/* Valid RAM and Time bit */
109
110
111#define	MC_NREGS	0xe	/* 14 registers; CMOS follows */
112#define	MC_NTODREGS	0xa	/* 10 of those regs are for TOD and alarm */
113
114#define	MC_NVRAM_START	0xe	/* start of NVRAM: offset 14 */
115#define	MC_NVRAM_SIZE	50	/* 50 bytes of NVRAM */
116
117/*
118 * Periodic Interrupt Rate Select constants (Control register A)
119 */
120#define	MC_RATE_NONE	0x0	/* No periodic interrupt */
121#define	MC_RATE_1	0x1     /* 256 Hz if MC_BASE_32_KHz, else 32768 Hz */
122#define	MC_RATE_2	0x2     /* 128 Hz if MC_BASE_32_KHz, else 16384 Hz */
123#define	MC_RATE_8192_Hz	0x3	/* 122.070 us period */
124#define	MC_RATE_4096_Hz	0x4	/* 244.141 us period */
125#define	MC_RATE_2048_Hz	0x5	/* 488.281 us period */
126#define	MC_RATE_1024_Hz	0x6	/* 976.562 us period */
127#define	MC_RATE_512_Hz	0x7	/* 1.953125 ms period */
128#define	MC_RATE_256_Hz	0x8	/* 3.90625 ms period */
129#define	MC_RATE_128_Hz	0x9	/* 7.8125 ms period */
130#define	MC_RATE_64_Hz	0xa	/* 15.625 ms period */
131#define	MC_RATE_32_Hz	0xb	/* 31.25 ms period */
132#define	MC_RATE_16_Hz	0xc	/* 62.5 ms period */
133#define	MC_RATE_8_Hz	0xd	/* 125 ms period */
134#define	MC_RATE_4_Hz	0xe	/* 250 ms period */
135#define	MC_RATE_2_Hz	0xf	/* 500 ms period */
136
137/*
138 * Time base (divisor select) constants (Control register A)
139 */
140#define	MC_BASE_4_MHz	0x00		/* 4MHz crystal */
141#define	MC_BASE_1_MHz	0x10		/* 1MHz crystal */
142#define	MC_BASE_32_KHz	0x20		/* 32KHz crystal */
143#define	MC_BASE_NONE	0x60		/* actually, both of these reset */
144#define	MC_BASE_RESET	0x70
145
146#ifndef _LOCORE
147/*
148 * RTC register/NVRAM read and write functions -- machine-dependent.
149 * Appropriately manipulate RTC registers to get/put data values.
150 */
151u_int mc146818_read(void *sc, u_int reg);
152void mc146818_write(void *sc, u_int reg, u_int datum);
153
154/*
155 * A collection of TOD/Alarm registers.
156 */
157typedef u_int mc_todregs[MC_NTODREGS];
158
159/*
160 * Get all of the TOD/Alarm registers
161 * Must be called at splhigh(), and with the RTC properly set up.
162 */
163#define MC146818_GETTOD(sc, regs)					\
164	do {								\
165		int i;							\
166									\
167		/* update in progress; spin loop */			\
168		while (mc146818_read(sc, MC_REGA) & MC_REGA_UIP)	\
169			continue;					\
170									\
171		do {							\
172			/* read all of the tod/alarm regs */		\
173			for (i = 0; i < MC_NTODREGS; i++)		\
174				(*regs)[i] = mc146818_read(sc, i);	\
175		} while ((*regs)[MC_SEC] != mc146818_read(sc, MC_SEC));	\
176	} while (0);
177
178/*
179 * Set all of the TOD/Alarm registers
180 * Must be called at splhigh(), and with the RTC properly set up.
181 */
182#define MC146818_PUTTOD(sc, regs)					\
183	do {								\
184		int i;							\
185									\
186		/* stop updates while setting */			\
187		mc146818_write(sc, MC_REGB,				\
188		    mc146818_read(sc, MC_REGB) | MC_REGB_SET);		\
189									\
190		/* write all of the tod/alarm regs */			\
191		for (i = 0; i < MC_NTODREGS; i++)			\
192			mc146818_write(sc, i, (*regs)[i]);		\
193									\
194		/* reenable updates */					\
195		mc146818_write(sc, MC_REGB,				\
196		    mc146818_read(sc, MC_REGB) & ~MC_REGB_SET);		\
197	} while (0);
198#endif
199
200