1/*	$OpenBSD: cexp_test.c,v 1.3 2021/12/13 18:04:28 deraadt Exp $	*/
2/*-
3 * Copyright (c) 2008-2011 David Schultz <das@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include "macros.h"
29
30/*
31 * Tests for corner cases in cexp*().
32 */
33
34#include <sys/types.h>
35
36#include <complex.h>
37#include <fenv.h>
38#include <float.h>
39#include <math.h>
40#include <stdio.h>
41
42#include "test-utils.h"
43
44#pragma STDC FENV_ACCESS	ON
45#pragma	STDC CX_LIMITED_RANGE	OFF
46
47/*
48 * Test that a function returns the correct value and sets the
49 * exception flags correctly. The exceptmask specifies which
50 * exceptions we should check. We need to be lenient for several
51 * reasons, but mainly because on some architectures it's impossible
52 * to raise FE_OVERFLOW without raising FE_INEXACT. In some cases,
53 * whether cexp() raises an invalid exception is unspecified.
54 *
55 * These are macros instead of functions so that assert provides more
56 * meaningful error messages.
57 *
58 * XXX The volatile here is to avoid gcc's bogus constant folding and work
59 *     around the lack of support for the FENV_ACCESS pragma.
60 */
61#define	test_t(type, func, z, result, exceptmask, excepts, checksign)	\
62do {									\
63	volatile long double complex _d = z;				\
64	volatile type complex _r = result;				\
65	ATF_REQUIRE_EQ(0, feclearexcept(FE_ALL_EXCEPT));		\
66	CHECK_CFPEQUAL_CS((func)(_d), (_r), (checksign));		\
67	CHECK_FP_EXCEPTIONS_MSG(excepts, exceptmask, "for %s(%s)",	\
68	    #func, #z);							\
69} while (0)
70
71#define	test(func, z, result, exceptmask, excepts, checksign)		\
72	test_t(double, func, z, result, exceptmask, excepts, checksign)
73
74#define	test_f(func, z, result, exceptmask, excepts, checksign)		\
75	test_t(float, func, z, result, exceptmask, excepts, checksign)
76
77#define	test_l(func, z, result, exceptmask, excepts, checksign)		\
78	test_t(long double, func, z, result, exceptmask, excepts,	\
79	    checksign)
80/* Test within a given tolerance. */
81#define	test_tol(func, z, result, tol)	do {			\
82	CHECK_CFPEQUAL_TOL((func)(z), (result), (tol),		\
83	    FPE_ABS_ZERO | CS_BOTH);				\
84} while (0)
85
86/* Test all the functions that compute cexp(x). */
87#define	testall(x, result, exceptmask, excepts, checksign)	do {	\
88	test(cexp, x, result, exceptmask, excepts, checksign);		\
89	test_f(cexpf, x, result, exceptmask, excepts, checksign);	\
90	test_l(cexpl, x, result, exceptmask, excepts, checksign);	\
91} while (0)
92
93/*
94 * Test all the functions that compute cexp(x), within a given tolerance.
95 * The tolerance is specified in ulps.
96 */
97#define	testall_tol(x, result, tol)				do {	\
98	test_tol(cexp, x, result, tol * DBL_ULP());			\
99	test_tol(cexpf, x, result, tol * FLT_ULP());			\
100} while (0)
101
102/* Various finite non-zero numbers to test. */
103static const float finites[] =
104{ -42.0e20, -1.0, -1.0e-10, -0.0, 0.0, 1.0e-10, 1.0, 42.0e20 };
105
106
107/* Tests for 0 */
108ATF_TC_WITHOUT_HEAD(zero);
109ATF_TC_BODY(zero, tc)
110{
111
112	/* cexp(0) = 1, no exceptions raised */
113	testall(0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
114	testall(-0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
115	testall(CMPLXL(0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
116	testall(CMPLXL(-0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
117}
118
119/*
120 * Tests for NaN.  The signs of the results are indeterminate unless the
121 * imaginary part is 0.
122 */
123ATF_TC_WITHOUT_HEAD(nan);
124ATF_TC_BODY(nan, tc)
125{
126	unsigned i;
127
128	/* cexp(x + NaNi) = NaN + NaNi and optionally raises invalid */
129	/* cexp(NaN + yi) = NaN + NaNi and optionally raises invalid (|y|>0) */
130	for (i = 0; i < nitems(finites); i++) {
131		testall(CMPLXL(finites[i], NAN), CMPLXL(NAN, NAN),
132			ALL_STD_EXCEPT & ~FE_INVALID, 0, 0);
133		if (finites[i] == 0.0)
134			continue;
135#ifndef __OpenBSD__
136		/* XXX FE_INEXACT shouldn't be raised here */
137		testall(CMPLXL(NAN, finites[i]), CMPLXL(NAN, NAN),
138			ALL_STD_EXCEPT & ~(FE_INVALID | FE_INEXACT), 0, 0);
139#else
140		testall(CMPLXL(NAN, finites[i]), CMPLXL(NAN, NAN),
141			ALL_STD_EXCEPT & ~(FE_INVALID), 0, 0);
142#endif
143	}
144
145	/* cexp(NaN +- 0i) = NaN +- 0i */
146	testall(CMPLXL(NAN, 0.0), CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, 1);
147	testall(CMPLXL(NAN, -0.0), CMPLXL(NAN, -0.0), ALL_STD_EXCEPT, 0, 1);
148
149	/* cexp(inf + NaN i) = inf + nan i */
150	testall(CMPLXL(INFINITY, NAN), CMPLXL(INFINITY, NAN),
151		ALL_STD_EXCEPT, 0, 0);
152	/* cexp(-inf + NaN i) = 0 */
153	testall(CMPLXL(-INFINITY, NAN), CMPLXL(0.0, 0.0),
154		ALL_STD_EXCEPT, 0, 0);
155	/* cexp(NaN + NaN i) = NaN + NaN i */
156	testall(CMPLXL(NAN, NAN), CMPLXL(NAN, NAN),
157		ALL_STD_EXCEPT, 0, 0);
158}
159
160ATF_TC_WITHOUT_HEAD(inf);
161ATF_TC_BODY(inf, tc)
162{
163	unsigned i;
164
165	/* cexp(x + inf i) = NaN + NaNi and raises invalid */
166	for (i = 0; i < nitems(finites); i++) {
167		testall(CMPLXL(finites[i], INFINITY), CMPLXL(NAN, NAN),
168			ALL_STD_EXCEPT, FE_INVALID, 1);
169	}
170	/* cexp(-inf + yi) = 0 * (cos(y) + sin(y)i) */
171	/* XXX shouldn't raise an inexact exception */
172	testall(CMPLXL(-INFINITY, M_PI_4), CMPLXL(0.0, 0.0),
173		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
174	testall(CMPLXL(-INFINITY, 3 * M_PI_4), CMPLXL(-0.0, 0.0),
175		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
176	testall(CMPLXL(-INFINITY, 5 * M_PI_4), CMPLXL(-0.0, -0.0),
177		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
178	testall(CMPLXL(-INFINITY, 7 * M_PI_4), CMPLXL(0.0, -0.0),
179		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
180	testall(CMPLXL(-INFINITY, 0.0), CMPLXL(0.0, 0.0),
181		ALL_STD_EXCEPT, 0, 1);
182	testall(CMPLXL(-INFINITY, -0.0), CMPLXL(0.0, -0.0),
183		ALL_STD_EXCEPT, 0, 1);
184	/* cexp(inf + yi) = inf * (cos(y) + sin(y)i) (except y=0) */
185	/* XXX shouldn't raise an inexact exception */
186	testall(CMPLXL(INFINITY, M_PI_4), CMPLXL(INFINITY, INFINITY),
187		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
188	testall(CMPLXL(INFINITY, 3 * M_PI_4), CMPLXL(-INFINITY, INFINITY),
189		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
190	testall(CMPLXL(INFINITY, 5 * M_PI_4), CMPLXL(-INFINITY, -INFINITY),
191		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
192	testall(CMPLXL(INFINITY, 7 * M_PI_4), CMPLXL(INFINITY, -INFINITY),
193		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
194	/* cexp(inf + 0i) = inf + 0i */
195	testall(CMPLXL(INFINITY, 0.0), CMPLXL(INFINITY, 0.0),
196		ALL_STD_EXCEPT, 0, 1);
197	testall(CMPLXL(INFINITY, -0.0), CMPLXL(INFINITY, -0.0),
198		ALL_STD_EXCEPT, 0, 1);
199}
200
201ATF_TC_WITHOUT_HEAD(reals);
202ATF_TC_BODY(reals, tc)
203{
204	unsigned i;
205
206	for (i = 0; i < nitems(finites); i++) {
207		/* XXX could check exceptions more meticulously */
208		test(cexp, CMPLXL(finites[i], 0.0),
209		     CMPLXL(exp(finites[i]), 0.0),
210		     FE_INVALID | FE_DIVBYZERO, 0, 1);
211		test(cexp, CMPLXL(finites[i], -0.0),
212		     CMPLXL(exp(finites[i]), -0.0),
213		     FE_INVALID | FE_DIVBYZERO, 0, 1);
214		test_f(cexpf, CMPLXL(finites[i], 0.0),
215		     CMPLXL(expf(finites[i]), 0.0),
216		     FE_INVALID | FE_DIVBYZERO, 0, 1);
217		test_f(cexpf, CMPLXL(finites[i], -0.0),
218		     CMPLXL(expf(finites[i]), -0.0),
219		     FE_INVALID | FE_DIVBYZERO, 0, 1);
220	}
221}
222
223ATF_TC_WITHOUT_HEAD(imaginaries);
224ATF_TC_BODY(imaginaries, tc)
225{
226	unsigned i;
227
228	for (i = 0; i < nitems(finites); i++) {
229		test(cexp, CMPLXL(0.0, finites[i]),
230		     CMPLXL(cos(finites[i]), sin(finites[i])),
231		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
232		test(cexp, CMPLXL(-0.0, finites[i]),
233		     CMPLXL(cos(finites[i]), sin(finites[i])),
234		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
235		test_f(cexpf, CMPLXL(0.0, finites[i]),
236		     CMPLXL(cosf(finites[i]), sinf(finites[i])),
237		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
238		test_f(cexpf, CMPLXL(-0.0, finites[i]),
239		     CMPLXL(cosf(finites[i]), sinf(finites[i])),
240		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
241	}
242}
243
244ATF_TC_WITHOUT_HEAD(small);
245ATF_TC_BODY(small, tc)
246{
247	static const double tests[] = {
248	     /* csqrt(a + bI) = x + yI */
249	     /* a	b	x			y */
250		 1.0,	M_PI_4,	M_SQRT2 * 0.5 * M_E,	M_SQRT2 * 0.5 * M_E,
251		-1.0,	M_PI_4,	M_SQRT2 * 0.5 / M_E,	M_SQRT2 * 0.5 / M_E,
252		 2.0,	M_PI_2,	0.0,			M_E * M_E,
253		 M_LN2,	M_PI,	-2.0,			0.0,
254	};
255	double a, b;
256	double x, y;
257	unsigned i;
258
259	for (i = 0; i < nitems(tests); i += 4) {
260		a = tests[i];
261		b = tests[i + 1];
262		x = tests[i + 2];
263		y = tests[i + 3];
264		test_tol(cexp, CMPLXL(a, b), CMPLXL(x, y), 3 * DBL_ULP());
265
266		/* float doesn't have enough precision to pass these tests */
267		if (x == 0 || y == 0)
268			continue;
269		test_tol(cexpf, CMPLXL(a, b), CMPLXL(x, y), 1 * FLT_ULP());
270        }
271}
272
273/* Test inputs with a real part r that would overflow exp(r). */
274ATF_TC_WITHOUT_HEAD(large);
275ATF_TC_BODY(large, tc)
276{
277
278	test_tol(cexp, CMPLXL(709.79, 0x1p-1074),
279		 CMPLXL(INFINITY, 8.94674309915433533273e-16), DBL_ULP());
280	test_tol(cexp, CMPLXL(1000, 0x1p-1074),
281		 CMPLXL(INFINITY, 9.73344457300016401328e+110), DBL_ULP());
282	test_tol(cexp, CMPLXL(1400, 0x1p-1074),
283		 CMPLXL(INFINITY, 5.08228858149196559681e+284), DBL_ULP());
284	test_tol(cexp, CMPLXL(900, 0x1.23456789abcdep-1020),
285		 CMPLXL(INFINITY, 7.42156649354218408074e+83), DBL_ULP());
286	test_tol(cexp, CMPLXL(1300, 0x1.23456789abcdep-1020),
287		 CMPLXL(INFINITY, 3.87514844965996756704e+257), DBL_ULP());
288
289	test_tol(cexpf, CMPLXL(88.73, 0x1p-149),
290		 CMPLXL(INFINITY, 4.80265603e-07), 2 * FLT_ULP());
291	test_tol(cexpf, CMPLXL(90, 0x1p-149),
292		 CMPLXL(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP());
293	test_tol(cexpf, CMPLXL(192, 0x1p-149),
294		 CMPLXL(INFINITY, 3.396809344e+38f), 2 * FLT_ULP());
295	test_tol(cexpf, CMPLXL(120, 0x1.234568p-120),
296		 CMPLXL(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP());
297	test_tol(cexpf, CMPLXL(170, 0x1.234568p-120),
298		 CMPLXL(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP());
299}
300
301ATF_TP_ADD_TCS(tp)
302{
303	ATF_TP_ADD_TC(tp, zero);
304	ATF_TP_ADD_TC(tp, nan);
305	ATF_TP_ADD_TC(tp, inf);
306	ATF_TP_ADD_TC(tp, reals);
307	ATF_TP_ADD_TC(tp, imaginaries);
308	ATF_TP_ADD_TC(tp, small);
309	ATF_TP_ADD_TC(tp, large);
310
311	return (atf_no_error());
312}
313