1/* Definitions of target machine for GNU compiler, for the HP Spectrum.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002 Free Software Foundation, Inc.
4   Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5   and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6   Software Science at the University of Utah.
7
8This file is part of GNU CC.
9
10GNU CC is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2, or (at your option)
13any later version.
14
15GNU CC is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with GNU CC; see the file COPYING.  If not, write to
22the Free Software Foundation, 59 Temple Place - Suite 330,
23Boston, MA 02111-1307, USA.  */
24
25enum cmp_type				/* comparison type */
26{
27  CMP_SI,				/* compare integers */
28  CMP_SF,				/* compare single precision floats */
29  CMP_DF,				/* compare double precision floats */
30  CMP_MAX				/* max comparison type */
31};
32
33/* For long call handling.  */
34extern unsigned long total_code_bytes;
35
36/* Which processor to schedule for.  */
37
38enum processor_type
39{
40  PROCESSOR_700,
41  PROCESSOR_7100,
42  PROCESSOR_7100LC,
43  PROCESSOR_7200,
44  PROCESSOR_7300,
45  PROCESSOR_8000
46};
47
48/* For -mschedule= option.  */
49extern const char *pa_cpu_string;
50extern enum processor_type pa_cpu;
51
52#define pa_cpu_attr ((enum attr_cpu)pa_cpu)
53
54/* Which architecture to generate code for.  */
55
56enum architecture_type
57{
58  ARCHITECTURE_10,
59  ARCHITECTURE_11,
60  ARCHITECTURE_20
61};
62
63struct rtx_def;
64
65/* For -march= option.  */
66extern const char *pa_arch_string;
67extern enum architecture_type pa_arch;
68
69/* Print subsidiary information on the compiler version in use.  */
70
71#define TARGET_VERSION fputs (" (hppa)", stderr);
72
73/* Run-time compilation parameters selecting different hardware subsets.  */
74
75extern int target_flags;
76
77/* compile code for HP-PA 1.1 ("Snake").  */
78
79#define MASK_PA_11 1
80
81/* Disable all FP registers (they all become fixed).  This may be necessary
82   for compiling kernels which perform lazy context switching of FP regs.
83   Note if you use this option and try to perform floating point operations
84   the compiler will abort!  */
85
86#define MASK_DISABLE_FPREGS 2
87#define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
88
89/* Generate code which assumes that all space register are equivalent.
90   Triggers aggressive unscaled index addressing and faster
91   builtin_return_address.  */
92#define MASK_NO_SPACE_REGS 4
93#define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
94
95/* Allow unconditional jumps in the delay slots of call instructions.  */
96#define MASK_JUMP_IN_DELAY 8
97#define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
98
99/* Disable indexed addressing modes.  */
100#define MASK_DISABLE_INDEXING 32
101#define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
102
103/* Emit code which follows the new portable runtime calling conventions
104   HP wants everyone to use for ELF objects.  If at all possible you want
105   to avoid this since it's a performance loss for non-prototyped code.
106
107   Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
108   long-call stubs which is quite expensive.  */
109#define MASK_PORTABLE_RUNTIME 64
110#define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
111
112/* Emit directives only understood by GAS.  This allows parameter
113   relocations to work for static functions.  There is no way
114   to make them work the HP assembler at this time.  */
115#define MASK_GAS 128
116#define TARGET_GAS (target_flags & MASK_GAS)
117
118/* Emit code for processors which do not have an FPU.  */
119#define MASK_SOFT_FLOAT 256
120#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
121
122/* Use 3-insn load/store sequences for access to large data segments
123   in shared libraries on hpux10.  */
124#define MASK_LONG_LOAD_STORE 512
125#define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
126
127/* Use a faster sequence for indirect calls.  This assumes that calls
128   through function pointers will never cross a space boundary, and
129   that the executable is not dynamically linked.  Such assumptions
130   are generally safe for building kernels and statically linked
131   executables.  Code compiled with this option will fail miserably if
132   the executable is dynamically linked or uses nested functions!  */
133#define MASK_FAST_INDIRECT_CALLS 1024
134#define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
135
136/* Generate code with big switch statements to avoid out of range branches
137   occurring within the switch table.  */
138#define MASK_BIG_SWITCH 2048
139#define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
140
141/* Generate code for the HPPA 2.0 architecture.  TARGET_PA_11 should also be
142   true when this is true.  */
143#define MASK_PA_20 4096
144
145/* Generate cpp defines for server I/O.  */
146#define MASK_SIO 8192
147#define TARGET_SIO (target_flags & MASK_SIO)
148
149/* Assume GNU linker by default.  */
150#define MASK_GNU_LD 16384
151#ifndef TARGET_GNU_LD
152#define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
153#endif
154
155/* Force generation of long calls.  */
156#define MASK_LONG_CALLS 32768
157#ifndef TARGET_LONG_CALLS
158#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
159#endif
160
161#ifndef TARGET_PA_10
162#define TARGET_PA_10 (target_flags & (MASK_PA_11 | MASK_PA_20) == 0)
163#endif
164
165#ifndef TARGET_PA_11
166#define TARGET_PA_11 (target_flags & MASK_PA_11)
167#endif
168
169#ifndef TARGET_PA_20
170#define TARGET_PA_20 (target_flags & MASK_PA_20)
171#endif
172
173/* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
174#ifndef TARGET_64BIT
175#define TARGET_64BIT 0
176#endif
177
178/* Generate code for ELF32 ABI.  */
179#ifndef TARGET_ELF32
180#define TARGET_ELF32 0
181#endif
182
183/* Generate code for SOM 32bit ABI.  */
184#ifndef TARGET_SOM
185#define TARGET_SOM 0
186#endif
187
188/* The following three defines are potential target switches.  The current
189   defines are optimal given the current capabilities of GAS and GNU ld.  */
190
191/* Define to a C expression evaluating to true to use long absolute calls.
192   Currently, only the HP assembler and SOM linker support long absolute
193   calls.  They are used only in non-pic code.  */
194#define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
195
196/* Define to a C expression evaluating to true to use long pic symbol
197   difference calls.  This is a call variant similar to the long pic
198   pc-relative call.  Long pic symbol difference calls are only used with
199   the HP SOM linker.  Currently, only the HP assembler supports these
200   calls.  GAS doesn't allow an arbritrary difference of two symbols.  */
201#define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
202
203/* Define to a C expression evaluating to true to use long pic
204   pc-relative calls.  Long pic pc-relative calls are only used with
205   GAS.  Currently, they are usable for calls within a module but
206   not for external calls.  */
207#define TARGET_LONG_PIC_PCREL_CALL 0
208
209/* Define to a C expression evaluating to true to use SOM secondary
210   definition symbols for weak support.  Linker support for secondary
211   definition symbols is buggy prior to HP-UX 11.X.  */
212#define TARGET_SOM_SDEF 0
213
214/* Define to a C expression evaluating to true to save the entry value
215   of SP in the current frame marker.  This is normally unnecessary.
216   However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
217   HP compilers don't use this flag but it is supported by the assembler.
218   We set this flag to indicate that register %r3 has been saved at the
219   start of the frame.  Thus, when the HP unwind library is used, we
220   need to generate additional code to save SP into the frame marker.  */
221#define TARGET_HPUX_UNWIND_LIBRARY 0
222
223/* Macro to define tables used to set the flags.  This is a
224   list in braces of target switches with each switch being
225   { "NAME", VALUE, "HELP_STRING" }.  VALUE is the bits to set,
226   or minus the bits to clear.  An empty string NAME is used to
227   identify the default VALUE.  Do not mark empty strings for
228   translation.  */
229
230#define TARGET_SWITCHES \
231  {{ "snake",			 MASK_PA_11,				\
232     N_("Generate PA1.1 code") },					\
233   { "nosnake",			-(MASK_PA_11 | MASK_PA_20),		\
234     N_("Generate PA1.0 code") },					\
235   { "pa-risc-1-0",		-(MASK_PA_11 | MASK_PA_20),		\
236     N_("Generate PA1.0 code") },					\
237   { "pa-risc-1-1",		 MASK_PA_11,				\
238     N_("Generate PA1.1 code") },					\
239   { "pa-risc-2-0",		 MASK_PA_20,				\
240     N_("Generate PA2.0 code (requires binutils 2.10 or later)") },	\
241   { "disable-fpregs",		 MASK_DISABLE_FPREGS,			\
242     N_("Disable FP regs") },						\
243   { "no-disable-fpregs",	-MASK_DISABLE_FPREGS,			\
244     N_("Do not disable FP regs") },					\
245   { "no-space-regs",		 MASK_NO_SPACE_REGS,			\
246     N_("Disable space regs") },					\
247   { "space-regs",		-MASK_NO_SPACE_REGS,			\
248     N_("Do not disable space regs") },					\
249   { "jump-in-delay",		 MASK_JUMP_IN_DELAY,			\
250     N_("Put jumps in call delay slots") },				\
251   { "no-jump-in-delay",	-MASK_JUMP_IN_DELAY,			\
252     N_("Do not put jumps in call delay slots") },			\
253   { "disable-indexing",	 MASK_DISABLE_INDEXING,			\
254     N_("Disable indexed addressing") },				\
255   { "no-disable-indexing",	-MASK_DISABLE_INDEXING,			\
256     N_("Do not disable indexed addressing") },				\
257   { "portable-runtime",	 MASK_PORTABLE_RUNTIME,			\
258     N_("Use portable calling conventions") },				\
259   { "no-portable-runtime",	-MASK_PORTABLE_RUNTIME,			\
260     N_("Do not use portable calling conventions") },			\
261   { "gas",			 MASK_GAS,				\
262     N_("Assume code will be assembled by GAS") },			\
263   { "no-gas",			-MASK_GAS,				\
264     N_("Do not assume code will be assembled by GAS") },		\
265   { "soft-float",		 MASK_SOFT_FLOAT,			\
266     N_("Use software floating point") },				\
267   { "no-soft-float",		-MASK_SOFT_FLOAT,			\
268     N_("Do not use software floating point") },			\
269   { "long-load-store",		 MASK_LONG_LOAD_STORE,			\
270     N_("Emit long load/store sequences") },				\
271   { "no-long-load-store",	-MASK_LONG_LOAD_STORE,			\
272     N_("Do not emit long load/store sequences") },			\
273   { "fast-indirect-calls",	 MASK_FAST_INDIRECT_CALLS,		\
274     N_("Generate fast indirect calls") },				\
275   { "no-fast-indirect-calls",	-MASK_FAST_INDIRECT_CALLS,		\
276     N_("Do not generate fast indirect calls") },			\
277   { "big-switch",		 MASK_BIG_SWITCH,			\
278     N_("Generate code for huge switch statements") },			\
279   { "no-big-switch",		-MASK_BIG_SWITCH,			\
280     N_("Do not generate code for huge switch statements") },		\
281   { "long-calls",		 MASK_LONG_CALLS,			\
282     N_("Always generate long calls") },				\
283   { "no-long-calls",		-MASK_LONG_CALLS,			\
284     N_("Generate long calls only when needed") },			\
285   { "linker-opt",		 0,					\
286     N_("Enable linker optimizations") },				\
287   SUBTARGET_SWITCHES							\
288   { "",			 TARGET_DEFAULT | TARGET_CPU_DEFAULT,	\
289     NULL }}
290
291#ifndef TARGET_DEFAULT
292#define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
293#endif
294
295#ifndef TARGET_CPU_DEFAULT
296#define TARGET_CPU_DEFAULT 0
297#endif
298
299#ifndef SUBTARGET_SWITCHES
300#define SUBTARGET_SWITCHES
301#endif
302
303#ifndef TARGET_SCHED_DEFAULT
304#define TARGET_SCHED_DEFAULT "8000"
305#endif
306
307#define TARGET_OPTIONS							\
308{									\
309  { "schedule=",		&pa_cpu_string,				\
310    N_("Specify CPU for scheduling purposes") },			\
311  { "arch=",			&pa_arch_string,			\
312    N_("Specify architecture for code generation.  Values are 1.0, 1.1, and 2.0.  2.0 requires gas snapshot 19990413 or later.") }\
313}
314
315/* Specify the dialect of assembler to use.  New mnemonics is dialect one
316   and the old mnemonics are dialect zero.  */
317#define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
318
319#define OVERRIDE_OPTIONS override_options ()
320
321/* stabs-in-som is nearly identical to stabs-in-elf.  To avoid useless
322   code duplication we simply include this file and override as needed.  */
323#include "dbxelf.h"
324
325/* We do not have to be compatible with dbx, so we enable gdb extensions
326   by default.  */
327#define DEFAULT_GDB_EXTENSIONS 1
328
329/* This used to be zero (no max length), but big enums and such can
330   cause huge strings which killed gas.
331
332   We also have to avoid lossage in dbxout.c -- it does not compute the
333   string size accurately, so we are real conservative here.  */
334#undef DBX_CONTIN_LENGTH
335#define DBX_CONTIN_LENGTH 3000
336
337/* Only labels should ever begin in column zero.  */
338#define ASM_STABS_OP "\t.stabs\t"
339#define ASM_STABN_OP "\t.stabn\t"
340
341/* GDB always assumes the current function's frame begins at the value
342   of the stack pointer upon entry to the current function.  Accessing
343   local variables and parameters passed on the stack is done using the
344   base of the frame + an offset provided by GCC.
345
346   For functions which have frame pointers this method works fine;
347   the (frame pointer) == (stack pointer at function entry) and GCC provides
348   an offset relative to the frame pointer.
349
350   This loses for functions without a frame pointer; GCC provides an offset
351   which is relative to the stack pointer after adjusting for the function's
352   frame size.  GDB would prefer the offset to be relative to the value of
353   the stack pointer at the function's entry.  Yuk!  */
354#define DEBUGGER_AUTO_OFFSET(X) \
355  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
356    + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
357
358#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
359  ((GET_CODE (X) == PLUS ? OFFSET : 0) \
360    + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
361
362#define TARGET_CPU_CPP_BUILTINS()				\
363do {								\
364     builtin_assert("cpu=hppa");				\
365     builtin_assert("machine=hppa");				\
366     builtin_define("__hppa");					\
367     builtin_define("__hppa__");				\
368     if (TARGET_64BIT)						\
369       {							\
370	 builtin_define("_LP64");				\
371	 builtin_define("__LP64__");				\
372       }							\
373     if (TARGET_PA_20)						\
374       builtin_define("_PA_RISC2_0");				\
375     else if (TARGET_PA_11)					\
376       builtin_define("_PA_RISC1_1");				\
377     else							\
378       builtin_define("_PA_RISC1_0");				\
379} while (0)
380
381/* An old set of OS defines for various BSD-like systems.  */
382#define TARGET_OS_CPP_BUILTINS()				\
383  do								\
384    {								\
385	builtin_define_std ("REVARGV");				\
386	builtin_define_std ("hp800");				\
387	builtin_define_std ("hp9000");				\
388	builtin_define_std ("hp9k8");				\
389	if (c_language != clk_cplusplus				\
390	    && !flag_iso)					\
391	  builtin_define ("hppa");				\
392	builtin_define_std ("spectrum");			\
393	builtin_define_std ("unix");				\
394	builtin_assert ("system=bsd");				\
395	builtin_assert ("system=unix");				\
396    }								\
397  while (0)
398
399#define CC1_SPEC "%{pg:} %{p:}"
400
401#define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
402
403/* We don't want -lg.  */
404#ifndef LIB_SPEC
405#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
406#endif
407
408/* This macro defines command-line switches that modify the default
409   target name.
410
411   The definition is be an initializer for an array of structures.  Each
412   array element has have three elements: the switch name, one of the
413   enumeration codes ADD or DELETE to indicate whether the string should be
414   inserted or deleted, and the string to be inserted or deleted.  */
415#define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
416
417/* Make gcc agree with <machine/ansi.h> */
418
419#define SIZE_TYPE "unsigned int"
420#define PTRDIFF_TYPE "int"
421#define WCHAR_TYPE "unsigned int"
422#define WCHAR_TYPE_SIZE 32
423
424/* Show we can debug even without a frame pointer.  */
425#define CAN_DEBUG_WITHOUT_FP
426
427/* Machine dependent reorg pass.  */
428#define MACHINE_DEPENDENT_REORG(X) pa_reorg(X)
429
430
431/* target machine storage layout */
432
433/* Define this macro if it is advisable to hold scalars in registers
434   in a wider mode than that declared by the program.  In such cases,
435   the value is constrained to be within the bounds of the declared
436   type, but kept valid in the wider mode.  The signedness of the
437   extension may differ from that of the type.  */
438
439#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
440  if (GET_MODE_CLASS (MODE) == MODE_INT	\
441      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
442    (MODE) = word_mode;
443
444/* Define this if most significant bit is lowest numbered
445   in instructions that operate on numbered bit-fields.  */
446#define BITS_BIG_ENDIAN 1
447
448/* Define this if most significant byte of a word is the lowest numbered.  */
449/* That is true on the HP-PA.  */
450#define BYTES_BIG_ENDIAN 1
451
452/* Define this if most significant word of a multiword number is lowest
453   numbered.  */
454#define WORDS_BIG_ENDIAN 1
455
456#define MAX_BITS_PER_WORD 64
457#define MAX_LONG_TYPE_SIZE 32
458
459/* Width of a word, in units (bytes).  */
460#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
461#define MIN_UNITS_PER_WORD 4
462
463/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
464#define PARM_BOUNDARY BITS_PER_WORD
465
466/* Largest alignment required for any stack parameter, in bits.
467   Don't define this if it is equal to PARM_BOUNDARY */
468#define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
469
470/* Boundary (in *bits*) on which stack pointer is always aligned;
471   certain optimizations in combine depend on this.
472
473   The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
474   the stack on the 32 and 64-bit ports, respectively.  However, we
475   are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
476   in main.  Thus, we treat the former as the preferred alignment.  */
477#define STACK_BOUNDARY BIGGEST_ALIGNMENT
478#define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
479
480/* Allocation boundary (in *bits*) for the code of a function.  */
481#define FUNCTION_BOUNDARY BITS_PER_WORD
482
483/* Alignment of field after `int : 0' in a structure.  */
484#define EMPTY_FIELD_BOUNDARY 32
485
486/* Every structure's size must be a multiple of this.  */
487#define STRUCTURE_SIZE_BOUNDARY 8
488
489/* A bit-field declared as `int' forces `int' alignment for the struct.  */
490#define PCC_BITFIELD_TYPE_MATTERS 1
491
492/* No data type wants to be aligned rounder than this.  */
493#define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
494
495/* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
496#define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
497  ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
498
499/* Make arrays of chars word-aligned for the same reasons.  */
500#define DATA_ALIGNMENT(TYPE, ALIGN)		\
501  (TREE_CODE (TYPE) == ARRAY_TYPE		\
502   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
503   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
504
505/* Set this nonzero if move instructions will actually fail to work
506   when given unaligned data.  */
507#define STRICT_ALIGNMENT 1
508
509/* Generate calls to memcpy, memcmp and memset.  */
510#define TARGET_MEM_FUNCTIONS
511
512/* Value is 1 if it is a good idea to tie two pseudo registers
513   when one has mode MODE1 and one has mode MODE2.
514   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
515   for any hard reg, then this must be 0 for correct output.  */
516#define MODES_TIEABLE_P(MODE1, MODE2) \
517  (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
518
519/* Specify the registers used for certain standard purposes.
520   The values of these macros are register numbers.  */
521
522/* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
523/* #define PC_REGNUM  */
524
525/* Register to use for pushing function arguments.  */
526#define STACK_POINTER_REGNUM 30
527
528/* Base register for access to local variables of the function.  */
529#define FRAME_POINTER_REGNUM 3
530
531/* Value should be nonzero if functions must have frame pointers.  */
532#define FRAME_POINTER_REQUIRED \
533  (current_function_calls_alloca)
534
535/* C statement to store the difference between the frame pointer
536   and the stack pointer values immediately after the function prologue.
537
538   Note, we always pretend that this is a leaf function because if
539   it's not, there's no point in trying to eliminate the
540   frame pointer.  If it is a leaf function, we guessed right!  */
541#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
542  do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
543
544/* Base register for access to arguments of the function.  */
545#define ARG_POINTER_REGNUM 3
546
547/* Register in which static-chain is passed to a function.  */
548#define STATIC_CHAIN_REGNUM 29
549
550/* Register which holds offset table for position-independent
551   data references.  */
552
553#define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? 27 : 19)
554#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
555
556/* Function to return the rtx used to save the pic offset table register
557   across function calls.  */
558extern struct rtx_def *hppa_pic_save_rtx PARAMS ((void));
559
560#define DEFAULT_PCC_STRUCT_RETURN 0
561
562/* SOM ABI says that objects larger than 64 bits are returned in memory.
563   PA64 ABI says that objects larger than 128 bits are returned in memory.
564   Note, int_size_in_bytes can return -1 if the size of the object is
565   variable or larger than the maximum value that can be expressed as
566   a HOST_WIDE_INT.   It can also return zero for an empty type.  The
567   simplest way to handle variable and empty types is to pass them in
568   memory.  This avoids problems in defining the boundaries of argument
569   slots, allocating registers, etc.  */
570#define RETURN_IN_MEMORY(TYPE)	\
571  (int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8)	\
572   || int_size_in_bytes (TYPE) <= 0)
573
574/* Register in which address to store a structure value
575   is passed to a function.  */
576#define STRUCT_VALUE_REGNUM 28
577
578/* Describe how we implement __builtin_eh_return.  */
579#define EH_RETURN_DATA_REGNO(N)	\
580  ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
581#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
582#define EH_RETURN_HANDLER_RTX \
583  gen_rtx_MEM (word_mode,						\
584	       gen_rtx_PLUS (word_mode, frame_pointer_rtx,		\
585			     TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
586
587
588/* Offset from the argument pointer register value to the top of
589   stack.  This is different from FIRST_PARM_OFFSET because of the
590   frame marker.  */
591#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
592
593/* The letters I, J, K, L and M in a register constraint string
594   can be used to stand for particular ranges of immediate operands.
595   This macro defines what the ranges are.
596   C is the letter, and VALUE is a constant value.
597   Return 1 if VALUE is in the range specified by C.
598
599   `I' is used for the 11 bit constants.
600   `J' is used for the 14 bit constants.
601   `K' is used for values that can be moved with a zdepi insn.
602   `L' is used for the 5 bit constants.
603   `M' is used for 0.
604   `N' is used for values with the least significant 11 bits equal to zero
605	                  and when sign extended from 32 to 64 bits the
606			  value does not change.
607   `O' is used for numbers n such that n+1 is a power of 2.
608   */
609
610#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
611  ((C) == 'I' ? VAL_11_BITS_P (VALUE)					\
612   : (C) == 'J' ? VAL_14_BITS_P (VALUE)					\
613   : (C) == 'K' ? zdepi_cint_p (VALUE)					\
614   : (C) == 'L' ? VAL_5_BITS_P (VALUE)					\
615   : (C) == 'M' ? (VALUE) == 0						\
616   : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
617		   || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff))	\
618		       == (HOST_WIDE_INT) -1 << 31))			\
619   : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0)			\
620   : (C) == 'P' ? and_mask_p (VALUE)					\
621   : 0)
622
623/* Similar, but for floating or large integer constants, and defining letters
624   G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
625
626   For PA, `G' is the floating-point constant zero.  `H' is undefined.  */
627
628#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  			\
629  ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT	\
630		 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))		\
631   : 0)
632
633/* The class value for index registers, and the one for base regs.  */
634#define INDEX_REG_CLASS GENERAL_REGS
635#define BASE_REG_CLASS GENERAL_REGS
636
637#define FP_REG_CLASS_P(CLASS) \
638  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
639
640/* True if register is floating-point.  */
641#define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
642
643/* Given an rtx X being reloaded into a reg required to be
644   in class CLASS, return the class of reg to actually use.
645   In general this is just CLASS; but on some machines
646   in some cases it is preferable to use a more restrictive class.  */
647#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
648
649/* Return the register class of a scratch register needed to copy IN into
650   or out of a register in CLASS in MODE.  If it can be done directly
651   NO_REGS is returned.
652
653  Avoid doing any work for the common case calls.  */
654
655#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
656  ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG		\
657    && REGNO (IN) < FIRST_PSEUDO_REGISTER)			\
658   ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
659
660#define MAYBE_FP_REG_CLASS_P(CLASS) \
661  reg_classes_intersect_p ((CLASS), FP_REGS)
662
663/* On the PA it is not possible to directly move data between
664   GENERAL_REGS and FP_REGS.  */
665#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)		\
666  (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)	\
667   || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1))
668
669/* Return the stack location to use for secondary memory needed reloads.  */
670#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
671  gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
672
673
674/* Stack layout; function entry, exit and calling.  */
675
676/* Define this if pushing a word on the stack
677   makes the stack pointer a smaller address.  */
678/* #define STACK_GROWS_DOWNWARD */
679
680/* Believe it or not.  */
681#define ARGS_GROW_DOWNWARD
682
683/* Define this if the nominal address of the stack frame
684   is at the high-address end of the local variables;
685   that is, each additional local variable allocated
686   goes at a more negative offset in the frame.  */
687/* #define FRAME_GROWS_DOWNWARD */
688
689/* Offset within stack frame to start allocating local variables at.
690   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
691   first local allocated.  Otherwise, it is the offset to the BEGINNING
692   of the first local allocated.  The start of the locals must lie on
693   a STACK_BOUNDARY or else the frame size of leaf functions will not
694   be zero.  */
695#define STARTING_FRAME_OFFSET (TARGET_64BIT ? 16 : 8)
696
697/* If we generate an insn to push BYTES bytes,
698   this says how many the stack pointer really advances by.
699   On the HP-PA, don't define this because there are no push insns.  */
700/*  #define PUSH_ROUNDING(BYTES) */
701
702/* Offset of first parameter from the argument pointer register value.
703   This value will be negated because the arguments grow down.
704   Also note that on STACK_GROWS_UPWARD machines (such as this one)
705   this is the distance from the frame pointer to the end of the first
706   argument, not it's beginning.  To get the real offset of the first
707   argument, the size of the argument must be added.  */
708
709#define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
710
711/* When a parameter is passed in a register, stack space is still
712   allocated for it.  */
713#define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
714
715/* Define this if the above stack space is to be considered part of the
716   space allocated by the caller.  */
717#define OUTGOING_REG_PARM_STACK_SPACE
718
719/* Keep the stack pointer constant throughout the function.
720   This is both an optimization and a necessity: longjmp
721   doesn't behave itself when the stack pointer moves within
722   the function!  */
723#define ACCUMULATE_OUTGOING_ARGS 1
724
725/* The weird HPPA calling conventions require a minimum of 48 bytes on
726   the stack: 16 bytes for register saves, and 32 bytes for magic.
727   This is the difference between the logical top of stack and the
728   actual sp.
729
730   On the 64-bit port, the HP C compiler allocates a 48-byte frame
731   marker, although the runtime documentation only describes a 16
732   byte marker.  For compatibility, we allocate 48 bytes.  */
733#define STACK_POINTER_OFFSET \
734  (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
735
736#define STACK_DYNAMIC_OFFSET(FNDECL)	\
737  (TARGET_64BIT				\
738   ? (STACK_POINTER_OFFSET)		\
739   : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
740
741/* Value is 1 if returning from a function call automatically
742   pops the arguments described by the number-of-args field in the call.
743   FUNDECL is the declaration node of the function (as a tree),
744   FUNTYPE is the data type of the function (as a tree),
745   or for a library call it is an identifier node for the subroutine name.  */
746
747#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
748
749/* Define how to find the value returned by a function.
750   VALTYPE is the data type of the value (as a tree).
751   If the precise function being called is known, FUNC is its FUNCTION_DECL;
752   otherwise, FUNC is 0.  */
753
754#define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
755
756/* Define how to find the value returned by a library function
757   assuming the value has mode MODE.  */
758
759#define LIBCALL_VALUE(MODE)	\
760  gen_rtx_REG (MODE,							\
761	       (! TARGET_SOFT_FLOAT					\
762		&& ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
763
764/* 1 if N is a possible register number for a function value
765   as seen by the caller.  */
766
767#define FUNCTION_VALUE_REGNO_P(N) \
768  ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
769
770
771/* Define a data type for recording info about an argument list
772   during the scan of that argument list.  This data type should
773   hold all necessary information about the function itself
774   and about the args processed so far, enough to enable macros
775   such as FUNCTION_ARG to determine where the next arg should go.
776
777   On the HP-PA, the WORDS field holds the number of words
778   of arguments scanned so far (including the invisible argument,
779   if any, which holds the structure-value-address).  Thus, 4 or
780   more means all following args should go on the stack.
781
782   The INCOMING field tracks whether this is an "incoming" or
783   "outgoing" argument.
784
785   The INDIRECT field indicates whether this is is an indirect
786   call or not.
787
788   The NARGS_PROTOTYPE field indicates that an argument does not
789   have a prototype when it less than or equal to 0.  */
790
791struct hppa_args {int words, nargs_prototype, incoming, indirect; };
792
793#define CUMULATIVE_ARGS struct hppa_args
794
795/* Initialize a variable CUM of type CUMULATIVE_ARGS
796   for a call to a function whose data type is FNTYPE.
797   For a library call, FNTYPE is 0.  */
798
799#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
800  (CUM).words = 0, 							\
801  (CUM).incoming = 0,							\
802  (CUM).indirect = INDIRECT,						\
803  (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE)		\
804			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
805			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
806				 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
807			   : 0)
808
809
810
811/* Similar, but when scanning the definition of a procedure.  We always
812   set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
813
814#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
815  (CUM).words = 0,				\
816  (CUM).incoming = 1,				\
817  (CUM).indirect = 0,				\
818  (CUM).nargs_prototype = 1000
819
820/* Figure out the size in words of the function argument.  The size
821   returned by this macro should always be greater than zero because
822   we pass variable and zero sized objects by reference.  */
823
824#define FUNCTION_ARG_SIZE(MODE, TYPE)	\
825  ((((MODE) != BLKmode \
826     ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
827     : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
828
829/* Update the data in CUM to advance over an argument
830   of mode MODE and data type TYPE.
831   (TYPE is null for libcalls where that information may not be available.)  */
832
833#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
834{ (CUM).nargs_prototype--;						\
835  (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE)	 			\
836    + (((CUM).words & 01) && (TYPE) != 0				\
837	&& FUNCTION_ARG_SIZE(MODE, TYPE) > 1);				\
838}
839
840/* Determine where to put an argument to a function.
841   Value is zero to push the argument on the stack,
842   or a hard register in which to store the argument.
843
844   MODE is the argument's machine mode.
845   TYPE is the data type of the argument (as a tree).
846    This is null for libcalls where that information may
847    not be available.
848   CUM is a variable of type CUMULATIVE_ARGS which gives info about
849    the preceding args and about the function being called.
850   NAMED is nonzero if this argument is a named parameter
851    (otherwise it is an extra parameter matching an ellipsis).
852
853   On the HP-PA the first four words of args are normally in registers
854   and the rest are pushed.  But any arg that won't entirely fit in regs
855   is pushed.
856
857   Arguments passed in registers are either 1 or 2 words long.
858
859   The caller must make a distinction between calls to explicitly named
860   functions and calls through pointers to functions -- the conventions
861   are different!  Calls through pointers to functions only use general
862   registers for the first four argument words.
863
864   Of course all this is different for the portable runtime model
865   HP wants everyone to use for ELF.  Ugh.  Here's a quick description
866   of how it's supposed to work.
867
868   1) callee side remains unchanged.  It expects integer args to be
869   in the integer registers, float args in the float registers and
870   unnamed args in integer registers.
871
872   2) caller side now depends on if the function being called has
873   a prototype in scope (rather than if it's being called indirectly).
874
875      2a) If there is a prototype in scope, then arguments are passed
876      according to their type (ints in integer registers, floats in float
877      registers, unnamed args in integer registers.
878
879      2b) If there is no prototype in scope, then floating point arguments
880      are passed in both integer and float registers.  egad.
881
882  FYI: The portable parameter passing conventions are almost exactly like
883  the standard parameter passing conventions on the RS6000.  That's why
884  you'll see lots of similar code in rs6000.h.  */
885
886#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
887
888/* Do not expect to understand this without reading it several times.  I'm
889   tempted to try and simply it, but I worry about breaking something.  */
890
891#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
892  function_arg (&CUM, MODE, TYPE, NAMED)
893
894/* Nonzero if we do not know how to pass TYPE solely in registers.  */
895#define MUST_PASS_IN_STACK(MODE,TYPE) \
896  ((TYPE) != 0							\
897   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
898       || TREE_ADDRESSABLE (TYPE)))
899
900/* For an arg passed partly in registers and partly in memory,
901   this is the number of registers used.
902   For args passed entirely in registers or entirely in memory, zero.  */
903
904/* For PA32 there are never split arguments. PA64, on the other hand, can
905   pass arguments partially in registers and partially in memory.  */
906#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
907  (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
908
909/* If defined, a C expression that gives the alignment boundary, in
910   bits, of an argument with the specified mode and type.  If it is
911   not defined,  `PARM_BOUNDARY' is used for all arguments.  */
912
913/* Arguments larger than one word are double word aligned.  */
914
915#define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
916  (((TYPE)								\
917    ? (integer_zerop (TYPE_SIZE (TYPE))					\
918       || !TREE_CONSTANT (TYPE_SIZE (TYPE))				\
919       || int_size_in_bytes (TYPE) <= UNITS_PER_WORD)			\
920    : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD)				\
921   ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
922
923/* In the 32-bit runtime, arguments larger than eight bytes are passed
924   by invisible reference.  As a GCC extension, we also pass anything
925   with a zero or variable size by reference.
926
927   The 64-bit runtime does not describe passing any types by invisible
928   reference.  The internals of GCC can't currently handle passing
929   empty structures, and zero or variable length arrays when they are
930   not passed entirely on the stack or by reference.  Thus, as a GCC
931   extension, we pass these types by reference.  The HP compiler doesn't
932   support these types, so hopefully there shouldn't be any compatibility
933   issues.  This may have to be revisited when HP releases a C99 compiler
934   or updates the ABI.  */
935#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED)		\
936  (TARGET_64BIT								\
937   ? ((TYPE) && int_size_in_bytes (TYPE) <= 0)				\
938   : (((TYPE) && (int_size_in_bytes (TYPE) > 8				\
939		  || int_size_in_bytes (TYPE) <= 0))			\
940      || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
941
942#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) 		\
943  FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)
944
945
946extern GTY(()) rtx hppa_compare_op0;
947extern GTY(()) rtx hppa_compare_op1;
948extern enum cmp_type hppa_branch_type;
949
950/* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
951   as assembly via FUNCTION_PROFILER.  Just output a local label.
952   We can't use the function label because the GAS SOM target can't
953   handle the difference of a global symbol and a local symbol.  */
954
955#ifndef FUNC_BEGIN_PROLOG_LABEL
956#define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
957#endif
958
959#define FUNCTION_PROFILER(FILE, LABEL) \
960  ASM_OUTPUT_INTERNAL_LABEL (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
961
962#define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
963void hppa_profile_hook PARAMS ((int label_no));
964
965/* The profile counter if emitted must come before the prologue.  */
966#define PROFILE_BEFORE_PROLOGUE 1
967
968/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
969   the stack pointer does not matter.  The value is tested only in
970   functions that have frame pointers.
971   No definition is equivalent to always zero.  */
972
973extern int may_call_alloca;
974
975#define EXIT_IGNORE_STACK	\
976 (get_frame_size () != 0	\
977  || current_function_calls_alloca || current_function_outgoing_args_size)
978
979/* Output assembler code for a block containing the constant parts
980   of a trampoline, leaving space for the variable parts.\
981
982   The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
983   and then branches to the specified routine.
984
985   This code template is copied from text segment to stack location
986   and then patched with INITIALIZE_TRAMPOLINE to contain
987   valid values, and then entered as a subroutine.
988
989   It is best to keep this as small as possible to avoid having to
990   flush multiple lines in the cache.  */
991
992#define TRAMPOLINE_TEMPLATE(FILE) 					\
993  {									\
994    if (!TARGET_64BIT)							\
995      {									\
996	fputs ("\tldw	36(%r22),%r21\n", FILE);			\
997	fputs ("\tbb,>=,n	%r21,30,.+16\n", FILE);			\
998	if (ASSEMBLER_DIALECT == 0)					\
999	  fputs ("\tdepi	0,31,2,%r21\n", FILE);			\
1000	else								\
1001	  fputs ("\tdepwi	0,31,2,%r21\n", FILE);			\
1002	fputs ("\tldw	4(%r21),%r19\n", FILE);				\
1003	fputs ("\tldw	0(%r21),%r21\n", FILE);				\
1004	if (TARGET_PA_20)						\
1005	  {								\
1006	    fputs ("\tbve	(%r21)\n", FILE);			\
1007	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
1008	    fputs ("\t.word	0\n", FILE);				\
1009	    fputs ("\t.word	0\n", FILE);				\
1010	  }								\
1011	else								\
1012	  {								\
1013	    fputs ("\tldsid	(%r21),%r1\n", FILE);			\
1014	    fputs ("\tmtsp	%r1,%sr0\n", FILE);			\
1015	    fputs ("\tbe	0(%sr0,%r21)\n", FILE);			\
1016	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
1017	  }								\
1018	fputs ("\t.word	0\n", FILE);					\
1019	fputs ("\t.word	0\n", FILE);					\
1020	fputs ("\t.word	0\n", FILE);					\
1021	fputs ("\t.word	0\n", FILE);					\
1022      }									\
1023    else								\
1024      {									\
1025	fputs ("\t.dword 0\n", FILE);					\
1026	fputs ("\t.dword 0\n", FILE);					\
1027	fputs ("\t.dword 0\n", FILE);					\
1028	fputs ("\t.dword 0\n", FILE);					\
1029	fputs ("\tmfia	%r31\n", FILE);					\
1030	fputs ("\tldd	24(%r31),%r1\n", FILE);				\
1031	fputs ("\tldd	24(%r1),%r27\n", FILE);				\
1032	fputs ("\tldd	16(%r1),%r1\n", FILE);				\
1033	fputs ("\tbve	(%r1)\n", FILE);				\
1034	fputs ("\tldd	32(%r31),%r31\n", FILE);			\
1035	fputs ("\t.dword 0  ; fptr\n", FILE);				\
1036	fputs ("\t.dword 0  ; static link\n", FILE);			\
1037      }									\
1038  }
1039
1040/* Length in units of the trampoline for entering a nested function.  */
1041
1042#define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
1043
1044/* Length in units of the trampoline instruction code.  */
1045
1046#define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
1047
1048/* Minimum length of a cache line.  A length of 16 will work on all
1049   PA-RISC processors.  All PA 1.1 processors have a cache line of
1050   32 bytes.  Most but not all PA 2.0 processors have a cache line
1051   of 64 bytes.  As cache flushes are expensive and we don't support
1052   PA 1.0, we use a minimum length of 32.  */
1053
1054#define MIN_CACHELINE_SIZE 32
1055
1056/* Emit RTL insns to initialize the variable parts of a trampoline.
1057   FNADDR is an RTX for the address of the function's pure code.
1058   CXT is an RTX for the static chain value for the function.
1059
1060   Move the function address to the trampoline template at offset 36.
1061   Move the static chain value to trampoline template at offset 40.
1062   Move the trampoline address to trampoline template at offset 44.
1063   Move r19 to trampoline template at offset 48.  The latter two
1064   words create a plabel for the indirect call to the trampoline.
1065
1066   A similar sequence is used for the 64-bit port but the plabel is
1067   at the beginning of the trampoline.
1068
1069   Finally, the cache entries for the trampoline code are flushed.
1070   This is necessary to ensure that the trampoline instruction sequence
1071   is written to memory prior to any attempts at prefetching the code
1072   sequence.  */
1073
1074#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) 			\
1075{									\
1076  rtx start_addr = gen_reg_rtx (Pmode);					\
1077  rtx end_addr = gen_reg_rtx (Pmode);					\
1078  rtx line_length = gen_reg_rtx (Pmode);				\
1079  rtx tmp;								\
1080									\
1081  if (!TARGET_64BIT)							\
1082    {									\
1083      tmp = memory_address (Pmode, plus_constant ((TRAMP), 36));	\
1084      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
1085      tmp = memory_address (Pmode, plus_constant ((TRAMP), 40));	\
1086      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
1087									\
1088      /* Create a fat pointer for the trampoline.  */			\
1089      tmp = memory_address (Pmode, plus_constant ((TRAMP), 44));	\
1090      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP));		\
1091      tmp = memory_address (Pmode, plus_constant ((TRAMP), 48));	\
1092      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1093		      gen_rtx_REG (Pmode, 19));				\
1094									\
1095      /* fdc and fic only use registers for the address to flush,	\
1096	 they do not accept integer displacements.  We align the	\
1097	 start and end addresses to the beginning of their respective	\
1098	 cache lines to minimize the number of lines flushed.  */	\
1099      tmp = force_reg (Pmode, (TRAMP));					\
1100      emit_insn (gen_andsi3 (start_addr, tmp,				\
1101			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1102      tmp = force_reg (Pmode,						\
1103		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1104      emit_insn (gen_andsi3 (end_addr, tmp,				\
1105			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1106      emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1107      emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1108      emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1109				  gen_reg_rtx (Pmode),			\
1110				  gen_reg_rtx (Pmode)));		\
1111    }									\
1112  else									\
1113    {									\
1114      tmp = memory_address (Pmode, plus_constant ((TRAMP), 56));	\
1115      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
1116      tmp = memory_address (Pmode, plus_constant ((TRAMP), 64));	\
1117      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
1118									\
1119      /* Create a fat pointer for the trampoline.  */			\
1120      tmp = memory_address (Pmode, plus_constant ((TRAMP), 16));	\
1121      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1122		      force_reg (Pmode, plus_constant ((TRAMP), 32)));	\
1123      tmp = memory_address (Pmode, plus_constant ((TRAMP), 24));	\
1124      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1125		      gen_rtx_REG (Pmode, 27));				\
1126									\
1127      /* fdc and fic only use registers for the address to flush,	\
1128	 they do not accept integer displacements.  We align the	\
1129	 start and end addresses to the beginning of their respective	\
1130	 cache lines to minimize the number of lines flushed.  */	\
1131      tmp = force_reg (Pmode, plus_constant ((TRAMP), 32));		\
1132      emit_insn (gen_anddi3 (start_addr, tmp,				\
1133			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1134      tmp = force_reg (Pmode,						\
1135		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1136      emit_insn (gen_anddi3 (end_addr, tmp,				\
1137			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1138      emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1139      emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1140      emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1141				  gen_reg_rtx (Pmode),			\
1142				  gen_reg_rtx (Pmode)));		\
1143    }									\
1144}
1145
1146/* Perform any machine-specific adjustment in the address of the trampoline.
1147   ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1148   Adjust the trampoline address to point to the plabel at offset 44.  */
1149
1150#define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1151  if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1152
1153/* Emit code for a call to builtin_saveregs.  We must emit USE insns which
1154   reference the 4 integer arg registers and 4 fp arg registers.
1155   Ordinarily they are not call used registers, but they are for
1156   _builtin_saveregs, so we must make this explicit.  */
1157
1158#define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
1159
1160/* Implement `va_start' for varargs and stdarg.  */
1161
1162#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1163  hppa_va_start (valist, nextarg)
1164
1165/* Implement `va_arg'.  */
1166
1167#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1168  hppa_va_arg (valist, type)
1169
1170/* Addressing modes, and classification of registers for them.
1171
1172   Using autoincrement addressing modes on PA8000 class machines is
1173   not profitable.  */
1174
1175#define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1176#define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1177
1178#define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1179#define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1180
1181/* Macros to check register numbers against specific register classes.  */
1182
1183/* These assume that REGNO is a hard or pseudo reg number.
1184   They give nonzero only if REGNO is a hard reg of the suitable class
1185   or a pseudo reg currently allocated to a suitable hard reg.
1186   Since they use reg_renumber, they are safe only once reg_renumber
1187   has been allocated, which happens in local-alloc.c.  */
1188
1189#define REGNO_OK_FOR_INDEX_P(REGNO) \
1190  ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1191#define REGNO_OK_FOR_BASE_P(REGNO)  \
1192  ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1193#define REGNO_OK_FOR_FP_P(REGNO) \
1194  (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1195
1196/* Now macros that check whether X is a register and also,
1197   strictly, whether it is in a specified class.
1198
1199   These macros are specific to the HP-PA, and may be used only
1200   in code for printing assembler insns and in conditions for
1201   define_optimization.  */
1202
1203/* 1 if X is an fp register.  */
1204
1205#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1206
1207/* Maximum number of registers that can appear in a valid memory address.  */
1208
1209#define MAX_REGS_PER_ADDRESS 2
1210
1211/* Recognize any constant value that is a valid address except
1212   for symbolic addresses.  We get better CSE by rejecting them
1213   here and allowing hppa_legitimize_address to break them up.  We
1214   use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
1215
1216#define CONSTANT_ADDRESS_P(X) \
1217  ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1218   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1219   || GET_CODE (X) == HIGH) 						\
1220   && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1221
1222/* Include all constant integers and constant doubles, but not
1223   floating-point, except for floating-point zero.
1224
1225   Reject LABEL_REFs if we're not using gas or the new HP assembler.
1226
1227   ?!? For now also reject CONST_DOUBLES in 64bit mode.  This will need
1228   further work.  */
1229#ifndef NEW_HP_ASSEMBLER
1230#define NEW_HP_ASSEMBLER 0
1231#endif
1232#define LEGITIMATE_CONSTANT_P(X)				\
1233  ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT			\
1234    || (X) == CONST0_RTX (GET_MODE (X)))			\
1235   && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF)	\
1236   && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE)		\
1237   && !(TARGET_64BIT && GET_CODE (X) == CONST_INT		\
1238	&& !(HOST_BITS_PER_WIDE_INT <= 32			\
1239	     || (INTVAL (X) >= (HOST_WIDE_INT) -32 << 31	\
1240		 && INTVAL (X) < (HOST_WIDE_INT) 32 << 31)	\
1241	     || cint_ok_for_move (INTVAL (X))))			\
1242   && !function_label_operand (X, VOIDmode))
1243
1244/* Subroutine for EXTRA_CONSTRAINT.
1245
1246   Return 1 iff OP is a pseudo which did not get a hard register and
1247   we are running the reload pass.  */
1248
1249#define IS_RELOADING_PSEUDO_P(OP) \
1250  ((reload_in_progress					\
1251    && GET_CODE (OP) == REG				\
1252    && REGNO (OP) >= FIRST_PSEUDO_REGISTER		\
1253    && reg_renumber [REGNO (OP)] < 0))
1254
1255/* Optional extra constraints for this machine. Borrowed from sparc.h.
1256
1257   For the HPPA, `Q' means that this is a memory operand but not a
1258   symbolic memory operand.  Note that an unassigned pseudo register
1259   is such a memory operand.  Needed because reload will generate
1260   these things in insns and then not re-recognize the insns, causing
1261   constrain_operands to fail.
1262
1263   `R' is used for scaled indexed addresses.
1264
1265   `S' is the constant 31.
1266
1267   `T' is for floating-point loads and stores.  */
1268#define EXTRA_CONSTRAINT(OP, C)				\
1269  ((C) == 'Q' ?						\
1270   (IS_RELOADING_PSEUDO_P (OP)				\
1271    || (GET_CODE (OP) == MEM				\
1272	&& (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1273	    || reload_in_progress)			\
1274	&& ! symbolic_memory_operand (OP, VOIDmode)	\
1275        && !(GET_CODE (XEXP (OP, 0)) == PLUS		\
1276	     && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1277		 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
1278   : ((C) == 'R' ?					\
1279     (GET_CODE (OP) == MEM				\
1280      && GET_CODE (XEXP (OP, 0)) == PLUS		\
1281      && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT	\
1282	  || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)	\
1283      && (move_operand (OP, GET_MODE (OP))		\
1284	  || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1285	  || reload_in_progress))			\
1286   : ((C) == 'T' ?							\
1287      (GET_CODE (OP) == MEM						\
1288       /* Floating-point loads and stores are used to load		\
1289	  integer values as well as floating-point values.		\
1290	  They don't have the same set of REG+D address modes		\
1291	  as integer loads and stores.  PA 1.x supports only		\
1292	  short displacements.  PA 2.0 supports long displacements	\
1293	  but the base register needs to be aligned.			\
1294									\
1295	  The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and		\
1296	  DFmode test the validity of an address for use in a           \
1297	  floating point load or store.  So, we use SFmode/DFmode       \
1298	  to see if the address is valid for a floating-point           \
1299	  load/store operation.  */                                     \
1300       && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4		\
1301			     ? SFmode					\
1302			     : DFmode),					\
1303			    XEXP (OP, 0))				\
1304       && !(GET_CODE (XEXP (OP, 0)) == LO_SUM		\
1305	    && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1306	    && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))\
1307	    && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC\
1308	    && GET_MODE (XEXP (OP, 0)) == Pmode)	\
1309       && !(GET_CODE (XEXP (OP, 0)) == PLUS		\
1310	    && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1311		|| GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
1312   : ((C) == 'U' ?					\
1313      (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63)	\
1314   : ((C) == 'A' ?					\
1315      (GET_CODE (OP) == MEM				\
1316       && GET_CODE (XEXP (OP, 0)) == LO_SUM		\
1317       && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG	\
1318       && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))	\
1319       && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC		\
1320       && GET_MODE (XEXP (OP, 0)) == Pmode)			\
1321   : ((C) == 'S' ?					\
1322      (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))))
1323
1324
1325/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1326   and check its validity for a certain class.
1327   We have two alternate definitions for each of them.
1328   The usual definition accepts all pseudo regs; the other rejects
1329   them unless they have been allocated suitable hard regs.
1330   The symbol REG_OK_STRICT causes the latter definition to be used.
1331
1332   Most source files want to accept pseudo regs in the hope that
1333   they will get allocated to the class that the insn wants them to be in.
1334   Source files for reload pass need to be strict.
1335   After reload, it makes no difference, since pseudo regs have
1336   been eliminated by then.  */
1337
1338#ifndef REG_OK_STRICT
1339
1340/* Nonzero if X is a hard reg that can be used as an index
1341   or if it is a pseudo reg.  */
1342#define REG_OK_FOR_INDEX_P(X) \
1343(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1344/* Nonzero if X is a hard reg that can be used as a base reg
1345   or if it is a pseudo reg.  */
1346#define REG_OK_FOR_BASE_P(X) \
1347(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1348
1349#else
1350
1351/* Nonzero if X is a hard reg that can be used as an index.  */
1352#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1353/* Nonzero if X is a hard reg that can be used as a base reg.  */
1354#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1355
1356#endif
1357
1358/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1359   that is a valid memory address for an instruction.
1360   The MODE argument is the machine mode for the MEM expression
1361   that wants to use this address.
1362
1363   On the HP-PA, the actual legitimate addresses must be
1364   REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1365   But we can treat a SYMBOL_REF as legitimate if it is part of this
1366   function's constant-pool, because such addresses can actually
1367   be output as REG+SMALLINT.
1368
1369   Note we only allow 5 bit immediates for access to a constant address;
1370   doing so avoids losing for loading/storing a FP register at an address
1371   which will not fit in 5 bits.  */
1372
1373#define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1374#define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1375
1376#define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1377#define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1378
1379#define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1380#define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1381
1382#define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1383#define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1384
1385#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)  \
1386{							\
1387  if ((REG_P (X) && REG_OK_FOR_BASE_P (X))		\
1388      || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC		\
1389	   || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)	\
1390	  && REG_P (XEXP (X, 0))			\
1391	  && REG_OK_FOR_BASE_P (XEXP (X, 0))))		\
1392    goto ADDR;						\
1393  else if (GET_CODE (X) == PLUS)			\
1394    {							\
1395      rtx base = 0, index = 0;				\
1396      if (REG_P (XEXP (X, 0))				\
1397	  && REG_OK_FOR_BASE_P (XEXP (X, 0)))		\
1398	base = XEXP (X, 0), index = XEXP (X, 1);	\
1399      else if (REG_P (XEXP (X, 1))			\
1400	       && REG_OK_FOR_BASE_P (XEXP (X, 1)))	\
1401	base = XEXP (X, 1), index = XEXP (X, 0);	\
1402      if (base != 0)					\
1403	if (GET_CODE (index) == CONST_INT				\
1404	    && ((INT_14_BITS (index)					\
1405		 && (((MODE) != DImode					\
1406		      && (MODE) != SFmode				\
1407		      && (MODE) != DFmode)				\
1408		     /* The base register for DImode loads and stores	\
1409			with long displacements must be aligned because	\
1410			the lower three bits in the displacement are	\
1411			assumed to be zero.  */				\
1412		     || ((MODE) == DImode				\
1413			 && (!TARGET_64BIT				\
1414			     || (INTVAL (index) % 8) == 0))		\
1415		     /* Similarly, the base register for SFmode/DFmode	\
1416			loads and stores with long displacements must	\
1417			be aligned.					\
1418									\
1419			FIXME: the ELF32 linker clobbers the LSB of	\
1420			the FP register number in PA 2.0 floating-point	\
1421			insns with long displacements.  This is because	\
1422			R_PARISC_DPREL14WR and other relocations like	\
1423			it are not supported.  For now, we reject long	\
1424			displacements on this target.  */		\
1425		     || (((MODE) == SFmode || (MODE) == DFmode)		\
1426			 && (TARGET_SOFT_FLOAT				\
1427			     || (TARGET_PA_20				\
1428				 && !TARGET_ELF32			\
1429				 && (INTVAL (index)			\
1430				     % GET_MODE_SIZE (MODE)) == 0)))))	\
1431		|| INT_5_BITS (index)))					\
1432	  goto ADDR;							\
1433      if (! TARGET_SOFT_FLOAT				\
1434	  && ! TARGET_DISABLE_INDEXING			\
1435	  && base					\
1436	  && ((MODE) == SFmode || (MODE) == DFmode)	\
1437	  && GET_CODE (index) == MULT			\
1438	  && GET_CODE (XEXP (index, 0)) == REG		\
1439	  && REG_OK_FOR_BASE_P (XEXP (index, 0))	\
1440	  && GET_CODE (XEXP (index, 1)) == CONST_INT	\
1441	  && INTVAL (XEXP (index, 1)) == ((MODE) == SFmode ? 4 : 8))\
1442	goto ADDR;					\
1443    }							\
1444  else if (GET_CODE (X) == LO_SUM			\
1445	   && GET_CODE (XEXP (X, 0)) == REG		\
1446	   && REG_OK_FOR_BASE_P (XEXP (X, 0))		\
1447	   && CONSTANT_P (XEXP (X, 1))			\
1448	   && (TARGET_SOFT_FLOAT			\
1449	       /* We can allow symbolic LO_SUM addresses\
1450		  for PA2.0.  */			\
1451	       || (TARGET_PA_20				\
1452		   && !TARGET_ELF32			\
1453	           && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1454	       || ((MODE) != SFmode			\
1455		   && (MODE) != DFmode)))		\
1456    goto ADDR;						\
1457  else if (GET_CODE (X) == LO_SUM			\
1458	   && GET_CODE (XEXP (X, 0)) == SUBREG		\
1459	   && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1460	   && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1461	   && CONSTANT_P (XEXP (X, 1))			\
1462	   && (TARGET_SOFT_FLOAT			\
1463	       /* We can allow symbolic LO_SUM addresses\
1464		  for PA2.0.  */			\
1465	       || (TARGET_PA_20				\
1466		   && !TARGET_ELF32			\
1467	           && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1468	       || ((MODE) != SFmode			\
1469		   && (MODE) != DFmode)))		\
1470    goto ADDR;						\
1471  else if (GET_CODE (X) == LABEL_REF			\
1472	   || (GET_CODE (X) == CONST_INT		\
1473	       && INT_5_BITS (X)))			\
1474    goto ADDR;						\
1475  /* Needed for -fPIC */				\
1476  else if (GET_CODE (X) == LO_SUM			\
1477	   && GET_CODE (XEXP (X, 0)) == REG             \
1478	   && REG_OK_FOR_BASE_P (XEXP (X, 0))		\
1479	   && GET_CODE (XEXP (X, 1)) == UNSPEC		\
1480	   && (TARGET_SOFT_FLOAT			\
1481	       || (TARGET_PA_20	&& !TARGET_ELF32)	\
1482	       || ((MODE) != SFmode			\
1483		   && (MODE) != DFmode)))		\
1484    goto ADDR;						\
1485}
1486
1487/* Look for machine dependent ways to make the invalid address AD a
1488   valid address.
1489
1490   For the PA, transform:
1491
1492        memory(X + <large int>)
1493
1494   into:
1495
1496        if (<large int> & mask) >= 16
1497          Y = (<large int> & ~mask) + mask + 1  Round up.
1498        else
1499          Y = (<large int> & ~mask)             Round down.
1500        Z = X + Y
1501        memory (Z + (<large int> - Y));
1502
1503   This makes reload inheritance and reload_cse work better since Z
1504   can be reused.
1505
1506   There may be more opportunities to improve code with this hook.  */
1507#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1508do { 									\
1509  int offset, newoffset, mask;						\
1510  rtx new, temp = NULL_RTX;						\
1511									\
1512  mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1513	  ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff);	\
1514									\
1515  if (optimize								\
1516      && GET_CODE (AD) == PLUS)						\
1517    temp = simplify_binary_operation (PLUS, Pmode,			\
1518				      XEXP (AD, 0), XEXP (AD, 1));	\
1519									\
1520  new = temp ? temp : AD;						\
1521									\
1522  if (optimize								\
1523      && GET_CODE (new) == PLUS						\
1524      && GET_CODE (XEXP (new, 0)) == REG				\
1525      && GET_CODE (XEXP (new, 1)) == CONST_INT)				\
1526    {									\
1527      offset = INTVAL (XEXP ((new), 1));				\
1528									\
1529      /* Choose rounding direction.  Round up if we are >= halfway.  */	\
1530      if ((offset & mask) >= ((mask + 1) / 2))				\
1531	newoffset = (offset & ~mask) + mask + 1;			\
1532      else								\
1533	newoffset = offset & ~mask;					\
1534									\
1535      /* Ensure that long displacements are aligned.  */		\
1536      if (!VAL_5_BITS_P (newoffset)					\
1537	  && GET_MODE_CLASS (MODE) == MODE_FLOAT)			\
1538	newoffset &= ~(GET_MODE_SIZE (MODE) -1);			\
1539									\
1540      if (newoffset != 0						\
1541	  && VAL_14_BITS_P (newoffset))					\
1542	{								\
1543									\
1544	  temp = gen_rtx_PLUS (Pmode, XEXP (new, 0),			\
1545			       GEN_INT (newoffset));			\
1546	  AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1547	  push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,		\
1548			     BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,	\
1549			     (OPNUM), (TYPE));				\
1550	  goto WIN;							\
1551	}								\
1552    }									\
1553} while (0)
1554
1555
1556
1557
1558/* Try machine-dependent ways of modifying an illegitimate address
1559   to be legitimate.  If we find one, return the new, valid address.
1560   This macro is used in only one place: `memory_address' in explow.c.
1561
1562   OLDX is the address as it was before break_out_memory_refs was called.
1563   In some cases it is useful to look at this to decide what needs to be done.
1564
1565   MODE and WIN are passed so that this macro can use
1566   GO_IF_LEGITIMATE_ADDRESS.
1567
1568   It is always safe for this macro to do nothing.  It exists to recognize
1569   opportunities to optimize the output.  */
1570
1571#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)	\
1572{ rtx orig_x = (X);				\
1573  (X) = hppa_legitimize_address (X, OLDX, MODE);	\
1574  if ((X) != orig_x && memory_address_p (MODE, X)) \
1575    goto WIN; }
1576
1577/* Go to LABEL if ADDR (a legitimate address expression)
1578   has an effect that depends on the machine mode it is used for.  */
1579
1580#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1581  if (GET_CODE (ADDR) == PRE_DEC	\
1582      || GET_CODE (ADDR) == POST_DEC	\
1583      || GET_CODE (ADDR) == PRE_INC	\
1584      || GET_CODE (ADDR) == POST_INC)	\
1585    goto LABEL
1586
1587#define TARGET_ASM_SELECT_SECTION  pa_select_section
1588
1589/* Define this macro if references to a symbol must be treated
1590   differently depending on something about the variable or
1591   function named by the symbol (such as what section it is in).
1592
1593   The macro definition, if any, is executed immediately after the
1594   rtl for DECL or other node is created.
1595   The value of the rtl will be a `mem' whose address is a
1596   `symbol_ref'.
1597
1598   The usual thing for this macro to do is to a flag in the
1599   `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1600   name string in the `symbol_ref' (if one bit is not enough
1601   information).
1602
1603   On the HP-PA we use this to indicate if a symbol is in text or
1604   data space.  Also, function labels need special treatment.  */
1605
1606#define TEXT_SPACE_P(DECL)\
1607  (TREE_CODE (DECL) == FUNCTION_DECL					\
1608   || (TREE_CODE (DECL) == VAR_DECL					\
1609       && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
1610       && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1611       && !flag_pic)							\
1612   || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c'			\
1613       && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1614
1615#define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1616
1617/* Specify the machine mode that this machine uses
1618   for the index in the tablejump instruction.  */
1619#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
1620
1621/* Jump tables must be 32 bit aligned, no matter the size of the element.  */
1622#define ADDR_VEC_ALIGN(ADDR_VEC) 2
1623
1624/* Define this as 1 if `char' should by default be signed; else as 0.  */
1625#define DEFAULT_SIGNED_CHAR 1
1626
1627/* Max number of bytes we can move from memory to memory
1628   in one reasonably fast instruction.  */
1629#define MOVE_MAX 8
1630
1631/* Higher than the default as we prefer to use simple move insns
1632   (better scheduling and delay slot filling) and because our
1633   built-in block move is really a 2X unrolled loop.
1634
1635   Believe it or not, this has to be big enough to allow for copying all
1636   arguments passed in registers to avoid infinite recursion during argument
1637   setup for a function call.  Why?  Consider how we copy the stack slots
1638   reserved for parameters when they may be trashed by a call.  */
1639#define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1640
1641/* Define if operations between registers always perform the operation
1642   on the full register even if a narrower mode is specified.  */
1643#define WORD_REGISTER_OPERATIONS
1644
1645/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1646   will either zero-extend or sign-extend.  The value of this macro should
1647   be the code that says which one of the two operations is implicitly
1648   done, NIL if none.  */
1649#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1650
1651/* Nonzero if access to memory by bytes is slow and undesirable.  */
1652#define SLOW_BYTE_ACCESS 1
1653
1654/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1655   is done just by pretending it is already truncated.  */
1656#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1657
1658/* We assume that the store-condition-codes instructions store 0 for false
1659   and some other value for true.  This is the value stored for true.  */
1660
1661#define STORE_FLAG_VALUE 1
1662
1663/* When a prototype says `char' or `short', really pass an `int'.  */
1664#define PROMOTE_PROTOTYPES 1
1665#define PROMOTE_FUNCTION_RETURN 1
1666
1667/* Specify the machine mode that pointers have.
1668   After generation of rtl, the compiler makes no further distinction
1669   between pointers and any other objects of this machine mode.  */
1670#define Pmode word_mode
1671
1672/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1673   return the mode to be used for the comparison.  For floating-point, CCFPmode
1674   should be used.  CC_NOOVmode should be used when the first operand is a
1675   PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1676   needed.  */
1677#define SELECT_CC_MODE(OP,X,Y) \
1678  (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1679
1680/* A function address in a call instruction
1681   is a byte address (for indexing purposes)
1682   so give the MEM rtx a byte's mode.  */
1683#define FUNCTION_MODE SImode
1684
1685/* Define this if addresses of constant functions
1686   shouldn't be put through pseudo regs where they can be cse'd.
1687   Desirable on machines where ordinary constants are expensive
1688   but a CALL with constant address is cheap.  */
1689#define NO_FUNCTION_CSE
1690
1691/* Define this to be nonzero if shift instructions ignore all but the low-order
1692   few bits.  */
1693#define SHIFT_COUNT_TRUNCATED 1
1694
1695/* Compute the cost of computing a constant rtl expression RTX
1696   whose rtx-code is CODE.  The body of this macro is a portion
1697   of a switch statement.  If the code is computed here,
1698   return it with a return statement.  Otherwise, break from the switch.  */
1699
1700#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1701  case CONST_INT:							\
1702    if (INTVAL (RTX) == 0) return 0;					\
1703    if (INT_14_BITS (RTX)) return 1;					\
1704  case HIGH:								\
1705    return 2;								\
1706  case CONST:								\
1707  case LABEL_REF:							\
1708  case SYMBOL_REF:							\
1709    return 4;								\
1710  case CONST_DOUBLE:							\
1711    if ((RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode))	\
1712	&& OUTER_CODE != SET)						\
1713      return 0;								\
1714    else								\
1715      return 8;
1716
1717#define ADDRESS_COST(RTX) \
1718  (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1719
1720/* Compute extra cost of moving data between one register class
1721   and another.
1722
1723   Make moves from SAR so expensive they should never happen.  We used to
1724   have 0xffff here, but that generates overflow in rare cases.
1725
1726   Copies involving a FP register and a non-FP register are relatively
1727   expensive because they must go through memory.
1728
1729   Other copies are reasonably cheap.  */
1730#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1731 (CLASS1 == SHIFT_REGS ? 0x100					\
1732  : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16	\
1733  : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16	\
1734  : 2)
1735
1736
1737/* Provide the costs of a rtl expression.  This is in the body of a
1738   switch on CODE.  The purpose for the cost of MULT is to encourage
1739   `synth_mult' to find a synthetic multiply when reasonable.  */
1740
1741#define RTX_COSTS(X,CODE,OUTER_CODE)					\
1742  case MULT:								\
1743    if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
1744      return COSTS_N_INSNS (3);						\
1745    return (TARGET_PA_11 && ! TARGET_DISABLE_FPREGS && ! TARGET_SOFT_FLOAT) \
1746	    ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20);	\
1747  case DIV:								\
1748    if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
1749      return COSTS_N_INSNS (14);					\
1750  case UDIV:								\
1751  case MOD:								\
1752  case UMOD:								\
1753    return COSTS_N_INSNS (60);						\
1754  case PLUS: /* this includes shNadd insns */				\
1755  case MINUS:								\
1756    if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
1757      return COSTS_N_INSNS (3);						\
1758    return COSTS_N_INSNS (1);						\
1759  case ASHIFT:								\
1760  case ASHIFTRT:							\
1761  case LSHIFTRT:							\
1762    return COSTS_N_INSNS (1);
1763
1764/* Adjust the cost of branches.  */
1765#define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1766
1767/* Handling the special cases is going to get too complicated for a macro,
1768   just call `pa_adjust_insn_length' to do the real work.  */
1769#define ADJUST_INSN_LENGTH(INSN, LENGTH)	\
1770  LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1771
1772/* Millicode insns are actually function calls with some special
1773   constraints on arguments and register usage.
1774
1775   Millicode calls always expect their arguments in the integer argument
1776   registers, and always return their result in %r29 (ret1).  They
1777   are expected to clobber their arguments, %r1, %r29, and the return
1778   pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1779
1780   This macro tells reorg that the references to arguments and
1781   millicode calls do not appear to happen until after the millicode call.
1782   This allows reorg to put insns which set the argument registers into the
1783   delay slot of the millicode call -- thus they act more like traditional
1784   CALL_INSNs.
1785
1786   Note we can not consider side effects of the insn to be delayed because
1787   the branch and link insn will clobber the return pointer.  If we happened
1788   to use the return pointer in the delay slot of the call, then we lose.
1789
1790   get_attr_type will try to recognize the given insn, so make sure to
1791   filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1792   in particular.  */
1793#define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1794
1795
1796/* Control the assembler format that we output.  */
1797
1798/* Output to assembler file text saying following lines
1799   may contain character constants, extra white space, comments, etc.  */
1800
1801#define ASM_APP_ON ""
1802
1803/* Output to assembler file text saying following lines
1804   no longer contain unusual constructs.  */
1805
1806#define ASM_APP_OFF ""
1807
1808/* Output deferred plabels at the end of the file.  */
1809
1810#define ASM_FILE_END(FILE) output_deferred_plabels (FILE)
1811
1812/* This is how to output the definition of a user-level label named NAME,
1813   such as the label on a static function or variable NAME.  */
1814
1815#define ASM_OUTPUT_LABEL(FILE, NAME)	\
1816  do { assemble_name (FILE, NAME); 	\
1817       fputc ('\n', FILE); } while (0)
1818
1819/* This is how to output a reference to a user-level label named NAME.
1820   `assemble_name' uses this.  */
1821
1822#define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1823  do {					\
1824    const char *xname = (NAME);		\
1825    if (FUNCTION_NAME_P (NAME))		\
1826      xname += 1;			\
1827    if (xname[0] == '*')		\
1828      xname += 1;			\
1829    else				\
1830      fputs (user_label_prefix, FILE);	\
1831    fputs (xname, FILE);		\
1832  } while (0)
1833
1834/* This is how to output an internal numbered label where
1835   PREFIX is the class of label and NUM is the number within the class.  */
1836
1837#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1838  {fprintf (FILE, "%c$%s%04d\n", (PREFIX)[0], (PREFIX) + 1, NUM);}
1839
1840/* This is how to store into the string LABEL
1841   the symbol_ref name of an internal numbered label where
1842   PREFIX is the class of label and NUM is the number within the class.
1843   This is suitable for output with `assemble_name'.  */
1844
1845#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1846  sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1847
1848#define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1849
1850#define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1851  output_ascii ((FILE), (P), (SIZE))
1852
1853/* This is how to output an element of a case-vector that is absolute.
1854   Note that this method makes filling these branch delay slots
1855   impossible.  */
1856
1857#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1858  if (TARGET_BIG_SWITCH)					\
1859    fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE);		\
1860  else								\
1861    fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1862
1863/* Jump tables are executable code and live in the TEXT section on the PA.  */
1864#define JUMP_TABLES_IN_TEXT_SECTION 1
1865
1866/* This is how to output an element of a case-vector that is relative.
1867   This must be defined correctly as it is used when generating PIC code.
1868
1869   I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
1870   on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1871   rather than a table of absolute addresses.  */
1872
1873#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1874  if (TARGET_BIG_SWITCH)					\
1875    fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE);				\
1876  else								\
1877    fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1878
1879/* This is how to output an assembler line
1880   that says to advance the location counter
1881   to a multiple of 2**LOG bytes.  */
1882
1883#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1884    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1885
1886#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1887  fprintf (FILE, "\t.blockz %d\n", (SIZE))
1888
1889/* This says how to output an assembler line to define a global common symbol
1890   with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1891
1892#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED)  		\
1893{ bss_section ();							\
1894  assemble_name ((FILE), (NAME));					\
1895  fputs ("\t.comm ", (FILE));						\
1896  fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
1897
1898/* This says how to output an assembler line to define a local common symbol
1899   with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1900
1901#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1902{ bss_section ();							\
1903  fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT));	\
1904  assemble_name ((FILE), (NAME));				\
1905  fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
1906
1907/* Store in OUTPUT a string (made with alloca) containing
1908   an assembler-name for a local static variable named NAME.
1909   LABELNO is an integer which is different for each call.  */
1910
1911#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1912( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12),	\
1913  sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1914
1915/* All HP assemblers use "!" to separate logical lines.  */
1916#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1917
1918#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1919  ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1920
1921/* Print operand X (an rtx) in assembler syntax to file FILE.
1922   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1923   For `%' followed by punctuation, CODE is the punctuation and X is null.
1924
1925   On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1926   and an immediate zero should be represented as `r0'.
1927
1928   Several % codes are defined:
1929   O an operation
1930   C compare conditions
1931   N extract conditions
1932   M modifier to handle preincrement addressing for memory refs.
1933   F modifier to handle preincrement addressing for fp memory refs */
1934
1935#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1936
1937
1938/* Print a memory address as an operand to reference that memory location.  */
1939
1940#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1941{ register rtx addr = ADDR;						\
1942  register rtx base;							\
1943  int offset;								\
1944  switch (GET_CODE (addr))						\
1945    {									\
1946    case REG:								\
1947      fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
1948      break;								\
1949    case PLUS:								\
1950      if (GET_CODE (XEXP (addr, 0)) == CONST_INT)			\
1951	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);	\
1952      else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)			\
1953	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);	\
1954      else								\
1955	abort ();							\
1956      fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]);	\
1957      break;								\
1958    case LO_SUM:							\
1959      if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
1960	fputs ("R'", FILE);						\
1961      else if (flag_pic == 0)						\
1962	fputs ("RR'", FILE);						\
1963      else								\
1964	fputs ("RT'", FILE);						\
1965      output_global_address (FILE, XEXP (addr, 1), 0);			\
1966      fputs ("(", FILE);						\
1967      output_operand (XEXP (addr, 0), 0);				\
1968      fputs (")", FILE);						\
1969      break;								\
1970    case CONST_INT:							\
1971      fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));		\
1972      fprintf (FILE, "(%%r0)");						\
1973      break;								\
1974    default:								\
1975      output_addr_const (FILE, addr);					\
1976    }}
1977
1978
1979/* Find the return address associated with the frame given by
1980   FRAMEADDR.  */
1981#define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
1982  (return_addr_rtx (COUNT, FRAMEADDR))
1983
1984/* Used to mask out junk bits from the return address, such as
1985   processor state, interrupt status, condition codes and the like.  */
1986#define MASK_RETURN_ADDR						\
1987  /* The privilege level is in the two low order bits, mask em out	\
1988     of the return address.  */						\
1989  (GEN_INT (-4))
1990
1991/* The number of Pmode words for the setjmp buffer.  */
1992#define JMP_BUF_SIZE 50
1993
1994/* Only direct calls to static functions are allowed to be sibling (tail)
1995   call optimized.
1996
1997   This restriction is necessary because some linker generated stubs will
1998   store return pointers into rp' in some cases which might clobber a
1999   live value already in rp'.
2000
2001   In a sibcall the current function and the target function share stack
2002   space.  Thus if the path to the current function and the path to the
2003   target function save a value in rp', they save the value into the
2004   same stack slot, which has undesirable consequences.
2005
2006   Because of the deferred binding nature of shared libraries any function
2007   with external scope could be in a different load module and thus require
2008   rp' to be saved when calling that function.  So sibcall optimizations
2009   can only be safe for static function.
2010
2011   Note that GCC never needs return value relocations, so we don't have to
2012   worry about static calls with return value relocations (which require
2013   saving rp').
2014
2015   It is safe to perform a sibcall optimization when the target function
2016   will never return.  */
2017#define FUNCTION_OK_FOR_SIBCALL(DECL) \
2018  (DECL \
2019   && ! TARGET_PORTABLE_RUNTIME \
2020   && ! TARGET_64BIT \
2021   && ! TREE_PUBLIC (DECL))
2022
2023#define PREDICATE_CODES							\
2024  {"reg_or_0_operand", {SUBREG, REG, CONST_INT}},			\
2025  {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT,		\
2026			    CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
2027  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
2028  {"symbolic_memory_operand", {SUBREG, MEM}},				\
2029  {"reg_before_reload_operand", {REG, MEM}},				\
2030  {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}},			\
2031  {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT,	\
2032				       CONST_DOUBLE}},			\
2033  {"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}},	\
2034  {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}},		\
2035  {"pic_label_operand", {LABEL_REF, CONST}},				\
2036  {"fp_reg_operand", {REG}},						\
2037  {"arith_operand", {SUBREG, REG, CONST_INT}},				\
2038  {"arith11_operand", {SUBREG, REG, CONST_INT}},			\
2039  {"pre_cint_operand", {CONST_INT}},					\
2040  {"post_cint_operand", {CONST_INT}},					\
2041  {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}},		\
2042  {"ireg_or_int5_operand", {CONST_INT, REG}},				\
2043  {"int5_operand", {CONST_INT}},					\
2044  {"uint5_operand", {CONST_INT}},					\
2045  {"int11_operand", {CONST_INT}},					\
2046  {"uint32_operand", {CONST_INT,					\
2047   HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}},			\
2048  {"arith5_operand", {SUBREG, REG, CONST_INT}},				\
2049  {"and_operand", {SUBREG, REG, CONST_INT}},				\
2050  {"ior_operand", {CONST_INT}},						\
2051  {"lhs_lshift_cint_operand", {CONST_INT}},				\
2052  {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}},			\
2053  {"arith32_operand", {SUBREG, REG, CONST_INT}},			\
2054  {"pc_or_label_operand", {PC, LABEL_REF}},				\
2055  {"plus_xor_ior_operator", {PLUS, XOR, IOR}},				\
2056  {"shadd_operand", {CONST_INT}},					\
2057  {"basereg_operand", {REG}},						\
2058  {"div_operand", {REG, CONST_INT}},					\
2059  {"ireg_operand", {REG}},						\
2060  {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU,			\
2061   GT, GTU, GE}},							\
2062  {"movb_comparison_operator", {EQ, NE, LT, GE}},
2063
2064/* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
2065#define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
2066  "__canonicalize_funcptr_for_compare"
2067