1package Tie::File;
2
3require 5.005;
4
5use strict;
6use warnings;
7
8use Carp ':DEFAULT', 'confess';
9use POSIX 'SEEK_SET';
10use Fcntl 'O_CREAT', 'O_RDWR', 'LOCK_EX', 'LOCK_SH', 'O_WRONLY', 'O_RDONLY';
11sub O_ACCMODE () { O_RDONLY | O_RDWR | O_WRONLY }
12
13
14our $VERSION = "1.07";
15my $DEFAULT_MEMORY_SIZE = 1<<21;    # 2 megabytes
16my $DEFAULT_AUTODEFER_THRESHHOLD = 3; # 3 records
17my $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD = 65536; # 16 disk blocksful
18
19my %good_opt = map {$_ => 1, "-$_" => 1}
20                 qw(memory dw_size mode recsep discipline
21                    autodefer autochomp autodefer_threshhold concurrent);
22
23our $DIAGNOSTIC = 0;
24our @OFF; # used as a temporary alias in some subroutines.
25our @H; # used as a temporary alias in _annotate_ad_history
26
27sub TIEARRAY {
28  if (@_ % 2 != 0) {
29    croak "usage: tie \@array, $_[0], filename, [option => value]...";
30  }
31  my ($pack, $file, %opts) = @_;
32
33  # transform '-foo' keys into 'foo' keys
34  for my $key (keys %opts) {
35    unless ($good_opt{$key}) {
36      croak("$pack: Unrecognized option '$key'\n");
37    }
38    my $okey = $key;
39    if ($key =~ s/^-+//) {
40      $opts{$key} = delete $opts{$okey};
41    }
42  }
43
44  if ($opts{concurrent}) {
45    croak("$pack: concurrent access not supported yet\n");
46  }
47
48  unless (defined $opts{memory}) {
49    # default is the larger of the default cache size and the
50    # deferred-write buffer size (if specified)
51    $opts{memory} = $DEFAULT_MEMORY_SIZE;
52    $opts{memory} = $opts{dw_size}
53      if defined $opts{dw_size} && $opts{dw_size} > $DEFAULT_MEMORY_SIZE;
54    # Dora Winifred Read
55  }
56  $opts{dw_size} = $opts{memory} unless defined $opts{dw_size};
57  if ($opts{dw_size} > $opts{memory}) {
58      croak("$pack: dw_size may not be larger than total memory allocation\n");
59  }
60  # are we in deferred-write mode?
61  $opts{defer} = 0 unless defined $opts{defer};
62  $opts{deferred} = {};         # no records are presently deferred
63  $opts{deferred_s} = 0;        # count of total bytes in ->{deferred}
64  $opts{deferred_max} = -1;     # empty
65
66  # What's a good way to arrange that this class can be overridden?
67  $opts{cache} = Tie::File::Cache->new($opts{memory});
68
69  # autodeferment is enabled by default
70  $opts{autodefer} = 1 unless defined $opts{autodefer};
71  $opts{autodeferring} = 0;     # but is not initially active
72  $opts{ad_history} = [];
73  $opts{autodefer_threshhold} = $DEFAULT_AUTODEFER_THRESHHOLD
74    unless defined $opts{autodefer_threshhold};
75  $opts{autodefer_filelen_threshhold} = $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD
76    unless defined $opts{autodefer_filelen_threshhold};
77
78  $opts{offsets} = [0];
79  $opts{filename} = $file;
80  unless (defined $opts{recsep}) {
81    $opts{recsep} = _default_recsep();
82  }
83  $opts{recseplen} = length($opts{recsep});
84  if ($opts{recseplen} == 0) {
85    croak "Empty record separator not supported by $pack";
86  }
87
88  $opts{autochomp} = 1 unless defined $opts{autochomp};
89
90  $opts{mode} = O_CREAT|O_RDWR unless defined $opts{mode};
91  $opts{rdonly} = (($opts{mode} & O_ACCMODE) == O_RDONLY);
92  $opts{sawlastrec} = undef;
93
94  my $fh;
95
96  if (UNIVERSAL::isa($file, 'GLOB')) {
97    # We use 1 here on the theory that some systems
98    # may not indicate failure if we use 0.
99    # MSWin32 does not indicate failure with 0, but I don't know if
100    # it will indicate failure with 1 or not.
101    unless (seek $file, 1, SEEK_SET) {
102      croak "$pack: your filehandle does not appear to be seekable";
103    }
104    seek $file, 0, SEEK_SET;    # put it back
105    $fh = $file;                # setting binmode is the user's problem
106  } elsif (ref $file) {
107    croak "usage: tie \@array, $pack, filename, [option => value]...";
108  } else {
109    # $fh = \do { local *FH };  # XXX this is buggy
110    if ($] < 5.006) {
111	# perl 5.005 and earlier don't autovivify filehandles
112	require Symbol;
113	$fh = Symbol::gensym();
114    }
115    sysopen $fh, $file, $opts{mode}, 0666 or return;
116    binmode $fh;
117    ++$opts{ourfh};
118  }
119  { my $ofh = select $fh; $| = 1; select $ofh } # autoflush on write
120  if (defined $opts{discipline} && $] >= 5.006) {
121    # This avoids a compile-time warning under 5.005
122    eval 'binmode($fh, $opts{discipline})';
123    croak $@ if $@ =~ /unknown discipline/i;
124    die if $@;
125  }
126  $opts{fh} = $fh;
127
128  bless \%opts => $pack;
129}
130
131sub FETCH {
132  my ($self, $n) = @_;
133  my $rec;
134
135  # check the defer buffer
136  $rec = $self->{deferred}{$n} if exists $self->{deferred}{$n};
137  $rec = $self->_fetch($n) unless defined $rec;
138
139  # inlined _chomp1
140  substr($rec, - $self->{recseplen}) = ""
141    if defined $rec && $self->{autochomp};
142  $rec;
143}
144
145# Chomp many records in-place; return nothing useful
146sub _chomp {
147  my $self = shift;
148  return unless $self->{autochomp};
149  if ($self->{autochomp}) {
150    for (@_) {
151      next unless defined;
152      substr($_, - $self->{recseplen}) = "";
153    }
154  }
155}
156
157# Chomp one record in-place; return modified record
158sub _chomp1 {
159  my ($self, $rec) = @_;
160  return $rec unless $self->{autochomp};
161  return unless defined $rec;
162  substr($rec, - $self->{recseplen}) = "";
163  $rec;
164}
165
166sub _fetch {
167  my ($self, $n) = @_;
168
169  # check the record cache
170  { my $cached = $self->{cache}->lookup($n);
171    return $cached if defined $cached;
172  }
173
174  if ($#{$self->{offsets}} < $n) {
175    return if $self->{eof};  # request for record beyond end of file
176    my $o = $self->_fill_offsets_to($n);
177    # If it's still undefined, there is no such record, so return 'undef'
178    return unless defined $o;
179  }
180
181  my $fh = $self->{FH};
182  $self->_seek($n);             # we can do this now that offsets is populated
183  my $rec = $self->_read_record;
184
185# If we happen to have just read the first record, check to see if
186# the length of the record matches what 'tell' says.  If not, Tie::File
187# won't work, and should drop dead.
188#
189#  if ($n == 0 && defined($rec) && tell($self->{fh}) != length($rec)) {
190#    if (defined $self->{discipline}) {
191#      croak "I/O discipline $self->{discipline} not supported";
192#    } else {
193#      croak "File encoding not supported";
194#    }
195#  }
196
197  $self->{cache}->insert($n, $rec) if defined $rec && not $self->{flushing};
198  $rec;
199}
200
201sub STORE {
202  my ($self, $n, $rec) = @_;
203  die "STORE called from _check_integrity!" if $DIAGNOSTIC;
204
205  $self->_fixrecs($rec);
206
207  if ($self->{autodefer}) {
208    $self->_annotate_ad_history($n);
209  }
210
211  return $self->_store_deferred($n, $rec) if $self->_is_deferring;
212
213
214  # We need this to decide whether the new record will fit
215  # It incidentally populates the offsets table
216  # Note we have to do this before we alter the cache
217  # 20020324 Wait, but this DOES alter the cache.  TODO BUG?
218  my $oldrec = $self->_fetch($n);
219
220  if (not defined $oldrec) {
221    # We're storing a record beyond the end of the file
222    $self->_extend_file_to($n+1);
223    $oldrec = $self->{recsep};
224  }
225#  return if $oldrec eq $rec;    # don't bother
226  my $len_diff = length($rec) - length($oldrec);
227
228  # length($oldrec) here is not consistent with text mode  TODO XXX BUG
229  $self->_mtwrite($rec, $self->{offsets}[$n], length($oldrec));
230  $self->_oadjust([$n, 1, $rec]);
231  $self->{cache}->update($n, $rec);
232}
233
234sub _store_deferred {
235  my ($self, $n, $rec) = @_;
236  $self->{cache}->remove($n);
237  my $old_deferred = $self->{deferred}{$n};
238
239  if (defined $self->{deferred_max} && $n > $self->{deferred_max}) {
240    $self->{deferred_max} = $n;
241  }
242  $self->{deferred}{$n} = $rec;
243
244  my $len_diff = length($rec);
245  $len_diff -= length($old_deferred) if defined $old_deferred;
246  $self->{deferred_s} += $len_diff;
247  $self->{cache}->adj_limit(-$len_diff);
248  if ($self->{deferred_s} > $self->{dw_size}) {
249    $self->_flush;
250  } elsif ($self->_cache_too_full) {
251    $self->_cache_flush;
252  }
253}
254
255# Remove a single record from the deferred-write buffer without writing it
256# The record need not be present
257sub _delete_deferred {
258  my ($self, $n) = @_;
259  my $rec = delete $self->{deferred}{$n};
260  return unless defined $rec;
261
262  if (defined $self->{deferred_max}
263      && $n == $self->{deferred_max}) {
264    undef $self->{deferred_max};
265  }
266
267  $self->{deferred_s} -= length $rec;
268  $self->{cache}->adj_limit(length $rec);
269}
270
271sub FETCHSIZE {
272  my $self = shift;
273  my $n = $self->{eof} ? $#{$self->{offsets}} : $self->_fill_offsets;
274
275  my $top_deferred = $self->_defer_max;
276  $n = $top_deferred+1 if defined $top_deferred && $n < $top_deferred+1;
277  $n;
278}
279
280sub STORESIZE {
281  my ($self, $len) = @_;
282
283  if ($self->{autodefer}) {
284    $self->_annotate_ad_history('STORESIZE');
285  }
286
287  my $olen = $self->FETCHSIZE;
288  return if $len == $olen;      # Woo-hoo!
289
290  # file gets longer
291  if ($len > $olen) {
292    if ($self->_is_deferring) {
293      for ($olen .. $len-1) {
294        $self->_store_deferred($_, $self->{recsep});
295      }
296    } else {
297      $self->_extend_file_to($len);
298    }
299    return;
300  }
301
302  # file gets shorter
303  if ($self->_is_deferring) {
304    # TODO maybe replace this with map-plus-assignment?
305    for (grep $_ >= $len, keys %{$self->{deferred}}) {
306      $self->_delete_deferred($_);
307    }
308    $self->{deferred_max} = $len-1;
309  }
310
311  $self->_seek($len);
312  $self->_chop_file;
313  $#{$self->{offsets}} = $len;
314#  $self->{offsets}[0] = 0;      # in case we just chopped this
315
316  $self->{cache}->remove(grep $_ >= $len, $self->{cache}->ckeys);
317}
318
319### OPTIMIZE ME
320### It should not be necessary to do FETCHSIZE
321### Just seek to the end of the file.
322sub PUSH {
323  my $self = shift;
324  $self->SPLICE($self->FETCHSIZE, scalar(@_), @_);
325
326  # No need to return:
327  #  $self->FETCHSIZE;  # because av.c takes care of this for me
328}
329
330sub POP {
331  my $self = shift;
332  my $size = $self->FETCHSIZE;
333  return if $size == 0;
334#  print STDERR "# POPPITY POP POP POP\n";
335  scalar $self->SPLICE($size-1, 1);
336}
337
338sub SHIFT {
339  my $self = shift;
340  scalar $self->SPLICE(0, 1);
341}
342
343sub UNSHIFT {
344  my $self = shift;
345  $self->SPLICE(0, 0, @_);
346  # $self->FETCHSIZE; # av.c takes care of this for me
347}
348
349sub CLEAR {
350  my $self = shift;
351
352  if ($self->{autodefer}) {
353    $self->_annotate_ad_history('CLEAR');
354  }
355
356  $self->_seekb(0);
357  $self->_chop_file;
358    $self->{cache}->set_limit($self->{memory});
359    $self->{cache}->empty;
360  @{$self->{offsets}} = (0);
361  %{$self->{deferred}}= ();
362    $self->{deferred_s} = 0;
363    $self->{deferred_max} = -1;
364}
365
366sub EXTEND {
367  my ($self, $n) = @_;
368
369  # No need to pre-extend anything in this case
370  return if $self->_is_deferring;
371
372  $self->_fill_offsets_to($n);
373  $self->_extend_file_to($n);
374}
375
376sub DELETE {
377  my ($self, $n) = @_;
378
379  if ($self->{autodefer}) {
380    $self->_annotate_ad_history('DELETE');
381  }
382
383  my $lastrec = $self->FETCHSIZE-1;
384  my $rec = $self->FETCH($n);
385  $self->_delete_deferred($n) if $self->_is_deferring;
386  if ($n == $lastrec) {
387    $self->_seek($n);
388    $self->_chop_file;
389    $#{$self->{offsets}}--;
390    $self->{cache}->remove($n);
391    # perhaps in this case I should also remove trailing null records?
392    # 20020316
393    # Note that delete @a[-3..-1] deletes the records in the wrong order,
394    # so we only chop the very last one out of the file.  We could repair this
395    # by tracking deleted records inside the object.
396  } elsif ($n < $lastrec) {
397    $self->STORE($n, "");
398  }
399  $rec;
400}
401
402sub EXISTS {
403  my ($self, $n) = @_;
404  return 1 if exists $self->{deferred}{$n};
405  $n < $self->FETCHSIZE;
406}
407
408sub SPLICE {
409  my $self = shift;
410
411  if ($self->{autodefer}) {
412    $self->_annotate_ad_history('SPLICE');
413  }
414
415  $self->_flush if $self->_is_deferring; # move this up?
416  if (wantarray) {
417    $self->_chomp(my @a = $self->_splice(@_));
418    @a;
419  } else {
420    $self->_chomp1(scalar $self->_splice(@_));
421  }
422}
423
424sub DESTROY {
425  my $self = shift;
426  $self->flush if $self->_is_deferring;
427  $self->{cache}->delink if defined $self->{cache}; # break circular link
428  if ($self->{fh} and $self->{ourfh}) {
429      delete $self->{ourfh};
430      close delete $self->{fh};
431  }
432}
433
434sub _splice {
435  my ($self, $pos, $nrecs, @data) = @_;
436  my @result;
437
438  $pos = 0 unless defined $pos;
439
440  # Deal with negative and other out-of-range positions
441  # Also set default for $nrecs
442  {
443    my $oldsize = $self->FETCHSIZE;
444    $nrecs = $oldsize unless defined $nrecs;
445    my $oldpos = $pos;
446
447    if ($pos < 0) {
448      $pos += $oldsize;
449      if ($pos < 0) {
450        croak "Modification of non-creatable array value attempted, " .
451              "subscript $oldpos";
452      }
453    }
454
455    if ($pos > $oldsize) {
456      return unless @data;
457      $pos = $oldsize;          # This is what perl does for normal arrays
458    }
459
460    # The manual is very unclear here
461    if ($nrecs < 0) {
462      $nrecs = $oldsize - $pos + $nrecs;
463      $nrecs = 0 if $nrecs < 0;
464    }
465
466    # nrecs is too big---it really means "until the end"
467    # 20030507
468    if ($nrecs + $pos > $oldsize) {
469      $nrecs = $oldsize - $pos;
470    }
471  }
472
473  $self->_fixrecs(@data);
474  my $data = join '', @data;
475  my $datalen = length $data;
476  my $oldlen = 0;
477
478  # compute length of data being removed
479  for ($pos .. $pos+$nrecs-1) {
480    last unless defined $self->_fill_offsets_to($_);
481    my $rec = $self->_fetch($_);
482    last unless defined $rec;
483    push @result, $rec;
484
485    # Why don't we just use length($rec) here?
486    # Because that record might have come from the cache.  _splice
487    # might have been called to flush out the deferred-write records,
488    # and in this case length($rec) is the length of the record to be
489    # *written*, not the length of the actual record in the file.  But
490    # the offsets are still true. 20020322
491    $oldlen += $self->{offsets}[$_+1] - $self->{offsets}[$_]
492      if defined $self->{offsets}[$_+1];
493  }
494  $self->_fill_offsets_to($pos+$nrecs);
495
496  # Modify the file
497  $self->_mtwrite($data, $self->{offsets}[$pos], $oldlen);
498  # Adjust the offsets table
499  $self->_oadjust([$pos, $nrecs, @data]);
500
501  { # Take this read cache stuff out into a separate function
502    # You made a half-attempt to put it into _oadjust.
503    # Finish something like that up eventually.
504    # STORE also needs to do something similarish
505
506    # update the read cache, part 1
507    # modified records
508    for ($pos .. $pos+$nrecs-1) {
509      my $new = $data[$_-$pos];
510      if (defined $new) {
511        $self->{cache}->update($_, $new);
512      } else {
513        $self->{cache}->remove($_);
514      }
515    }
516
517    # update the read cache, part 2
518    # moved records - records past the site of the change
519    # need to be renumbered
520    # Maybe merge this with the previous block?
521    {
522      my @oldkeys = grep $_ >= $pos + $nrecs, $self->{cache}->ckeys;
523      my @newkeys = map $_-$nrecs+@data, @oldkeys;
524      $self->{cache}->rekey(\@oldkeys, \@newkeys);
525    }
526
527    # Now there might be too much data in the cache, if we spliced out
528    # some short records and spliced in some long ones.  If so, flush
529    # the cache.
530    $self->_cache_flush;
531  }
532
533  # Yes, the return value of 'splice' *is* actually this complicated
534  wantarray ? @result : @result ? $result[-1] : undef;
535}
536
537
538# write data into the file
539# $data is the data to be written.
540# it should be written at position $pos, and should overwrite
541# exactly $len of the following bytes.
542# Note that if length($data) > $len, the subsequent bytes will have to
543# be moved up, and if length($data) < $len, they will have to
544# be moved down
545sub _twrite {
546  my ($self, $data, $pos, $len) = @_;
547
548  unless (defined $pos) {
549    die "\$pos was undefined in _twrite";
550  }
551
552  my $len_diff = length($data) - $len;
553
554  if ($len_diff == 0) {          # Woo-hoo!
555    my $fh = $self->{fh};
556    $self->_seekb($pos);
557    $self->_write_record($data);
558    return;                     # well, that was easy.
559  }
560
561  # the two records are of different lengths
562  # our strategy here: rewrite the tail of the file,
563  # reading ahead one buffer at a time
564  # $bufsize is required to be at least as large as the data we're overwriting
565  my $bufsize = _bufsize($len_diff);
566  my ($writepos, $readpos) = ($pos, $pos+$len);
567  my $next_block;
568  my $more_data;
569
570  # Seems like there ought to be a way to avoid the repeated code
571  # and the special case here.  The read(1) is also a little weird.
572  # Think about this.
573  do {
574    $self->_seekb($readpos);
575    my $br = read $self->{fh}, $next_block, $bufsize;
576    $more_data = read $self->{fh}, my($dummy), 1;
577    $self->_seekb($writepos);
578    $self->_write_record($data);
579    $readpos += $br;
580    $writepos += length $data;
581    $data = $next_block;
582  } while $more_data;
583  $self->_seekb($writepos);
584  $self->_write_record($next_block);
585
586  # There might be leftover data at the end of the file
587  $self->_chop_file if $len_diff < 0;
588}
589
590# _iwrite(D, S, E)
591# Insert text D at position S.
592# Let C = E-S-|D|.  If C < 0; die.
593# Data in [S,S+C) is copied to [S+D,S+D+C) = [S+D,E).
594# Data in [S+C = E-D, E) is returned.  Data in [E, oo) is untouched.
595#
596# In a later version, don't read the entire intervening area into
597# memory at once; do the copying block by block.
598sub _iwrite {
599  my $self = shift;
600  my ($D, $s, $e) = @_;
601  my $d = length $D;
602  my $c = $e-$s-$d;
603  local *FH = $self->{fh};
604  confess "Not enough space to insert $d bytes between $s and $e"
605    if $c < 0;
606  confess "[$s,$e) is an invalid insertion range" if $e < $s;
607
608  $self->_seekb($s);
609  read FH, my $buf, $e-$s;
610
611  $D .= substr($buf, 0, $c, "");
612
613  $self->_seekb($s);
614  $self->_write_record($D);
615
616  return $buf;
617}
618
619# Like _twrite, but the data-pos-len triple may be repeated; you may
620# write several chunks.  All the writing will be done in
621# one pass.   Chunks SHALL be in ascending order and SHALL NOT overlap.
622sub _mtwrite {
623  my $self = shift;
624  my $unwritten = "";
625  my $delta = 0;
626
627  @_ % 3 == 0
628    or die "Arguments to _mtwrite did not come in groups of three";
629
630  while (@_) {
631    my ($data, $pos, $len) = splice @_, 0, 3;
632    my $end = $pos + $len;  # The OLD end of the segment to be replaced
633    $data = $unwritten . $data;
634    $delta -= length($unwritten);
635    $unwritten  = "";
636    $pos += $delta;             # This is where the data goes now
637    my $dlen = length $data;
638    $self->_seekb($pos);
639    if ($len >= $dlen) {        # the data will fit
640      $self->_write_record($data);
641      $delta += ($dlen - $len); # everything following moves down by this much
642      $data = ""; # All the data in the buffer has been written
643    } else {                    # won't fit
644      my $writable = substr($data, 0, $len - $delta, "");
645      $self->_write_record($writable);
646      $delta += ($dlen - $len); # everything following moves down by this much
647    }
648
649    # At this point we've written some but maybe not all of the data.
650    # There might be a gap to close up, or $data might still contain a
651    # bunch of unwritten data that didn't fit.
652    my $ndlen = length $data;
653    if ($delta == 0) {
654      $self->_write_record($data);
655    } elsif ($delta < 0) {
656      # upcopy (close up gap)
657      if (@_) {
658        $self->_upcopy($end, $end + $delta, $_[1] - $end);
659      } else {
660        $self->_upcopy($end, $end + $delta);
661      }
662    } else {
663      # downcopy (insert data that didn't fit; replace this data in memory
664      # with _later_ data that doesn't fit)
665      if (@_) {
666        $unwritten = $self->_downcopy($data, $end, $_[1] - $end);
667      } else {
668        # Make the file longer to accommodate the last segment that doesn't
669        $unwritten = $self->_downcopy($data, $end);
670      }
671    }
672  }
673}
674
675# Copy block of data of length $len from position $spos to position $dpos
676# $dpos must be <= $spos
677#
678# If $len is undefined, go all the way to the end of the file
679# and then truncate it ($spos - $dpos bytes will be removed)
680sub _upcopy {
681  my $blocksize = 8192;
682  my ($self, $spos, $dpos, $len) = @_;
683  if ($dpos > $spos) {
684    die "source ($spos) was upstream of destination ($dpos) in _upcopy";
685  } elsif ($dpos == $spos) {
686    return;
687  }
688
689  while (! defined ($len) || $len > 0) {
690    my $readsize = ! defined($len) ? $blocksize
691               : $len > $blocksize ? $blocksize
692               : $len;
693
694    my $fh = $self->{fh};
695    $self->_seekb($spos);
696    my $bytes_read = read $fh, my($data), $readsize;
697    $self->_seekb($dpos);
698    if ($data eq "") {
699      $self->_chop_file;
700      last;
701    }
702    $self->_write_record($data);
703    $spos += $bytes_read;
704    $dpos += $bytes_read;
705    $len -= $bytes_read if defined $len;
706  }
707}
708
709# Write $data into a block of length $len at position $pos,
710# moving everything in the block forwards to make room.
711# Instead of writing the last length($data) bytes from the block
712# (because there isn't room for them any longer) return them.
713#
714# Undefined $len means 'until the end of the file'
715sub _downcopy {
716  my $blocksize = 8192;
717  my ($self, $data, $pos, $len) = @_;
718  my $fh = $self->{fh};
719
720  while (! defined $len || $len > 0) {
721    my $readsize = ! defined($len) ? $blocksize
722      : $len > $blocksize? $blocksize : $len;
723    $self->_seekb($pos);
724    read $fh, my($old), $readsize;
725    my $last_read_was_short = length($old) < $readsize;
726    $data .= $old;
727    my $writable;
728    if ($last_read_was_short) {
729      # If last read was short, then $data now contains the entire rest
730      # of the file, so there's no need to write only one block of it
731      $writable = $data;
732      $data = "";
733    } else {
734      $writable = substr($data, 0, $readsize, "");
735    }
736    last if $writable eq "";
737    $self->_seekb($pos);
738    $self->_write_record($writable);
739    last if $last_read_was_short && $data eq "";
740    $len -= $readsize if defined $len;
741    $pos += $readsize;
742  }
743  return $data;
744}
745
746# Adjust the object data structures following an '_mtwrite'
747# Arguments are
748#  [$pos, $nrecs, @length]  items
749# indicating that $nrecs records were removed at $recpos (a record offset)
750# and replaced with records of length @length...
751# Arguments guarantee that $recpos is strictly increasing.
752# No return value
753sub _oadjust {
754  my $self = shift;
755  my $delta = 0;
756  my $delta_recs = 0;
757  my $prev_end = -1;
758
759  for (@_) {
760    my ($pos, $nrecs, @data) = @$_;
761    $pos += $delta_recs;
762
763    # Adjust the offsets of the records after the previous batch up
764    # to the first new one of this batch
765    for my $i ($prev_end+2 .. $pos - 1) {
766      $self->{offsets}[$i] += $delta;
767    }
768
769    $prev_end = $pos + @data - 1; # last record moved on this pass
770
771    # Remove the offsets for the removed records;
772    # replace with the offsets for the inserted records
773    my @newoff = ($self->{offsets}[$pos] + $delta);
774    for my $i (0 .. $#data) {
775      my $newlen = length $data[$i];
776      push @newoff, $newoff[$i] + $newlen;
777      $delta += $newlen;
778    }
779
780    for my $i ($pos .. $pos+$nrecs-1) {
781      last if $i+1 > $#{$self->{offsets}};
782      my $oldlen = $self->{offsets}[$i+1] - $self->{offsets}[$i];
783      $delta -= $oldlen;
784    }
785
786    # replace old offsets with new
787    splice @{$self->{offsets}}, $pos, $nrecs+1, @newoff;
788    # What if we just spliced out the end of the offsets table?
789    # shouldn't we clear $self->{eof}?   Test for this XXX BUG TODO
790
791    $delta_recs += @data - $nrecs; # net change in total number of records
792  }
793
794  # The trailing records at the very end of the file
795  if ($delta) {
796    for my $i ($prev_end+2 .. $#{$self->{offsets}}) {
797      $self->{offsets}[$i] += $delta;
798    }
799  }
800
801  # If we scrubbed out all known offsets, regenerate the trivial table
802  # that knows that the file does indeed start at 0.
803  $self->{offsets}[0] = 0 unless @{$self->{offsets}};
804  # If the file got longer, the offsets table is no longer complete
805  # $self->{eof} = 0 if $delta_recs > 0;
806
807  # Now there might be too much data in the cache, if we spliced out
808  # some short records and spliced in some long ones.  If so, flush
809  # the cache.
810  $self->_cache_flush;
811}
812
813# If a record does not already end with the appropriate terminator
814# string, append one.
815sub _fixrecs {
816  my $self = shift;
817  for (@_) {
818    $_ = "" unless defined $_;
819    $_ .= $self->{recsep}
820      unless substr($_, - $self->{recseplen}) eq $self->{recsep};
821  }
822}
823
824
825################################################################
826#
827# Basic read, write, and seek
828#
829
830# seek to the beginning of record #$n
831# Assumes that the offsets table is already correctly populated
832#
833# Note that $n=-1 has a special meaning here: It means the start of
834# the last known record; this may or may not be the very last record
835# in the file, depending on whether the offsets table is fully populated.
836#
837sub _seek {
838  my ($self, $n) = @_;
839  my $o = $self->{offsets}[$n];
840  defined($o)
841    or confess("logic error: undefined offset for record $n");
842  seek $self->{fh}, $o, SEEK_SET
843    or confess "Couldn't seek filehandle: $!";  # "Should never happen."
844}
845
846# seek to byte $b in the file
847sub _seekb {
848  my ($self, $b) = @_;
849  seek $self->{fh}, $b, SEEK_SET
850    or die "Couldn't seek filehandle: $!";  # "Should never happen."
851}
852
853# populate the offsets table up to the beginning of record $n
854# return the offset of record $n
855sub _fill_offsets_to {
856  my ($self, $n) = @_;
857
858  return $self->{offsets}[$n] if $self->{eof};
859
860  my $fh = $self->{fh};
861  local *OFF = $self->{offsets};
862  my $rec;
863
864  until ($#OFF >= $n) {
865    $self->_seek(-1);           # tricky -- see comment at _seek
866    $rec = $self->_read_record;
867    if (defined $rec) {
868      push @OFF, int(tell $fh);  # Tels says that int() saves memory here
869    } else {
870      $self->{eof} = 1;
871      return;                   # It turns out there is no such record
872    }
873  }
874
875  # we have now read all the records up to record n-1,
876  # so we can return the offset of record n
877  $OFF[$n];
878}
879
880sub _fill_offsets {
881  my ($self) = @_;
882
883  my $fh = $self->{fh};
884  local *OFF = $self->{offsets};
885
886  $self->_seek(-1);           # tricky -- see comment at _seek
887
888  # Tels says that inlining read_record() would make this loop
889  # five times faster. 20030508
890  while ( defined $self->_read_record()) {
891    # int() saves us memory here
892    push @OFF, int(tell $fh);
893  }
894
895  $self->{eof} = 1;
896  $#OFF;
897}
898
899# assumes that $rec is already suitably terminated
900sub _write_record {
901  my ($self, $rec) = @_;
902  my $fh = $self->{fh};
903  local $\ = "";
904  print $fh $rec
905    or die "Couldn't write record: $!";  # "Should never happen."
906#  $self->{_written} += length($rec);
907}
908
909sub _read_record {
910  my $self = shift;
911  my $rec;
912  { local $/ = $self->{recsep};
913    my $fh = $self->{fh};
914    $rec = <$fh>;
915  }
916  return unless defined $rec;
917  if (substr($rec, -$self->{recseplen}) ne $self->{recsep}) {
918    # improperly terminated final record --- quietly fix it.
919#    my $ac = substr($rec, -$self->{recseplen});
920#    $ac =~ s/\n/\\n/g;
921    $self->{sawlastrec} = 1;
922    unless ($self->{rdonly}) {
923      local $\ = "";
924      my $fh = $self->{fh};
925      print $fh $self->{recsep};
926    }
927    $rec .= $self->{recsep};
928  }
929#  $self->{_read} += length($rec) if defined $rec;
930  $rec;
931}
932
933sub _rw_stats {
934  my $self = shift;
935  @{$self}{'_read', '_written'};
936}
937
938################################################################
939#
940# Read cache management
941
942sub _cache_flush {
943  my ($self) = @_;
944  $self->{cache}->reduce_size_to($self->{memory} - $self->{deferred_s});
945}
946
947sub _cache_too_full {
948  my $self = shift;
949  $self->{cache}->bytes + $self->{deferred_s} >= $self->{memory};
950}
951
952################################################################
953#
954# File custodial services
955#
956
957
958# We have read to the end of the file and have the offsets table
959# entirely populated.  Now we need to write a new record beyond
960# the end of the file.  We prepare for this by writing
961# empty records into the file up to the position we want
962#
963# assumes that the offsets table already contains the offset of record $n,
964# if it exists, and extends to the end of the file if not.
965sub _extend_file_to {
966  my ($self, $n) = @_;
967  $self->_seek(-1);             # position after the end of the last record
968  my $pos = $self->{offsets}[-1];
969
970  # the offsets table has one entry more than the total number of records
971  my $extras = $n - $#{$self->{offsets}};
972
973  # Todo : just use $self->{recsep} x $extras here?
974  while ($extras-- > 0) {
975    $self->_write_record($self->{recsep});
976    push @{$self->{offsets}}, int(tell $self->{fh});
977  }
978}
979
980# Truncate the file at the current position
981sub _chop_file {
982  my $self = shift;
983  truncate $self->{fh}, tell($self->{fh});
984}
985
986
987# compute the size of a buffer suitable for moving
988# all the data in a file forward $n bytes
989# ($n may be negative)
990# The result should be at least $n.
991sub _bufsize {
992  my $n = shift;
993  return 8192 if $n <= 0;
994  my $b = $n & ~8191;
995  $b += 8192 if $n & 8191;
996  $b;
997}
998
999################################################################
1000#
1001# Miscellaneous public methods
1002#
1003
1004# Lock the file
1005sub flock {
1006  my ($self, $op) = @_;
1007  unless (@_ <= 3) {
1008    my $pack = ref $self;
1009    croak "Usage: $pack\->flock([OPERATION])";
1010  }
1011  my $fh = $self->{fh};
1012  $op = LOCK_EX unless defined $op;
1013  my $locked = flock $fh, $op;
1014
1015  if ($locked && ($op & (LOCK_EX | LOCK_SH))) {
1016    # If you're locking the file, then presumably it's because
1017    # there might have been a write access by another process.
1018    # In that case, the read cache contents and the offsets table
1019    # might be invalid, so discard them.  20030508
1020    $self->{offsets} = [0];
1021    $self->{cache}->empty;
1022  }
1023
1024  $locked;
1025}
1026
1027# Get/set autochomp option
1028sub autochomp {
1029  my $self = shift;
1030  if (@_) {
1031    my $old = $self->{autochomp};
1032    $self->{autochomp} = shift;
1033    $old;
1034  } else {
1035    $self->{autochomp};
1036  }
1037}
1038
1039# Get offset table entries; returns offset of nth record
1040sub offset {
1041  my ($self, $n) = @_;
1042
1043  if ($#{$self->{offsets}} < $n) {
1044    return if $self->{eof};     # request for record beyond the end of file
1045    my $o = $self->_fill_offsets_to($n);
1046    # If it's still undefined, there is no such record, so return 'undef'
1047    return unless defined $o;
1048   }
1049
1050  $self->{offsets}[$n];
1051}
1052
1053sub discard_offsets {
1054  my $self = shift;
1055  $self->{offsets} = [0];
1056}
1057
1058################################################################
1059#
1060# Matters related to deferred writing
1061#
1062
1063# Defer writes
1064sub defer {
1065  my $self = shift;
1066  $self->_stop_autodeferring;
1067  @{$self->{ad_history}} = ();
1068  $self->{defer} = 1;
1069}
1070
1071# Flush deferred writes
1072#
1073# This could be better optimized to write the file in one pass, instead
1074# of one pass per block of records.  But that will require modifications
1075# to _twrite, so I should have a good _twrite test suite first.
1076sub flush {
1077  my $self = shift;
1078
1079  $self->_flush;
1080  $self->{defer} = 0;
1081}
1082
1083sub _old_flush {
1084  my $self = shift;
1085  my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
1086
1087  while (@writable) {
1088    # gather all consecutive records from the front of @writable
1089    my $first_rec = shift @writable;
1090    my $last_rec = $first_rec+1;
1091    ++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
1092    --$last_rec;
1093    $self->_fill_offsets_to($last_rec);
1094    $self->_extend_file_to($last_rec);
1095    $self->_splice($first_rec, $last_rec-$first_rec+1,
1096                   @{$self->{deferred}}{$first_rec .. $last_rec});
1097  }
1098
1099  $self->_discard;               # clear out defered-write-cache
1100}
1101
1102sub _flush {
1103  my $self = shift;
1104  my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
1105  my @args;
1106  my @adjust;
1107
1108  while (@writable) {
1109    # gather all consecutive records from the front of @writable
1110    my $first_rec = shift @writable;
1111    my $last_rec = $first_rec+1;
1112    ++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
1113    --$last_rec;
1114    my $end = $self->_fill_offsets_to($last_rec+1);
1115    if (not defined $end) {
1116      $self->_extend_file_to($last_rec);
1117      $end = $self->{offsets}[$last_rec];
1118    }
1119    my ($start) = $self->{offsets}[$first_rec];
1120    push @args,
1121         join("", @{$self->{deferred}}{$first_rec .. $last_rec}), # data
1122         $start,                                                  # position
1123         $end-$start;                                             # length
1124    push @adjust, [$first_rec, # starting at this position...
1125                   $last_rec-$first_rec+1,  # this many records...
1126                   # are replaced with these...
1127                   @{$self->{deferred}}{$first_rec .. $last_rec},
1128                  ];
1129  }
1130
1131  $self->_mtwrite(@args);  # write multiple record groups
1132  $self->_discard;               # clear out defered-write-cache
1133  $self->_oadjust(@adjust);
1134}
1135
1136# Discard deferred writes and disable future deferred writes
1137sub discard {
1138  my $self = shift;
1139  $self->_discard;
1140  $self->{defer} = 0;
1141}
1142
1143# Discard deferred writes, but retain old deferred writing mode
1144sub _discard {
1145  my $self = shift;
1146  %{$self->{deferred}} = ();
1147  $self->{deferred_s}  = 0;
1148  $self->{deferred_max}  = -1;
1149  $self->{cache}->set_limit($self->{memory});
1150}
1151
1152# Deferred writing is enabled, either explicitly ($self->{defer})
1153# or automatically ($self->{autodeferring})
1154sub _is_deferring {
1155  my $self = shift;
1156  $self->{defer} || $self->{autodeferring};
1157}
1158
1159# The largest record number of any deferred record
1160sub _defer_max {
1161  my $self = shift;
1162  return $self->{deferred_max} if defined $self->{deferred_max};
1163  my $max = -1;
1164  for my $key (keys %{$self->{deferred}}) {
1165    $max = $key if $key > $max;
1166  }
1167  $self->{deferred_max} = $max;
1168  $max;
1169}
1170
1171################################################################
1172#
1173# Matters related to autodeferment
1174#
1175
1176# Get/set autodefer option
1177sub autodefer {
1178  my $self = shift;
1179  if (@_) {
1180    my $old = $self->{autodefer};
1181    $self->{autodefer} = shift;
1182    if ($old) {
1183      $self->_stop_autodeferring;
1184      @{$self->{ad_history}} = ();
1185    }
1186    $old;
1187  } else {
1188    $self->{autodefer};
1189  }
1190}
1191
1192# The user is trying to store record #$n Record that in the history,
1193# and then enable (or disable) autodeferment if that seems useful.
1194# Note that it's OK for $n to be a non-number, as long as the function
1195# is prepared to deal with that.  Nobody else looks at the ad_history.
1196#
1197# Now, what does the ad_history mean, and what is this function doing?
1198# Essentially, the idea is to enable autodeferring when we see that the
1199# user has made three consecutive STORE calls to three consecutive records.
1200# ("Three" is actually ->{autodefer_threshhold}.)
1201# A STORE call for record #$n inserts $n into the autodefer history,
1202# and if the history contains three consecutive records, we enable
1203# autodeferment.  An ad_history of [X, Y] means that the most recent
1204# STOREs were for records X, X+1, ..., Y, in that order.
1205#
1206# Inserting a nonconsecutive number erases the history and starts over.
1207#
1208# Performing a special operation like SPLICE erases the history.
1209#
1210# There's one special case: CLEAR means that CLEAR was just called.
1211# In this case, we prime the history with [-2, -1] so that if the next
1212# write is for record 0, autodeferring goes on immediately.  This is for
1213# the common special case of "@a = (...)".
1214#
1215sub _annotate_ad_history {
1216  my ($self, $n) = @_;
1217  return unless $self->{autodefer}; # feature is disabled
1218  return if $self->{defer};     # already in explicit defer mode
1219  return unless $self->{offsets}[-1] >= $self->{autodefer_filelen_threshhold};
1220
1221  local *H = $self->{ad_history};
1222  if ($n eq 'CLEAR') {
1223    @H = (-2, -1);              # prime the history with fake records
1224    $self->_stop_autodeferring;
1225  } elsif ($n =~ /^\d+$/) {
1226    if (@H == 0) {
1227      @H =  ($n, $n);
1228    } else {                    # @H == 2
1229      if ($H[1] == $n-1) {      # another consecutive record
1230        $H[1]++;
1231        if ($H[1] - $H[0] + 1 >= $self->{autodefer_threshhold}) {
1232          $self->{autodeferring} = 1;
1233        }
1234      } else {                  # nonconsecutive- erase and start over
1235        @H = ($n, $n);
1236        $self->_stop_autodeferring;
1237      }
1238    }
1239  } else {                      # SPLICE or STORESIZE or some such
1240    @H = ();
1241    $self->_stop_autodeferring;
1242  }
1243}
1244
1245# If autodeferring was enabled, cut it out and discard the history
1246sub _stop_autodeferring {
1247  my $self = shift;
1248  if ($self->{autodeferring}) {
1249    $self->_flush;
1250  }
1251  $self->{autodeferring} = 0;
1252}
1253
1254################################################################
1255
1256
1257# This is NOT a method.  It is here for two reasons:
1258#  1. To factor a fairly complicated block out of the constructor
1259#  2. To provide access for the test suite, which need to be sure
1260#     files are being written properly.
1261sub _default_recsep {
1262  my $recsep = $/;
1263  if ($^O eq 'MSWin32') {       # Dos too?
1264    # Windows users expect files to be terminated with \r\n
1265    # But $/ is set to \n instead
1266    # Note that this also transforms \n\n into \r\n\r\n.
1267    # That is a feature.
1268    $recsep =~ s/\n/\r\n/g;
1269  }
1270  $recsep;
1271}
1272
1273# Utility function for _check_integrity
1274sub _ci_warn {
1275  my $msg = shift;
1276  $msg =~ s/\n/\\n/g;
1277  $msg =~ s/\r/\\r/g;
1278  print "# $msg\n";
1279}
1280
1281# Given a file, make sure the cache is consistent with the
1282# file contents and the internal data structures are consistent with
1283# each other.  Returns true if everything checks out, false if not
1284#
1285# The $file argument is no longer used.  It is retained for compatibility
1286# with the existing test suite.
1287sub _check_integrity {
1288  my ($self, $file, $warn) = @_;
1289  my $rsl = $self->{recseplen};
1290  my $rs  = $self->{recsep};
1291  my $good = 1;
1292  local *_;                     # local $_ does not work here
1293  local $DIAGNOSTIC = 1;
1294
1295  if (not defined $rs) {
1296    _ci_warn("recsep is undef!");
1297    $good = 0;
1298  } elsif ($rs eq "") {
1299    _ci_warn("recsep is empty!");
1300    $good = 0;
1301  } elsif ($rsl != length $rs) {
1302    my $ln = length $rs;
1303    _ci_warn("recsep <$rs> has length $ln, should be $rsl");
1304    $good = 0;
1305  }
1306
1307  if (not defined $self->{offsets}[0]) {
1308    _ci_warn("offset 0 is missing!");
1309    $good = 0;
1310
1311  } elsif ($self->{offsets}[0] != 0) {
1312    _ci_warn("rec 0: offset <$self->{offsets}[0]> s/b 0!");
1313    $good = 0;
1314  }
1315
1316  my $cached = 0;
1317  {
1318    local *F = $self->{fh};
1319    seek F, 0, SEEK_SET;
1320    local $. = 0;
1321    local $/ = $rs;
1322
1323    while (<F>) {
1324      my $n = $. - 1;
1325      my $cached = $self->{cache}->_produce($n);
1326      my $offset = $self->{offsets}[$.];
1327      my $ao = tell F;
1328      if (defined $offset && $offset != $ao) {
1329        _ci_warn("rec $n: offset <$offset> actual <$ao>");
1330        $good = 0;
1331      }
1332      if (defined $cached && $_ ne $cached && ! $self->{deferred}{$n}) {
1333        $good = 0;
1334        _ci_warn("rec $n: cached <$cached> actual <$_>");
1335      }
1336      if (defined $cached && substr($cached, -$rsl) ne $rs) {
1337        $good = 0;
1338        _ci_warn("rec $n in the cache is missing the record separator");
1339      }
1340      if (! defined $offset && $self->{eof}) {
1341        $good = 0;
1342        _ci_warn("The offset table was marked complete, but it is missing " .
1343                 "element $.");
1344      }
1345    }
1346    if (@{$self->{offsets}} > $.+1) {
1347        $good = 0;
1348        my $n = @{$self->{offsets}};
1349        _ci_warn("The offset table has $n items, but the file has only $.");
1350    }
1351
1352    my $deferring = $self->_is_deferring;
1353    for my $n ($self->{cache}->ckeys) {
1354      my $r = $self->{cache}->_produce($n);
1355      $cached += length($r);
1356      next if $n+1 <= $.;         # checked this already
1357      _ci_warn("spurious caching of record $n");
1358      $good = 0;
1359    }
1360    my $b = $self->{cache}->bytes;
1361    if ($cached != $b) {
1362      _ci_warn("cache size is $b, should be $cached");
1363      $good = 0;
1364    }
1365  }
1366
1367  # That cache has its own set of tests
1368  $good = 0 unless $self->{cache}->_check_integrity;
1369
1370  # Now let's check the deferbuffer
1371  # Unless deferred writing is enabled, it should be empty
1372  if (! $self->_is_deferring && %{$self->{deferred}}) {
1373    _ci_warn("deferred writing disabled, but deferbuffer nonempty");
1374    $good = 0;
1375  }
1376
1377  # Any record in the deferbuffer should *not* be present in the readcache
1378  my $deferred_s = 0;
1379  while (my ($n, $r) = each %{$self->{deferred}}) {
1380    $deferred_s += length($r);
1381    if (defined $self->{cache}->_produce($n)) {
1382      _ci_warn("record $n is in the deferbuffer *and* the readcache");
1383      $good = 0;
1384    }
1385    if (substr($r, -$rsl) ne $rs) {
1386      _ci_warn("rec $n in the deferbuffer is missing the record separator");
1387      $good = 0;
1388    }
1389  }
1390
1391  # Total size of deferbuffer should match internal total
1392  if ($deferred_s != $self->{deferred_s}) {
1393    _ci_warn("buffer size is $self->{deferred_s}, should be $deferred_s");
1394    $good = 0;
1395  }
1396
1397  # Total size of deferbuffer should not exceed the specified limit
1398  if ($deferred_s > $self->{dw_size}) {
1399    _ci_warn("buffer size is $self->{deferred_s} which exceeds the limit " .
1400             "of $self->{dw_size}");
1401    $good = 0;
1402  }
1403
1404  # Total size of cached data should not exceed the specified limit
1405  if ($deferred_s + $cached > $self->{memory}) {
1406    my $total = $deferred_s + $cached;
1407    _ci_warn("total stored data size is $total which exceeds the limit " .
1408             "of $self->{memory}");
1409    $good = 0;
1410  }
1411
1412  # Stuff related to autodeferment
1413  if (!$self->{autodefer} && @{$self->{ad_history}}) {
1414    _ci_warn("autodefer is disabled, but ad_history is nonempty");
1415    $good = 0;
1416  }
1417  if ($self->{autodeferring} && $self->{defer}) {
1418    _ci_warn("both autodeferring and explicit deferring are active");
1419    $good = 0;
1420  }
1421  if (@{$self->{ad_history}} == 0) {
1422    # That's OK, no additional tests required
1423  } elsif (@{$self->{ad_history}} == 2) {
1424    my @non_number = grep !/^-?\d+$/, @{$self->{ad_history}};
1425    if (@non_number) {
1426      my $msg;
1427      { local $" = ')(';
1428        $msg = "ad_history contains non-numbers (@{$self->{ad_history}})";
1429      }
1430      _ci_warn($msg);
1431      $good = 0;
1432    } elsif ($self->{ad_history}[1] < $self->{ad_history}[0]) {
1433      _ci_warn("ad_history has nonsensical values @{$self->{ad_history}}");
1434      $good = 0;
1435    }
1436  } else {
1437    _ci_warn("ad_history has bad length <@{$self->{ad_history}}>");
1438    $good = 0;
1439  }
1440
1441  $good;
1442}
1443
1444################################################################
1445#
1446# Tie::File::Cache
1447#
1448# Read cache
1449
1450package Tie::File::Cache;
1451$Tie::File::Cache::VERSION = $Tie::File::VERSION;
1452use Carp ':DEFAULT', 'confess';
1453
1454sub HEAP () { 0 }
1455sub HASH () { 1 }
1456sub MAX  () { 2 }
1457sub BYTES() { 3 }
1458#sub STAT () { 4 } # Array with request statistics for each record
1459#sub MISS () { 5 } # Total number of cache misses
1460#sub REQ  () { 6 } # Total number of cache requests
1461use strict 'vars';
1462
1463sub new {
1464  my ($pack, $max) = @_;
1465  local *_;
1466  croak "missing argument to ->new" unless defined $max;
1467  my $self = [];
1468  bless $self => $pack;
1469  @$self = (Tie::File::Heap->new($self), {}, $max, 0);
1470  $self;
1471}
1472
1473sub adj_limit {
1474  my ($self, $n) = @_;
1475  $self->[MAX] += $n;
1476}
1477
1478sub set_limit {
1479  my ($self, $n) = @_;
1480  $self->[MAX] = $n;
1481}
1482
1483# For internal use only
1484# Will be called by the heap structure to notify us that a certain
1485# piece of data has moved from one heap element to another.
1486# $k is the hash key of the item
1487# $n is the new index into the heap at which it is stored
1488# If $n is undefined, the item has been removed from the heap.
1489sub _heap_move {
1490  my ($self, $k, $n) = @_;
1491  if (defined $n) {
1492    $self->[HASH]{$k} = $n;
1493  } else {
1494    delete $self->[HASH]{$k};
1495  }
1496}
1497
1498sub insert {
1499  my ($self, $key, $val) = @_;
1500  local *_;
1501  croak "missing argument to ->insert" unless defined $key;
1502  unless (defined $self->[MAX]) {
1503    confess "undefined max" ;
1504  }
1505  confess "undefined val" unless defined $val;
1506  return if length($val) > $self->[MAX];
1507
1508#  if ($self->[STAT]) {
1509#    $self->[STAT][$key] = 1;
1510#    return;
1511#  }
1512
1513  my $oldnode = $self->[HASH]{$key};
1514  if (defined $oldnode) {
1515    my $oldval = $self->[HEAP]->set_val($oldnode, $val);
1516    $self->[BYTES] -= length($oldval);
1517  } else {
1518    $self->[HEAP]->insert($key, $val);
1519  }
1520  $self->[BYTES] += length($val);
1521  $self->flush if $self->[BYTES] > $self->[MAX];
1522}
1523
1524sub expire {
1525  my $self = shift;
1526  my $old_data = $self->[HEAP]->popheap;
1527  return unless defined $old_data;
1528  $self->[BYTES] -= length $old_data;
1529  $old_data;
1530}
1531
1532sub remove {
1533  my ($self, @keys) = @_;
1534  my @result;
1535
1536#  if ($self->[STAT]) {
1537#    for my $key (@keys) {
1538#      $self->[STAT][$key] = 0;
1539#    }
1540#    return;
1541#  }
1542
1543  for my $key (@keys) {
1544    next unless exists $self->[HASH]{$key};
1545    my $old_data = $self->[HEAP]->remove($self->[HASH]{$key});
1546    $self->[BYTES] -= length $old_data;
1547    push @result, $old_data;
1548  }
1549  @result;
1550}
1551
1552sub lookup {
1553  my ($self, $key) = @_;
1554  local *_;
1555  croak "missing argument to ->lookup" unless defined $key;
1556
1557#  if ($self->[STAT]) {
1558#    $self->[MISS]++  if $self->[STAT][$key]++ == 0;
1559#    $self->[REQ]++;
1560#    my $hit_rate = 1 - $self->[MISS] / $self->[REQ];
1561#    # Do some testing to determine this threshhold
1562#    $#$self = STAT - 1 if $hit_rate > 0.20;
1563#  }
1564
1565  if (exists $self->[HASH]{$key}) {
1566    $self->[HEAP]->lookup($self->[HASH]{$key});
1567  } else {
1568    return;
1569  }
1570}
1571
1572# For internal use only
1573sub _produce {
1574  my ($self, $key) = @_;
1575  my $loc = $self->[HASH]{$key};
1576  return unless defined $loc;
1577  $self->[HEAP][$loc][2];
1578}
1579
1580# For internal use only
1581sub _promote {
1582  my ($self, $key) = @_;
1583  $self->[HEAP]->promote($self->[HASH]{$key});
1584}
1585
1586sub empty {
1587  my ($self) = @_;
1588  %{$self->[HASH]} = ();
1589    $self->[BYTES] = 0;
1590    $self->[HEAP]->empty;
1591#  @{$self->[STAT]} = ();
1592#    $self->[MISS] = 0;
1593#    $self->[REQ] = 0;
1594}
1595
1596sub is_empty {
1597  my ($self) = @_;
1598  keys %{$self->[HASH]} == 0;
1599}
1600
1601sub update {
1602  my ($self, $key, $val) = @_;
1603  local *_;
1604  croak "missing argument to ->update" unless defined $key;
1605  if (length($val) > $self->[MAX]) {
1606    my ($oldval) = $self->remove($key);
1607    $self->[BYTES] -= length($oldval) if defined $oldval;
1608  } elsif (exists $self->[HASH]{$key}) {
1609    my $oldval = $self->[HEAP]->set_val($self->[HASH]{$key}, $val);
1610    $self->[BYTES] += length($val);
1611    $self->[BYTES] -= length($oldval) if defined $oldval;
1612  } else {
1613    $self->[HEAP]->insert($key, $val);
1614    $self->[BYTES] += length($val);
1615  }
1616  $self->flush;
1617}
1618
1619sub rekey {
1620  my ($self, $okeys, $nkeys) = @_;
1621  local *_;
1622  my %map;
1623  @map{@$okeys} = @$nkeys;
1624  croak "missing argument to ->rekey" unless defined $nkeys;
1625  croak "length mismatch in ->rekey arguments" unless @$nkeys == @$okeys;
1626  my %adjusted;                 # map new keys to heap indices
1627  # You should be able to cut this to one loop TODO XXX
1628  for (0 .. $#$okeys) {
1629    $adjusted{$nkeys->[$_]} = delete $self->[HASH]{$okeys->[$_]};
1630  }
1631  while (my ($nk, $ix) = each %adjusted) {
1632    # @{$self->[HASH]}{keys %adjusted} = values %adjusted;
1633    $self->[HEAP]->rekey($ix, $nk);
1634    $self->[HASH]{$nk} = $ix;
1635  }
1636}
1637
1638sub ckeys {
1639  my $self = shift;
1640  my @a = keys %{$self->[HASH]};
1641  @a;
1642}
1643
1644# Return total amount of cached data
1645sub bytes {
1646  my $self = shift;
1647  $self->[BYTES];
1648}
1649
1650# Expire oldest item from cache until cache size is smaller than $max
1651sub reduce_size_to {
1652  my ($self, $max) = @_;
1653  until ($self->[BYTES] <= $max) {
1654    # Note that Tie::File::Cache::expire has been inlined here
1655    my $old_data = $self->[HEAP]->popheap;
1656    return unless defined $old_data;
1657    $self->[BYTES] -= length $old_data;
1658  }
1659}
1660
1661# Why not just $self->reduce_size_to($self->[MAX])?
1662# Try this when things stabilize   TODO XXX
1663# If the cache is too full, expire the oldest records
1664sub flush {
1665  my $self = shift;
1666  $self->reduce_size_to($self->[MAX]) if $self->[BYTES] > $self->[MAX];
1667}
1668
1669# For internal use only
1670sub _produce_lru {
1671  my $self = shift;
1672  $self->[HEAP]->expire_order;
1673}
1674
1675BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
1676
1677sub _check_integrity {          # For CACHE
1678  my $self = shift;
1679  my $good = 1;
1680
1681  # Test HEAP
1682  $self->[HEAP]->_check_integrity or $good = 0;
1683
1684  # Test HASH
1685  my $bytes = 0;
1686  for my $k (keys %{$self->[HASH]}) {
1687    if ($k ne '0' && $k !~ /^[1-9][0-9]*$/) {
1688      $good = 0;
1689      _ci_warn "Cache hash key <$k> is non-numeric";
1690    }
1691
1692    my $h = $self->[HASH]{$k};
1693    if (! defined $h) {
1694      $good = 0;
1695      _ci_warn "Heap index number for key $k is undefined";
1696    } elsif ($h == 0) {
1697      $good = 0;
1698      _ci_warn "Heap index number for key $k is zero";
1699    } else {
1700      my $j = $self->[HEAP][$h];
1701      if (! defined $j) {
1702        $good = 0;
1703        _ci_warn "Heap contents key $k (=> $h) are undefined";
1704      } else {
1705        $bytes += length($j->[2]);
1706        if ($k ne $j->[1]) {
1707          $good = 0;
1708          _ci_warn "Heap contents key $k (=> $h) is $j->[1], should be $k";
1709        }
1710      }
1711    }
1712  }
1713
1714  # Test BYTES
1715  if ($bytes != $self->[BYTES]) {
1716    $good = 0;
1717    _ci_warn "Total data in cache is $bytes, expected $self->[BYTES]";
1718  }
1719
1720  # Test MAX
1721  if ($bytes > $self->[MAX]) {
1722    $good = 0;
1723    _ci_warn "Total data in cache is $bytes, exceeds maximum $self->[MAX]";
1724  }
1725
1726  return $good;
1727}
1728
1729sub delink {
1730  my $self = shift;
1731  $self->[HEAP] = undef;        # Bye bye heap
1732}
1733
1734################################################################
1735#
1736# Tie::File::Heap
1737#
1738# Heap data structure for use by cache LRU routines
1739
1740package Tie::File::Heap;
1741use Carp ':DEFAULT', 'confess';
1742$Tie::File::Heap::VERSION = $Tie::File::Cache::VERSION;
1743sub SEQ () { 0 };
1744sub KEY () { 1 };
1745sub DAT () { 2 };
1746
1747sub new {
1748  my ($pack, $cache) = @_;
1749  die "$pack: Parent cache object $cache does not support _heap_move method"
1750    unless eval { $cache->can('_heap_move') };
1751  my $self = [[0,$cache,0]];
1752  bless $self => $pack;
1753}
1754
1755# Allocate a new sequence number, larger than all previously allocated numbers
1756sub _nseq {
1757  my $self = shift;
1758  $self->[0][0]++;
1759}
1760
1761sub _cache {
1762  my $self = shift;
1763  $self->[0][1];
1764}
1765
1766sub _nelts {
1767  my $self = shift;
1768  $self->[0][2];
1769}
1770
1771sub _nelts_inc {
1772  my $self = shift;
1773  ++$self->[0][2];
1774}
1775
1776sub _nelts_dec {
1777  my $self = shift;
1778  --$self->[0][2];
1779}
1780
1781sub is_empty {
1782  my $self = shift;
1783  $self->_nelts == 0;
1784}
1785
1786sub empty {
1787  my $self = shift;
1788  $#$self = 0;
1789  $self->[0][2] = 0;
1790  $self->[0][0] = 0;            # might as well reset the sequence numbers
1791}
1792
1793# notify the parent cache object that we moved something
1794sub _heap_move {
1795  my $self = shift;
1796  $self->_cache->_heap_move(@_);
1797}
1798
1799# Insert a piece of data into the heap with the indicated sequence number.
1800# The item with the smallest sequence number is always at the top.
1801# If no sequence number is specified, allocate a new one and insert the
1802# item at the bottom.
1803sub insert {
1804  my ($self, $key, $data, $seq) = @_;
1805  $seq = $self->_nseq unless defined $seq;
1806  $self->_insert_new([$seq, $key, $data]);
1807}
1808
1809# Insert a new, fresh item at the bottom of the heap
1810sub _insert_new {
1811  my ($self, $item) = @_;
1812  my $i = @$self;
1813  $i = int($i/2) until defined $self->[$i/2];
1814  $self->[$i] = $item;
1815  $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1816  $self->_nelts_inc;
1817}
1818
1819# Insert [$data, $seq] pair at or below item $i in the heap.
1820# If $i is omitted, default to 1 (the top element.)
1821sub _insert {
1822  my ($self, $item, $i) = @_;
1823#  $self->_check_loc($i) if defined $i;
1824  $i = 1 unless defined $i;
1825  until (! defined $self->[$i]) {
1826    if ($self->[$i][SEQ] > $item->[SEQ]) { # inserted item is older
1827      ($self->[$i], $item) = ($item, $self->[$i]);
1828      $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1829    }
1830    # If either is undefined, go that way.  Otherwise, choose at random
1831    my $dir;
1832    $dir = 0 if !defined $self->[2*$i];
1833    $dir = 1 if !defined $self->[2*$i+1];
1834    $dir = int(rand(2)) unless defined $dir;
1835    $i = 2*$i + $dir;
1836  }
1837  $self->[$i] = $item;
1838  $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1839  $self->_nelts_inc;
1840}
1841
1842# Remove the item at node $i from the heap, moving child items upwards.
1843# The item with the smallest sequence number is always at the top.
1844# Moving items upwards maintains this condition.
1845# Return the removed item.  Return undef if there was no item at node $i.
1846sub remove {
1847  my ($self, $i) = @_;
1848  $i = 1 unless defined $i;
1849  my $top = $self->[$i];
1850  return unless defined $top;
1851  while (1) {
1852    my $ii;
1853    my ($L, $R) = (2*$i, 2*$i+1);
1854
1855    # If either is undefined, go the other way.
1856    # Otherwise, go towards the smallest.
1857    last unless defined $self->[$L] || defined $self->[$R];
1858    $ii = $R if not defined $self->[$L];
1859    $ii = $L if not defined $self->[$R];
1860    unless (defined $ii) {
1861      $ii = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
1862    }
1863
1864    $self->[$i] = $self->[$ii]; # Promote child to fill vacated spot
1865    $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1866    $i = $ii; # Fill new vacated spot
1867  }
1868  $self->[0][1]->_heap_move($top->[KEY], undef);
1869  undef $self->[$i];
1870  $self->_nelts_dec;
1871  return $top->[DAT];
1872}
1873
1874sub popheap {
1875  my $self = shift;
1876  $self->remove(1);
1877}
1878
1879# set the sequence number of the indicated item to a higher number
1880# than any other item in the heap, and bubble the item down to the
1881# bottom.
1882sub promote {
1883  my ($self, $n) = @_;
1884#  $self->_check_loc($n);
1885  $self->[$n][SEQ] = $self->_nseq;
1886  my $i = $n;
1887  while (1) {
1888    my ($L, $R) = (2*$i, 2*$i+1);
1889    my $dir;
1890    last unless defined $self->[$L] || defined $self->[$R];
1891    $dir = $R unless defined $self->[$L];
1892    $dir = $L unless defined $self->[$R];
1893    unless (defined $dir) {
1894      $dir = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
1895    }
1896    @{$self}[$i, $dir] = @{$self}[$dir, $i];
1897    for ($i, $dir) {
1898      $self->[0][1]->_heap_move($self->[$_][KEY], $_) if defined $self->[$_];
1899    }
1900    $i = $dir;
1901  }
1902}
1903
1904# Return item $n from the heap, promoting its LRU status
1905sub lookup {
1906  my ($self, $n) = @_;
1907#  $self->_check_loc($n);
1908  my $val = $self->[$n];
1909  $self->promote($n);
1910  $val->[DAT];
1911}
1912
1913
1914# Assign a new value for node $n, promoting it to the bottom of the heap
1915sub set_val {
1916  my ($self, $n, $val) = @_;
1917#  $self->_check_loc($n);
1918  my $oval = $self->[$n][DAT];
1919  $self->[$n][DAT] = $val;
1920  $self->promote($n);
1921  return $oval;
1922}
1923
1924# The hash key has changed for an item;
1925# alter the heap's record of the hash key
1926sub rekey {
1927  my ($self, $n, $new_key) = @_;
1928#  $self->_check_loc($n);
1929  $self->[$n][KEY] = $new_key;
1930}
1931
1932sub _check_loc {
1933  my ($self, $n) = @_;
1934  unless (1 || defined $self->[$n]) {
1935    confess "_check_loc($n) failed";
1936  }
1937}
1938
1939BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
1940
1941sub _check_integrity {
1942  my $self = shift;
1943  my $good = 1;
1944  my %seq;
1945
1946  unless (eval {$self->[0][1]->isa("Tie::File::Cache")}) {
1947    _ci_warn "Element 0 of heap corrupt";
1948    $good = 0;
1949  }
1950  $good = 0 unless $self->_satisfies_heap_condition(1);
1951  for my $i (2 .. $#{$self}) {
1952    my $p = int($i/2);          # index of parent node
1953    if (defined $self->[$i] && ! defined $self->[$p]) {
1954      _ci_warn "Element $i of heap defined, but parent $p isn't";
1955      $good = 0;
1956    }
1957
1958    if (defined $self->[$i]) {
1959      if ($seq{$self->[$i][SEQ]}) {
1960        my $seq = $self->[$i][SEQ];
1961        _ci_warn "Nodes $i and $seq{$seq} both have SEQ=$seq";
1962        $good = 0;
1963      } else {
1964        $seq{$self->[$i][SEQ]} = $i;
1965      }
1966    }
1967  }
1968
1969  return $good;
1970}
1971
1972sub _satisfies_heap_condition {
1973  my $self = shift;
1974  my $n = shift || 1;
1975  my $good = 1;
1976  for (0, 1) {
1977    my $c = $n*2 + $_;
1978    next unless defined $self->[$c];
1979    if ($self->[$n][SEQ] >= $self->[$c]) {
1980      _ci_warn "Node $n of heap does not predate node $c";
1981      $good = 0 ;
1982    }
1983    $good = 0 unless $self->_satisfies_heap_condition($c);
1984  }
1985  return $good;
1986}
1987
1988# Return a list of all the values, sorted by expiration order
1989sub expire_order {
1990  my $self = shift;
1991  my @nodes = sort {$a->[SEQ] <=> $b->[SEQ]} $self->_nodes;
1992  map { $_->[KEY] } @nodes;
1993}
1994
1995sub _nodes {
1996  my $self = shift;
1997  my $i = shift || 1;
1998  return unless defined $self->[$i];
1999  ($self->[$i], $self->_nodes($i*2), $self->_nodes($i*2+1));
2000}
2001
20021;
2003
2004__END__
2005
2006=head1 NAME
2007
2008Tie::File - Access the lines of a disk file via a Perl array
2009
2010=head1 SYNOPSIS
2011
2012 use Tie::File;
2013
2014 tie @array, 'Tie::File', filename or die ...;
2015
2016 $array[0] = 'blah';      # first line of the file is now 'blah'
2017                            # (line numbering starts at 0)
2018 print $array[42];        # display line 43 of the file
2019
2020 $n_recs = @array;        # how many records are in the file?
2021 $#array -= 2;            # chop two records off the end
2022
2023
2024 for (@array) {
2025   s/PERL/Perl/g;        # Replace PERL with Perl everywhere in the file
2026 }
2027
2028 # These are just like regular push, pop, unshift, shift, and splice
2029 # Except that they modify the file in the way you would expect
2030
2031 push @array, new recs...;
2032 my $r1 = pop @array;
2033 unshift @array, new recs...;
2034 my $r2 = shift @array;
2035 @old_recs = splice @array, 3, 7, new recs...;
2036
2037 untie @array;            # all finished
2038
2039
2040=head1 DESCRIPTION
2041
2042C<Tie::File> represents a regular text file as a Perl array.  Each
2043element in the array corresponds to a record in the file.  The first
2044line of the file is element 0 of the array; the second line is element
20451, and so on.
2046
2047The file is I<not> loaded into memory, so this will work even for
2048gigantic files.
2049
2050Changes to the array are reflected in the file immediately.
2051
2052Lazy people and beginners may now stop reading the manual.
2053
2054=head2 C<recsep>
2055
2056What is a 'record'?  By default, the meaning is the same as for the
2057C<E<lt>...E<gt>> operator: It's a string terminated by C<$/>, which is
2058probably C<"\n">.  (Minor exception: on DOS and Win32 systems, a
2059'record' is a string terminated by C<"\r\n">.)  You may change the
2060definition of "record" by supplying the C<recsep> option in the C<tie>
2061call:
2062
2063	tie @array, 'Tie::File', $file, recsep => 'es';
2064
2065This says that records are delimited by the string C<es>.  If the file
2066contained the following data:
2067
2068	Curse these pesky flies!\n
2069
2070then the C<@array> would appear to have four elements:
2071
2072	"Curse th"
2073	"e p"
2074	"ky fli"
2075	"!\n"
2076
2077An undefined value is not permitted as a record separator.  Perl's
2078special "paragraph mode" semantics (E<agrave> la C<$/ = "">) are not
2079emulated.
2080
2081Records read from the tied array do not have the record separator
2082string on the end; this is to allow
2083
2084	$array[17] .= "extra";
2085
2086to work as expected.
2087
2088(See L<"autochomp">, below.)  Records stored into the array will have
2089the record separator string appended before they are written to the
2090file, if they don't have one already.  For example, if the record
2091separator string is C<"\n">, then the following two lines do exactly
2092the same thing:
2093
2094	$array[17] = "Cherry pie";
2095	$array[17] = "Cherry pie\n";
2096
2097The result is that the contents of line 17 of the file will be
2098replaced with "Cherry pie"; a newline character will separate line 17
2099from line 18.  This means that this code will do nothing:
2100
2101	chomp $array[17];
2102
2103Because the C<chomp>ed value will have the separator reattached when
2104it is written back to the file.  There is no way to create a file
2105whose trailing record separator string is missing.
2106
2107Inserting records that I<contain> the record separator string is not
2108supported by this module.  It will probably produce a reasonable
2109result, but what this result will be may change in a future version.
2110Use 'splice' to insert records or to replace one record with several.
2111
2112=head2 C<autochomp>
2113
2114Normally, array elements have the record separator removed, so that if
2115the file contains the text
2116
2117	Gold
2118	Frankincense
2119	Myrrh
2120
2121the tied array will appear to contain C<("Gold", "Frankincense",
2122"Myrrh")>.  If you set C<autochomp> to a false value, the record
2123separator will not be removed.  If the file above was tied with
2124
2125	tie @gifts, "Tie::File", $gifts, autochomp => 0;
2126
2127then the array C<@gifts> would appear to contain C<("Gold\n",
2128"Frankincense\n", "Myrrh\n")>, or (on Win32 systems) C<("Gold\r\n",
2129"Frankincense\r\n", "Myrrh\r\n")>.
2130
2131=head2 C<mode>
2132
2133Normally, the specified file will be opened for read and write access,
2134and will be created if it does not exist.  (That is, the flags
2135C<O_RDWR | O_CREAT> are supplied in the C<open> call.)  If you want to
2136change this, you may supply alternative flags in the C<mode> option.
2137See L<Fcntl> for a listing of available flags.
2138For example:
2139
2140	# open the file if it exists, but fail if it does not exist
2141	use Fcntl 'O_RDWR';
2142	tie @array, 'Tie::File', $file, mode => O_RDWR;
2143
2144	# create the file if it does not exist
2145	use Fcntl 'O_RDWR', 'O_CREAT';
2146	tie @array, 'Tie::File', $file, mode => O_RDWR | O_CREAT;
2147
2148	# open an existing file in read-only mode
2149	use Fcntl 'O_RDONLY';
2150	tie @array, 'Tie::File', $file, mode => O_RDONLY;
2151
2152Opening the data file in write-only or append mode is not supported.
2153
2154=head2 C<memory>
2155
2156This is an upper limit on the amount of memory that C<Tie::File> will
2157consume at any time while managing the file.  This is used for two
2158things: managing the I<read cache> and managing the I<deferred write
2159buffer>.
2160
2161Records read in from the file are cached, to avoid having to re-read
2162them repeatedly.  If you read the same record twice, the first time it
2163will be stored in memory, and the second time it will be fetched from
2164the I<read cache>.  The amount of data in the read cache will not
2165exceed the value you specified for C<memory>.  If C<Tie::File> wants
2166to cache a new record, but the read cache is full, it will make room
2167by expiring the least-recently visited records from the read cache.
2168
2169The default memory limit is 2Mib.  You can adjust the maximum read
2170cache size by supplying the C<memory> option.  The argument is the
2171desired cache size, in bytes.
2172
2173 # I have a lot of memory, so use a large cache to speed up access
2174 tie @array, 'Tie::File', $file, memory => 20_000_000;
2175
2176Setting the memory limit to 0 will inhibit caching; records will be
2177fetched from disk every time you examine them.
2178
2179The C<memory> value is not an absolute or exact limit on the memory
2180used.  C<Tie::File> objects contains some structures besides the read
2181cache and the deferred write buffer, whose sizes are not charged
2182against C<memory>.
2183
2184The cache itself consumes about 310 bytes per cached record, so if
2185your file has many short records, you may want to decrease the cache
2186memory limit, or else the cache overhead may exceed the size of the
2187cached data.
2188
2189
2190=head2 C<dw_size>
2191
2192(This is an advanced feature.  Skip this section on first reading.)
2193
2194If you use deferred writing (See L<"Deferred Writing">, below) then
2195data you write into the array will not be written directly to the
2196file; instead, it will be saved in the I<deferred write buffer> to be
2197written out later.  Data in the deferred write buffer is also charged
2198against the memory limit you set with the C<memory> option.
2199
2200You may set the C<dw_size> option to limit the amount of data that can
2201be saved in the deferred write buffer.  This limit may not exceed the
2202total memory limit.  For example, if you set C<dw_size> to 1000 and
2203C<memory> to 2500, that means that no more than 1000 bytes of deferred
2204writes will be saved up.  The space available for the read cache will
2205vary, but it will always be at least 1500 bytes (if the deferred write
2206buffer is full) and it could grow as large as 2500 bytes (if the
2207deferred write buffer is empty.)
2208
2209If you don't specify a C<dw_size>, it defaults to the entire memory
2210limit.
2211
2212=head2 Option Format
2213
2214C<-mode> is a synonym for C<mode>.  C<-recsep> is a synonym for
2215C<recsep>.  C<-memory> is a synonym for C<memory>.  You get the
2216idea.
2217
2218=head1 Public Methods
2219
2220The C<tie> call returns an object, say C<$o>.  You may call
2221
2222	$rec = $o->FETCH($n);
2223	$o->STORE($n, $rec);
2224
2225to fetch or store the record at line C<$n>, respectively; similarly
2226the other tied array methods.  (See L<perltie> for details.)  You may
2227also call the following methods on this object:
2228
2229=head2 C<flock>
2230
2231	$o->flock(MODE)
2232
2233will lock the tied file.  C<MODE> has the same meaning as the second
2234argument to the Perl built-in C<flock> function; for example
2235C<LOCK_SH> or C<LOCK_EX | LOCK_NB>.  (These constants are provided by
2236the C<use Fcntl ':flock'> declaration.)
2237
2238C<MODE> is optional; the default is C<LOCK_EX>.
2239
2240C<Tie::File> maintains an internal table of the byte offset of each
2241record it has seen in the file.
2242
2243When you use C<flock> to lock the file, C<Tie::File> assumes that the
2244read cache is no longer trustworthy, because another process might
2245have modified the file since the last time it was read.  Therefore, a
2246successful call to C<flock> discards the contents of the read cache
2247and the internal record offset table.
2248
2249C<Tie::File> promises that the following sequence of operations will
2250be safe:
2251
2252	my $o = tie @array, "Tie::File", $filename;
2253	$o->flock;
2254
2255In particular, C<Tie::File> will I<not> read or write the file during
2256the C<tie> call.  (Exception: Using C<mode =E<gt> O_TRUNC> will, of
2257course, erase the file during the C<tie> call.  If you want to do this
2258safely, then open the file without C<O_TRUNC>, lock the file, and use
2259C<@array = ()>.)
2260
2261The best way to unlock a file is to discard the object and untie the
2262array.  It is probably unsafe to unlock the file without also untying
2263it, because if you do, changes may remain unwritten inside the object.
2264That is why there is no shortcut for unlocking.  If you really want to
2265unlock the file prematurely, you know what to do; if you don't know
2266what to do, then don't do it.
2267
2268All the usual warnings about file locking apply here.  In particular,
2269note that file locking in Perl is B<advisory>, which means that
2270holding a lock will not prevent anyone else from reading, writing, or
2271erasing the file; it only prevents them from getting another lock at
2272the same time.  Locks are analogous to green traffic lights: If you
2273have a green light, that does not prevent the idiot coming the other
2274way from plowing into you sideways; it merely guarantees to you that
2275the idiot does not also have a green light at the same time.
2276
2277=head2 C<autochomp>
2278
2279	my $old_value = $o->autochomp(0);    # disable autochomp option
2280	my $old_value = $o->autochomp(1);    #  enable autochomp option
2281
2282	my $ac = $o->autochomp();   # recover current value
2283
2284See L<"autochomp">, above.
2285
2286=head2 C<defer>, C<flush>, C<discard>, and C<autodefer>
2287
2288See L<"Deferred Writing">, below.
2289
2290=head2 C<offset>
2291
2292	$off = $o->offset($n);
2293
2294This method returns the byte offset of the start of the C<$n>th record
2295in the file.  If there is no such record, it returns an undefined
2296value.
2297
2298=head1 Tying to an already-opened filehandle
2299
2300If C<$fh> is a filehandle, such as is returned by C<IO::File> or one
2301of the other C<IO> modules, you may use:
2302
2303	tie @array, 'Tie::File', $fh, ...;
2304
2305Similarly if you opened that handle C<FH> with regular C<open> or
2306C<sysopen>, you may use:
2307
2308	tie @array, 'Tie::File', \*FH, ...;
2309
2310Handles that were opened write-only won't work.  Handles that were
2311opened read-only will work as long as you don't try to modify the
2312array.  Handles must be attached to seekable sources of data---that
2313means no pipes or sockets.  If C<Tie::File> can detect that you
2314supplied a non-seekable handle, the C<tie> call will throw an
2315exception.  (On Unix systems, it can detect this.)
2316
2317Note that Tie::File will only close any filehandles that it opened
2318internally.  If you passed it a filehandle as above, you "own" the
2319filehandle, and are responsible for closing it after you have untied
2320the @array.
2321
2322Tie::File calls C<binmode> on filehandles that it opens internally,
2323but not on filehandles passed in by the user. For consistency,
2324especially if using the tied files cross-platform, you may wish to
2325call C<binmode> on the filehandle prior to tying the file.
2326
2327=head1 Deferred Writing
2328
2329(This is an advanced feature.  Skip this section on first reading.)
2330
2331Normally, modifying a C<Tie::File> array writes to the underlying file
2332immediately.  Every assignment like C<$a[3] = ...> rewrites as much of
2333the file as is necessary; typically, everything from line 3 through
2334the end will need to be rewritten.  This is the simplest and most
2335transparent behavior.  Performance even for large files is reasonably
2336good.
2337
2338However, under some circumstances, this behavior may be excessively
2339slow.  For example, suppose you have a million-record file, and you
2340want to do:
2341
2342	for (@FILE) {
2343	  $_ = "> $_";
2344	}
2345
2346The first time through the loop, you will rewrite the entire file,
2347from line 0 through the end.  The second time through the loop, you
2348will rewrite the entire file from line 1 through the end.  The third
2349time through the loop, you will rewrite the entire file from line 2 to
2350the end.  And so on.
2351
2352If the performance in such cases is unacceptable, you may defer the
2353actual writing, and then have it done all at once.  The following loop
2354will perform much better for large files:
2355
2356	(tied @a)->defer;
2357	for (@a) {
2358	  $_ = "> $_";
2359	}
2360	(tied @a)->flush;
2361
2362If C<Tie::File>'s memory limit is large enough, all the writing will
2363done in memory.  Then, when you call C<-E<gt>flush>, the entire file
2364will be rewritten in a single pass.
2365
2366(Actually, the preceding discussion is something of a fib.  You don't
2367need to enable deferred writing to get good performance for this
2368common case, because C<Tie::File> will do it for you automatically
2369unless you specifically tell it not to.  See L</Autodeferring>,
2370below.)
2371
2372Calling C<-E<gt>flush> returns the array to immediate-write mode.  If
2373you wish to discard the deferred writes, you may call C<-E<gt>discard>
2374instead of C<-E<gt>flush>.  Note that in some cases, some of the data
2375will have been written already, and it will be too late for
2376C<-E<gt>discard> to discard all the changes.  Support for
2377C<-E<gt>discard> may be withdrawn in a future version of C<Tie::File>.
2378
2379Deferred writes are cached in memory up to the limit specified by the
2380C<dw_size> option (see above).  If the deferred-write buffer is full
2381and you try to write still more deferred data, the buffer will be
2382flushed.  All buffered data will be written immediately, the buffer
2383will be emptied, and the now-empty space will be used for future
2384deferred writes.
2385
2386If the deferred-write buffer isn't yet full, but the total size of the
2387buffer and the read cache would exceed the C<memory> limit, the oldest
2388records will be expired from the read cache until the total size is
2389under the limit.
2390
2391C<push>, C<pop>, C<shift>, C<unshift>, and C<splice> cannot be
2392deferred.  When you perform one of these operations, any deferred data
2393is written to the file and the operation is performed immediately.
2394This may change in a future version.
2395
2396If you resize the array with deferred writing enabled, the file will
2397be resized immediately, but deferred records will not be written.
2398This has a surprising consequence: C<@a = (...)> erases the file
2399immediately, but the writing of the actual data is deferred.  This
2400might be a bug.  If it is a bug, it will be fixed in a future version.
2401
2402=head2 Autodeferring
2403
2404C<Tie::File> tries to guess when deferred writing might be helpful,
2405and to turn it on and off automatically.
2406
2407	for (@a) {
2408	  $_ = "> $_";
2409	}
2410
2411In this example, only the first two assignments will be done
2412immediately; after this, all the changes to the file will be deferred
2413up to the user-specified memory limit.
2414
2415You should usually be able to ignore this and just use the module
2416without thinking about deferring.  However, special applications may
2417require fine control over which writes are deferred, or may require
2418that all writes be immediate.  To disable the autodeferment feature,
2419use
2420
2421	(tied @o)->autodefer(0);
2422
2423or
2424
2425       	tie @array, 'Tie::File', $file, autodefer => 0;
2426
2427
2428Similarly, C<-E<gt>autodefer(1)> re-enables autodeferment, and
2429C<-E<gt>autodefer()> recovers the current value of the autodefer setting.
2430
2431
2432=head1 CONCURRENT ACCESS TO FILES
2433
2434Caching and deferred writing are inappropriate if you want the same
2435file to be accessed simultaneously from more than one process.  Other
2436optimizations performed internally by this module are also
2437incompatible with concurrent access.  A future version of this module will
2438support a C<concurrent =E<gt> 1> option that enables safe concurrent access.
2439
2440Previous versions of this documentation suggested using C<memory
2441=E<gt> 0> for safe concurrent access.  This was mistaken.  Tie::File
2442will not support safe concurrent access before version 0.96.
2443
2444=head1 CAVEATS
2445
2446(That's Latin for 'warnings'.)
2447
2448=over 4
2449
2450=item *
2451
2452Reasonable effort was made to make this module efficient.  Nevertheless,
2453changing the size of a record in the middle of a large file will
2454always be fairly slow, because everything after the new record must be
2455moved.
2456
2457=item *
2458
2459The behavior of tied arrays is not precisely the same as for regular
2460arrays.  For example:
2461
2462	# This DOES print "How unusual!"
2463	undef $a[10];  print "How unusual!\n" if defined $a[10];
2464
2465C<undef>-ing a C<Tie::File> array element just blanks out the
2466corresponding record in the file.  When you read it back again, you'll
2467get the empty string, so the supposedly-C<undef>'ed value will be
2468defined.  Similarly, if you have C<autochomp> disabled, then
2469
2470	# This DOES print "How unusual!" if 'autochomp' is disabled
2471	undef $a[10];
2472        print "How unusual!\n" if $a[10];
2473
2474Because when C<autochomp> is disabled, C<$a[10]> will read back as
2475C<"\n"> (or whatever the record separator string is.)
2476
2477There are other minor differences, particularly regarding C<exists>
2478and C<delete>, but in general, the correspondence is extremely close.
2479
2480=item *
2481
2482I have supposed that since this module is concerned with file I/O,
2483almost all normal use of it will be heavily I/O bound.  This means
2484that the time to maintain complicated data structures inside the
2485module will be dominated by the time to actually perform the I/O.
2486When there was an opportunity to spend CPU time to avoid doing I/O, I
2487usually tried to take it.
2488
2489=item *
2490
2491You might be tempted to think that deferred writing is like
2492transactions, with C<flush> as C<commit> and C<discard> as
2493C<rollback>, but it isn't, so don't.
2494
2495=item *
2496
2497There is a large memory overhead for each record offset and for each
2498cache entry: about 310 bytes per cached data record, and about 21 bytes
2499per offset table entry.
2500
2501The per-record overhead will limit the maximum number of records you
2502can access per file. Note that I<accessing> the length of the array
2503via C<$x = scalar @tied_file> accesses B<all> records and stores their
2504offsets.  The same for C<foreach (@tied_file)>, even if you exit the
2505loop early.
2506
2507=back
2508
2509=head1 SUBCLASSING
2510
2511This version promises absolutely nothing about the internals, which
2512may change without notice.  A future version of the module will have a
2513well-defined and stable subclassing API.
2514
2515=head1 WHAT ABOUT C<DB_File>?
2516
2517People sometimes point out that L<DB_File> will do something similar,
2518and ask why C<Tie::File> module is necessary.
2519
2520There are a number of reasons that you might prefer C<Tie::File>.
2521A list is available at C<L<http://perl.plover.com/TieFile/why-not-DB_File>>.
2522
2523=head1 AUTHOR
2524
2525Mark Jason Dominus
2526
2527To contact the author, send email to: C<mjd-perl-tiefile+@plover.com>
2528
2529To receive an announcement whenever a new version of this module is
2530released, send a blank email message to
2531C<mjd-perl-tiefile-subscribe@plover.com>.
2532
2533The most recent version of this module, including documentation and
2534any news of importance, will be available at
2535
2536	http://perl.plover.com/TieFile/
2537
2538
2539=head1 LICENSE
2540
2541C<Tie::File> version 0.96 is copyright (C) 2003 Mark Jason Dominus.
2542
2543This library is free software; you may redistribute it and/or modify
2544it under the same terms as Perl itself.
2545
2546These terms are your choice of any of (1) the Perl Artistic Licence,
2547or (2) version 2 of the GNU General Public License as published by the
2548Free Software Foundation, or (3) any later version of the GNU General
2549Public License.
2550
2551This library is distributed in the hope that it will be useful,
2552but WITHOUT ANY WARRANTY; without even the implied warranty of
2553MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
2554GNU General Public License for more details.
2555
2556You should have received a copy of the GNU General Public License
2557along with this library program; it should be in the file C<COPYING>.
2558If not, write to the Free Software Foundation, Inc., 51 Franklin Street,
2559Fifth Floor, Boston, MA  02110-1301, USA
2560
2561For licensing inquiries, contact the author at:
2562
2563	Mark Jason Dominus
2564	255 S. Warnock St.
2565	Philadelphia, PA 19107
2566
2567=head1 WARRANTY
2568
2569C<Tie::File> version 0.98 comes with ABSOLUTELY NO WARRANTY.
2570For details, see the license.
2571
2572=head1 THANKS
2573
2574Gigantic thanks to Jarkko Hietaniemi, for agreeing to put this in the
2575core when I hadn't written it yet, and for generally being helpful,
2576supportive, and competent.  (Usually the rule is "choose any one.")
2577Also big thanks to Abhijit Menon-Sen for all of the same things.
2578
2579Special thanks to Craig Berry and Peter Prymmer (for VMS portability
2580help), Randy Kobes (for Win32 portability help), Clinton Pierce and
2581Autrijus Tang (for heroic eleventh-hour Win32 testing above and beyond
2582the call of duty), Michael G Schwern (for testing advice), and the
2583rest of the CPAN testers (for testing generally).
2584
2585Special thanks to Tels for suggesting several speed and memory
2586optimizations.
2587
2588Additional thanks to:
2589Edward Avis /
2590Mattia Barbon /
2591Tom Christiansen /
2592Gerrit Haase /
2593Gurusamy Sarathy /
2594Jarkko Hietaniemi (again) /
2595Nikola Knezevic /
2596John Kominetz /
2597Nick Ing-Simmons /
2598Tassilo von Parseval /
2599H. Dieter Pearcey /
2600Slaven Rezic /
2601Eric Roode /
2602Peter Scott /
2603Peter Somu /
2604Autrijus Tang (again) /
2605Tels (again) /
2606Juerd Waalboer /
2607Todd Rinaldo
2608
2609=head1 TODO
2610
2611More tests.  (Stuff I didn't think of yet.)
2612
2613Paragraph mode?
2614
2615Fixed-length mode.  Leave-blanks mode.
2616
2617Maybe an autolocking mode?
2618
2619For many common uses of the module, the read cache is a liability.
2620For example, a program that inserts a single record, or that scans the
2621file once, will have a cache hit rate of zero.  This suggests a major
2622optimization: The cache should be initially disabled.  Here's a hybrid
2623approach: Initially, the cache is disabled, but the cache code
2624maintains statistics about how high the hit rate would be *if* it were
2625enabled.  When it sees the hit rate get high enough, it enables
2626itself.  The STAT comments in this code are the beginning of an
2627implementation of this.
2628
2629Record locking with fcntl()?  Then the module might support an undo
2630log and get real transactions.  What a tour de force that would be.
2631
2632Keeping track of the highest cached record. This would allow reads-in-a-row
2633to skip the cache lookup faster (if reading from 1..N with empty cache at
2634start, the last cached value will be always N-1).
2635
2636More tests.
2637
2638=cut
2639
2640