1/*	$OpenBSD: glxsb.c,v 1.42 2023/01/30 10:49:05 jsg Exp $	*/
2
3/*
4 * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
5 * Copyright (c) 2003, 2004 Theo de Raadt
6 * Copyright (c) 2003 Jason Wright
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*
22 * Driver for the security block on the AMD Geode LX processors
23 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
24 */
25
26#include <sys/param.h>
27#include <sys/systm.h>
28#include <sys/device.h>
29#include <sys/malloc.h>
30#include <sys/mbuf.h>
31#include <sys/timeout.h>
32
33#include <machine/bus.h>
34#include <machine/cpufunc.h>
35
36#include <dev/pci/pcivar.h>
37#include <dev/pci/pcidevs.h>
38
39#ifdef CRYPTO
40#include <crypto/cryptodev.h>
41#include <crypto/xform.h>
42#include <crypto/cryptosoft.h>
43#endif
44
45#define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
46#define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
47#define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
48#define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
49#define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
50#define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
51#define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
52
53						/* For GLD_MSR_CTRL: */
54#define SB_GMC_DIV0		0x0000		/* AES update divisor values */
55#define SB_GMC_DIV1		0x0001
56#define SB_GMC_DIV2		0x0002
57#define SB_GMC_DIV3		0x0003
58#define SB_GMC_DIV_MASK		0x0003
59#define SB_GMC_SBI		0x0004		/* AES swap bits */
60#define SB_GMC_SBY		0x0008		/* AES swap bytes */
61#define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
62#define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
63#define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
64#define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
65#define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
66#define SB_GMC_T_SEL_MASK	0x0300
67#define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
68#define SB_GMC_T_TM		0x0800		/* RNG test mode */
69						/*     (deterministic) */
70
71/* Security Block configuration/control registers (offsets from base) */
72
73#define SB_CTL_A		0x0000		/* RW - SB Control A */
74#define SB_CTL_B		0x0004		/* RW - SB Control B */
75#define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
76#define SB_SOURCE_A		0x0010		/* RW - Source A */
77#define SB_DEST_A		0x0014		/* RW - Destination A */
78#define SB_LENGTH_A		0x0018		/* RW - Length A */
79#define SB_SOURCE_B		0x0020		/* RW - Source B */
80#define SB_DEST_B		0x0024		/* RW - Destination B */
81#define SB_LENGTH_B		0x0028		/* RW - Length B */
82#define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
83#define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
84#define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
85#define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
86#define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
87#define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
88#define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
89#define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
90#define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
91#define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
92#define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
93#define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
94#define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
95#define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
96#define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
97#define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
98
99						/* For SB_CTL_A and _B */
100#define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
101#define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
102#define SB_CTL_DEC		0x0000		/* Decrypt */
103#define SB_CTL_WK		0x0004		/* Use writable key (we set) */
104#define SB_CTL_DC		0x0008		/* Destination coherent */
105#define SB_CTL_SC		0x0010		/* Source coherent */
106#define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
107
108						/* For SB_AES_INT */
109#define SB_AI_DISABLE_AES_A	0x00001		/* Disable AES A compl int */
110#define SB_AI_ENABLE_AES_A	0x00000		/* Enable AES A compl int */
111#define SB_AI_DISABLE_AES_B	0x00002		/* Disable AES B compl int */
112#define SB_AI_ENABLE_AES_B	0x00000		/* Enable AES B compl int */
113#define SB_AI_DISABLE_EEPROM	0x00004		/* Disable EEPROM op comp int */
114#define SB_AI_ENABLE_EEPROM	0x00000		/* Enable EEPROM op compl int */
115#define SB_AI_AES_A_COMPLETE	0x10000		/* AES A operation complete */
116#define SB_AI_AES_B_COMPLETE	0x20000		/* AES B operation complete */
117#define SB_AI_EEPROM_COMPLETE	0x40000		/* EEPROM operation complete */
118
119#define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
120
121#define SB_MEM_SIZE		0x0810		/* Size of memory block */
122
123#define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
124						/* must be 16-byte aligned */
125#define SB_AES_BLOCK_SIZE	0x0010
126
127/*
128 * The Geode LX security block AES acceleration doesn't perform scatter-
129 * gather: it just takes source and destination addresses.  Therefore the
130 * plain- and ciphertexts need to be contiguous.  To this end, we allocate
131 * a buffer for both, and accept the overhead of copying in and out.  If
132 * the number of bytes in one operation is bigger than allowed for by the
133 * buffer (buffer is twice the size of the max length, as it has both input
134 * and output) then we have to perform multiple encryptions/decryptions.
135 */
136#define GLXSB_MAX_AES_LEN	16384
137
138#ifdef CRYPTO
139struct glxsb_dma_map {
140	bus_dmamap_t		dma_map;
141	bus_dma_segment_t	dma_seg;
142	int			dma_nsegs;
143	int			dma_size;
144	caddr_t			dma_vaddr;
145	uint32_t		dma_paddr;
146};
147struct glxsb_session {
148	uint32_t	ses_key[4];
149	int		ses_klen;
150	int		ses_used;
151	struct swcr_data *ses_swd_auth;
152	struct swcr_data *ses_swd_enc;
153};
154#endif /* CRYPTO */
155
156struct glxsb_softc {
157	struct device		sc_dev;
158	bus_space_tag_t		sc_iot;
159	bus_space_handle_t	sc_ioh;
160	struct timeout		sc_to;
161
162#ifdef CRYPTO
163	bus_dma_tag_t		sc_dmat;
164	struct glxsb_dma_map	sc_dma;
165	int32_t			sc_cid;
166	int			sc_nsessions;
167	struct glxsb_session	*sc_sessions;
168#endif /* CRYPTO */
169
170	uint64_t		save_gld_msr;
171};
172
173int	glxsb_match(struct device *, void *, void *);
174void	glxsb_attach(struct device *, struct device *, void *);
175int	glxsb_activate(struct device *, int);
176void	glxsb_rnd(void *);
177
178const struct cfattach glxsb_ca = {
179	sizeof(struct glxsb_softc), glxsb_match, glxsb_attach, NULL,
180	glxsb_activate
181};
182
183struct cfdriver glxsb_cd = {
184	NULL, "glxsb", DV_DULL
185};
186
187
188#ifdef CRYPTO
189
190#define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
191#define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
192
193static struct glxsb_softc *glxsb_sc;
194
195int glxsb_crypto_setup(struct glxsb_softc *);
196int glxsb_crypto_newsession(uint32_t *, struct cryptoini *);
197int glxsb_crypto_process(struct cryptop *);
198int glxsb_crypto_freesession(uint64_t);
199static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
200    uint32_t, void *, int, void *);
201
202int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
203void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
204void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
205void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
206
207#endif /* CRYPTO */
208
209
210int
211glxsb_match(struct device *parent, void *match, void *aux)
212{
213	struct pci_attach_args *pa = aux;
214
215	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
216	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO)
217		return (1);
218
219	return (0);
220}
221
222void
223glxsb_attach(struct device *parent, struct device *self, void *aux)
224{
225	struct glxsb_softc *sc = (void *) self;
226	struct pci_attach_args *pa = aux;
227	bus_addr_t membase;
228	bus_size_t memsize;
229	uint64_t msr;
230#ifdef CRYPTO
231	uint32_t intr;
232#endif
233
234	msr = rdmsr(SB_GLD_MSR_CAP);
235	if ((msr & 0xFFFF00) != 0x130400) {
236		printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
237		return;
238	}
239
240	/* printf(": revision %d", (int) (msr & 0xFF)); */
241
242	/* Map in the security block configuration/control registers */
243	if (pci_mapreg_map(pa, PCI_MAPREG_START,
244	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->sc_iot,
245	    &sc->sc_ioh, &membase, &memsize, SB_MEM_SIZE)) {
246		printf(": can't find mem space\n");
247		return;
248	}
249
250	/*
251	 * Configure the Security Block.
252	 *
253	 * We want to enable the noise generator (T_NE), and enable the
254	 * linear feedback shift register and whitener post-processing
255	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
256	 * is disabled.
257	 */
258	msr = rdmsr(SB_GLD_MSR_CTRL);
259	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
260	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
261#if 0
262	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
263#endif
264	wrmsr(SB_GLD_MSR_CTRL, msr);
265
266	/* Install a periodic collector for the "true" (AMD's word) RNG */
267	timeout_set(&sc->sc_to, glxsb_rnd, sc);
268	glxsb_rnd(sc);
269	printf(": RNG");
270
271#ifdef CRYPTO
272	/* We don't have an interrupt handler, so disable completion INTs */
273	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
274	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
275	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
276	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
277
278	sc->sc_dmat = pa->pa_dmat;
279
280	if (glxsb_crypto_setup(sc))
281		printf(" AES");
282#endif
283
284	printf("\n");
285}
286
287int
288glxsb_activate(struct device *self, int act)
289{
290	struct glxsb_softc *sc = (struct glxsb_softc *)self;
291
292	switch (act) {
293	case DVACT_QUIESCE:
294		/* XXX should wait for current crypto op to finish */
295		break;
296	case DVACT_SUSPEND:
297		sc->save_gld_msr = rdmsr(SB_GLD_MSR_CTRL);
298		break;
299	case DVACT_RESUME:
300		wrmsr(SB_GLD_MSR_CTRL, sc->save_gld_msr);
301		break;
302	}
303	return (0);
304}
305
306void
307glxsb_rnd(void *v)
308{
309	struct glxsb_softc *sc = v;
310	uint32_t status, value;
311
312	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
313	if (status & SB_RNS_TRNG_VALID) {
314		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
315		enqueue_randomness(value);
316	}
317
318	timeout_add_msec(&sc->sc_to, 10);
319}
320
321#ifdef CRYPTO
322int
323glxsb_crypto_setup(struct glxsb_softc *sc)
324{
325	int algs[CRYPTO_ALGORITHM_MAX + 1];
326
327	/* Allocate a contiguous DMA-able buffer to work in */
328	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
329		return 0;
330
331	bzero(algs, sizeof(algs));
332	algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
333	algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
334	algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
335	algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
336	algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
337	algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
338	algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
339
340	sc->sc_cid = crypto_get_driverid(0);
341	if (sc->sc_cid < 0)
342		return 0;
343
344	crypto_register(sc->sc_cid, algs, glxsb_crypto_newsession,
345	    glxsb_crypto_freesession, glxsb_crypto_process);
346
347	sc->sc_nsessions = 0;
348
349	glxsb_sc = sc;
350
351	return 1;
352}
353
354int
355glxsb_crypto_newsession(uint32_t *sidp, struct cryptoini *cri)
356{
357	struct glxsb_softc *sc = glxsb_sc;
358	struct glxsb_session *ses = NULL;
359	const struct auth_hash	*axf;
360	const struct enc_xform	*txf;
361	struct cryptoini	*c;
362	struct swcr_data	*swd;
363	int sesn, i;
364
365	if (sc == NULL || sidp == NULL || cri == NULL)
366		return (EINVAL);
367
368	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
369		if (sc->sc_sessions[sesn].ses_used == 0) {
370			ses = &sc->sc_sessions[sesn];
371			break;
372		}
373	}
374
375	if (ses == NULL) {
376		sesn = sc->sc_nsessions;
377		ses = mallocarray(sesn + 1, sizeof(*ses), M_DEVBUF,
378		    M_NOWAIT);
379		if (ses == NULL)
380			return (ENOMEM);
381		if (sesn != 0) {
382			bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
383			explicit_bzero(sc->sc_sessions, sesn * sizeof(*ses));
384			free(sc->sc_sessions, M_DEVBUF, sesn * sizeof(*ses));
385		}
386		sc->sc_sessions = ses;
387		ses = &sc->sc_sessions[sesn];
388		sc->sc_nsessions++;
389	}
390
391	bzero(ses, sizeof(*ses));
392	ses->ses_used = 1;
393
394	for (c = cri; c != NULL; c = c->cri_next) {
395		switch (c->cri_alg) {
396		case CRYPTO_AES_CBC:
397
398			if (c->cri_klen != 128) {
399				swd = malloc(sizeof(struct swcr_data),
400				    M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
401				if (swd == NULL) {
402					glxsb_crypto_freesession(sesn);
403					return (ENOMEM);
404				}
405				ses->ses_swd_enc = swd;
406				txf = &enc_xform_aes;
407				if (txf->ctxsize > 0) {
408					swd->sw_kschedule =
409					    malloc(txf->ctxsize,
410						M_CRYPTO_DATA,
411						M_NOWAIT|M_ZERO);
412					if (swd->sw_kschedule == NULL) {
413						glxsb_crypto_freesession(sesn);
414						return (EINVAL);
415					}
416				}
417				if (txf->setkey(swd->sw_kschedule, c->cri_key,
418				    c->cri_klen / 8) < 0) {
419					glxsb_crypto_freesession(sesn);
420					return (EINVAL);
421				}
422				swd->sw_exf = txf;
423				break;
424			}
425
426			ses->ses_klen = c->cri_klen;
427
428			/* Copy the key (Geode LX wants the primary key only) */
429			bcopy(c->cri_key, ses->ses_key, sizeof(ses->ses_key));
430			break;
431
432		case CRYPTO_MD5_HMAC:
433			axf = &auth_hash_hmac_md5_96;
434			goto authcommon;
435		case CRYPTO_SHA1_HMAC:
436			axf = &auth_hash_hmac_sha1_96;
437			goto authcommon;
438		case CRYPTO_RIPEMD160_HMAC:
439			axf = &auth_hash_hmac_ripemd_160_96;
440			goto authcommon;
441		case CRYPTO_SHA2_256_HMAC:
442			axf = &auth_hash_hmac_sha2_256_128;
443			goto authcommon;
444		case CRYPTO_SHA2_384_HMAC:
445			axf = &auth_hash_hmac_sha2_384_192;
446			goto authcommon;
447		case CRYPTO_SHA2_512_HMAC:
448			axf = &auth_hash_hmac_sha2_512_256;
449		authcommon:
450			swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA,
451			    M_NOWAIT|M_ZERO);
452			if (swd == NULL) {
453				glxsb_crypto_freesession(sesn);
454				return (ENOMEM);
455			}
456			ses->ses_swd_auth = swd;
457
458			swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
459			    M_NOWAIT);
460			if (swd->sw_ictx == NULL) {
461				glxsb_crypto_freesession(sesn);
462				return (ENOMEM);
463			}
464
465			swd->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA,
466			    M_NOWAIT);
467			if (swd->sw_octx == NULL) {
468				glxsb_crypto_freesession(sesn);
469				return (ENOMEM);
470			}
471
472			for (i = 0; i < c->cri_klen / 8; i++)
473				c->cri_key[i] ^= HMAC_IPAD_VAL;
474
475			axf->Init(swd->sw_ictx);
476			axf->Update(swd->sw_ictx, c->cri_key, c->cri_klen / 8);
477			axf->Update(swd->sw_ictx, hmac_ipad_buffer,
478			    axf->blocksize - (c->cri_klen / 8));
479
480			for (i = 0; i < c->cri_klen / 8; i++)
481				c->cri_key[i] ^= (HMAC_IPAD_VAL ^
482				    HMAC_OPAD_VAL);
483
484			axf->Init(swd->sw_octx);
485			axf->Update(swd->sw_octx, c->cri_key, c->cri_klen / 8);
486			axf->Update(swd->sw_octx, hmac_opad_buffer,
487			    axf->blocksize - (c->cri_klen / 8));
488
489			for (i = 0; i < c->cri_klen / 8; i++)
490				c->cri_key[i] ^= HMAC_OPAD_VAL;
491
492			swd->sw_axf = axf;
493			swd->sw_alg = c->cri_alg;
494
495			break;
496		default:
497			glxsb_crypto_freesession(sesn);
498			return (EINVAL);
499		}
500	}
501
502	*sidp = GLXSB_SID(0, sesn);
503	return (0);
504}
505
506int
507glxsb_crypto_freesession(uint64_t tid)
508{
509	struct glxsb_softc *sc = glxsb_sc;
510	struct swcr_data *swd;
511	const struct auth_hash *axf;
512	const struct enc_xform *txf;
513	int sesn;
514	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
515
516	if (sc == NULL)
517		return (EINVAL);
518	sesn = GLXSB_SESSION(sid);
519	if (sesn >= sc->sc_nsessions)
520		return (EINVAL);
521	if ((swd = sc->sc_sessions[sesn].ses_swd_enc)) {
522		txf = swd->sw_exf;
523
524		if (swd->sw_kschedule) {
525			explicit_bzero(swd->sw_kschedule, txf->ctxsize);
526			free(swd->sw_kschedule, M_CRYPTO_DATA, txf->ctxsize);
527		}
528		free(swd, M_CRYPTO_DATA, sizeof(*swd));
529	}
530	if ((swd = sc->sc_sessions[sesn].ses_swd_auth)) {
531		axf = swd->sw_axf;
532
533		if (swd->sw_ictx) {
534			explicit_bzero(swd->sw_ictx, axf->ctxsize);
535			free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize);
536		}
537		if (swd->sw_octx) {
538			explicit_bzero(swd->sw_octx, axf->ctxsize);
539			free(swd->sw_octx, M_CRYPTO_DATA, axf->ctxsize);
540		}
541		free(swd, M_CRYPTO_DATA, sizeof(*swd));
542	}
543	explicit_bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
544	return (0);
545}
546
547/*
548 * Must be called at splnet() or higher
549 */
550static __inline void
551glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
552    uint32_t pdst, void *key, int len, void *iv)
553{
554	uint32_t status;
555	int i;
556
557	if (len & 0xF) {
558		printf("%s: len must be a multiple of 16 (not %d)\n",
559		    sc->sc_dev.dv_xname, len);
560		return;
561	}
562
563	/* Set the source */
564	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
565
566	/* Set the destination address */
567	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
568
569	/* Set the data length */
570	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
571
572	/* Set the IV */
573	if (iv != NULL) {
574		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
575		    SB_CBC_IV, iv, 4);
576		control |= SB_CTL_CBC;
577	}
578
579	/* Set the key */
580	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
581
582	/* Ask the security block to do it */
583	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
584	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
585
586	/*
587	 * Now wait until it is done.
588	 *
589	 * We do a busy wait.  Obviously the number of iterations of
590	 * the loop required to perform the AES operation depends upon
591	 * the number of bytes to process.
592	 *
593	 * On a 500 MHz Geode LX we see
594	 *
595	 *	length (bytes)	typical max iterations
596	 *	    16		   12
597	 *	    64		   22
598	 *	   256		   59
599	 *	  1024		  212
600	 *	  8192		1,537
601	 *
602	 * Since we have a maximum size of operation defined in
603	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
604	 * to wait.  Allow an order of magnitude longer than it should
605	 * really take, just in case.
606	 */
607	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
608		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
609
610		if ((status & SB_CTL_ST) == 0)		/* Done */
611			return;
612	}
613
614	printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname);
615}
616
617static int
618glxsb_crypto_swauth(struct cryptop *crp, struct cryptodesc *crd,
619    struct swcr_data *sw, caddr_t buf)
620{
621	int	type;
622
623	if (crp->crp_flags & CRYPTO_F_IMBUF)
624		type = CRYPTO_BUF_MBUF;
625	else
626		type = CRYPTO_BUF_IOV;
627
628	return (swcr_authcompute(crp, crd, sw, buf, type));
629}
630
631static int
632glxsb_crypto_swenc(struct cryptop *crp, struct cryptodesc *crd,
633    struct swcr_data *sw, caddr_t buf)
634{
635	int	type;
636
637	if (crp->crp_flags & CRYPTO_F_IMBUF)
638		type = CRYPTO_BUF_MBUF;
639	else
640		type = CRYPTO_BUF_IOV;
641
642	return (swcr_encdec(crd, sw, buf, type));
643}
644
645static int
646glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd,
647    struct glxsb_session *ses, struct glxsb_softc *sc, caddr_t buf)
648{
649	char *op_src, *op_dst;
650	uint32_t op_psrc, op_pdst;
651	uint8_t op_iv[SB_AES_BLOCK_SIZE];
652	int err = 0;
653	int len, tlen, xlen;
654	int offset;
655	uint32_t control;
656
657	if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
658		err = EINVAL;
659		goto out;
660	}
661
662	/* How much of our buffer will we need to use? */
663	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
664	    GLXSB_MAX_AES_LEN : crd->crd_len;
665
666	/*
667	 * XXX Check if we can have input == output on Geode LX.
668	 * XXX In the meantime, use two separate (adjacent) buffers.
669	 */
670	op_src = sc->sc_dma.dma_vaddr;
671	op_dst = sc->sc_dma.dma_vaddr + xlen;
672
673	op_psrc = sc->sc_dma.dma_paddr;
674	op_pdst = sc->sc_dma.dma_paddr + xlen;
675
676	if (crd->crd_flags & CRD_F_ENCRYPT) {
677		control = SB_CTL_ENC;
678		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
679			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
680		else
681			arc4random_buf(op_iv, sizeof(op_iv));
682
683		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
684			if (crp->crp_flags & CRYPTO_F_IMBUF)
685				err = m_copyback((struct mbuf *)crp->crp_buf,
686				    crd->crd_inject, sizeof(op_iv), op_iv,
687				    M_NOWAIT);
688			else if (crp->crp_flags & CRYPTO_F_IOV)
689				cuio_copyback((struct uio *)crp->crp_buf,
690				    crd->crd_inject, sizeof(op_iv), op_iv);
691			else
692				bcopy(op_iv,
693				    crp->crp_buf + crd->crd_inject, sizeof(op_iv));
694			if (err)
695				goto out;
696		}
697	} else {
698		control = SB_CTL_DEC;
699		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
700			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
701		else {
702			if (crp->crp_flags & CRYPTO_F_IMBUF)
703				m_copydata((struct mbuf *)crp->crp_buf,
704				    crd->crd_inject, sizeof(op_iv), op_iv);
705			else if (crp->crp_flags & CRYPTO_F_IOV)
706				cuio_copydata((struct uio *)crp->crp_buf,
707				    crd->crd_inject, sizeof(op_iv), op_iv);
708			else
709				bcopy(crp->crp_buf + crd->crd_inject,
710				    op_iv, sizeof(op_iv));
711		}
712	}
713
714	offset = 0;
715	tlen = crd->crd_len;
716
717	/* Process the data in GLXSB_MAX_AES_LEN chunks */
718	while (tlen > 0) {
719		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
720
721		if (crp->crp_flags & CRYPTO_F_IMBUF)
722			m_copydata((struct mbuf *)crp->crp_buf,
723			    crd->crd_skip + offset, len, op_src);
724		else if (crp->crp_flags & CRYPTO_F_IOV)
725			cuio_copydata((struct uio *)crp->crp_buf,
726			    crd->crd_skip + offset, len, op_src);
727		else
728			bcopy(crp->crp_buf + crd->crd_skip + offset, op_src,
729			    len);
730
731		glxsb_dma_pre_op(sc, &sc->sc_dma);
732
733		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
734		    len, op_iv);
735
736		glxsb_dma_post_op(sc, &sc->sc_dma);
737
738		if (crp->crp_flags & CRYPTO_F_IMBUF)
739			err = m_copyback((struct mbuf *)crp->crp_buf,
740			    crd->crd_skip + offset, len, op_dst, M_NOWAIT);
741		else if (crp->crp_flags & CRYPTO_F_IOV)
742			cuio_copyback((struct uio *)crp->crp_buf,
743			    crd->crd_skip + offset, len, op_dst);
744		else
745			bcopy(op_dst, crp->crp_buf + crd->crd_skip + offset,
746			    len);
747		if (err)
748			break;
749
750		offset += len;
751		tlen -= len;
752
753		if (tlen > 0) {
754			/* Copy out last block for use as next iteration */
755			if (crd->crd_flags & CRD_F_ENCRYPT)
756				bcopy(op_dst + len - sizeof(op_iv), op_iv,
757				    sizeof(op_iv));
758			else
759				bcopy(op_src + len - sizeof(op_iv), op_iv,
760				    sizeof(op_iv));
761		}
762	}
763
764	/* All AES processing has now been done. */
765	explicit_bzero(sc->sc_dma.dma_vaddr, xlen * 2);
766
767out:
768	return (err);
769}
770
771int
772glxsb_crypto_process(struct cryptop *crp)
773{
774	struct glxsb_softc *sc = glxsb_sc;
775	struct glxsb_session *ses;
776	struct cryptodesc *crd;
777	int sesn,err = 0;
778	int s, i;
779
780	s = splnet();
781
782	KASSERT(crp->crp_ndesc >= 1);
783
784	sesn = GLXSB_SESSION(crp->crp_sid);
785	if (sesn >= sc->sc_nsessions) {
786		err = EINVAL;
787		goto out;
788	}
789	ses = &sc->sc_sessions[sesn];
790	if (ses->ses_used == 0) {
791		err = EINVAL;
792		goto out;
793	}
794
795	for (i = 0; i < crp->crp_ndesc; i++) {
796		crd = &crp->crp_desc[i];
797		switch (crd->crd_alg) {
798		case CRYPTO_AES_CBC:
799			if (ses->ses_swd_enc) {
800				if ((err = glxsb_crypto_swenc(crp, crd, ses->ses_swd_enc,
801				    crp->crp_buf)) != 0)
802					goto out;
803			} else if ((err = glxsb_crypto_encdec(crp, crd, ses, sc,
804			    crp->crp_buf)) != 0)
805				goto out;
806			break;
807
808		case CRYPTO_MD5_HMAC:
809		case CRYPTO_SHA1_HMAC:
810		case CRYPTO_RIPEMD160_HMAC:
811		case CRYPTO_SHA2_256_HMAC:
812		case CRYPTO_SHA2_384_HMAC:
813		case CRYPTO_SHA2_512_HMAC:
814			if ((err = glxsb_crypto_swauth(crp, crd, ses->ses_swd_auth,
815			    crp->crp_buf)) != 0)
816				goto out;
817			break;
818
819		default:
820			err = EINVAL;
821			goto out;
822		}
823	}
824
825out:
826	splx(s);
827	return (err);
828}
829
830int
831glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
832{
833	int rc;
834
835	dma->dma_nsegs = 1;
836	dma->dma_size = size;
837
838	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
839	    0, BUS_DMA_NOWAIT, &dma->dma_map);
840	if (rc != 0) {
841		printf("%s: couldn't create DMA map for %d bytes (%d)\n",
842		    sc->sc_dev.dv_xname, size, rc);
843
844		goto fail0;
845	}
846
847	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
848	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
849	if (rc != 0) {
850		printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n",
851		    sc->sc_dev.dv_xname, size, rc);
852
853		goto fail1;
854	}
855
856	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
857	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
858	if (rc != 0) {
859		printf("%s: couldn't map DMA memory for %d bytes (%d)\n",
860		    sc->sc_dev.dv_xname, size, rc);
861
862		goto fail2;
863	}
864
865	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
866	    size, NULL, BUS_DMA_NOWAIT);
867	if (rc != 0) {
868		printf("%s: couldn't load DMA memory for %d bytes (%d)\n",
869		    sc->sc_dev.dv_xname, size, rc);
870
871		goto fail3;
872	}
873
874	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
875
876	return 0;
877
878fail3:
879	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
880fail2:
881	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
882fail1:
883	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
884fail0:
885	return rc;
886}
887
888void
889glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
890{
891	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
892	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
893}
894
895void
896glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
897{
898	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
899	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
900}
901
902void
903glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
904{
905	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
906	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
907	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
908	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
909}
910
911#endif /* CRYPTO */
912