1/* Definitions of target machine for GNU compiler, for DEC Alpha.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002 Free Software Foundation, Inc.
4   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING.  If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA.  */
22
23/* Target CPU builtins.  */
24#define TARGET_CPU_CPP_BUILTINS()			\
25  do							\
26    {							\
27	builtin_define ("__alpha");			\
28	builtin_define ("__alpha__");			\
29	builtin_assert ("cpu=alpha");			\
30	builtin_assert ("machine=alpha");		\
31	if (TARGET_CIX)					\
32	  {						\
33	    builtin_define ("__alpha_cix__");		\
34	    builtin_assert ("cpu=cix");			\
35	  }						\
36	if (TARGET_FIX)					\
37	  {						\
38	    builtin_define ("__alpha_fix__");		\
39	    builtin_assert ("cpu=fix");			\
40	  }						\
41	if (TARGET_BWX)					\
42	  {						\
43	    builtin_define ("__alpha_bwx__");		\
44	    builtin_assert ("cpu=bwx");			\
45	  }						\
46	if (TARGET_MAX)					\
47	  {						\
48	    builtin_define ("__alpha_max__");		\
49	    builtin_assert ("cpu=max");			\
50	  }						\
51	if (TARGET_CPU_EV6)				\
52	  {						\
53	    builtin_define ("__alpha_ev6__");		\
54	    builtin_assert ("cpu=ev6");			\
55	  }						\
56	else if (TARGET_CPU_EV5)			\
57	  {						\
58	    builtin_define ("__alpha_ev5__");		\
59	    builtin_assert ("cpu=ev5");			\
60	  }						\
61	else	/* Presumably ev4.  */			\
62	  {						\
63	    builtin_define ("__alpha_ev4__");		\
64	    builtin_assert ("cpu=ev4");			\
65	  }						\
66	if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)	\
67	  builtin_define ("_IEEE_FP");			\
68	if (TARGET_IEEE_WITH_INEXACT)			\
69	  builtin_define ("_IEEE_FP_INEXACT");		\
70	if (TARGET_LONG_DOUBLE_128)			\
71	  builtin_define ("__LONG_DOUBLE_128__");	\
72							\
73	/* Macros dependent on the C dialect.  */	\
74	SUBTARGET_LANGUAGE_CPP_BUILTINS();		\
75} while (0)
76
77#ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78#define SUBTARGET_LANGUAGE_CPP_BUILTINS()		\
79  do							\
80    {							\
81      if (preprocessing_asm_p ())			\
82	builtin_define_std ("LANGUAGE_ASSEMBLY");	\
83      else if (c_language == clk_c)			\
84	builtin_define_std ("LANGUAGE_C");		\
85      else if (c_language == clk_cplusplus)		\
86	{						\
87	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");	\
88	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");	\
89	}						\
90      if (flag_objc)					\
91	{						\
92	  builtin_define ("__LANGUAGE_OBJECTIVE_C");	\
93	  builtin_define ("__LANGUAGE_OBJECTIVE_C__");	\
94	}						\
95    }							\
96  while (0)
97#endif
98
99#define CPP_SPEC "%(cpp_subtarget)"
100
101#ifndef CPP_SUBTARGET_SPEC
102#define CPP_SUBTARGET_SPEC ""
103#endif
104
105#define WORD_SWITCH_TAKES_ARG(STR)		\
106 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
107
108/* Print subsidiary information on the compiler version in use.  */
109#define TARGET_VERSION
110
111/* Run-time compilation parameters selecting different hardware subsets.  */
112
113/* Which processor to schedule for. The cpu attribute defines a list that
114   mirrors this list, so changes to alpha.md must be made at the same time.  */
115
116enum processor_type
117 {PROCESSOR_EV4,			/* 2106[46]{a,} */
118  PROCESSOR_EV5,			/* 21164{a,pc,} */
119  PROCESSOR_EV6};			/* 21264 */
120
121extern enum processor_type alpha_cpu;
122
123enum alpha_trap_precision
124{
125  ALPHA_TP_PROG,	/* No precision (default).  */
126  ALPHA_TP_FUNC,      	/* Trap contained within originating function.  */
127  ALPHA_TP_INSN		/* Instruction accuracy and code is resumption safe.  */
128};
129
130enum alpha_fp_rounding_mode
131{
132  ALPHA_FPRM_NORM,	/* Normal rounding mode.  */
133  ALPHA_FPRM_MINF,	/* Round towards minus-infinity.  */
134  ALPHA_FPRM_CHOP,	/* Chopped rounding mode (towards 0).  */
135  ALPHA_FPRM_DYN	/* Dynamic rounding mode.  */
136};
137
138enum alpha_fp_trap_mode
139{
140  ALPHA_FPTM_N,		/* Normal trap mode.  */
141  ALPHA_FPTM_U,		/* Underflow traps enabled.  */
142  ALPHA_FPTM_SU,	/* Software completion, w/underflow traps */
143  ALPHA_FPTM_SUI	/* Software completion, w/underflow & inexact traps */
144};
145
146extern int target_flags;
147
148extern enum alpha_trap_precision alpha_tp;
149extern enum alpha_fp_rounding_mode alpha_fprm;
150extern enum alpha_fp_trap_mode alpha_fptm;
151extern int alpha_tls_size;
152
153/* This means that floating-point support exists in the target implementation
154   of the Alpha architecture.  This is usually the default.  */
155#define MASK_FP		(1 << 0)
156#define TARGET_FP	(target_flags & MASK_FP)
157
158/* This means that floating-point registers are allowed to be used.  Note
159   that Alpha implementations without FP operations are required to
160   provide the FP registers.  */
161
162#define MASK_FPREGS	(1 << 1)
163#define TARGET_FPREGS	(target_flags & MASK_FPREGS)
164
165/* This means that gas is used to process the assembler file.  */
166
167#define MASK_GAS	(1 << 2)
168#define TARGET_GAS	(target_flags & MASK_GAS)
169
170/* This means that we should mark procedures as IEEE conformant.  */
171
172#define MASK_IEEE_CONFORMANT (1 << 3)
173#define TARGET_IEEE_CONFORMANT	(target_flags & MASK_IEEE_CONFORMANT)
174
175/* This means we should be IEEE-compliant except for inexact.  */
176
177#define MASK_IEEE	(1 << 4)
178#define TARGET_IEEE	(target_flags & MASK_IEEE)
179
180/* This means we should be fully IEEE-compliant.  */
181
182#define MASK_IEEE_WITH_INEXACT (1 << 5)
183#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
184
185/* This means we must construct all constants rather than emitting
186   them as literal data.  */
187
188#define MASK_BUILD_CONSTANTS (1 << 6)
189#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
190
191/* This means we handle floating points in VAX F- (float)
192   or G- (double) Format.  */
193
194#define MASK_FLOAT_VAX	(1 << 7)
195#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
196
197/* This means that the processor has byte and half word loads and stores
198   (the BWX extension).  */
199
200#define MASK_BWX	(1 << 8)
201#define TARGET_BWX	(target_flags & MASK_BWX)
202
203/* This means that the processor has the MAX extension.  */
204#define MASK_MAX	(1 << 9)
205#define TARGET_MAX	(target_flags & MASK_MAX)
206
207/* This means that the processor has the FIX extension.  */
208#define MASK_FIX	(1 << 10)
209#define TARGET_FIX	(target_flags & MASK_FIX)
210
211/* This means that the processor has the CIX extension.  */
212#define MASK_CIX	(1 << 11)
213#define TARGET_CIX	(target_flags & MASK_CIX)
214
215/* This means use !literal style explicit relocations.  */
216#define MASK_EXPLICIT_RELOCS (1 << 12)
217#define TARGET_EXPLICIT_RELOCS (target_flags & MASK_EXPLICIT_RELOCS)
218
219/* This means use 16-bit relocations to .sdata/.sbss.  */
220#define MASK_SMALL_DATA (1 << 13)
221#define TARGET_SMALL_DATA (target_flags & MASK_SMALL_DATA)
222
223/* This means emit thread pointer loads for kernel not user.  */
224#define MASK_TLS_KERNEL	(1 << 14)
225#define TARGET_TLS_KERNEL (target_flags & MASK_TLS_KERNEL)
226
227/* This means use IEEE quad-format for long double.  Assumes the
228   presence of the GEM support library routines.  */
229#define MASK_LONG_DOUBLE_128 (1 << 16)
230#define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
231
232/* This means that the processor is an EV5, EV56, or PCA56.
233   Unlike alpha_cpu this is not affected by -mtune= setting.  */
234#define MASK_CPU_EV5	(1 << 28)
235#define TARGET_CPU_EV5	(target_flags & MASK_CPU_EV5)
236
237/* Likewise for EV6.  */
238#define MASK_CPU_EV6	(1 << 29)
239#define TARGET_CPU_EV6	(target_flags & MASK_CPU_EV6)
240
241/* This means we support the .arch directive in the assembler.  Only
242   defined in TARGET_CPU_DEFAULT.  */
243#define MASK_SUPPORT_ARCH (1 << 30)
244#define TARGET_SUPPORT_ARCH	(target_flags & MASK_SUPPORT_ARCH)
245
246/* These are for target os support and cannot be changed at runtime.  */
247#define TARGET_ABI_WINDOWS_NT 0
248#define TARGET_ABI_OPEN_VMS 0
249#define TARGET_ABI_UNICOSMK 0
250#define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT	\
251			&& !TARGET_ABI_OPEN_VMS	\
252			&& !TARGET_ABI_UNICOSMK)
253
254#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
255#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
256#endif
257#ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
258#define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
259#endif
260#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
261#define TARGET_CAN_FAULT_IN_PROLOGUE 0
262#endif
263#ifndef TARGET_HAS_XFLOATING_LIBS
264#define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
265#endif
266#ifndef TARGET_PROFILING_NEEDS_GP
267#define TARGET_PROFILING_NEEDS_GP 0
268#endif
269#ifndef TARGET_LD_BUGGY_LDGP
270#define TARGET_LD_BUGGY_LDGP 0
271#endif
272#ifndef TARGET_FIXUP_EV5_PREFETCH
273#define TARGET_FIXUP_EV5_PREFETCH 0
274#endif
275#ifndef HAVE_AS_TLS
276#define HAVE_AS_TLS 0
277#endif
278
279/* Macro to define tables used to set the flags.
280   This is a list in braces of pairs in braces,
281   each pair being { "NAME", VALUE }
282   where VALUE is the bits to set or minus the bits to clear.
283   An empty string NAME is used to identify the default VALUE.  */
284
285#define TARGET_SWITCHES							\
286  { {"no-soft-float", MASK_FP, N_("Use hardware fp")},			\
287    {"soft-float", - MASK_FP, N_("Do not use hardware fp")},		\
288    {"fp-regs", MASK_FPREGS, N_("Use fp registers")},			\
289    {"no-fp-regs", - (MASK_FP|MASK_FPREGS),				\
290     N_("Do not use fp registers")},					\
291    {"alpha-as", -MASK_GAS, N_("Do not assume GAS")},			\
292    {"gas", MASK_GAS, N_("Assume GAS")},				\
293    {"ieee-conformant", MASK_IEEE_CONFORMANT,				\
294     N_("Request IEEE-conformant math library routines (OSF/1)")},	\
295    {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT,				\
296     N_("Emit IEEE-conformant code, without inexact exceptions")},	\
297    {"no-ieee", - (MASK_IEEE|MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT), \
298     N_("Emit non-IEEE-conformant code")},				\
299    {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT,	\
300     N_("Emit IEEE-conformant code, with inexact exceptions")},		\
301    {"build-constants", MASK_BUILD_CONSTANTS,				\
302     N_("Do not emit complex integer constants to read-only memory")},	\
303    {"float-vax", MASK_FLOAT_VAX, N_("Use VAX fp")},			\
304    {"float-ieee", -MASK_FLOAT_VAX, N_("Do not use VAX fp")},		\
305    {"bwx", MASK_BWX, N_("Emit code for the byte/word ISA extension")},	\
306    {"no-bwx", -MASK_BWX, ""},						\
307    {"max", MASK_MAX,							\
308     N_("Emit code for the motion video ISA extension")},		\
309    {"no-max", -MASK_MAX, ""},						\
310    {"fix", MASK_FIX,							\
311     N_("Emit code for the fp move and sqrt ISA extension")}, 		\
312    {"no-fix", -MASK_FIX, ""},						\
313    {"cix", MASK_CIX, N_("Emit code for the counting ISA extension")},	\
314    {"no-cix", -MASK_CIX, ""},						\
315    {"explicit-relocs", MASK_EXPLICIT_RELOCS,				\
316     N_("Emit code using explicit relocation directives")},		\
317    {"no-explicit-relocs", -MASK_EXPLICIT_RELOCS, ""},			\
318    {"small-data", MASK_SMALL_DATA,					\
319     N_("Emit 16-bit relocations to the small data areas")},		\
320    {"large-data", -MASK_SMALL_DATA,					\
321     N_("Emit 32-bit relocations to the small data areas")},		\
322    {"tls-kernel", MASK_TLS_KERNEL,					\
323     N_("Emit rdval instead of rduniq for thread pointer")},		\
324    {"long-double-128", MASK_LONG_DOUBLE_128,				\
325     N_("Use 128-bit long double")},					\
326    {"long-double-64", -MASK_LONG_DOUBLE_128,				\
327     N_("Use 64-bit long double")},					\
328    {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT				\
329	 | TARGET_DEFAULT_EXPLICIT_RELOCS, ""} }
330
331#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
332
333#ifndef TARGET_CPU_DEFAULT
334#define TARGET_CPU_DEFAULT 0
335#endif
336
337#ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
338#ifdef HAVE_AS_EXPLICIT_RELOCS
339#define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
340#else
341#define TARGET_DEFAULT_EXPLICIT_RELOCS 0
342#endif
343#endif
344
345extern const char *alpha_cpu_string;	/* For -mcpu= */
346extern const char *alpha_tune_string;	/* For -mtune= */
347extern const char *alpha_fprm_string;	/* For -mfp-rounding-mode=[n|m|c|d] */
348extern const char *alpha_fptm_string;	/* For -mfp-trap-mode=[n|u|su|sui]  */
349extern const char *alpha_tp_string;	/* For -mtrap-precision=[p|f|i] */
350extern const char *alpha_mlat_string;	/* For -mmemory-latency= */
351extern const char *alpha_tls_size_string; /* For -mtls-size= */
352
353#define TARGET_OPTIONS					\
354{							\
355  {"cpu=",		&alpha_cpu_string,		\
356   N_("Use features of and schedule given CPU")},	\
357  {"tune=",		&alpha_tune_string,		\
358   N_("Schedule given CPU")},				\
359  {"fp-rounding-mode=",	&alpha_fprm_string,		\
360   N_("Control the generated fp rounding mode")},	\
361  {"fp-trap-mode=",	&alpha_fptm_string,		\
362   N_("Control the IEEE trap mode")},			\
363  {"trap-precision=",	&alpha_tp_string,		\
364   N_("Control the precision given to fp exceptions")},	\
365  {"memory-latency=",	&alpha_mlat_string,		\
366   N_("Tune expected memory latency")},			\
367  {"tls-size=",		&alpha_tls_size_string,		\
368   N_("Specify bit size of immediate TLS offsets")},	\
369}
370
371/* This macro defines names of additional specifications to put in the
372   specs that can be used in various specifications like CC1_SPEC.  Its
373   definition is an initializer with a subgrouping for each command option.
374
375   Each subgrouping contains a string constant, that defines the
376   specification name, and a string constant that used by the GNU CC driver
377   program.
378
379   Do not define this macro if it does not need to do anything.  */
380
381#ifndef SUBTARGET_EXTRA_SPECS
382#define SUBTARGET_EXTRA_SPECS
383#endif
384
385#define EXTRA_SPECS				\
386  { "cpp_subtarget", CPP_SUBTARGET_SPEC },	\
387  SUBTARGET_EXTRA_SPECS
388
389
390/* Sometimes certain combinations of command options do not make sense
391   on a particular target machine.  You can define a macro
392   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
393   defined, is executed once just after all the command options have
394   been parsed.
395
396   On the Alpha, it is used to translate target-option strings into
397   numeric values.  */
398
399#define OVERRIDE_OPTIONS override_options ()
400
401
402/* Define this macro to change register usage conditional on target flags.
403
404   On the Alpha, we use this to disable the floating-point registers when
405   they don't exist.  */
406
407#define CONDITIONAL_REGISTER_USAGE		\
408{						\
409  int i;					\
410  if (! TARGET_FPREGS)				\
411    for (i = 32; i < 63; i++)			\
412      fixed_regs[i] = call_used_regs[i] = 1;	\
413}
414
415
416/* Show we can debug even without a frame pointer.  */
417#define CAN_DEBUG_WITHOUT_FP
418
419/* target machine storage layout */
420
421/* Define the size of `int'.  The default is the same as the word size.  */
422#define INT_TYPE_SIZE 32
423
424/* Define the size of `long long'.  The default is the twice the word size.  */
425#define LONG_LONG_TYPE_SIZE 64
426
427/* We're IEEE unless someone says to use VAX.  */
428#define TARGET_FLOAT_FORMAT \
429  (TARGET_FLOAT_VAX ? VAX_FLOAT_FORMAT : IEEE_FLOAT_FORMAT)
430
431/* The two floating-point formats we support are S-floating, which is
432   4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
433   and `long double' are T.  */
434
435#define FLOAT_TYPE_SIZE 32
436#define DOUBLE_TYPE_SIZE 64
437#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
438
439/* Define this to set long double type size to use in libgcc2.c, which can
440   not depend on target_flags.  */
441#ifdef __LONG_DOUBLE_128__
442#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
443#else
444#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
445#endif
446
447/* Work around target_flags dependency in ada/targtyps.c.  */
448#define WIDEST_HARDWARE_FP_SIZE 64
449
450#define	WCHAR_TYPE "unsigned int"
451#define	WCHAR_TYPE_SIZE 32
452
453/* Define this macro if it is advisable to hold scalars in registers
454   in a wider mode than that declared by the program.  In such cases,
455   the value is constrained to be within the bounds of the declared
456   type, but kept valid in the wider mode.  The signedness of the
457   extension may differ from that of the type.
458
459   For Alpha, we always store objects in a full register.  32-bit objects
460   are always sign-extended, but smaller objects retain their signedness.  */
461
462#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
463  if (GET_MODE_CLASS (MODE) == MODE_INT		\
464      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
465    {						\
466      if ((MODE) == SImode)			\
467	(UNSIGNEDP) = 0;			\
468      (MODE) = DImode;				\
469    }
470
471/* Define this if function arguments should also be promoted using the above
472   procedure.  */
473
474#define PROMOTE_FUNCTION_ARGS
475
476/* Likewise, if the function return value is promoted.  */
477
478#define PROMOTE_FUNCTION_RETURN
479
480/* Define this if most significant bit is lowest numbered
481   in instructions that operate on numbered bit-fields.
482
483   There are no such instructions on the Alpha, but the documentation
484   is little endian.  */
485#define BITS_BIG_ENDIAN 0
486
487/* Define this if most significant byte of a word is the lowest numbered.
488   This is false on the Alpha.  */
489#define BYTES_BIG_ENDIAN 0
490
491/* Define this if most significant word of a multiword number is lowest
492   numbered.
493
494   For Alpha we can decide arbitrarily since there are no machine instructions
495   for them.  Might as well be consistent with bytes.  */
496#define WORDS_BIG_ENDIAN 0
497
498/* Width of a word, in units (bytes).  */
499#define UNITS_PER_WORD 8
500
501/* Width in bits of a pointer.
502   See also the macro `Pmode' defined below.  */
503#define POINTER_SIZE 64
504
505/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
506#define PARM_BOUNDARY 64
507
508/* Boundary (in *bits*) on which stack pointer should be aligned.  */
509#define STACK_BOUNDARY 128
510
511/* Allocation boundary (in *bits*) for the code of a function.  */
512#define FUNCTION_BOUNDARY 32
513
514/* Alignment of field after `int : 0' in a structure.  */
515#define EMPTY_FIELD_BOUNDARY 64
516
517/* Every structure's size must be a multiple of this.  */
518#define STRUCTURE_SIZE_BOUNDARY 8
519
520/* A bit-field declared as `int' forces `int' alignment for the struct.  */
521#define PCC_BITFIELD_TYPE_MATTERS 1
522
523/* No data type wants to be aligned rounder than this.  */
524#define BIGGEST_ALIGNMENT 128
525
526/* For atomic access to objects, must have at least 32-bit alignment
527   unless the machine has byte operations.  */
528#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
529
530/* Align all constants and variables to at least a word boundary so
531   we can pick up pieces of them faster.  */
532/* ??? Only if block-move stuff knows about different source/destination
533   alignment.  */
534#if 0
535#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
536#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
537#endif
538
539/* Set this nonzero if move instructions will actually fail to work
540   when given unaligned data.
541
542   Since we get an error message when we do one, call them invalid.  */
543
544#define STRICT_ALIGNMENT 1
545
546/* Set this nonzero if unaligned move instructions are extremely slow.
547
548   On the Alpha, they trap.  */
549
550#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
551
552/* Standard register usage.  */
553
554/* Number of actual hardware registers.
555   The hardware registers are assigned numbers for the compiler
556   from 0 to just below FIRST_PSEUDO_REGISTER.
557   All registers that the compiler knows about must be given numbers,
558   even those that are not normally considered general registers.
559
560   We define all 32 integer registers, even though $31 is always zero,
561   and all 32 floating-point registers, even though $f31 is also
562   always zero.  We do not bother defining the FP status register and
563   there are no other registers.
564
565   Since $31 is always zero, we will use register number 31 as the
566   argument pointer.  It will never appear in the generated code
567   because we will always be eliminating it in favor of the stack
568   pointer or hardware frame pointer.
569
570   Likewise, we use $f31 for the frame pointer, which will always
571   be eliminated in favor of the hardware frame pointer or the
572   stack pointer.  */
573
574#define FIRST_PSEUDO_REGISTER 64
575
576/* 1 for registers that have pervasive standard uses
577   and are not available for the register allocator.  */
578
579#define FIXED_REGISTERS  \
580 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
581  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
582  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
583  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
584
585/* 1 for registers not available across function calls.
586   These must include the FIXED_REGISTERS and also any
587   registers that can be used without being saved.
588   The latter must include the registers where values are returned
589   and the register where structure-value addresses are passed.
590   Aside from that, you can include as many other registers as you like.  */
591#define CALL_USED_REGISTERS  \
592 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
593  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
594  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
595  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
596
597/* List the order in which to allocate registers.  Each register must be
598   listed once, even those in FIXED_REGISTERS.
599
600   We allocate in the following order:
601   $f10-$f15		(nonsaved floating-point register)
602   $f22-$f30		(likewise)
603   $f21-$f16		(likewise, but input args)
604   $f0			(nonsaved, but return value)
605   $f1			(nonsaved, but immediate before saved)
606   $f2-$f9		(saved floating-point registers)
607   $1-$8		(nonsaved integer registers)
608   $22-$25		(likewise)
609   $28			(likewise)
610   $0			(likewise, but return value)
611   $21-$16		(likewise, but input args)
612   $27			(procedure value in OSF, nonsaved in NT)
613   $9-$14		(saved integer registers)
614   $26			(return PC)
615   $15			(frame pointer)
616   $29			(global pointer)
617   $30, $31, $f31	(stack pointer and always zero/ap & fp)  */
618
619#define REG_ALLOC_ORDER		\
620  {42, 43, 44, 45, 46, 47,		\
621   54, 55, 56, 57, 58, 59, 60, 61, 62,	\
622   53, 52, 51, 50, 49, 48,		\
623   32, 33,				\
624   34, 35, 36, 37, 38, 39, 40, 41,	\
625   1, 2, 3, 4, 5, 6, 7, 8,		\
626   22, 23, 24, 25,			\
627   28,					\
628   0,					\
629   21, 20, 19, 18, 17, 16,		\
630   27,					\
631   9, 10, 11, 12, 13, 14,		\
632   26,					\
633   15,					\
634   29,					\
635   30, 31, 63 }
636
637/* Return number of consecutive hard regs needed starting at reg REGNO
638   to hold something of mode MODE.
639   This is ordinarily the length in words of a value of mode MODE
640   but can be less for certain modes in special long registers.  */
641
642#define HARD_REGNO_NREGS(REGNO, MODE)   \
643  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
644
645/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
646   On Alpha, the integer registers can hold any mode.  The floating-point
647   registers can hold 64-bit integers as well, but not smaller values.  */
648
649#define HARD_REGNO_MODE_OK(REGNO, MODE) 				\
650  ((REGNO) >= 32 && (REGNO) <= 62 					\
651   ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode		\
652     || (MODE) == SCmode || (MODE) == DCmode				\
653   : 1)
654
655/* Value is 1 if MODE is a supported vector mode.  */
656
657#define VECTOR_MODE_SUPPORTED_P(MODE) \
658  (TARGET_MAX \
659   && ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode))
660
661/* A C expression that is nonzero if a value of mode
662   MODE1 is accessible in mode MODE2 without copying.
663
664   This asymmetric test is true when MODE1 could be put
665   in an FP register but MODE2 could not.  */
666
667#define MODES_TIEABLE_P(MODE1, MODE2) 				\
668  (HARD_REGNO_MODE_OK (32, (MODE1))				\
669   ? HARD_REGNO_MODE_OK (32, (MODE2))				\
670   : 1)
671
672/* Specify the registers used for certain standard purposes.
673   The values of these macros are register numbers.  */
674
675/* Alpha pc isn't overloaded on a register that the compiler knows about.  */
676/* #define PC_REGNUM  */
677
678/* Register to use for pushing function arguments.  */
679#define STACK_POINTER_REGNUM 30
680
681/* Base register for access to local variables of the function.  */
682#define HARD_FRAME_POINTER_REGNUM 15
683
684/* Value should be nonzero if functions must have frame pointers.
685   Zero means the frame pointer need not be set up (and parms
686   may be accessed via the stack pointer) in functions that seem suitable.
687   This is computed in `reload', in reload1.c.  */
688#define FRAME_POINTER_REQUIRED 0
689
690/* Base register for access to arguments of the function.  */
691#define ARG_POINTER_REGNUM 31
692
693/* Base register for access to local variables of function.  */
694#define FRAME_POINTER_REGNUM 63
695
696/* Register in which static-chain is passed to a function.
697
698   For the Alpha, this is based on an example; the calling sequence
699   doesn't seem to specify this.  */
700#define STATIC_CHAIN_REGNUM 1
701
702/* The register number of the register used to address a table of
703   static data addresses in memory.  */
704#define PIC_OFFSET_TABLE_REGNUM 29
705
706/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
707   is clobbered by calls.  */
708/* ??? It is and it isn't.  It's required to be valid for a given
709   function when the function returns.  It isn't clobbered by
710   current_file functions.  Moreover, we do not expose the ldgp
711   until after reload, so we're probably safe.  */
712/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
713
714/* Register in which address to store a structure value
715   arrives in the function.  On the Alpha, the address is passed
716   as a hidden argument.  */
717#define STRUCT_VALUE 0
718
719/* Define the classes of registers for register constraints in the
720   machine description.  Also define ranges of constants.
721
722   One of the classes must always be named ALL_REGS and include all hard regs.
723   If there is more than one class, another class must be named NO_REGS
724   and contain no registers.
725
726   The name GENERAL_REGS must be the name of a class (or an alias for
727   another name such as ALL_REGS).  This is the class of registers
728   that is allowed by "g" or "r" in a register constraint.
729   Also, registers outside this class are allocated only when
730   instructions express preferences for them.
731
732   The classes must be numbered in nondecreasing order; that is,
733   a larger-numbered class must never be contained completely
734   in a smaller-numbered class.
735
736   For any two classes, it is very desirable that there be another
737   class that represents their union.  */
738
739enum reg_class {
740  NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
741  GENERAL_REGS, FLOAT_REGS, ALL_REGS,
742  LIM_REG_CLASSES
743};
744
745#define N_REG_CLASSES (int) LIM_REG_CLASSES
746
747/* Give names of register classes as strings for dump file.  */
748
749#define REG_CLASS_NAMES					\
750 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG",	\
751  "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
752
753/* Define which registers fit in which classes.
754   This is an initializer for a vector of HARD_REG_SET
755   of length N_REG_CLASSES.  */
756
757#define REG_CLASS_CONTENTS				\
758{ {0x00000000, 0x00000000},	/* NO_REGS */		\
759  {0x00000001, 0x00000000},	/* R0_REG */		\
760  {0x01000000, 0x00000000},	/* R24_REG */		\
761  {0x02000000, 0x00000000},	/* R25_REG */		\
762  {0x08000000, 0x00000000},	/* R27_REG */		\
763  {0xffffffff, 0x80000000},	/* GENERAL_REGS */	\
764  {0x00000000, 0x7fffffff},	/* FLOAT_REGS */	\
765  {0xffffffff, 0xffffffff} }
766
767/* The same information, inverted:
768   Return the class number of the smallest class containing
769   reg number REGNO.  This could be a conditional expression
770   or could index an array.  */
771
772#define REGNO_REG_CLASS(REGNO)			\
773 ((REGNO) == 0 ? R0_REG				\
774  : (REGNO) == 24 ? R24_REG			\
775  : (REGNO) == 25 ? R25_REG			\
776  : (REGNO) == 27 ? R27_REG			\
777  : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS	\
778  : GENERAL_REGS)
779
780/* The class value for index registers, and the one for base regs.  */
781#define INDEX_REG_CLASS NO_REGS
782#define BASE_REG_CLASS GENERAL_REGS
783
784/* Get reg_class from a letter such as appears in the machine description.  */
785
786#define REG_CLASS_FROM_LETTER(C)	\
787 ((C) == 'a' ? R24_REG			\
788  : (C) == 'b' ? R25_REG		\
789  : (C) == 'c' ? R27_REG		\
790  : (C) == 'f' ? FLOAT_REGS		\
791  : (C) == 'v' ? R0_REG			\
792  : NO_REGS)
793
794/* Define this macro to change register usage conditional on target flags.  */
795/* #define CONDITIONAL_REGISTER_USAGE  */
796
797/* The letters I, J, K, L, M, N, O, and P in a register constraint string
798   can be used to stand for particular ranges of immediate operands.
799   This macro defines what the ranges are.
800   C is the letter, and VALUE is a constant value.
801   Return 1 if VALUE is in the range specified by C.
802
803   For Alpha:
804   `I' is used for the range of constants most insns can contain.
805   `J' is the constant zero.
806   `K' is used for the constant in an LDA insn.
807   `L' is used for the constant in a LDAH insn.
808   `M' is used for the constants that can be AND'ed with using a ZAP insn.
809   `N' is used for complemented 8-bit constants.
810   `O' is used for negated 8-bit constants.
811   `P' is used for the constants 1, 2 and 3.  */
812
813#define CONST_OK_FOR_LETTER_P   alpha_const_ok_for_letter_p
814
815/* Similar, but for floating or large integer constants, and defining letters
816   G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
817
818   For Alpha, `G' is the floating-point constant zero.  `H' is a CONST_DOUBLE
819   that is the operand of a ZAP insn.  */
820
821#define CONST_DOUBLE_OK_FOR_LETTER_P  alpha_const_double_ok_for_letter_p
822
823/* Optional extra constraints for this machine.
824
825   For the Alpha, `Q' means that this is a memory operand but not a
826   reference to an unaligned location.
827
828   `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
829   function.
830
831   'S' is a 6-bit constant (valid for a shift insn).
832
833   'T' is a HIGH.
834
835   'U' is a symbolic operand.
836
837   'W' is a vector zero.   */
838
839#define EXTRA_CONSTRAINT  alpha_extra_constraint
840
841/* Given an rtx X being reloaded into a reg required to be
842   in class CLASS, return the class of reg to actually use.
843   In general this is just CLASS; but on some machines
844   in some cases it is preferable to use a more restrictive class.  */
845
846#define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
847
848/* Loading and storing HImode or QImode values to and from memory
849   usually requires a scratch register.  The exceptions are loading
850   QImode and HImode from an aligned address to a general register
851   unless byte instructions are permitted.
852   We also cannot load an unaligned address or a paradoxical SUBREG into an
853   FP register.  */
854
855#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
856  secondary_reload_class((CLASS), (MODE), (IN), 1)
857
858#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
859  secondary_reload_class((CLASS), (MODE), (OUT), 0)
860
861/* If we are copying between general and FP registers, we need a memory
862   location unless the FIX extension is available.  */
863
864#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
865 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
866                   || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
867
868/* Specify the mode to be used for memory when a secondary memory
869   location is needed.  If MODE is floating-point, use it.  Otherwise,
870   widen to a word like the default.  This is needed because we always
871   store integers in FP registers in quadword format.  This whole
872   area is very tricky! */
873#define SECONDARY_MEMORY_NEEDED_MODE(MODE)		\
874  (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)		\
875   : GET_MODE_SIZE (MODE) >= 4 ? (MODE)			\
876   : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
877
878/* Return the maximum number of consecutive registers
879   needed to represent mode MODE in a register of class CLASS.  */
880
881#define CLASS_MAX_NREGS(CLASS, MODE)				\
882 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
883
884/* Return the class of registers that cannot change mode from FROM to TO.  */
885
886#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
887  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)			\
888   ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
889
890/* Define the cost of moving between registers of various classes.  Moving
891   between FLOAT_REGS and anything else except float regs is expensive.
892   In fact, we make it quite expensive because we really don't want to
893   do these moves unless it is clearly worth it.  Optimizations may
894   reduce the impact of not being able to allocate a pseudo to a
895   hard register.  */
896
897#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
898  (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS)	\
899   ? 2							\
900   : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
901
902/* A C expressions returning the cost of moving data of MODE from a register to
903   or from memory.
904
905   On the Alpha, bump this up a bit.  */
906
907extern int alpha_memory_latency;
908#define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)
909
910/* Provide the cost of a branch.  Exact meaning under development.  */
911#define BRANCH_COST 5
912
913/* Stack layout; function entry, exit and calling.  */
914
915/* Define this if pushing a word on the stack
916   makes the stack pointer a smaller address.  */
917#define STACK_GROWS_DOWNWARD
918
919/* Define this if the nominal address of the stack frame
920   is at the high-address end of the local variables;
921   that is, each additional local variable allocated
922   goes at a more negative offset in the frame.  */
923/* #define FRAME_GROWS_DOWNWARD */
924
925/* Offset within stack frame to start allocating local variables at.
926   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
927   first local allocated.  Otherwise, it is the offset to the BEGINNING
928   of the first local allocated.  */
929
930#define STARTING_FRAME_OFFSET 0
931
932/* If we generate an insn to push BYTES bytes,
933   this says how many the stack pointer really advances by.
934   On Alpha, don't define this because there are no push insns.  */
935/*  #define PUSH_ROUNDING(BYTES) */
936
937/* Define this to be nonzero if stack checking is built into the ABI.  */
938#define STACK_CHECK_BUILTIN 1
939
940/* Define this if the maximum size of all the outgoing args is to be
941   accumulated and pushed during the prologue.  The amount can be
942   found in the variable current_function_outgoing_args_size.  */
943#define ACCUMULATE_OUTGOING_ARGS 1
944
945/* Offset of first parameter from the argument pointer register value.  */
946
947#define FIRST_PARM_OFFSET(FNDECL) 0
948
949/* Definitions for register eliminations.
950
951   We have two registers that can be eliminated on the Alpha.  First, the
952   frame pointer register can often be eliminated in favor of the stack
953   pointer register.  Secondly, the argument pointer register can always be
954   eliminated; it is replaced with either the stack or frame pointer.  */
955
956/* This is an array of structures.  Each structure initializes one pair
957   of eliminable registers.  The "from" register number is given first,
958   followed by "to".  Eliminations of the same "from" register are listed
959   in order of preference.  */
960
961#define ELIMINABLE_REGS				     \
962{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
963 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
964 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
965 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
966
967/* Given FROM and TO register numbers, say whether this elimination is allowed.
968   Frame pointer elimination is automatically handled.
969
970   All eliminations are valid since the cases where FP can't be
971   eliminated are already handled.  */
972
973#define CAN_ELIMINATE(FROM, TO) 1
974
975/* Round up to a multiple of 16 bytes.  */
976#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
977
978/* Define the offset between two registers, one to be eliminated, and the other
979   its replacement, at the start of a routine.  */
980#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
981{ if ((FROM) == FRAME_POINTER_REGNUM)					\
982    (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size)	\
983		+ alpha_sa_size ());					\
984  else if ((FROM) == ARG_POINTER_REGNUM)				\
985    (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size)	\
986		+ alpha_sa_size ()					\
987		+ (ALPHA_ROUND (get_frame_size ()			\
988			       + current_function_pretend_args_size)	\
989		   - current_function_pretend_args_size));		\
990  else									\
991    abort ();								\
992}
993
994/* Define this if stack space is still allocated for a parameter passed
995   in a register.  */
996/* #define REG_PARM_STACK_SPACE */
997
998/* Value is the number of bytes of arguments automatically
999   popped when returning from a subroutine call.
1000   FUNDECL is the declaration node of the function (as a tree),
1001   FUNTYPE is the data type of the function (as a tree),
1002   or for a library call it is an identifier node for the subroutine name.
1003   SIZE is the number of bytes of arguments passed on the stack.  */
1004
1005#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1006
1007/* Define how to find the value returned by a function.
1008   VALTYPE is the data type of the value (as a tree).
1009   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1010   otherwise, FUNC is 0.
1011
1012   On Alpha the value is found in $0 for integer functions and
1013   $f0 for floating-point functions.  */
1014
1015#define FUNCTION_VALUE(VALTYPE, FUNC)	\
1016  gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE)			\
1017		 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD)	\
1018		|| POINTER_TYPE_P (VALTYPE))			\
1019	       ? word_mode : TYPE_MODE (VALTYPE),		\
1020	       ((TARGET_FPREGS					\
1021		 && (TREE_CODE (VALTYPE) == REAL_TYPE		\
1022		     || TREE_CODE (VALTYPE) == COMPLEX_TYPE))	\
1023		? 32 : 0))
1024
1025/* Define how to find the value returned by a library function
1026   assuming the value has mode MODE.  */
1027
1028#define LIBCALL_VALUE(MODE)	\
1029   gen_rtx_REG (MODE,						\
1030		(TARGET_FPREGS					\
1031		 && (GET_MODE_CLASS (MODE) == MODE_FLOAT	\
1032		     || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1033		 ? 32 : 0))
1034
1035/* The definition of this macro implies that there are cases where
1036   a scalar value cannot be returned in registers.
1037
1038   For the Alpha, any structure or union type is returned in memory, as
1039   are integers whose size is larger than 64 bits.  */
1040
1041#define RETURN_IN_MEMORY(TYPE) \
1042  (TYPE_MODE (TYPE) == BLKmode \
1043   || TYPE_MODE (TYPE) == TFmode \
1044   || TYPE_MODE (TYPE) == TCmode \
1045   || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1046
1047/* 1 if N is a possible register number for a function value
1048   as seen by the caller.  */
1049
1050#define FUNCTION_VALUE_REGNO_P(N)  \
1051  ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1052
1053/* 1 if N is a possible register number for function argument passing.
1054   On Alpha, these are $16-$21 and $f16-$f21.  */
1055
1056#define FUNCTION_ARG_REGNO_P(N) \
1057  (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1058
1059/* Define a data type for recording info about an argument list
1060   during the scan of that argument list.  This data type should
1061   hold all necessary information about the function itself
1062   and about the args processed so far, enough to enable macros
1063   such as FUNCTION_ARG to determine where the next arg should go.
1064
1065   On Alpha, this is a single integer, which is a number of words
1066   of arguments scanned so far.
1067   Thus 6 or more means all following args should go on the stack.  */
1068
1069#define CUMULATIVE_ARGS int
1070
1071/* Initialize a variable CUM of type CUMULATIVE_ARGS
1072   for a call to a function whose data type is FNTYPE.
1073   For a library call, FNTYPE is 0.  */
1074
1075#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)  (CUM) = 0
1076
1077/* Define intermediate macro to compute the size (in registers) of an argument
1078   for the Alpha.  */
1079
1080#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)				\
1081  ((MODE) == TFmode || (MODE) == TCmode ? 1				\
1082   : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1083      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1084
1085/* Update the data in CUM to advance over an argument
1086   of mode MODE and data type TYPE.
1087   (TYPE is null for libcalls where that information may not be available.)  */
1088
1089#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1090  if (MUST_PASS_IN_STACK (MODE, TYPE))					\
1091    (CUM) = 6;								\
1092  else									\
1093    (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1094
1095/* Determine where to put an argument to a function.
1096   Value is zero to push the argument on the stack,
1097   or a hard register in which to store the argument.
1098
1099   MODE is the argument's machine mode.
1100   TYPE is the data type of the argument (as a tree).
1101    This is null for libcalls where that information may
1102    not be available.
1103   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1104    the preceding args and about the function being called.
1105   NAMED is nonzero if this argument is a named parameter
1106    (otherwise it is an extra parameter matching an ellipsis).
1107
1108   On Alpha the first 6 words of args are normally in registers
1109   and the rest are pushed.  */
1110
1111#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)	\
1112  function_arg((CUM), (MODE), (TYPE), (NAMED))
1113
1114/* A C expression that indicates when an argument must be passed by
1115   reference.  If nonzero for an argument, a copy of that argument is
1116   made in memory and a pointer to the argument is passed instead of
1117   the argument itself.  The pointer is passed in whatever way is
1118   appropriate for passing a pointer to that type.  */
1119
1120#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1121  ((MODE) == TFmode || (MODE) == TCmode)
1122
1123/* Specify the padding direction of arguments.
1124
1125   On the Alpha, we must pad upwards in order to be able to pass args in
1126   registers.  */
1127
1128#define FUNCTION_ARG_PADDING(MODE, TYPE)	upward
1129
1130/* For an arg passed partly in registers and partly in memory,
1131   this is the number of registers used.
1132   For args passed entirely in registers or entirely in memory, zero.  */
1133
1134#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED)	\
1135((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED)	\
1136 ? 6 - (CUM) : 0)
1137
1138/* Perform any needed actions needed for a function that is receiving a
1139   variable number of arguments.
1140
1141   CUM is as above.
1142
1143   MODE and TYPE are the mode and type of the current parameter.
1144
1145   PRETEND_SIZE is a variable that should be set to the amount of stack
1146   that must be pushed by the prolog to pretend that our caller pushed
1147   it.
1148
1149   Normally, this macro will push all remaining incoming registers on the
1150   stack and set PRETEND_SIZE to the length of the registers pushed.
1151
1152   On the Alpha, we allocate space for all 12 arg registers, but only
1153   push those that are remaining.
1154
1155   However, if NO registers need to be saved, don't allocate any space.
1156   This is not only because we won't need the space, but because AP includes
1157   the current_pretend_args_size and we don't want to mess up any
1158   ap-relative addresses already made.
1159
1160   If we are not to use the floating-point registers, save the integer
1161   registers where we would put the floating-point registers.  This is
1162   not the most efficient way to implement varargs with just one register
1163   class, but it isn't worth doing anything more efficient in this rare
1164   case.  */
1165
1166#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL)	\
1167{ if ((CUM) < 6)							\
1168    {									\
1169      if (! (NO_RTL))							\
1170	{								\
1171	  rtx tmp; int set = get_varargs_alias_set ();			\
1172	  tmp = gen_rtx_MEM (BLKmode,					\
1173		             plus_constant (virtual_incoming_args_rtx,	\
1174				            ((CUM) + 6)* UNITS_PER_WORD)); \
1175	  set_mem_alias_set (tmp, set);					\
1176	  move_block_from_reg						\
1177	    (16 + CUM, tmp,						\
1178	     6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD);			\
1179									\
1180	  tmp = gen_rtx_MEM (BLKmode,					\
1181		             plus_constant (virtual_incoming_args_rtx,	\
1182				            (CUM) * UNITS_PER_WORD));	\
1183	  set_mem_alias_set (tmp, set);					\
1184	  move_block_from_reg						\
1185	    (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp,			\
1186	     6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD);			\
1187	 }								\
1188      PRETEND_SIZE = 12 * UNITS_PER_WORD;				\
1189    }									\
1190}
1191
1192/* We do not allow indirect calls to be optimized into sibling calls, nor
1193   can we allow a call to a function in a different compilation unit to
1194   be optimized into a sibcall.  */
1195#define FUNCTION_OK_FOR_SIBCALL(DECL)			\
1196  (DECL							\
1197   && (! TREE_PUBLIC (DECL)				\
1198       || (TREE_ASM_WRITTEN (DECL) && (*targetm.binds_local_p) (DECL))))
1199
1200/* Try to output insns to set TARGET equal to the constant C if it can be
1201   done in less than N insns.  Do all computations in MODE.  Returns the place
1202   where the output has been placed if it can be done and the insns have been
1203   emitted.  If it would take more than N insns, zero is returned and no
1204   insns and emitted.  */
1205
1206/* Define the information needed to generate branch and scc insns.  This is
1207   stored from the compare operation.  Note that we can't use "rtx" here
1208   since it hasn't been defined!  */
1209
1210struct alpha_compare
1211{
1212  struct rtx_def *op0, *op1;
1213  int fp_p;
1214};
1215
1216extern struct alpha_compare alpha_compare;
1217
1218/* Make (or fake) .linkage entry for function call.
1219   IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
1220
1221/* This macro defines the start of an assembly comment.  */
1222
1223#define ASM_COMMENT_START " #"
1224
1225/* This macro produces the initial definition of a function.  */
1226
1227#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1228  alpha_start_function(FILE,NAME,DECL);
1229
1230/* This macro closes up a function definition for the assembler.  */
1231
1232#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1233  alpha_end_function(FILE,NAME,DECL)
1234
1235/* Output any profiling code before the prologue.  */
1236
1237#define PROFILE_BEFORE_PROLOGUE 1
1238
1239/* Output assembler code to FILE to increment profiler label # LABELNO
1240   for profiling a function entry.  Under OSF/1, profiling is enabled
1241   by simply passing -pg to the assembler and linker.  */
1242
1243#define FUNCTION_PROFILER(FILE, LABELNO)
1244
1245/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1246   the stack pointer does not matter.  The value is tested only in
1247   functions that have frame pointers.
1248   No definition is equivalent to always zero.  */
1249
1250#define EXIT_IGNORE_STACK 1
1251
1252/* Define registers used by the epilogue and return instruction.  */
1253
1254#define EPILOGUE_USES(REGNO)	((REGNO) == 26)
1255
1256/* Output assembler code for a block containing the constant parts
1257   of a trampoline, leaving space for the variable parts.
1258
1259   The trampoline should set the static chain pointer to value placed
1260   into the trampoline and should branch to the specified routine.
1261   Note that $27 has been set to the address of the trampoline, so we can
1262   use it for addressability of the two data items.  */
1263
1264#define TRAMPOLINE_TEMPLATE(FILE)		\
1265do {						\
1266  fprintf (FILE, "\tldq $1,24($27)\n");		\
1267  fprintf (FILE, "\tldq $27,16($27)\n");	\
1268  fprintf (FILE, "\tjmp $31,($27),0\n");	\
1269  fprintf (FILE, "\tnop\n");			\
1270  fprintf (FILE, "\t.quad 0,0\n");		\
1271} while (0)
1272
1273/* Section in which to place the trampoline.  On Alpha, instructions
1274   may only be placed in a text segment.  */
1275
1276#define TRAMPOLINE_SECTION text_section
1277
1278/* Length in units of the trampoline for entering a nested function.  */
1279
1280#define TRAMPOLINE_SIZE    32
1281
1282/* The alignment of a trampoline, in bits.  */
1283
1284#define TRAMPOLINE_ALIGNMENT  64
1285
1286/* Emit RTL insns to initialize the variable parts of a trampoline.
1287   FNADDR is an RTX for the address of the function's pure code.
1288   CXT is an RTX for the static chain value for the function.  */
1289
1290#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1291  alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
1292
1293/* A C expression whose value is RTL representing the value of the return
1294   address for the frame COUNT steps up from the current frame.
1295   FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1296   the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
1297
1298#define RETURN_ADDR_RTX  alpha_return_addr
1299
1300/* Before the prologue, RA lives in $26.  */
1301#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
1302#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
1303#define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
1304#define DWARF_ZERO_REG 31
1305
1306/* Describe how we implement __builtin_eh_return.  */
1307#define EH_RETURN_DATA_REGNO(N)	((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1308#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 28)
1309#define EH_RETURN_HANDLER_RTX \
1310  gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1311				     current_function_outgoing_args_size))
1312
1313/* Addressing modes, and classification of registers for them.  */
1314
1315/* #define HAVE_POST_INCREMENT 0 */
1316/* #define HAVE_POST_DECREMENT 0 */
1317
1318/* #define HAVE_PRE_DECREMENT 0 */
1319/* #define HAVE_PRE_INCREMENT 0 */
1320
1321/* Macros to check register numbers against specific register classes.  */
1322
1323/* These assume that REGNO is a hard or pseudo reg number.
1324   They give nonzero only if REGNO is a hard reg of the suitable class
1325   or a pseudo reg currently allocated to a suitable hard reg.
1326   Since they use reg_renumber, they are safe only once reg_renumber
1327   has been allocated, which happens in local-alloc.c.  */
1328
1329#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1330#define REGNO_OK_FOR_BASE_P(REGNO) \
1331((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
1332 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1333
1334/* Maximum number of registers that can appear in a valid memory address.  */
1335#define MAX_REGS_PER_ADDRESS 1
1336
1337/* Recognize any constant value that is a valid address.  For the Alpha,
1338   there are only constants none since we want to use LDA to load any
1339   symbolic addresses into registers.  */
1340
1341#define CONSTANT_ADDRESS_P(X)   \
1342  (GET_CODE (X) == CONST_INT	\
1343   && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1344
1345/* Include all constant integers and constant doubles, but not
1346   floating-point, except for floating-point zero.  */
1347
1348#define LEGITIMATE_CONSTANT_P(X)  		\
1349  (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT	\
1350   || (X) == CONST0_RTX (GET_MODE (X)))
1351
1352/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1353   and check its validity for a certain class.
1354   We have two alternate definitions for each of them.
1355   The usual definition accepts all pseudo regs; the other rejects
1356   them unless they have been allocated suitable hard regs.
1357   The symbol REG_OK_STRICT causes the latter definition to be used.
1358
1359   Most source files want to accept pseudo regs in the hope that
1360   they will get allocated to the class that the insn wants them to be in.
1361   Source files for reload pass need to be strict.
1362   After reload, it makes no difference, since pseudo regs have
1363   been eliminated by then.  */
1364
1365/* Nonzero if X is a hard reg that can be used as an index
1366   or if it is a pseudo reg.  */
1367#define REG_OK_FOR_INDEX_P(X) 0
1368
1369/* Nonzero if X is a hard reg that can be used as a base reg
1370   or if it is a pseudo reg.  */
1371#define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
1372  (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1373
1374/* ??? Nonzero if X is the frame pointer, or some virtual register
1375   that may eliminate to the frame pointer.  These will be allowed to
1376   have offsets greater than 32K.  This is done because register
1377   elimination offsets will change the hi/lo split, and if we split
1378   before reload, we will require additional instructions.  */
1379#define NONSTRICT_REG_OK_FP_BASE_P(X)		\
1380  (REGNO (X) == 31 || REGNO (X) == 63		\
1381   || (REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1382       && REGNO (X) < LAST_VIRTUAL_REGISTER))
1383
1384/* Nonzero if X is a hard reg that can be used as a base reg.  */
1385#define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1386
1387#ifdef REG_OK_STRICT
1388#define REG_OK_FOR_BASE_P(X)	STRICT_REG_OK_FOR_BASE_P (X)
1389#else
1390#define REG_OK_FOR_BASE_P(X)	NONSTRICT_REG_OK_FOR_BASE_P (X)
1391#endif
1392
1393/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1394   valid memory address for an instruction.  */
1395
1396#ifdef REG_OK_STRICT
1397#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)	\
1398do {						\
1399  if (alpha_legitimate_address_p (MODE, X, 1))	\
1400    goto WIN;					\
1401} while (0)
1402#else
1403#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)	\
1404do {						\
1405  if (alpha_legitimate_address_p (MODE, X, 0))	\
1406    goto WIN;					\
1407} while (0)
1408#endif
1409
1410/* Try machine-dependent ways of modifying an illegitimate address
1411   to be legitimate.  If we find one, return the new, valid address.
1412   This macro is used in only one place: `memory_address' in explow.c.  */
1413
1414#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
1415do {								\
1416  rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE);	\
1417  if (new_x)							\
1418    {								\
1419      X = new_x;						\
1420      goto WIN;							\
1421    }								\
1422} while (0)
1423
1424/* Try a machine-dependent way of reloading an illegitimate address
1425   operand.  If we find one, push the reload and jump to WIN.  This
1426   macro is used in only one place: `find_reloads_address' in reload.c.  */
1427
1428#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
1429do {									     \
1430  rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1431  if (new_x)								     \
1432    {									     \
1433      X = new_x;							     \
1434      goto WIN;								     \
1435    }									     \
1436} while (0)
1437
1438/* Go to LABEL if ADDR (a legitimate address expression)
1439   has an effect that depends on the machine mode it is used for.
1440   On the Alpha this is true only for the unaligned modes.   We can
1441   simplify this test since we know that the address must be valid.  */
1442
1443#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
1444{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1445
1446/* Compute the cost of an address.  For the Alpha, all valid addresses are
1447   the same cost.  */
1448
1449#define ADDRESS_COST(X)  0
1450
1451/* Machine-dependent reorg pass.  */
1452#define MACHINE_DEPENDENT_REORG(X)	alpha_reorg(X)
1453
1454/* Specify the machine mode that this machine uses
1455   for the index in the tablejump instruction.  */
1456#define CASE_VECTOR_MODE SImode
1457
1458/* Define as C expression which evaluates to nonzero if the tablejump
1459   instruction expects the table to contain offsets from the address of the
1460   table.
1461
1462   Do not define this if the table should contain absolute addresses.
1463   On the Alpha, the table is really GP-relative, not relative to the PC
1464   of the table, but we pretend that it is PC-relative; this should be OK,
1465   but we should try to find some better way sometime.  */
1466#define CASE_VECTOR_PC_RELATIVE 1
1467
1468/* Define this as 1 if `char' should by default be signed; else as 0.  */
1469#define DEFAULT_SIGNED_CHAR 1
1470
1471/* This flag, if defined, says the same insns that convert to a signed fixnum
1472   also convert validly to an unsigned one.
1473
1474   We actually lie a bit here as overflow conditions are different.  But
1475   they aren't being checked anyway.  */
1476
1477#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1478
1479/* Max number of bytes we can move to or from memory
1480   in one reasonably fast instruction.  */
1481
1482#define MOVE_MAX 8
1483
1484/* If a memory-to-memory move would take MOVE_RATIO or more simple
1485   move-instruction pairs, we will do a movstr or libcall instead.
1486
1487   Without byte/word accesses, we want no more than four instructions;
1488   with, several single byte accesses are better.  */
1489
1490#define MOVE_RATIO  (TARGET_BWX ? 7 : 2)
1491
1492/* Largest number of bytes of an object that can be placed in a register.
1493   On the Alpha we have plenty of registers, so use TImode.  */
1494#define MAX_FIXED_MODE_SIZE	GET_MODE_BITSIZE (TImode)
1495
1496/* Nonzero if access to memory by bytes is no faster than for words.
1497   Also nonzero if doing byte operations (specifically shifts) in registers
1498   is undesirable.
1499
1500   On the Alpha, we want to not use the byte operation and instead use
1501   masking operations to access fields; these will save instructions.  */
1502
1503#define SLOW_BYTE_ACCESS	1
1504
1505/* Define if operations between registers always perform the operation
1506   on the full register even if a narrower mode is specified.  */
1507#define WORD_REGISTER_OPERATIONS
1508
1509/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1510   will either zero-extend or sign-extend.  The value of this macro should
1511   be the code that says which one of the two operations is implicitly
1512   done, NIL if none.  */
1513#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1514
1515/* Define if loading short immediate values into registers sign extends.  */
1516#define SHORT_IMMEDIATES_SIGN_EXTEND
1517
1518/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1519   is done just by pretending it is already truncated.  */
1520#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1521
1522/* We assume that the store-condition-codes instructions store 0 for false
1523   and some other value for true.  This is the value stored for true.  */
1524
1525#define STORE_FLAG_VALUE 1
1526
1527/* Define the value returned by a floating-point comparison instruction.  */
1528
1529#define FLOAT_STORE_FLAG_VALUE(MODE) \
1530  REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1531
1532/* Canonicalize a comparison from one we don't have to one we do have.  */
1533
1534#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1535  do {									\
1536    if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1537	&& (GET_CODE (OP1) == REG || (OP1) == const0_rtx))		\
1538      {									\
1539	rtx tem = (OP0);						\
1540	(OP0) = (OP1);							\
1541	(OP1) = tem;							\
1542	(CODE) = swap_condition (CODE);					\
1543      }									\
1544    if (((CODE) == LT || (CODE) == LTU)					\
1545	&& GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256)		\
1546      {									\
1547	(CODE) = (CODE) == LT ? LE : LEU;				\
1548	(OP1) = GEN_INT (255);						\
1549      }									\
1550  } while (0)
1551
1552/* Specify the machine mode that pointers have.
1553   After generation of rtl, the compiler makes no further distinction
1554   between pointers and any other objects of this machine mode.  */
1555#define Pmode DImode
1556
1557/* Mode of a function address in a call instruction (for indexing purposes).  */
1558
1559#define FUNCTION_MODE Pmode
1560
1561/* Define this if addresses of constant functions
1562   shouldn't be put through pseudo regs where they can be cse'd.
1563   Desirable on machines where ordinary constants are expensive
1564   but a CALL with constant address is cheap.
1565
1566   We define this on the Alpha so that gen_call and gen_call_value
1567   get to see the SYMBOL_REF (for the hint field of the jsr).  It will
1568   then copy it into a register, thus actually letting the address be
1569   cse'ed.  */
1570
1571#define NO_FUNCTION_CSE
1572
1573/* Define this to be nonzero if shift instructions ignore all but the low-order
1574   few bits.  */
1575#define SHIFT_COUNT_TRUNCATED 1
1576
1577/* Compute the cost of computing a constant rtl expression RTX
1578   whose rtx-code is CODE.  The body of this macro is a portion
1579   of a switch statement.  If the code is computed here,
1580   return it with a return statement.  Otherwise, break from the switch.
1581
1582   If this is an 8-bit constant, return zero since it can be used
1583   nearly anywhere with no cost.  If it is a valid operand for an
1584   ADD or AND, likewise return 0 if we know it will be used in that
1585   context.  Otherwise, return 2 since it might be used there later.
1586   All other constants take at least two insns.  */
1587
1588#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1589  case CONST_INT:						\
1590    if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256)		\
1591      return 0;							\
1592  case CONST_DOUBLE:						\
1593    if ((RTX) == CONST0_RTX (GET_MODE (RTX)))			\
1594      return 0;							\
1595    else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1596	|| ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1597      return 0;							\
1598    else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1599      return 2;							\
1600    else							\
1601      return COSTS_N_INSNS (2);					\
1602  case CONST:							\
1603  case SYMBOL_REF:						\
1604  case LABEL_REF:						\
1605  switch (alpha_cpu)						\
1606    {								\
1607    case PROCESSOR_EV4:						\
1608      return COSTS_N_INSNS (3);					\
1609    case PROCESSOR_EV5:						\
1610    case PROCESSOR_EV6:						\
1611      return COSTS_N_INSNS (2);					\
1612    default: abort();						\
1613    }
1614
1615/* Provide the costs of a rtl expression.  This is in the body of a
1616   switch on CODE.  */
1617
1618#define RTX_COSTS(X,CODE,OUTER_CODE)			\
1619  case PLUS:  case MINUS:				\
1620    if (FLOAT_MODE_P (GET_MODE (X)))			\
1621      switch (alpha_cpu)				\
1622        {						\
1623        case PROCESSOR_EV4:				\
1624          return COSTS_N_INSNS (6);			\
1625        case PROCESSOR_EV5:				\
1626        case PROCESSOR_EV6:				\
1627          return COSTS_N_INSNS (4); 			\
1628	default: abort();				\
1629	}						\
1630    else if (GET_CODE (XEXP (X, 0)) == MULT		\
1631	     && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1632      return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE)	\
1633	      + rtx_cost (XEXP (X, 1), OUTER_CODE));	\
1634    break;						\
1635  case MULT:						\
1636    switch (alpha_cpu)					\
1637      {							\
1638      case PROCESSOR_EV4:				\
1639        if (FLOAT_MODE_P (GET_MODE (X)))		\
1640          return COSTS_N_INSNS (6);			\
1641        return COSTS_N_INSNS (23);			\
1642      case PROCESSOR_EV5:				\
1643        if (FLOAT_MODE_P (GET_MODE (X)))		\
1644          return COSTS_N_INSNS (4);			\
1645        else if (GET_MODE (X) == DImode)		\
1646          return COSTS_N_INSNS (12);			\
1647        else						\
1648          return COSTS_N_INSNS (8);			\
1649      case PROCESSOR_EV6:				\
1650	if (FLOAT_MODE_P (GET_MODE (X)))		\
1651	  return COSTS_N_INSNS (4);			\
1652	else 						\
1653	  return COSTS_N_INSNS (7);			\
1654      default: abort();					\
1655      }							\
1656  case ASHIFT:						\
1657    if (GET_CODE (XEXP (X, 1)) == CONST_INT		\
1658	&& INTVAL (XEXP (X, 1)) <= 3)			\
1659      break;						\
1660    /* ... fall through ...  */				\
1661  case ASHIFTRT:  case LSHIFTRT:			\
1662    switch (alpha_cpu)					\
1663      {							\
1664      case PROCESSOR_EV4:				\
1665        return COSTS_N_INSNS (2);			\
1666      case PROCESSOR_EV5:				\
1667      case PROCESSOR_EV6:				\
1668        return COSTS_N_INSNS (1); 			\
1669      default: abort();					\
1670      }							\
1671  case IF_THEN_ELSE:					\
1672    switch (alpha_cpu)					\
1673      {							\
1674      case PROCESSOR_EV4:				\
1675      case PROCESSOR_EV6:				\
1676        return COSTS_N_INSNS (2);			\
1677      case PROCESSOR_EV5:				\
1678        return COSTS_N_INSNS (1); 			\
1679      default: abort();					\
1680      }							\
1681  case DIV:  case UDIV:  case MOD:  case UMOD:		\
1682    switch (alpha_cpu)					\
1683      {							\
1684      case PROCESSOR_EV4:				\
1685        if (GET_MODE (X) == SFmode)			\
1686          return COSTS_N_INSNS (34);			\
1687        else if (GET_MODE (X) == DFmode)		\
1688          return COSTS_N_INSNS (63);			\
1689        else						\
1690          return COSTS_N_INSNS (70);			\
1691      case PROCESSOR_EV5:				\
1692        if (GET_MODE (X) == SFmode)			\
1693          return COSTS_N_INSNS (15);			\
1694        else if (GET_MODE (X) == DFmode)		\
1695          return COSTS_N_INSNS (22);			\
1696        else						\
1697          return COSTS_N_INSNS (70);	/* ??? */	\
1698      case PROCESSOR_EV6:				\
1699	if (GET_MODE (X) == SFmode)			\
1700	  return COSTS_N_INSNS (12);			\
1701        else if (GET_MODE (X) == DFmode)		\
1702          return COSTS_N_INSNS (15);			\
1703        else						\
1704          return COSTS_N_INSNS (70);	/* ??? */	\
1705      default: abort();					\
1706      }							\
1707  case MEM:						\
1708    switch (alpha_cpu)					\
1709      {							\
1710      case PROCESSOR_EV4:				\
1711      case PROCESSOR_EV6:				\
1712        return COSTS_N_INSNS (3);			\
1713      case PROCESSOR_EV5:				\
1714        return COSTS_N_INSNS (2); 			\
1715      default: abort();					\
1716      }							\
1717  case NEG:  case ABS:					\
1718    if (! FLOAT_MODE_P (GET_MODE (X)))			\
1719      break;						\
1720    /* ... fall through ...  */				\
1721  case FLOAT:  case UNSIGNED_FLOAT:  case FIX:  case UNSIGNED_FIX: \
1722  case FLOAT_EXTEND:  case FLOAT_TRUNCATE:		\
1723    switch (alpha_cpu)					\
1724      {							\
1725      case PROCESSOR_EV4:				\
1726        return COSTS_N_INSNS (6);			\
1727      case PROCESSOR_EV5:				\
1728      case PROCESSOR_EV6:				\
1729        return COSTS_N_INSNS (4); 			\
1730      default: abort();					\
1731      }
1732
1733/* Control the assembler format that we output.  */
1734
1735/* Output to assembler file text saying following lines
1736   may contain character constants, extra white space, comments, etc.  */
1737#define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1738
1739/* Output to assembler file text saying following lines
1740   no longer contain unusual constructs.  */
1741#define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1742
1743#define TEXT_SECTION_ASM_OP "\t.text"
1744
1745/* Output before read-only data.  */
1746
1747#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1748
1749/* Output before writable data.  */
1750
1751#define DATA_SECTION_ASM_OP "\t.data"
1752
1753/* How to refer to registers in assembler output.
1754   This sequence is indexed by compiler's hard-register-number (see above).  */
1755
1756#define REGISTER_NAMES						\
1757{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",		\
1758 "$9", "$10", "$11", "$12", "$13", "$14", "$15",		\
1759 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",	\
1760 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",		\
1761 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8",	\
1762 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",		\
1763 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1764 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1765
1766/* Strip name encoding when emitting labels.  */
1767
1768#define ASM_OUTPUT_LABELREF(STREAM, NAME)	\
1769do {						\
1770  const char *name_ = NAME;			\
1771  if (*name_ == '@' || *name_ == '%')		\
1772    name_ += 2;					\
1773  if (*name_ == '*')				\
1774    name_++;					\
1775  else						\
1776    fputs (user_label_prefix, STREAM);		\
1777  fputs (name_, STREAM);			\
1778} while (0)
1779
1780/* Globalizing directive for a label.  */
1781#define GLOBAL_ASM_OP "\t.globl "
1782
1783/* The prefix to add to user-visible assembler symbols.  */
1784
1785#define USER_LABEL_PREFIX ""
1786
1787/* This is how to output an internal numbered label where
1788   PREFIX is the class of label and NUM is the number within the class.  */
1789
1790#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1791  fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1792
1793/* This is how to output a label for a jump table.  Arguments are the same as
1794   for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1795   passed.  */
1796
1797#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN)	\
1798{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1799
1800/* This is how to store into the string LABEL
1801   the symbol_ref name of an internal numbered label where
1802   PREFIX is the class of label and NUM is the number within the class.
1803   This is suitable for output with `assemble_name'.  */
1804
1805#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1806  sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1807
1808/* We use the default ASCII-output routine, except that we don't write more
1809   than 50 characters since the assembler doesn't support very long lines.  */
1810
1811#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1812  do {									      \
1813    FILE *_hide_asm_out_file = (MYFILE);				      \
1814    const unsigned char *_hide_p = (const unsigned char *) (MYSTRING);	      \
1815    int _hide_thissize = (MYLENGTH);					      \
1816    int _size_so_far = 0;						      \
1817    {									      \
1818      FILE *asm_out_file = _hide_asm_out_file;				      \
1819      const unsigned char *p = _hide_p;					      \
1820      int thissize = _hide_thissize;					      \
1821      int i;								      \
1822      fprintf (asm_out_file, "\t.ascii \"");				      \
1823									      \
1824      for (i = 0; i < thissize; i++)					      \
1825	{								      \
1826	  register int c = p[i];					      \
1827									      \
1828	  if (_size_so_far ++ > 50 && i < thissize - 4)			      \
1829	    _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");      \
1830									      \
1831	  if (c == '\"' || c == '\\')					      \
1832	    putc ('\\', asm_out_file);					      \
1833	  if (c >= ' ' && c < 0177)					      \
1834	    putc (c, asm_out_file);					      \
1835	  else								      \
1836	    {								      \
1837	      fprintf (asm_out_file, "\\%o", c);			      \
1838	      /* After an octal-escape, if a digit follows,		      \
1839		 terminate one string constant and start another.	      \
1840		 The VAX assembler fails to stop reading the escape	      \
1841		 after three digits, so this is the only way we		      \
1842		 can get it to parse the data properly.  */		      \
1843	      if (i < thissize - 1 && ISDIGIT (p[i + 1]))		      \
1844		_size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");  \
1845	  }								      \
1846	}								      \
1847      fprintf (asm_out_file, "\"\n");					      \
1848    }									      \
1849  }									      \
1850  while (0)
1851
1852/* This is how to output an insn to push a register on the stack.
1853   It need not be very fast code.  */
1854
1855#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)					\
1856 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n",		\
1857	  (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "",		\
1858	  (REGNO) & 31);
1859
1860/* This is how to output an insn to pop a register from the stack.
1861   It need not be very fast code.  */
1862
1863#define ASM_OUTPUT_REG_POP(FILE,REGNO)					\
1864  fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n",		\
1865	  (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "",		\
1866	  (REGNO) & 31);
1867
1868/* This is how to output an element of a case-vector that is absolute.
1869   (Alpha does not use such vectors, but we must define this macro anyway.)  */
1870
1871#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1872
1873/* This is how to output an element of a case-vector that is relative.  */
1874
1875#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1876  fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1877	   (VALUE))
1878
1879/* This is how to output an assembler line
1880   that says to advance the location counter
1881   to a multiple of 2**LOG bytes.  */
1882
1883#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1884  if ((LOG) != 0)			\
1885    fprintf (FILE, "\t.align %d\n", LOG);
1886
1887/* This is how to advance the location counter by SIZE bytes.  */
1888
1889#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1890  fprintf (FILE, "\t.space %d\n", (SIZE))
1891
1892/* This says how to output an assembler line
1893   to define a global common symbol.  */
1894
1895#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1896( fputs ("\t.comm ", (FILE)),			\
1897  assemble_name ((FILE), (NAME)),		\
1898  fprintf ((FILE), ",%d\n", (SIZE)))
1899
1900/* This says how to output an assembler line
1901   to define a local common symbol.  */
1902
1903#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)	\
1904( fputs ("\t.lcomm ", (FILE)),				\
1905  assemble_name ((FILE), (NAME)),			\
1906  fprintf ((FILE), ",%d\n", (SIZE)))
1907
1908/* Store in OUTPUT a string (made with alloca) containing
1909   an assembler-name for a local static variable named NAME.
1910   LABELNO is an integer which is different for each call.  */
1911
1912#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1913( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1914  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1915
1916
1917/* Print operand X (an rtx) in assembler syntax to file FILE.
1918   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1919   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1920
1921#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1922
1923/* Determine which codes are valid without a following integer.  These must
1924   not be alphabetic.
1925
1926   ~    Generates the name of the current function.
1927
1928   /	Generates the instruction suffix.  The TRAP_SUFFIX and ROUND_SUFFIX
1929	attributes are examined to determine what is appropriate.
1930
1931   ,    Generates single precision suffix for floating point
1932	instructions (s for IEEE, f for VAX)
1933
1934   -	Generates double precision suffix for floating point
1935	instructions (t for IEEE, g for VAX)
1936   */
1937
1938#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1939  ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1940   || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1941
1942/* Print a memory address as an operand to reference that memory location.  */
1943
1944#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1945  print_operand_address((FILE), (ADDR))
1946
1947/* Define the codes that are matched by predicates in alpha.c.  */
1948
1949#define PREDICATE_CODES 						\
1950  {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE,		\
1951			CONST_VECTOR}},					\
1952  {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}},			\
1953  {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}},			\
1954  {"reg_or_const_int_operand", {SUBREG, REG, CONST_INT}},		\
1955  {"cint8_operand", {CONST_INT}},					\
1956  {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},			\
1957  {"add_operand", {SUBREG, REG, CONST_INT}},				\
1958  {"sext_add_operand", {SUBREG, REG, CONST_INT}},			\
1959  {"const48_operand", {CONST_INT}},					\
1960  {"and_operand", {SUBREG, REG, CONST_INT}},				\
1961  {"or_operand", {SUBREG, REG, CONST_INT}},				\
1962  {"mode_mask_operand", {CONST_INT}},					\
1963  {"mul8_operand", {CONST_INT}},					\
1964  {"mode_width_operand", {CONST_INT}},					\
1965  {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}},		\
1966  {"alpha_zero_comparison_operator", {EQ, NE, LE, LT, LEU, LTU}},	\
1967  {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}},	\
1968  {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}},		\
1969  {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}},		\
1970  {"divmod_operator", {DIV, MOD, UDIV, UMOD}},				\
1971  {"const0_operand", {CONST_INT, CONST_DOUBLE, CONST_VECTOR}},		\
1972  {"current_file_function_operand", {SYMBOL_REF}},			\
1973  {"direct_call_operand", {SYMBOL_REF}},				\
1974  {"local_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}},		\
1975  {"small_symbolic_operand", {SYMBOL_REF, CONST}},			\
1976  {"global_symbolic_operand", {SYMBOL_REF, CONST}},			\
1977  {"dtp16_symbolic_operand", {CONST}},					\
1978  {"dtp32_symbolic_operand", {CONST}},					\
1979  {"gotdtp_symbolic_operand", {CONST}},					\
1980  {"tp16_symbolic_operand", {CONST}},					\
1981  {"tp32_symbolic_operand", {CONST}},					\
1982  {"gottp_symbolic_operand", {CONST}},					\
1983  {"call_operand", {REG, SYMBOL_REF}},					\
1984  {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE,		\
1985		     CONST_VECTOR, SYMBOL_REF, CONST, LABEL_REF, HIGH}},\
1986  {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE,		\
1987		    CONST_VECTOR, SYMBOL_REF, CONST, LABEL_REF, HIGH}},	\
1988  {"some_ni_operand", {SUBREG, REG, MEM}},				\
1989  {"aligned_memory_operand", {MEM}},					\
1990  {"unaligned_memory_operand", {MEM}},					\
1991  {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}},			\
1992  {"any_memory_operand", {MEM}},					\
1993  {"hard_fp_register_operand", {SUBREG, REG}},				\
1994  {"hard_int_register_operand", {SUBREG, REG}},				\
1995  {"reg_not_elim_operand", {SUBREG, REG}},				\
1996  {"reg_no_subreg_operand", {REG}},					\
1997  {"addition_operation", {PLUS}},					\
1998  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
1999  {"some_small_symbolic_operand", {SET, PARALLEL, PREFETCH, UNSPEC,	\
2000				   UNSPEC_VOLATILE}},
2001
2002/* Define the `__builtin_va_list' type for the ABI.  */
2003#define BUILD_VA_LIST_TYPE(VALIST) \
2004  (VALIST) = alpha_build_va_list ()
2005
2006/* Implement `va_start' for varargs and stdarg.  */
2007#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2008  alpha_va_start (valist, nextarg)
2009
2010/* Implement `va_arg'.  */
2011#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2012  alpha_va_arg (valist, type)
2013
2014/* Tell collect that the object format is ECOFF.  */
2015#define OBJECT_FORMAT_COFF
2016#define EXTENDED_COFF
2017
2018/* If we use NM, pass -g to it so it only lists globals.  */
2019#define NM_FLAGS "-pg"
2020
2021/* Definitions for debugging.  */
2022
2023#define SDB_DEBUGGING_INFO 1		/* generate info for mips-tfile */
2024#define DBX_DEBUGGING_INFO 1		/* generate embedded stabs */
2025#define MIPS_DEBUGGING_INFO 1		/* MIPS specific debugging info */
2026
2027#ifndef PREFERRED_DEBUGGING_TYPE	/* assume SDB_DEBUGGING_INFO */
2028#define PREFERRED_DEBUGGING_TYPE  SDB_DEBUG
2029#endif
2030
2031
2032/* Correct the offset of automatic variables and arguments.  Note that
2033   the Alpha debug format wants all automatic variables and arguments
2034   to be in terms of two different offsets from the virtual frame pointer,
2035   which is the stack pointer before any adjustment in the function.
2036   The offset for the argument pointer is fixed for the native compiler,
2037   it is either zero (for the no arguments case) or large enough to hold
2038   all argument registers.
2039   The offset for the auto pointer is the fourth argument to the .frame
2040   directive (local_offset).
2041   To stay compatible with the native tools we use the same offsets
2042   from the virtual frame pointer and adjust the debugger arg/auto offsets
2043   accordingly. These debugger offsets are set up in output_prolog.  */
2044
2045extern long alpha_arg_offset;
2046extern long alpha_auto_offset;
2047#define DEBUGGER_AUTO_OFFSET(X) \
2048  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2049#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2050
2051
2052#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE)				\
2053  alpha_output_lineno (STREAM, LINE)
2054
2055#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
2056  alpha_output_filename (STREAM, NAME)
2057
2058/* mips-tfile.c limits us to strings of one page.  We must underestimate this
2059   number, because the real length runs past this up to the next
2060   continuation point.  This is really a dbxout.c bug.  */
2061#define DBX_CONTIN_LENGTH 3000
2062
2063/* By default, turn on GDB extensions.  */
2064#define DEFAULT_GDB_EXTENSIONS 1
2065
2066/* Stabs-in-ECOFF can't handle dbxout_function_end().  */
2067#define NO_DBX_FUNCTION_END 1
2068
2069/* If we are smuggling stabs through the ALPHA ECOFF object
2070   format, put a comment in front of the .stab<x> operation so
2071   that the ALPHA assembler does not choke.  The mips-tfile program
2072   will correctly put the stab into the object file.  */
2073
2074#define ASM_STABS_OP	((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
2075#define ASM_STABN_OP	((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
2076#define ASM_STABD_OP	((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
2077
2078/* Forward references to tags are allowed.  */
2079#define SDB_ALLOW_FORWARD_REFERENCES
2080
2081/* Unknown tags are also allowed.  */
2082#define SDB_ALLOW_UNKNOWN_REFERENCES
2083
2084#define PUT_SDB_DEF(a)					\
2085do {							\
2086  fprintf (asm_out_file, "\t%s.def\t",			\
2087	   (TARGET_GAS) ? "" : "#");			\
2088  ASM_OUTPUT_LABELREF (asm_out_file, a); 		\
2089  fputc (';', asm_out_file);				\
2090} while (0)
2091
2092#define PUT_SDB_PLAIN_DEF(a)				\
2093do {							\
2094  fprintf (asm_out_file, "\t%s.def\t.%s;",		\
2095	   (TARGET_GAS) ? "" : "#", (a));		\
2096} while (0)
2097
2098#define PUT_SDB_TYPE(a)					\
2099do {							\
2100  fprintf (asm_out_file, "\t.type\t0x%x;", (a));	\
2101} while (0)
2102
2103/* For block start and end, we create labels, so that
2104   later we can figure out where the correct offset is.
2105   The normal .ent/.end serve well enough for functions,
2106   so those are just commented out.  */
2107
2108extern int sdb_label_count;		/* block start/end next label # */
2109
2110#define PUT_SDB_BLOCK_START(LINE)			\
2111do {							\
2112  fprintf (asm_out_file,				\
2113	   "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n",		\
2114	   sdb_label_count,				\
2115	   (TARGET_GAS) ? "" : "#",			\
2116	   sdb_label_count,				\
2117	   (LINE));					\
2118  sdb_label_count++;					\
2119} while (0)
2120
2121#define PUT_SDB_BLOCK_END(LINE)				\
2122do {							\
2123  fprintf (asm_out_file,				\
2124	   "$Le%d:\n\t%s.bend\t$Le%d\t%d\n",		\
2125	   sdb_label_count,				\
2126	   (TARGET_GAS) ? "" : "#",			\
2127	   sdb_label_count,				\
2128	   (LINE));					\
2129  sdb_label_count++;					\
2130} while (0)
2131
2132#define PUT_SDB_FUNCTION_START(LINE)
2133
2134#define PUT_SDB_FUNCTION_END(LINE)
2135
2136#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
2137
2138/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2139   mips-tdump.c to print them out.
2140
2141   These must match the corresponding definitions in gdb/mipsread.c.
2142   Unfortunately, gcc and gdb do not currently share any directories.  */
2143
2144#define CODE_MASK 0x8F300
2145#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2146#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2147#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2148
2149/* Override some mips-tfile definitions.  */
2150
2151#define SHASH_SIZE 511
2152#define THASH_SIZE 55
2153
2154/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints.  */
2155
2156#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2157
2158/* The system headers under Alpha systems are generally C++-aware.  */
2159#define NO_IMPLICIT_EXTERN_C
2160
2161/* Generate calls to memcpy, etc., not bcopy, etc.  */
2162#define TARGET_MEM_FUNCTIONS 1
2163