growfs.c revision 1.54
1/*	$OpenBSD: growfs.c,v 1.54 2020/06/20 07:49:04 otto Exp $	*/
2/*
3 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
4 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgment:
20 *      This product includes software developed by the University of
21 *      California, Berkeley and its contributors, as well as Christoph
22 *      Herrmann and Thomas-Henning von Kamptz.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
40 * $FreeBSD: src/sbin/growfs/growfs.c,v 1.25 2006/07/17 20:48:36 stefanf Exp $
41 *
42 */
43
44#include <sys/param.h>	/* DEV_BSIZE MAXBSIZE setbit isset isclr clrbit */
45#include <sys/types.h>
46#include <sys/disklabel.h>
47#include <sys/ioctl.h>
48#include <sys/dkio.h>
49#include <sys/stat.h>
50
51#include <stdio.h>
52#include <paths.h>
53#include <ctype.h>
54#include <err.h>
55#include <fcntl.h>
56#include <limits.h>
57#include <stdlib.h>
58#include <stdint.h>
59#include <string.h>
60#include <time.h>
61#include <unistd.h>
62#include <util.h>
63
64#include <ufs/ufs/dinode.h>
65#include <ufs/ffs/fs.h>
66
67#define MINIMUM(a, b)	(((a) < (b)) ? (a) : (b))
68#define MAXIMUM(a, b)	(((a) > (b)) ? (a) : (b))
69
70#define	rounddown(x, y)	(((x)/(y))*(y))
71#define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
72
73static int quiet;		/* quiet flag */
74
75static union {
76	struct	fs fs;
77	char	pad[SBLOCKSIZE];
78} fsun1, fsun2;
79#define	sblock	fsun1.fs	/* the new superblock */
80#define	osblock	fsun2.fs	/* the old superblock */
81
82/*
83 * Possible superblock locations ordered from most to least likely.
84 */
85static int sblock_try[] = SBLOCKSEARCH;
86static daddr_t sblockloc;
87
88static union {
89	struct	cg cg;
90	char	pad[MAXBSIZE];
91} cgun1, cgun2;
92#define	acg	cgun1.cg	/* a cylinder cgroup (new) */
93#define	aocg	cgun2.cg	/* an old cylinder group */
94
95static char	ablk[MAXBSIZE];		/* a block */
96
97static struct csum	*fscs;	/* cylinder summary */
98
99union dinode {
100	struct ufs1_dinode dp1;
101	struct ufs2_dinode dp2;
102};
103#define	DIP(dp, field) \
104	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
105	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
106#define	DIP_SET(dp, field, val) do { \
107	if (sblock.fs_magic == FS_UFS1_MAGIC) \
108		(dp)->dp1.field = (val); \
109	else \
110		(dp)->dp2.field = (val); \
111	} while (0)
112static daddr_t		inoblk;			/* inode block address */
113static char		inobuf[MAXBSIZE];	/* inode block */
114ino_t			maxino;			/* last valid inode */
115
116/*
117 * An array of elements of type struct gfs_bpp describes all blocks to
118 * be relocated in order to free the space needed for the cylinder group
119 * summary for all cylinder groups located in the first cylinder group.
120 */
121struct gfs_bpp {
122	daddr_t		old;		/* old block number */
123	daddr_t		new;		/* new block number */
124#define GFS_FL_FIRST	1
125#define GFS_FL_LAST	2
126	unsigned int	flags;		/* special handling required */
127	int		found;		/* how many references were updated */
128};
129
130static void	growfs(int, int, unsigned int);
131static void	rdfs(daddr_t, size_t, void *, int);
132static void	wtfs(daddr_t, size_t, void *, int, unsigned int);
133static daddr_t alloc(void);
134static int	charsperline(void);
135static void	usage(void);
136static int	isblock(struct fs *, unsigned char *, int);
137static void	clrblock(struct fs *, unsigned char *, int);
138static void	setblock(struct fs *, unsigned char *, int);
139static void	initcg(u_int, time_t, int, unsigned int);
140static void	updjcg(u_int, time_t, int, int, unsigned int);
141static void	updcsloc(time_t, int, int, unsigned int);
142static struct disklabel	*get_disklabel(int);
143static void	return_disklabel(int, struct disklabel *, unsigned int);
144static union dinode *ginode(ino_t, int, int);
145static void	frag_adjust(daddr_t, int);
146static int	cond_bl_upd(daddr_t *, struct gfs_bpp *, int, int,
147		    unsigned int);
148static void	updclst(int);
149static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
150static void	indirchk(daddr_t, daddr_t, daddr_t, daddr_t,
151		    struct gfs_bpp *, int, int, unsigned int);
152static void	ffs1_sb_update(struct fs *, daddr_t);
153
154int	colwidth;
155
156/*
157 * Here we actually start growing the filesystem. We basically read the
158 * cylinder summary from the first cylinder group as we want to update
159 * this on the fly during our various operations. First we handle the
160 * changes in the former last cylinder group. Afterwards we create all new
161 * cylinder groups. Now we handle the cylinder group containing the
162 * cylinder summary which might result in a relocation of the whole
163 * structure. In the end we write back the updated cylinder summary, the
164 * new superblock, and slightly patched versions of the super block
165 * copies.
166 */
167static void
168growfs(int fsi, int fso, unsigned int Nflag)
169{
170	int	i, j;
171	u_int	cg;
172	time_t	utime;
173	char	tmpbuf[100];
174
175	time(&utime);
176
177	/*
178	 * Get the cylinder summary into the memory.
179	 */
180	fscs = calloc(1, (size_t)sblock.fs_cssize);
181	if (fscs == NULL)
182		errx(1, "calloc failed");
183	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
184		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
185		    numfrags(&osblock, i)), (size_t)MINIMUM(osblock.fs_cssize - i,
186		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
187	}
188
189	/*
190	 * Do all needed changes in the former last cylinder group.
191	 */
192	updjcg(osblock.fs_ncg - 1, utime, fsi, fso, Nflag);
193
194	/*
195	 * Dump out summary information about filesystem.
196	 */
197#define B2MBFACTOR (1 / (1024.0 * 1024.0))
198	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
199	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
200	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
201	    sblock.fs_fsize);
202	printf("\tusing %u cylinder groups of %.2fMB, %d blks, %u inodes.\n",
203	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
204	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
205	if (sblock.fs_flags & FS_DOSOFTDEP)
206		printf("\twith soft updates\n");
207#undef B2MBFACTOR
208
209	/*
210	 * Now build the cylinders group blocks and
211	 * then print out indices of cylinder groups.
212	 */
213	if (!quiet)
214		printf("super-block backups (for fsck -b #) at:\n");
215	i = 0;
216
217	/*
218	 * Iterate for only the new cylinder groups.
219	 */
220	for (cg = osblock.fs_ncg; cg < sblock.fs_ncg; cg++) {
221		initcg(cg, utime, fso, Nflag);
222		if (quiet)
223			continue;
224		j = snprintf(tmpbuf, sizeof(tmpbuf), " %lld%s",
225		    fsbtodb(&sblock, cgsblock(&sblock, cg)),
226		    cg < (sblock.fs_ncg - 1) ? "," : "");
227		if (j >= sizeof(tmpbuf))
228			j = sizeof(tmpbuf) - 1;
229		if (j < 0 || i + j >= colwidth) {
230			printf("\n");
231			i = 0;
232		}
233		i += j;
234		printf("%s", tmpbuf);
235		fflush(stdout);
236	}
237	if (!quiet)
238		printf("\n");
239
240	/*
241	 * Do all needed changes in the first cylinder group.
242	 * allocate blocks in new location
243	 */
244	updcsloc(utime, fsi, fso, Nflag);
245
246	/*
247	 * Now write the cylinder summary back to disk.
248	 */
249	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
250		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
251		    (size_t)MINIMUM(sblock.fs_cssize - i, sblock.fs_bsize),
252		    (void *)(((char *)fscs) + i), fso, Nflag);
253	}
254
255	/*
256	 * Now write the new superblock back to disk.
257	 */
258	sblock.fs_time = utime;
259	sblock.fs_clean = 0;
260	if (sblock.fs_magic == FS_UFS1_MAGIC) {
261		sblock.fs_ffs1_time = (int32_t)sblock.fs_time;
262		sblock.fs_ffs1_size = (int32_t)sblock.fs_size;
263		sblock.fs_ffs1_dsize = (int32_t)sblock.fs_dsize;
264		sblock.fs_ffs1_csaddr = (int32_t)sblock.fs_csaddr;
265		sblock.fs_ffs1_cstotal.cs_ndir =
266		    (int32_t)sblock.fs_cstotal.cs_ndir;
267		sblock.fs_ffs1_cstotal.cs_nbfree =
268		    (int32_t)sblock.fs_cstotal.cs_nbfree;
269		sblock.fs_ffs1_cstotal.cs_nifree =
270		    (int32_t)sblock.fs_cstotal.cs_nifree;
271		sblock.fs_ffs1_cstotal.cs_nffree =
272		    (int32_t)sblock.fs_cstotal.cs_nffree;
273	}
274	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
275
276	/*
277	 * Clean up the dynamic fields in our superblock copies.
278	 */
279	sblock.fs_fmod = 0;
280	sblock.fs_clean = 1;
281	sblock.fs_ronly = 0;
282	sblock.fs_cgrotor = 0;
283	sblock.fs_state = 0;
284	memset(&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
285	sblock.fs_flags &= FS_DOSOFTDEP;
286	if (sblock.fs_magic == FS_UFS1_MAGIC)
287		sblock.fs_ffs1_flags &= FS_DOSOFTDEP;
288
289	/*
290	 * XXX
291	 * The following fields are currently distributed from the  superblock
292	 * to the copies:
293	 *     fs_minfree
294	 *     fs_rotdelay
295	 *     fs_maxcontig
296	 *     fs_maxbpg
297	 *     fs_minfree,
298	 *     fs_optim
299	 *     fs_flags regarding SOFTPDATES
300	 *
301	 * We probably should rather change the summary for the cylinder group
302	 * statistics here to the value of what would be in there, if the file
303	 * system were created initially with the new size. Therefore we still
304	 * need to find an easy way of calculating that.
305	 * Possibly we can try to read the first superblock copy and apply the
306	 * "diffed" stats between the old and new superblock by still  copying
307	 * certain parameters onto that.
308	 */
309
310	/*
311	 * Write out the duplicate superblocks.
312	 */
313	for (cg = 0; cg < sblock.fs_ncg; cg++) {
314		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)),
315		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
316	}
317}
318
319/*
320 * This creates a new cylinder group structure, for more details please  see
321 * the  source of newfs(8), as this function is taken over almost unchanged.
322 * As  this  is  never called for the  first  cylinder  group,  the  special
323 * provisions for that case are removed here.
324 */
325static void
326initcg(u_int cg, time_t utime, int fso, unsigned int Nflag)
327{
328	static char *iobuf;
329	daddr_t d, dlower, dupper, blkno, start;
330	daddr_t i, cbase, dmax;
331	struct ufs1_dinode *dp1;
332	struct ufs2_dinode *dp2;
333	struct csum *cs;
334	ino_t j;
335	size_t iobufsize;
336
337	if (sblock.fs_bsize < SBLOCKSIZE)
338		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
339	else
340		iobufsize = 4 * sblock.fs_bsize;
341
342	if (iobuf == NULL && (iobuf = malloc(iobufsize)) == NULL)
343		errx(37, "panic: cannot allocate I/O buffer");
344	bzero(iobuf, iobufsize);
345
346	/*
347	 * Determine block bounds for cylinder group.
348	 * Allow space for super block summary information in first
349	 * cylinder group.
350	 */
351	cbase = cgbase(&sblock, cg);
352	dmax = cbase + sblock.fs_fpg;
353	if (dmax > sblock.fs_size)
354		dmax = sblock.fs_size;
355	dlower = cgsblock(&sblock, cg) - cbase;
356	dupper = cgdmin(&sblock, cg) - cbase;
357	if (cg == 0) /* XXX fscs may be relocated */
358		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
359	cs = &fscs[cg];
360	memset(&acg, 0, sblock.fs_cgsize);
361	acg.cg_ffs2_time = utime;
362	acg.cg_magic = CG_MAGIC;
363	acg.cg_cgx = cg;
364	acg.cg_ffs2_niblk = sblock.fs_ipg;
365	acg.cg_initediblk = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock));
366	acg.cg_ndblk = dmax - cbase;
367	if (sblock.fs_contigsumsize > 0)
368		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
369	start = sizeof(struct cg);
370	if (sblock.fs_magic == FS_UFS2_MAGIC) {
371		acg.cg_iusedoff = start;
372	} else {
373		if (cg == sblock.fs_ncg - 1)
374			acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
375		else
376			acg.cg_ncyl = sblock.fs_cpg;
377		acg.cg_time = (int32_t)acg.cg_ffs2_time;
378		acg.cg_ffs2_time = 0;
379		acg.cg_niblk = (int16_t)acg.cg_ffs2_niblk;
380		acg.cg_ffs2_niblk = 0;
381		acg.cg_initediblk = 0;
382		acg.cg_btotoff = start;
383		acg.cg_boff = acg.cg_btotoff +
384		    sblock.fs_cpg * sizeof(int32_t);
385		acg.cg_iusedoff = acg.cg_boff +
386		    sblock.fs_cpg * sizeof(u_int16_t);
387	}
388	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
389	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
390	if (sblock.fs_contigsumsize > 0) {
391		acg.cg_clustersumoff =
392		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
393		acg.cg_clustersumoff -= sizeof(u_int32_t);
394		acg.cg_clusteroff = acg.cg_clustersumoff +
395		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
396		acg.cg_nextfreeoff = acg.cg_clusteroff +
397		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
398	}
399	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
400		/*
401		 * This should never happen as we would have had that panic
402		 *     already on filesystem creation
403		 */
404		errx(37, "panic: cylinder group too big");
405	}
406	acg.cg_cs.cs_nifree += sblock.fs_ipg;
407	if (cg == 0) {
408		for (i = 0; i < ROOTINO; i++) {
409			setbit(cg_inosused(&acg), i);
410			acg.cg_cs.cs_nifree--;
411		}
412	}
413	if (cg > 0) {
414		/*
415		 * In cg 0, beginning space is reserved
416		 * for boot and super blocks.
417		 */
418		for (d = 0; d < dlower; d += sblock.fs_frag) {
419			blkno = d / sblock.fs_frag;
420			setblock(&sblock, cg_blksfree(&acg), blkno);
421			if (sblock.fs_contigsumsize > 0)
422				setbit(cg_clustersfree(&acg), blkno);
423			acg.cg_cs.cs_nbfree++;
424		}
425		sblock.fs_dsize += dlower;
426	}
427	sblock.fs_dsize += acg.cg_ndblk - dupper;
428	if ((i = dupper % sblock.fs_frag)) {
429		acg.cg_frsum[sblock.fs_frag - i]++;
430		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
431			setbit(cg_blksfree(&acg), dupper);
432			acg.cg_cs.cs_nffree++;
433		}
434	}
435	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
436	    d += sblock.fs_frag) {
437		blkno = d / sblock.fs_frag;
438		setblock(&sblock, cg_blksfree(&acg), blkno);
439		if (sblock.fs_contigsumsize > 0)
440			setbit(cg_clustersfree(&acg), blkno);
441		acg.cg_cs.cs_nbfree++;
442	}
443	if (d < acg.cg_ndblk) {
444		acg.cg_frsum[acg.cg_ndblk - d]++;
445		for (; d < acg.cg_ndblk; d++) {
446			setbit(cg_blksfree(&acg), d);
447			acg.cg_cs.cs_nffree++;
448		}
449	}
450	if (sblock.fs_contigsumsize > 0) {
451		int32_t	*sump = cg_clustersum(&acg);
452		u_char	*mapp = cg_clustersfree(&acg);
453		int	map = *mapp++;
454		int	bit = 1;
455		int	run = 0;
456
457		for (i = 0; i < acg.cg_nclusterblks; i++) {
458			if ((map & bit) != 0)
459				run++;
460			else if (run != 0) {
461				if (run > sblock.fs_contigsumsize)
462					run = sblock.fs_contigsumsize;
463				sump[run]++;
464				run = 0;
465			}
466			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
467				bit <<= 1;
468			else {
469				map = *mapp++;
470				bit = 1;
471			}
472		}
473		if (run != 0) {
474			if (run > sblock.fs_contigsumsize)
475				run = sblock.fs_contigsumsize;
476			sump[run]++;
477		}
478	}
479	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
480	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
481	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
482	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
483	*cs = acg.cg_cs;
484
485	/*
486	 * Write out the duplicate superblock, the cylinder group map
487	 * and two blocks worth of inodes in a single write.
488	 */
489	bcopy(&sblock, iobuf, SBLOCKSIZE);
490	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
491	bcopy(&acg, &iobuf[start], sblock.fs_cgsize);
492	start += sblock.fs_bsize;
493	dp1 = (struct ufs1_dinode *)&iobuf[start];
494	dp2 = (struct ufs2_dinode *)&iobuf[start];
495	for (i = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock)); i != 0; i--) {
496		if (sblock.fs_magic == FS_UFS1_MAGIC) {
497			dp1->di_gen = arc4random();
498			dp1++;
499		} else {
500			dp2->di_gen = arc4random();
501			dp2++;
502		}
503	}
504	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)), iobufsize,
505	    iobuf, fso, Nflag);
506
507	/* Initialize inodes for FFS1. */
508	if (sblock.fs_magic == FS_UFS1_MAGIC) {
509		for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
510		    i += sblock.fs_frag) {
511			dp1 = (struct ufs1_dinode *)&iobuf[start];
512			for (j = 0; j < INOPB(&sblock); j++) {
513				dp1->di_gen = arc4random();
514				dp1++;
515			}
516			wtfs(fsbtodb(&sblock, cgimin(&sblock, cg) + i),
517			    (size_t)sblock.fs_bsize, &iobuf[start], fso, Nflag);
518		}
519	}
520}
521
522/*
523 * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
524 * block to or from the fragment statistics. By subtracting before and adding
525 * after  an operation on the free frag map we can easy update  the  fragment
526 * statistic, which seems to be otherwise a rather complex operation.
527 */
528static void
529frag_adjust(daddr_t frag, int sign)
530{
531	int fragsize;
532	int f;
533
534	fragsize = 0;
535	/*
536	 * Here frag only needs to point to any fragment in the block we want
537	 * to examine.
538	 */
539	for (f = rounddown(frag, sblock.fs_frag);
540	    f < roundup(frag + 1, sblock.fs_frag);
541	    f++) {
542		/*
543		 * Count contiguous free fragments.
544		 */
545		if (isset(cg_blksfree(&acg), f)) {
546			fragsize++;
547		} else {
548			if (fragsize && fragsize < sblock.fs_frag) {
549				/*
550				 * We found something in between.
551				 */
552				acg.cg_frsum[fragsize] += sign;
553			}
554			fragsize = 0;
555		}
556	}
557	if (fragsize && fragsize < sblock.fs_frag) {
558		/*
559		 * We found something.
560		 */
561		acg.cg_frsum[fragsize] += sign;
562	}
563}
564
565/*
566 * Here we conditionally update a pointer to a fragment. We check for all
567 * relocated blocks if any of its fragments is referenced by the current
568 * field,  and update the pointer to the respective fragment in  our  new
569 * block.  If  we find a reference we write back the  block  immediately,
570 * as there is no easy way for our general block reading engine to figure
571 * out if a write back operation is needed.
572 */
573static int
574cond_bl_upd(daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
575    unsigned int Nflag)
576{
577	struct gfs_bpp	*f;
578	daddr_t src, dst;
579	int fragnum;
580	void *ibuf;
581
582	for (f = field; f->old != 0; f++) {
583		src = *block;
584		if (fragstoblks(&sblock, src) != f->old)
585			continue;
586		/*
587		 * The fragment is part of the block, so update.
588		 */
589		dst = blkstofrags(&sblock, f->new);
590		fragnum = fragnum(&sblock, src);
591		*block = dst + fragnum;
592		f->found++;
593
594		/*
595		 * Copy the block back immediately.
596		 *
597		 * XXX	If src is from an indirect block we have
598		 *	to implement copy on write here in case of
599		 *	active snapshots.
600		 */
601		ibuf = malloc(sblock.fs_bsize);
602		if (!ibuf)
603			errx(1, "malloc failed");
604		src -= fragnum;
605		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
606		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
607		free(ibuf);
608		/*
609		 * The same block can't be found again in this loop.
610		 */
611		return (1);
612	}
613
614	return (0);
615}
616
617/*
618 * Here we do all needed work for the former last cylinder group. It has to be
619 * changed  in  any case, even if the filesystem ended exactly on the  end  of
620 * this  group, as there is some slightly inconsistent handling of the  number
621 * of cylinders in the cylinder group. We start again by reading the  cylinder
622 * group from disk. If the last block was not fully available, we first handle
623 * the  missing  fragments, then we handle all new full blocks  in  that  file
624 * system  and  finally we handle the new last fragmented block  in  the  file
625 * system.  We again have to handle the fragment statistics rotational  layout
626 * tables and cluster summary during all those operations.
627 */
628static void
629updjcg(u_int cg, time_t utime, int fsi, int fso, unsigned int Nflag)
630{
631	daddr_t	cbase, dmax, dupper;
632	struct csum	*cs;
633	int	i, k;
634	int	j = 0;
635
636	/*
637	 * Read the former last (joining) cylinder group from disk, and make
638	 * a copy.
639	 */
640	rdfs(fsbtodb(&osblock, cgtod(&osblock, cg)),
641	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
642
643	memcpy(&cgun1, &cgun2, sizeof(cgun2));
644
645	/*
646	 * If the cylinder group had already its new final size almost
647	 * nothing is to be done ... except:
648	 * For some reason the value of cg_ncyl in the last cylinder group has
649	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
650	 * cylinder group we have to change that value now to fs_cpg.
651	 */
652	if (cgbase(&osblock, cg+1) == osblock.fs_size) {
653		if (sblock.fs_magic == FS_UFS1_MAGIC)
654			acg.cg_ncyl = sblock.fs_cpg;
655
656		wtfs(fsbtodb(&sblock, cgtod(&sblock, cg)),
657		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
658
659		return;
660	}
661
662	/*
663	 * Set up some variables needed later.
664	 */
665	cbase = cgbase(&sblock, cg);
666	dmax = cbase + sblock.fs_fpg;
667	if (dmax > sblock.fs_size)
668		dmax = sblock.fs_size;
669	dupper = cgdmin(&sblock, cg) - cbase;
670	if (cg == 0)	/* XXX fscs may be relocated */
671		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
672
673	/*
674	 * Set pointer to the cylinder summary for our cylinder group.
675	 */
676	cs = fscs + cg;
677
678	/*
679	 * Touch the cylinder group, update all fields in the cylinder group as
680	 * needed, update the free space in the superblock.
681	 */
682	acg.cg_time = utime;
683	if (sblock.fs_magic == FS_UFS1_MAGIC) {
684		if (cg == sblock.fs_ncg - 1) {
685			/*
686			 * This is still the last cylinder group.
687			 */
688			acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
689		} else {
690			acg.cg_ncyl = sblock.fs_cpg;
691		}
692	}
693	acg.cg_ndblk = dmax - cbase;
694	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
695	if (sblock.fs_contigsumsize > 0)
696		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
697
698	/*
699	 * Now  we have to update the free fragment bitmap for our new  free
700	 * space.  There again we have to handle the fragmentation and  also
701	 * the  rotational  layout tables and the cluster summary.  This  is
702	 * also  done per fragment for the first new block if the  old  file
703	 * system end was not on a block boundary, per fragment for the  new
704	 * last block if the new filesystem end is not on a block boundary,
705	 * and per block for all space in between.
706	 *
707	 * Handle the first new block here if it was partially available
708	 * before.
709	 */
710	if (osblock.fs_size % sblock.fs_frag) {
711		if (roundup(osblock.fs_size, sblock.fs_frag) <= sblock.fs_size) {
712			/*
713			 * The new space is enough to fill at least this
714			 * block
715			 */
716			j = 0;
717			for (i = roundup(osblock.fs_size-cbase, sblock.fs_frag) - 1;
718			    i >= osblock.fs_size-cbase; i--) {
719				setbit(cg_blksfree(&acg), i);
720				acg.cg_cs.cs_nffree++;
721				j++;
722			}
723
724			/*
725			 * Check  if the fragment just created could join  an
726			 * already existing fragment at the former end of the
727			 * filesystem.
728			 */
729			if (isblock(&sblock, cg_blksfree(&acg),
730			    ((osblock.fs_size - cgbase(&sblock, cg))/
731			    sblock.fs_frag))) {
732				/*
733				 * The block is now completely available.
734				 */
735				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
736				acg.cg_cs.cs_nbfree++;
737				acg.cg_cs.cs_nffree-=sblock.fs_frag;
738				k = rounddown(osblock.fs_size-cbase,
739				    sblock.fs_frag);
740				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
741			} else {
742				/*
743				 * Lets rejoin a possible partially growed
744				 * fragment.
745				 */
746				k = 0;
747				while (isset(cg_blksfree(&acg), i) &&
748				    (i >= rounddown(osblock.fs_size - cbase,
749				    sblock.fs_frag))) {
750					i--;
751					k++;
752				}
753				if (k)
754					acg.cg_frsum[k]--;
755				acg.cg_frsum[k + j]++;
756			}
757		} else {
758			/*
759			 * We only grow by some fragments within this last
760			 * block.
761			 */
762			for (i = sblock.fs_size-cbase-1;
763			    i >= osblock.fs_size-cbase; i--) {
764				setbit(cg_blksfree(&acg), i);
765				acg.cg_cs.cs_nffree++;
766				j++;
767			}
768			/*
769			 * Lets rejoin a possible partially growed fragment.
770			 */
771			k = 0;
772			while (isset(cg_blksfree(&acg), i) &&
773			    (i >= rounddown(osblock.fs_size - cbase,
774			    sblock.fs_frag))) {
775				i--;
776				k++;
777			}
778			if (k)
779				acg.cg_frsum[k]--;
780			acg.cg_frsum[k + j]++;
781		}
782	}
783
784	/*
785	 * Handle all new complete blocks here.
786	 */
787	for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
788	    i + sblock.fs_frag <= dmax-cbase;	/* XXX <= or only < ? */
789	    i += sblock.fs_frag) {
790		j = i / sblock.fs_frag;
791		setblock(&sblock, cg_blksfree(&acg), j);
792		updclst(j);
793		acg.cg_cs.cs_nbfree++;
794	}
795
796	/*
797	 * Handle the last new block if there are stll some new fragments left.
798	 * Here  we don't have to bother about the cluster summary or the  even
799	 * the rotational layout table.
800	 */
801	if (i < (dmax - cbase)) {
802		acg.cg_frsum[dmax - cbase - i]++;
803		for (; i < dmax - cbase; i++) {
804			setbit(cg_blksfree(&acg), i);
805			acg.cg_cs.cs_nffree++;
806		}
807	}
808
809	sblock.fs_cstotal.cs_nffree +=
810	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
811	sblock.fs_cstotal.cs_nbfree +=
812	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
813	/*
814	 * The following statistics are not changed here:
815	 *     sblock.fs_cstotal.cs_ndir
816	 *     sblock.fs_cstotal.cs_nifree
817	 * As the statistics for this cylinder group are ready, copy it to
818	 * the summary information array.
819	 */
820	*cs = acg.cg_cs;
821
822	/*
823	 * Write the updated "joining" cylinder group back to disk.
824	 */
825	wtfs(fsbtodb(&sblock, cgtod(&sblock, cg)), (size_t)sblock.fs_cgsize,
826	    (void *)&acg, fso, Nflag);
827}
828
829/*
830 * Here  we update the location of the cylinder summary. We have  two  possible
831 * ways of growing the cylinder summary.
832 * (1)	We can try to grow the summary in the current location, and  relocate
833 *	possibly used blocks within the current cylinder group.
834 * (2)	Alternatively we can relocate the whole cylinder summary to the first
835 *	new completely empty cylinder group. Once the cylinder summary is  no
836 *	longer in the beginning of the first cylinder group you should  never
837 *	use  a version of fsck which is not aware of the possibility to  have
838 *	this structure in a non standard place.
839 * Option (1) is considered to be less intrusive to the structure of the  file-
840 * system. So we try to stick to that whenever possible. If there is not enough
841 * space  in the cylinder group containing the cylinder summary we have to  use
842 * method  (2). In case of active snapshots in the filesystem we  probably  can
843 * completely avoid implementing copy on write if we stick to method (2) only.
844 */
845static void
846updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
847{
848	struct csum	*cs;
849	int	ocscg, ncscg;
850	int	blocks;
851	daddr_t	cbase, dupper, odupper, d, f, g;
852	int	ind;
853	u_int	cg, inc;
854	struct gfs_bpp	*bp;
855	int	i, l;
856	int	lcs = 0;
857	int	block;
858
859	if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
860	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
861		/*
862		 * No new fragment needed.
863		 */
864		return;
865	}
866	ocscg = dtog(&osblock, osblock.fs_csaddr);
867	cs = fscs + ocscg;
868	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
869	    howmany(osblock.fs_cssize, osblock.fs_bsize);
870
871	/*
872	 * Read original cylinder group from disk, and make a copy.
873	 * XXX	If Nflag is set in some very rare cases we now miss
874	 *	some changes done in updjcg by reading the unmodified
875	 *	block from disk.
876	 */
877	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
878	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
879
880	memcpy(&cgun1, &cgun2, sizeof(cgun2));
881
882	/*
883	 * Touch the cylinder group, set up local variables needed later
884	 * and update the superblock.
885	 */
886	acg.cg_time = utime;
887
888	/*
889	 * XXX	In the case of having active snapshots we may need much more
890	 *	blocks for the copy on write. We need each block twice,  and
891	 *	also  up to 8*3 blocks for indirect blocks for all  possible
892	 *	references.
893	 */
894	if (/*((int)sblock.fs_time & 0x3) > 0 || */ cs->cs_nbfree < blocks) {
895		/*
896		 * There  is  not enough space in the old cylinder  group  to
897		 * relocate  all blocks as needed, so we relocate  the  whole
898		 * cylinder  group summary to a new group. We try to use  the
899		 * first complete new cylinder group just created. Within the
900		 * cylinder  group we align the area immediately  after  the
901		 * cylinder  group  information location in order  to  be  as
902		 * close as possible to the original implementation of ffs.
903		 *
904		 * First  we have to make sure we'll find enough space in  the
905		 * new  cylinder  group. If not, then we  currently  give  up.
906		 * We  start  with freeing everything which was  used  by  the
907		 * fragments of the old cylinder summary in the current group.
908		 * Now  we write back the group meta data, read in the  needed
909		 * meta data from the new cylinder group, and start allocating
910		 * within  that  group. Here we can assume, the  group  to  be
911		 * completely empty. Which makes the handling of fragments and
912		 * clusters a lot easier.
913		 */
914		if (sblock.fs_ncg-osblock.fs_ncg < 2)
915			errx(2, "panic: not enough space");
916
917		/*
918		 * Point "d" to the first fragment not used by the cylinder
919		 * summary.
920		 */
921		d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
922
923		/*
924		 * Set up last cluster size ("lcs") already here. Calculate
925		 * the size for the trailing cluster just behind where  "d"
926		 * points to.
927		 */
928		if (sblock.fs_contigsumsize > 0) {
929			for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
930			    lcs = 0; lcs < sblock.fs_contigsumsize;
931			    block++, lcs++) {
932				if (isclr(cg_clustersfree(&acg), block))
933					break;
934			}
935		}
936
937		/*
938		 * Point "d" to the last frag used by the cylinder summary.
939		 */
940		d--;
941
942		if ((d + 1) % sblock.fs_frag) {
943			/*
944			 * The end of the cylinder summary is not a complete
945			 * block.
946			 */
947			frag_adjust(d % sblock.fs_fpg, -1);
948			for (; (d + 1) % sblock.fs_frag; d--) {
949				setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
950				acg.cg_cs.cs_nffree++;
951				sblock.fs_cstotal.cs_nffree++;
952			}
953			/*
954			 * Point  "d" to the last fragment of the  last
955			 * (incomplete) block of the cylinder summary.
956			 */
957			d++;
958			frag_adjust(d % sblock.fs_fpg, 1);
959
960			if (isblock(&sblock, cg_blksfree(&acg),
961			    (d % sblock.fs_fpg) / sblock.fs_frag)) {
962				acg.cg_cs.cs_nffree -= sblock.fs_frag;
963				acg.cg_cs.cs_nbfree++;
964				sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
965				sblock.fs_cstotal.cs_nbfree++;
966				if (sblock.fs_contigsumsize > 0) {
967					setbit(cg_clustersfree(&acg),
968					    (d % sblock.fs_fpg) / sblock.fs_frag);
969					if (lcs < sblock.fs_contigsumsize) {
970						if (lcs) {
971							cg_clustersum(&acg)
972							    [lcs]--;
973						}
974						lcs++;
975						cg_clustersum(&acg)[lcs]++;
976					}
977				}
978			}
979			/*
980			 * Point "d" to the first fragment of the block before
981			 * the last incomplete block.
982			 */
983			d--;
984		}
985
986		for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
987		    d -= sblock.fs_frag) {
988			setblock(&sblock, cg_blksfree(&acg),
989			    (d % sblock.fs_fpg) / sblock.fs_frag);
990			acg.cg_cs.cs_nbfree++;
991			sblock.fs_cstotal.cs_nbfree++;
992			 if (sblock.fs_contigsumsize > 0) {
993				setbit(cg_clustersfree(&acg),
994				    (d % sblock.fs_fpg) / sblock.fs_frag);
995				/*
996				 * The last cluster size is already set up.
997				 */
998				if (lcs < sblock.fs_contigsumsize) {
999					if (lcs) {
1000						cg_clustersum(&acg)[lcs]--;
1001					}
1002					lcs++;
1003					cg_clustersum(&acg)[lcs]++;
1004				}
1005			}
1006		}
1007		*cs = acg.cg_cs;
1008
1009		/*
1010		 * Now write the former cylinder group containing the cylinder
1011		 * summary back to disk.
1012		 */
1013		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1014		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1015
1016		/*
1017		 * Find the beginning of the new cylinder group containing the
1018		 * cylinder summary.
1019		 */
1020		sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
1021		ncscg = dtog(&sblock, sblock.fs_csaddr);
1022		cs = fscs + ncscg;
1023
1024
1025		/*
1026		 * If Nflag is specified, we would now read random data instead
1027		 * of an empty cg structure from disk. So we can't simulate that
1028		 * part for now.
1029		 */
1030		if (Nflag)
1031			return;
1032
1033		/*
1034		 * Read the future cylinder group containing the cylinder
1035		 * summary from disk, and make a copy.
1036		 */
1037		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1038		    (size_t)sblock.fs_cgsize, &aocg, fsi);
1039
1040		memcpy(&cgun1, &cgun2, sizeof(cgun2));
1041
1042		/*
1043		 * Allocate all complete blocks used by the new cylinder
1044		 * summary.
1045		 */
1046		for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
1047		    sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
1048		    d += sblock.fs_frag) {
1049			clrblock(&sblock, cg_blksfree(&acg),
1050			    (d%sblock.fs_fpg)/sblock.fs_frag);
1051			acg.cg_cs.cs_nbfree--;
1052			sblock.fs_cstotal.cs_nbfree--;
1053			if (sblock.fs_contigsumsize > 0) {
1054				clrbit(cg_clustersfree(&acg),
1055				    (d % sblock.fs_fpg) / sblock.fs_frag);
1056			}
1057		}
1058
1059		/*
1060		 * Allocate all fragments used by the cylinder summary in the
1061		 * last block.
1062		 */
1063		if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
1064			for (; d - sblock.fs_csaddr <
1065			    sblock.fs_cssize/sblock.fs_fsize;
1066			    d++) {
1067				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1068				acg.cg_cs.cs_nffree--;
1069				sblock.fs_cstotal.cs_nffree--;
1070			}
1071			acg.cg_cs.cs_nbfree--;
1072			acg.cg_cs.cs_nffree += sblock.fs_frag;
1073			sblock.fs_cstotal.cs_nbfree--;
1074			sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
1075			if (sblock.fs_contigsumsize > 0) {
1076				clrbit(cg_clustersfree(&acg),
1077				    (d%sblock.fs_fpg) / sblock.fs_frag);
1078			}
1079
1080			frag_adjust(d % sblock.fs_fpg, 1);
1081		}
1082		/*
1083		 * XXX	Handle the cluster statistics here in the case  this
1084		 *	cylinder group is now almost full, and the remaining
1085		 *	space is less then the maximum cluster size. This is
1086		 *	probably not needed, as you would hardly find a file
1087		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1088		 *	space right behind the cylinder group information in
1089		 *	any new cylinder group.
1090		 */
1091
1092		/*
1093		 * Update our statistics in the cylinder summary.
1094		 */
1095		*cs = acg.cg_cs;
1096
1097		/*
1098		 * Write the new cylinder group containing the cylinder summary
1099		 * back to disk.
1100		 */
1101		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1102		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1103		return;
1104	}
1105	/*
1106	 * We have got enough of space in the current cylinder group, so we
1107	 * can relocate just a few blocks, and let the summary  information
1108	 * grow in place where it is right now.
1109	 */
1110	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1111	dupper = sblock.fs_csaddr - cbase +
1112	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1113	odupper = osblock.fs_csaddr - cbase +
1114	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1115
1116	sblock.fs_dsize -= dupper-odupper;
1117
1118	/*
1119	 * Allocate the space for the array of blocks to be relocated.
1120	 */
1121	bp = calloc(((dupper-odupper) / sblock.fs_frag + 2),
1122	    sizeof(struct gfs_bpp));
1123	if (bp == NULL)
1124		errx(1, "calloc failed");
1125
1126	/*
1127	 * Lock all new frags needed for the cylinder group summary. This  is
1128	 * done per fragment in the first and last block of the new  required
1129	 * area, and per block for all other blocks.
1130	 *
1131	 * Handle the first new  block here (but only if some fragments where
1132	 * already used for the cylinder summary).
1133	 */
1134	ind = 0;
1135	frag_adjust(odupper, -1);
1136	for (d = odupper; ((d < dupper) && (d % sblock.fs_frag)); d++) {
1137		if (isclr(cg_blksfree(&acg), d)) {
1138			if (!ind) {
1139				bp[ind].old = d / sblock.fs_frag;
1140				bp[ind].flags|=GFS_FL_FIRST;
1141				if (roundup(d, sblock.fs_frag) >= dupper)
1142					bp[ind].flags |= GFS_FL_LAST;
1143				ind++;
1144			}
1145		} else {
1146			clrbit(cg_blksfree(&acg), d);
1147			acg.cg_cs.cs_nffree--;
1148			sblock.fs_cstotal.cs_nffree--;
1149		}
1150		/*
1151		 * No cluster handling is needed here, as there was at least
1152		 * one  fragment in use by the cylinder summary in  the  old
1153		 * filesystem.
1154		 * No block - free counter handling here as this block was not
1155		 * a free block.
1156		 */
1157	}
1158	frag_adjust(odupper, 1);
1159
1160	/*
1161	 * Handle all needed complete blocks here.
1162	 */
1163	for (; d + sblock.fs_frag <= dupper; d += sblock.fs_frag) {
1164		if (!isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) {
1165			for (f = d; f < d + sblock.fs_frag; f++) {
1166				if (isset(cg_blksfree(&aocg), f)) {
1167					acg.cg_cs.cs_nffree--;
1168					sblock.fs_cstotal.cs_nffree--;
1169				}
1170			}
1171			clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
1172			bp[ind].old = d / sblock.fs_frag;
1173			ind++;
1174		} else {
1175			clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
1176			acg.cg_cs.cs_nbfree--;
1177			sblock.fs_cstotal.cs_nbfree--;
1178			if (sblock.fs_contigsumsize > 0) {
1179				clrbit(cg_clustersfree(&acg), d / sblock.fs_frag);
1180				for (lcs = 0, l = (d / sblock.fs_frag) + 1;
1181				    lcs < sblock.fs_contigsumsize;
1182				    l++, lcs++) {
1183					if (isclr(cg_clustersfree(&acg), l))
1184						break;
1185				}
1186				if (lcs < sblock.fs_contigsumsize) {
1187					cg_clustersum(&acg)[lcs + 1]--;
1188					if (lcs)
1189						cg_clustersum(&acg)[lcs]++;
1190				}
1191			}
1192		}
1193		/*
1194		 * No fragment counter handling is needed here, as this finally
1195		 * doesn't change after the relocation.
1196		 */
1197	}
1198
1199	/*
1200	 * Handle all fragments needed in the last new affected block.
1201	 */
1202	if (d < dupper) {
1203		frag_adjust(dupper - 1, -1);
1204
1205		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) {
1206			acg.cg_cs.cs_nbfree--;
1207			sblock.fs_cstotal.cs_nbfree--;
1208			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1209			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1210			if (sblock.fs_contigsumsize > 0) {
1211				clrbit(cg_clustersfree(&acg), d / sblock.fs_frag);
1212				for (lcs = 0, l = (d / sblock.fs_frag) + 1;
1213				    lcs < sblock.fs_contigsumsize;
1214				    l++, lcs++) {
1215					if (isclr(cg_clustersfree(&acg), l))
1216						break;
1217				}
1218				if (lcs < sblock.fs_contigsumsize) {
1219					cg_clustersum(&acg)[lcs + 1]--;
1220					if (lcs)
1221						cg_clustersum(&acg)[lcs]++;
1222				}
1223			}
1224		}
1225
1226		for (; d < dupper; d++) {
1227			if (isclr(cg_blksfree(&acg), d)) {
1228				bp[ind].old = d / sblock.fs_frag;
1229				bp[ind].flags |= GFS_FL_LAST;
1230			} else {
1231				clrbit(cg_blksfree(&acg), d);
1232				acg.cg_cs.cs_nffree--;
1233				sblock.fs_cstotal.cs_nffree--;
1234			}
1235		}
1236		if (bp[ind].flags & GFS_FL_LAST) /* we have to advance here */
1237			ind++;
1238		frag_adjust(dupper - 1, 1);
1239	}
1240
1241	/*
1242	 * If we found a block to relocate just do so.
1243	 */
1244	if (ind) {
1245		for (i = 0; i < ind; i++) {
1246			if (!bp[i].old) { /* no more blocks listed */
1247				/*
1248				 * XXX	A relative blocknumber should not be
1249				 *	zero,   which  is   not   explicitly
1250				 *	guaranteed by our code.
1251				 */
1252				break;
1253			}
1254			/*
1255			 * Allocate a complete block in the same (current)
1256			 * cylinder group.
1257			 */
1258			bp[i].new = alloc() / sblock.fs_frag;
1259
1260			/*
1261			 * There is no frag_adjust() needed for the new block
1262			 * as it will have no fragments yet :-).
1263			 */
1264			for (f = bp[i].old * sblock.fs_frag,
1265			    g = bp[i].new * sblock.fs_frag;
1266			    f < (bp[i].old + 1) * sblock.fs_frag;
1267			    f++, g++) {
1268				if (isset(cg_blksfree(&aocg), f)) {
1269					setbit(cg_blksfree(&acg), g);
1270					acg.cg_cs.cs_nffree++;
1271					sblock.fs_cstotal.cs_nffree++;
1272				}
1273			}
1274
1275			/*
1276			 * Special handling is required if this was the  first
1277			 * block. We have to consider the fragments which were
1278			 * used by the cylinder summary in the original  block
1279			 * which  re to be free in the copy of our  block.  We
1280			 * have  to be careful if this first block happens  to
1281			 * be also the last block to be relocated.
1282			 */
1283			if (bp[i].flags & GFS_FL_FIRST) {
1284				for (f = bp[i].old * sblock.fs_frag,
1285				    g = bp[i].new * sblock.fs_frag;
1286				    f < odupper;
1287				    f++, g++) {
1288					setbit(cg_blksfree(&acg), g);
1289					acg.cg_cs.cs_nffree++;
1290					sblock.fs_cstotal.cs_nffree++;
1291				}
1292				if (!(bp[i].flags & GFS_FL_LAST))
1293					frag_adjust(bp[i].new * sblock.fs_frag, 1);
1294			}
1295
1296			/*
1297			 * Special handling is required if this is the last
1298			 * block to be relocated.
1299			 */
1300			if (bp[i].flags & GFS_FL_LAST) {
1301				frag_adjust(bp[i].new * sblock.fs_frag, 1);
1302				frag_adjust(bp[i].old * sblock.fs_frag, -1);
1303				for (f = dupper;
1304				    f < roundup(dupper, sblock.fs_frag);
1305				    f++) {
1306					if (isclr(cg_blksfree(&acg), f)) {
1307						setbit(cg_blksfree(&acg), f);
1308						acg.cg_cs.cs_nffree++;
1309						sblock.fs_cstotal.cs_nffree++;
1310					}
1311				}
1312				frag_adjust(bp[i].old * sblock.fs_frag, 1);
1313			}
1314
1315			/*
1316			 * !!! Attach the cylindergroup offset here.
1317			 */
1318			bp[i].old += cbase / sblock.fs_frag;
1319			bp[i].new += cbase / sblock.fs_frag;
1320
1321			/*
1322			 * Copy the content of the block.
1323			 */
1324			/*
1325			 * XXX	Here we will have to implement a copy on write
1326			 *	in the case we have any active snapshots.
1327			 */
1328			rdfs(fsbtodb(&sblock, bp[i].old * sblock.fs_frag),
1329			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1330			wtfs(fsbtodb(&sblock, bp[i].new * sblock.fs_frag),
1331			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1332		}
1333
1334		/*
1335		 * Now we have to update all references to any fragment which
1336		 * belongs  to any block relocated. We iterate now  over  all
1337		 * cylinder  groups,  within those over all non  zero  length
1338		 * inodes.
1339		 */
1340		for (cg = 0; cg < osblock.fs_ncg; cg++) {
1341			for (inc = osblock.fs_ipg - 1; inc > 0; inc--) {
1342				updrefs(cg, (ino_t)inc, bp, fsi, fso, Nflag);
1343			}
1344		}
1345
1346		/*
1347		 * All inodes are checked, now make sure the number of
1348		 * references found make sense.
1349		 */
1350		for (i = 0; i < ind; i++) {
1351			if (!bp[i].found || (bp[i].found > sblock.fs_frag)) {
1352				warnx("error: %jd refs found for block %jd.",
1353				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1354			}
1355
1356		}
1357	}
1358	/*
1359	 * The following statistics are not changed here:
1360	 *     sblock.fs_cstotal.cs_ndir
1361	 *     sblock.fs_cstotal.cs_nifree
1362	 * The following statistics were already updated on the fly:
1363	 *     sblock.fs_cstotal.cs_nffree
1364	 *     sblock.fs_cstotal.cs_nbfree
1365	 * As the statistics for this cylinder group are ready, copy it to
1366	 * the summary information array.
1367	 */
1368
1369	*cs = acg.cg_cs;
1370
1371	/*
1372	 * Write summary cylinder group back to disk.
1373	 */
1374	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1375	    (void *)&acg, fso, Nflag);
1376}
1377
1378/*
1379 * Here we read some block(s) from disk.
1380 */
1381static void
1382rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1383{
1384	ssize_t	n;
1385
1386	if (bno < 0) {
1387		err(32, "rdfs: attempting to read negative block number");
1388	}
1389	if (lseek(fsi, (off_t)bno * DEV_BSIZE, SEEK_SET) == -1) {
1390		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1391	}
1392	n = read(fsi, bf, size);
1393	if (n != (ssize_t)size) {
1394		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1395	}
1396}
1397
1398/*
1399 * Here we write some block(s) to disk.
1400 */
1401static void
1402wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1403{
1404	ssize_t	n;
1405
1406	if (Nflag)
1407		return;
1408
1409	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) == -1)
1410		err(35, "wtfs: seek error: %ld", (long)bno);
1411	n = write(fso, bf, size);
1412	if (n != (ssize_t)size)
1413		err(36, "wtfs: write error: %ld", (long)bno);
1414}
1415
1416/*
1417 * Here we allocate a free block in the current cylinder group. It is assumed,
1418 * that  acg contains the current cylinder group. As we may take a block  from
1419 * somewhere in the filesystem we have to handle cluster summary here.
1420 */
1421static daddr_t
1422alloc(void)
1423{
1424	daddr_t	d, blkno;
1425	int	lcs1, lcs2;
1426	int	l;
1427	int	csmin, csmax;
1428	int	dlower, dupper, dmax;
1429
1430	if (acg.cg_magic != CG_MAGIC) {
1431		warnx("acg: bad magic number");
1432		return (0);
1433	}
1434	if (acg.cg_cs.cs_nbfree == 0) {
1435		warnx("error: cylinder group ran out of space");
1436		return (0);
1437	}
1438	/*
1439	 * We start seeking for free blocks only from the space available after
1440	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1441	 * block here which we have to relocate a couple of seconds later again
1442	 * again, and we are not prepared to to this anyway.
1443	 */
1444	blkno = -1;
1445	dlower = cgsblock(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx);
1446	dupper = cgdmin(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx);
1447	dmax = cgbase(&sblock, acg.cg_cgx) + sblock.fs_fpg;
1448	if (dmax > sblock.fs_size) {
1449		dmax = sblock.fs_size;
1450	}
1451	dmax -= cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1452	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1453	csmax = csmin + howmany(sblock.fs_cssize, sblock.fs_fsize);
1454
1455	for (d = 0; (d < dlower && blkno == -1); d += sblock.fs_frag) {
1456		if (d >= csmin && d <= csmax) {
1457			continue;
1458		}
1459		if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1460		    d))) {
1461			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1462			break;
1463		}
1464	}
1465	for (d = dupper; (d < dmax && blkno == -1); d += sblock.fs_frag) {
1466		if (d >= csmin && d <= csmax) {
1467			continue;
1468		}
1469		if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1470		    d))) {
1471			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1472			break;
1473		}
1474	}
1475	if (blkno == -1) {
1476		warnx("internal error: couldn't find promised block in cg");
1477		return (0);
1478	}
1479
1480	/*
1481	 * This is needed if the block was found already in the first loop.
1482	 */
1483	d = blkstofrags(&sblock, blkno);
1484
1485	clrblock(&sblock, cg_blksfree(&acg), blkno);
1486	if (sblock.fs_contigsumsize > 0) {
1487		/*
1488		 * Handle the cluster allocation bitmap.
1489		 */
1490		clrbit(cg_clustersfree(&acg), blkno);
1491		/*
1492		 * We  possibly have split a cluster here, so we have  to  do
1493		 * recalculate the sizes of the remaining cluster halves now,
1494		 * and use them for updating the cluster summary information.
1495		 *
1496		 * Lets start with the blocks before our allocated block ...
1497		 */
1498		for (lcs1 = 0, l = blkno - 1; lcs1 < sblock.fs_contigsumsize;
1499		    l--, lcs1++) {
1500			if (isclr(cg_clustersfree(&acg), l))
1501				break;
1502		}
1503		/*
1504		 * ... and continue with the blocks right after our allocated
1505		 * block.
1506		 */
1507		for (lcs2 = 0, l = blkno + 1; lcs2 < sblock.fs_contigsumsize;
1508		    l++, lcs2++) {
1509			if (isclr(cg_clustersfree(&acg), l))
1510				break;
1511		}
1512
1513		/*
1514		 * Now update all counters.
1515		 */
1516		cg_clustersum(&acg)[MINIMUM(lcs1 + lcs2 + 1, sblock.fs_contigsumsize)]--;
1517		if (lcs1)
1518			cg_clustersum(&acg)[lcs1]++;
1519		if (lcs2)
1520			cg_clustersum(&acg)[lcs2]++;
1521	}
1522	/*
1523	 * Update all statistics based on blocks.
1524	 */
1525	acg.cg_cs.cs_nbfree--;
1526	sblock.fs_cstotal.cs_nbfree--;
1527
1528	return (d);
1529}
1530
1531/*
1532 * Here  we check if all frags of a block are free. For more details  again
1533 * please see the source of newfs(8), as this function is taken over almost
1534 * unchanged.
1535 */
1536static int
1537isblock(struct fs *fs, unsigned char *cp, int h)
1538{
1539	unsigned char	mask;
1540
1541	switch (fs->fs_frag) {
1542	case 8:
1543		return (cp[h] == 0xff);
1544	case 4:
1545		mask = 0x0f << ((h & 0x1) << 2);
1546		return ((cp[h >> 1] & mask) == mask);
1547	case 2:
1548		mask = 0x03 << ((h & 0x3) << 1);
1549		return ((cp[h >> 2] & mask) == mask);
1550	case 1:
1551		mask = 0x01 << (h & 0x7);
1552		return ((cp[h >> 3] & mask) == mask);
1553	default:
1554		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1555		return (0);
1556	}
1557}
1558
1559/*
1560 * Here we allocate a complete block in the block map. For more details again
1561 * please  see the source of newfs(8), as this function is taken over  almost
1562 * unchanged.
1563 */
1564static void
1565clrblock(struct fs *fs, unsigned char *cp, int h)
1566{
1567	switch ((fs)->fs_frag) {
1568	case 8:
1569		cp[h] = 0;
1570		break;
1571	case 4:
1572		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1573		break;
1574	case 2:
1575		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1576		break;
1577	case 1:
1578		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1579		break;
1580	default:
1581		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1582		break;
1583	}
1584}
1585
1586/*
1587 * Here we free a complete block in the free block map. For more details again
1588 * please  see the source of newfs(8), as this function is taken  over  almost
1589 * unchanged.
1590 */
1591static void
1592setblock(struct fs *fs, unsigned char *cp, int h)
1593{
1594	switch (fs->fs_frag) {
1595	case 8:
1596		cp[h] = 0xff;
1597		break;
1598	case 4:
1599		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1600		break;
1601	case 2:
1602		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1603		break;
1604	case 1:
1605		cp[h >> 3] |= (0x01 << (h & 0x7));
1606		break;
1607	default:
1608		warnx("setblock bad fs_frag %d", fs->fs_frag);
1609		break;
1610	}
1611}
1612
1613/*
1614 * This function provides access to an individual inode. We find out in which
1615 * block  the  requested inode is located, read it from disk if  needed,  and
1616 * return  the pointer into that block. We maintain a cache of one  block  to
1617 * not  read the same block again and again if we iterate linearly  over  all
1618 * inodes.
1619 */
1620static union dinode *
1621ginode(ino_t inumber, int fsi, int cg)
1622{
1623	static ino_t	startinum = 0;	/* first inode in cached block */
1624
1625	/*
1626	 * The inumber passed in is relative to the cg, so use it here to see
1627	 * if the inode has been allocated yet.
1628	 */
1629	if (isclr(cg_inosused(&aocg), inumber)) {
1630		return NULL;
1631	}
1632	/*
1633	 * Now make the inumber relative to the entire inode space so it can
1634	 * be sanity checked.
1635	 */
1636	inumber += (cg * sblock.fs_ipg);
1637	if (inumber < ROOTINO) {
1638		return NULL;
1639	}
1640	if (inumber > maxino)
1641		errx(8, "bad inode number %llu to ginode",
1642		    (unsigned long long)inumber);
1643	if (startinum == 0 ||
1644	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1645		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1646		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1647		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1648	}
1649	if (sblock.fs_magic == FS_UFS1_MAGIC)
1650		return (union dinode *)((uintptr_t)inobuf +
1651		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1652	return (union dinode *)((uintptr_t)inobuf +
1653	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1654}
1655
1656/*
1657 * Figure out how many lines our current terminal has. For more details again
1658 * please see the source of newfs(8), as this function is taken over almost
1659 * unchanged.
1660 */
1661static int
1662charsperline(void)
1663{
1664	int	columns;
1665	char	*cp;
1666	struct winsize	ws;
1667
1668	columns = 0;
1669	if ((cp = getenv("COLUMNS")) != NULL)
1670		columns = strtonum(cp, 1, INT_MAX, NULL);
1671	if (columns == 0 && ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0 &&
1672	    ws.ws_col > 0)
1673		columns = ws.ws_col;
1674	if (columns == 0)
1675		columns = 80;
1676
1677	return columns;
1678}
1679
1680/*
1681 * growfs(8) is a utility which allows to increase the size of an existing
1682 * ufs filesystem. Currently this can only be done on unmounted file system.
1683 * It recognizes some command line options to specify the new desired size,
1684 * and it does some basic checkings. The old filesystem size is determined
1685 * and after some more checks like we can really access the new last block
1686 * on the disk etc. we calculate the new parameters for the superblock. After
1687 * having done this we just call growfs() which will do the work. Before
1688 * we finish the only thing left is to update the disklabel.
1689 * We still have to provide support for snapshots. Therefore we first have to
1690 * understand what data structures are always replicated in the snapshot on
1691 * creation, for all other blocks we touch during our procedure, we have to
1692 * keep the old blocks unchanged somewhere available for the snapshots. If we
1693 * are lucky, then we only have to handle our blocks to be relocated in that
1694 * way.
1695 * Also we have to consider in what order we actually update the critical
1696 * data structures of the filesystem to make sure, that in case of a disaster
1697 * fsck(8) is still able to restore any lost data.
1698 * The foreseen last step then will be to provide for growing even mounted
1699 * file systems. There we have to extend the mount() system call to provide
1700 * userland access to the filesystem locking facility.
1701 */
1702int
1703main(int argc, char **argv)
1704{
1705	char	*device, *lastsector;
1706	int	ch;
1707	long long	size = 0;
1708	unsigned int	Nflag = 0;
1709	int	ExpertFlag = 0;
1710	struct stat	st;
1711	struct disklabel	*lp;
1712	struct partition	*pp;
1713	int	i, fsi, fso;
1714	char	reply[5];
1715	const char *errstr;
1716#ifdef FSMAXSNAP
1717	int	j;
1718#endif /* FSMAXSNAP */
1719
1720	while ((ch = getopt(argc, argv, "Nqs:vy")) != -1) {
1721		switch (ch) {
1722		case 'N':
1723			Nflag = 1;
1724			break;
1725		case 'q':
1726			quiet = 1;
1727			break;
1728		case 's':
1729			size = strtonum(optarg, 1, LLONG_MAX, &errstr);
1730			if (errstr)
1731				usage();
1732			break;
1733		case 'v': /* for compatibility to newfs */
1734			break;
1735		case 'y':
1736			ExpertFlag = 1;
1737			break;
1738		case '?':
1739			/* FALLTHROUGH */
1740		default:
1741			usage();
1742		}
1743	}
1744	argc -= optind;
1745	argv += optind;
1746
1747	if (argc != 1)
1748		usage();
1749
1750	colwidth = charsperline();
1751
1752	/*
1753	 * Rather than guessing, use opendev() to get the device
1754	 * name, which we open for reading.
1755	 */
1756	if ((fsi = opendev(*argv, O_RDONLY, 0, &device)) == -1)
1757		err(1, "%s", *argv);
1758
1759	/*
1760	 * Try to access our devices for writing ...
1761	 */
1762	if (Nflag) {
1763		fso = -1;
1764	} else {
1765		fso = open(device, O_WRONLY);
1766		if (fso == -1)
1767			err(1, "%s", device);
1768	}
1769
1770	/*
1771	 * Now we have a file descriptor for our device, fstat() it to
1772	 * figure out the partition number.
1773	 */
1774	if (fstat(fsi, &st) == -1)
1775		err(1, "%s: fstat()", device);
1776
1777	/*
1778	 * Try to read a label from the disk. Then get the partition from the
1779	 * device minor number, using DISKPART(). Probably don't need to
1780	 * check against getmaxpartitions().
1781	 */
1782	lp = get_disklabel(fsi);
1783	if (DISKPART(st.st_rdev) < getmaxpartitions())
1784		pp = &lp->d_partitions[DISKPART(st.st_rdev)];
1785	else
1786		errx(1, "%s: invalid partition number %u",
1787		    device, DISKPART(st.st_rdev));
1788
1789	if (pledge("stdio disklabel", NULL) == -1)
1790		err(1, "pledge");
1791
1792	/*
1793	 * Check if that partition is suitable for growing a file system.
1794	 */
1795	if (DL_GETPSIZE(pp) < 1)
1796		errx(1, "partition is unavailable");
1797	if (pp->p_fstype != FS_BSDFFS)
1798		errx(1, "can only grow ffs partitions");
1799
1800	/*
1801	 * Read the current superblock, and take a backup.
1802	 */
1803	for (i = 0; sblock_try[i] != -1; i++) {
1804		sblockloc = sblock_try[i] / DEV_BSIZE;
1805		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
1806		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
1807		     (osblock.fs_magic == FS_UFS2_MAGIC &&
1808		      osblock.fs_sblockloc == sblock_try[i])) &&
1809		    osblock.fs_bsize <= MAXBSIZE &&
1810		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
1811			break;
1812	}
1813	if (sblock_try[i] == -1)
1814		errx(1, "superblock not recognized");
1815	if (osblock.fs_clean == 0)
1816		errx(1, "filesystem not clean - run fsck");
1817	if (sblock.fs_magic == FS_UFS1_MAGIC &&
1818	    (sblock.fs_ffs1_flags & FS_FLAGS_UPDATED) == 0)
1819		ffs1_sb_update(&sblock, sblock_try[i]);
1820	memcpy(&fsun1, &fsun2, sizeof(fsun2));
1821	maxino = sblock.fs_ncg * sblock.fs_ipg;
1822
1823	/*
1824	 * Determine size to grow to. Default to the full size specified in
1825	 * the disk label.
1826	 */
1827	sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, DL_GETPSIZE(pp)));
1828	if (size != 0) {
1829		if (size > DL_GETPSIZE(pp)) {
1830			errx(1, "there is not enough space (%llu < %lld)",
1831			    DL_GETPSIZE(pp), size);
1832		}
1833		sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, size));
1834	}
1835
1836	/*
1837	 * Are we really growing ?
1838	 */
1839	if (osblock.fs_size >= sblock.fs_size) {
1840		errx(1, "we are not growing (%jd->%jd)",
1841		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
1842	}
1843
1844
1845#ifdef FSMAXSNAP
1846	/*
1847	 * Check if we find an active snapshot.
1848	 */
1849	if (ExpertFlag == 0) {
1850		for (j = 0; j < FSMAXSNAP; j++) {
1851			if (sblock.fs_snapinum[j]) {
1852				errx(1, "active snapshot found in filesystem\n"
1853				    "	please remove all snapshots before "
1854				    "using growfs");
1855			}
1856			if (!sblock.fs_snapinum[j])	/* list is dense */
1857				break;
1858		}
1859	}
1860#endif
1861
1862	if (ExpertFlag == 0 && Nflag == 0) {
1863		printf("We strongly recommend you to make a backup "
1864		    "before growing the Filesystem\n\n"
1865		    " Did you backup your data (Yes/No) ? ");
1866		if (fgets(reply, (int)sizeof(reply), stdin) == NULL ||
1867		    strncasecmp(reply, "Yes", 3)) {
1868			printf("\n Nothing done \n");
1869			exit (0);
1870		}
1871	}
1872
1873	if (!quiet)
1874		printf("new filesystem size is: %jd frags\n",
1875		    (intmax_t)sblock.fs_size);
1876
1877	/*
1878	 * Try to access our new last sector in the filesystem. Even if we
1879	 * later on realize we have to abort our operation, on that sector
1880	 * there should be no data, so we can't destroy something yet.
1881	 */
1882	lastsector = calloc(1, lp->d_secsize);
1883	if (!lastsector)
1884		err(1, "No memory for last sector test write");
1885	wtfs(DL_SECTOBLK(lp, DL_GETPSIZE(pp) - 1), lp->d_secsize,
1886	    lastsector, fso, Nflag);
1887	free(lastsector);
1888
1889	/*
1890	 * Now calculate new superblock values and check for reasonable
1891	 * bound for new filesystem size:
1892	 *     fs_size:    is derived from label or user input
1893	 *     fs_dsize:   should get updated in the routines creating or
1894	 *                 updating the cylinder groups on the fly
1895	 *     fs_cstotal: should get updated in the routines creating or
1896	 *                 updating the cylinder groups
1897	 */
1898
1899	/*
1900	 * Update the number of cylinders and cylinder groups in the file system.
1901	 */
1902	if (sblock.fs_magic == FS_UFS1_MAGIC) {
1903		sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
1904		if (sblock.fs_size * NSPF(&sblock) >
1905		    sblock.fs_ncyl * sblock.fs_spc)
1906		sblock.fs_ncyl++;
1907	}
1908	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
1909	if ((ino_t)sblock.fs_ncg * sblock.fs_ipg > UINT_MAX)
1910		errx(1, "more than 2^32 inodes requested");
1911	maxino = sblock.fs_ncg * sblock.fs_ipg;
1912
1913	if (sblock.fs_size % sblock.fs_fpg != 0 &&
1914	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
1915		/*
1916		 * The space in the new last cylinder group is too small,
1917		 * so revert back.
1918		 */
1919		sblock.fs_ncg--;
1920		if (sblock.fs_magic == FS_UFS1_MAGIC)
1921			sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
1922		if (!quiet)
1923			printf("Warning: %jd sector(s) cannot be allocated.\n",
1924			    (intmax_t)fsbtodb(&sblock,
1925			    sblock.fs_size % sblock.fs_fpg));
1926		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
1927	}
1928
1929	/*
1930	 * Update the space for the cylinder group summary information in the
1931	 * respective cylinder group data area.
1932	 */
1933	sblock.fs_cssize =
1934	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
1935
1936	if (osblock.fs_size >= sblock.fs_size)
1937		errx(1, "not enough new space");
1938
1939	/*
1940	 * Ok, everything prepared, so now let's do the tricks.
1941	 */
1942	growfs(fsi, fso, Nflag);
1943
1944	/*
1945	 * Update the disk label.
1946	 */
1947	pp->p_fragblock =
1948	    DISKLABELV1_FFS_FRAGBLOCK(sblock.fs_fsize, sblock.fs_frag);
1949	pp->p_cpg = sblock.fs_fpg;
1950
1951	return_disklabel(fso, lp, Nflag);
1952
1953	close(fsi);
1954	if (fso > -1)
1955		close(fso);
1956
1957	return 0;
1958}
1959
1960/*
1961 * Write the updated disklabel back to disk.
1962 */
1963static void
1964return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
1965{
1966	u_short	sum;
1967	u_short	*ptr;
1968
1969	if (!lp)
1970		return;
1971
1972	if (!Nflag) {
1973		lp->d_checksum = 0;
1974		sum = 0;
1975		ptr = (u_short *)lp;
1976
1977		/*
1978		 * recalculate checksum
1979		 */
1980		while (ptr < (u_short *)&lp->d_partitions[lp->d_npartitions])
1981			sum ^= *ptr++;
1982		lp->d_checksum = sum;
1983
1984		if (ioctl(fd, DIOCWDINFO, (char *)lp) == -1)
1985			errx(1, "DIOCWDINFO failed");
1986	}
1987	free(lp);
1988
1989	return ;
1990}
1991
1992/*
1993 * Read the disklabel from disk.
1994 */
1995static struct disklabel *
1996get_disklabel(int fd)
1997{
1998	static struct	disklabel *lab;
1999
2000	lab = malloc(sizeof(struct disklabel));
2001	if (!lab)
2002		errx(1, "malloc failed");
2003	if (ioctl(fd, DIOCGDINFO, (char *)lab) != 0)
2004		err(1, "DIOCGDINFO");
2005
2006	return (lab);
2007}
2008
2009
2010/*
2011 * Dump a line of usage.
2012 */
2013static void
2014usage(void)
2015{
2016	fprintf(stderr, "usage: growfs [-Nqy] [-s size] special\n");
2017	exit(1);
2018}
2019
2020/*
2021 * This updates most parameters and the bitmap related to cluster. We have to
2022 * assume that sblock, osblock, acg are set up.
2023 */
2024static void
2025updclst(int block)
2026{
2027	static int	lcs = 0;
2028
2029	if (sblock.fs_contigsumsize < 1)	/* no clustering */
2030		return;
2031
2032	/*
2033	 * update cluster allocation map
2034	 */
2035	setbit(cg_clustersfree(&acg), block);
2036
2037	/*
2038	 * update cluster summary table
2039	 */
2040	if (!lcs) {
2041		/*
2042		 * calculate size for the trailing cluster
2043		 */
2044		for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++) {
2045			if (isclr(cg_clustersfree(&acg), block))
2046				break;
2047		}
2048	}
2049	if (lcs < sblock.fs_contigsumsize) {
2050		if (lcs)
2051			cg_clustersum(&acg)[lcs]--;
2052		lcs++;
2053		cg_clustersum(&acg)[lcs]++;
2054	}
2055}
2056
2057/*
2058 * This updates all references to relocated blocks for the given inode.  The
2059 * inode is given as number within the cylinder group, and the number of the
2060 * cylinder group.
2061 */
2062static void
2063updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2064    Nflag)
2065{
2066	daddr_t	len, lbn, numblks;
2067	daddr_t	iptr, blksperindir;
2068	union dinode	*ino;
2069	int		i, mode, inodeupdated;
2070
2071	ino = ginode(in, fsi, cg);
2072	if (ino == NULL)
2073		return;
2074
2075	mode = DIP(ino, di_mode) & IFMT;
2076	if (mode != IFDIR && mode != IFREG && mode != IFLNK)
2077		return; /* only check DIR, FILE, LINK */
2078	if (mode == IFLNK &&
2079	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen)
2080		return;	/* skip short symlinks */
2081	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2082	if (numblks == 0)
2083		return;	/* skip empty file */
2084	if (DIP(ino, di_blocks) == 0)
2085		return;	/* skip empty swiss cheesy file or old fastlink */
2086
2087	/*
2088	 * Check all the blocks.
2089	 */
2090	inodeupdated = 0;
2091	len = numblks < NDADDR ? numblks : NDADDR;
2092	for (i = 0; i < len; i++) {
2093		iptr = DIP(ino, di_db[i]);
2094		if (iptr == 0)
2095			continue;
2096		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2097			DIP_SET(ino, di_db[i], iptr);
2098			inodeupdated++;
2099		}
2100	}
2101
2102	blksperindir = 1;
2103	len = numblks - NDADDR;
2104	lbn = NDADDR;
2105	for (i = 0; len > 0 && i < NIADDR; i++) {
2106		iptr = DIP(ino, di_ib[i]);
2107		if (iptr == 0)
2108			continue;
2109		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2110			DIP_SET(ino, di_ib[i], iptr);
2111			inodeupdated++;
2112		}
2113		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2114		blksperindir *= NINDIR(&sblock);
2115		lbn += blksperindir;
2116		len -= blksperindir;
2117	}
2118	if (inodeupdated)
2119		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2120}
2121
2122/*
2123 * Recursively check all the indirect blocks.
2124 */
2125static void
2126indirchk(daddr_t blksperindir, daddr_t lbn, daddr_t blkno,
2127    daddr_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2128{
2129	void *ibuf;
2130	int i, last;
2131	daddr_t iptr;
2132
2133	/* read in the indirect block. */
2134	ibuf = malloc(sblock.fs_bsize);
2135	if (!ibuf)
2136		errx(1, "malloc failed");
2137	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2138	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2139	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2140	for (i = 0; i < last; i++) {
2141		if (sblock.fs_magic == FS_UFS1_MAGIC)
2142			iptr = ((int32_t *)ibuf)[i];
2143		else
2144			iptr = ((daddr_t *)ibuf)[i];
2145		if (iptr == 0)
2146			continue;
2147		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2148			if (sblock.fs_magic == FS_UFS1_MAGIC)
2149				((int32_t *)ibuf)[i] = iptr;
2150			else
2151				((daddr_t *)ibuf)[i] = iptr;
2152		}
2153		if (blksperindir == 1)
2154			continue;
2155		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2156		    iptr, lastlbn, bp, fsi, fso, Nflag);
2157	}
2158	free(ibuf);
2159}
2160
2161static void
2162ffs1_sb_update(struct fs *fs, daddr_t sbloc)
2163{
2164	fs->fs_flags = fs->fs_ffs1_flags;
2165	fs->fs_sblockloc = sbloc;
2166	fs->fs_maxbsize = fs->fs_bsize;
2167	fs->fs_time = fs->fs_ffs1_time;
2168	fs->fs_size = fs->fs_ffs1_size;
2169	fs->fs_dsize = fs->fs_ffs1_dsize;
2170	fs->fs_csaddr = fs->fs_ffs1_csaddr;
2171	fs->fs_cstotal.cs_ndir = fs->fs_ffs1_cstotal.cs_ndir;
2172	fs->fs_cstotal.cs_nbfree = fs->fs_ffs1_cstotal.cs_nbfree;
2173	fs->fs_cstotal.cs_nifree = fs->fs_ffs1_cstotal.cs_nifree;
2174	fs->fs_cstotal.cs_nffree = fs->fs_ffs1_cstotal.cs_nffree;
2175	fs->fs_ffs1_flags |= FS_FLAGS_UPDATED;
2176}
2177