1/* Frame unwinder for frames with DWARF Call Frame Information.
2
3   Copyright 2003, 2004 Free Software Foundation, Inc.
4
5   Contributed by Mark Kettenis.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place - Suite 330,
22   Boston, MA 02111-1307, USA.  */
23
24#include "defs.h"
25#include "dwarf2expr.h"
26#include "elf/dwarf2.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
32#include "symtab.h"
33#include "objfiles.h"
34#include "regcache.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
39#include "complaints.h"
40#include "dwarf2-frame.h"
41
42/* Call Frame Information (CFI).  */
43
44/* Common Information Entry (CIE).  */
45
46struct dwarf2_cie
47{
48  /* Offset into the .debug_frame section where this CIE was found.
49     Used to identify this CIE.  */
50  ULONGEST cie_pointer;
51
52  /* Constant that is factored out of all advance location
53     instructions.  */
54  ULONGEST code_alignment_factor;
55
56  /* Constants that is factored out of all offset instructions.  */
57  LONGEST data_alignment_factor;
58
59  /* Return address column.  */
60  ULONGEST return_address_register;
61
62  /* Instruction sequence to initialize a register set.  */
63  unsigned char *initial_instructions;
64  unsigned char *end;
65
66  /* Encoding of addresses.  */
67  unsigned char encoding;
68
69  /* True if a 'z' augmentation existed.  */
70  unsigned char saw_z_augmentation;
71
72  struct dwarf2_cie *next;
73};
74
75/* Frame Description Entry (FDE).  */
76
77struct dwarf2_fde
78{
79  /* CIE for this FDE.  */
80  struct dwarf2_cie *cie;
81
82  /* First location associated with this FDE.  */
83  CORE_ADDR initial_location;
84
85  /* Number of bytes of program instructions described by this FDE.  */
86  CORE_ADDR address_range;
87
88  /* Instruction sequence.  */
89  unsigned char *instructions;
90  unsigned char *end;
91
92  struct dwarf2_fde *next;
93};
94
95static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96
97
98/* Structure describing a frame state.  */
99
100struct dwarf2_frame_state
101{
102  /* Each register save state can be described in terms of a CFA slot,
103     another register, or a location expression.  */
104  struct dwarf2_frame_state_reg_info
105  {
106    struct dwarf2_frame_state_reg *reg;
107    int num_regs;
108
109    /* Used to implement DW_CFA_remember_state.  */
110    struct dwarf2_frame_state_reg_info *prev;
111  } regs;
112
113  LONGEST cfa_offset;
114  ULONGEST cfa_reg;
115  unsigned char *cfa_exp;
116  enum {
117    CFA_UNSET,
118    CFA_REG_OFFSET,
119    CFA_EXP
120  } cfa_how;
121
122  /* The PC described by the current frame state.  */
123  CORE_ADDR pc;
124
125  /* Initial register set from the CIE.
126     Used to implement DW_CFA_restore.  */
127  struct dwarf2_frame_state_reg_info initial;
128
129  /* The information we care about from the CIE.  */
130  LONGEST data_align;
131  ULONGEST code_align;
132  ULONGEST retaddr_column;
133};
134
135/* Store the length the expression for the CFA in the `cfa_reg' field,
136   which is unused in that case.  */
137#define cfa_exp_len cfa_reg
138
139/* Assert that the register set RS is large enough to store NUM_REGS
140   columns.  If necessary, enlarge the register set.  */
141
142static void
143dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144			       int num_regs)
145{
146  size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148  if (num_regs <= rs->num_regs)
149    return;
150
151  rs->reg = (struct dwarf2_frame_state_reg *)
152    xrealloc (rs->reg, num_regs * size);
153
154  /* Initialize newly allocated registers.  */
155  memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156  rs->num_regs = num_regs;
157}
158
159/* Copy the register columns in register set RS into newly allocated
160   memory and return a pointer to this newly created copy.  */
161
162static struct dwarf2_frame_state_reg *
163dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164{
165  size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166  struct dwarf2_frame_state_reg *reg;
167
168  reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169  memcpy (reg, rs->reg, size);
170
171  return reg;
172}
173
174/* Release the memory allocated to register set RS.  */
175
176static void
177dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178{
179  if (rs)
180    {
181      dwarf2_frame_state_free_regs (rs->prev);
182
183      xfree (rs->reg);
184      xfree (rs);
185    }
186}
187
188/* Release the memory allocated to the frame state FS.  */
189
190static void
191dwarf2_frame_state_free (void *p)
192{
193  struct dwarf2_frame_state *fs = p;
194
195  dwarf2_frame_state_free_regs (fs->initial.prev);
196  dwarf2_frame_state_free_regs (fs->regs.prev);
197  xfree (fs->initial.reg);
198  xfree (fs->regs.reg);
199  xfree (fs);
200}
201
202
203/* Helper functions for execute_stack_op.  */
204
205static CORE_ADDR
206read_reg (void *baton, int reg)
207{
208  struct frame_info *next_frame = (struct frame_info *) baton;
209  struct gdbarch *gdbarch = get_frame_arch (next_frame);
210  int regnum;
211  char *buf;
212
213  regnum = DWARF2_REG_TO_REGNUM (reg);
214
215  buf = (char *) alloca (register_size (gdbarch, regnum));
216  frame_unwind_register (next_frame, regnum, buf);
217  return extract_typed_address (buf, builtin_type_void_data_ptr);
218}
219
220static void
221read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222{
223  read_memory (addr, buf, len);
224}
225
226static void
227no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228{
229  internal_error (__FILE__, __LINE__,
230		  "Support for DW_OP_fbreg is unimplemented");
231}
232
233static CORE_ADDR
234no_get_tls_address (void *baton, CORE_ADDR offset)
235{
236  internal_error (__FILE__, __LINE__,
237		  "Support for DW_OP_GNU_push_tls_address is unimplemented");
238}
239
240static CORE_ADDR
241execute_stack_op (unsigned char *exp, ULONGEST len,
242		  struct frame_info *next_frame, CORE_ADDR initial)
243{
244  struct dwarf_expr_context *ctx;
245  CORE_ADDR result;
246
247  ctx = new_dwarf_expr_context ();
248  ctx->baton = next_frame;
249  ctx->read_reg = read_reg;
250  ctx->read_mem = read_mem;
251  ctx->get_frame_base = no_get_frame_base;
252  ctx->get_tls_address = no_get_tls_address;
253
254  dwarf_expr_push (ctx, initial);
255  dwarf_expr_eval (ctx, exp, len);
256  result = dwarf_expr_fetch (ctx, 0);
257
258  if (ctx->in_reg)
259    result = read_reg (next_frame, result);
260
261  free_dwarf_expr_context (ctx);
262
263  return result;
264}
265
266
267static void
268execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269		     struct frame_info *next_frame,
270		     struct dwarf2_frame_state *fs)
271{
272  CORE_ADDR pc = frame_pc_unwind (next_frame);
273  int bytes_read;
274
275  while (insn_ptr < insn_end && fs->pc <= pc)
276    {
277      unsigned char insn = *insn_ptr++;
278      ULONGEST utmp, reg;
279      LONGEST offset;
280
281      if ((insn & 0xc0) == DW_CFA_advance_loc)
282	fs->pc += (insn & 0x3f) * fs->code_align;
283      else if ((insn & 0xc0) == DW_CFA_offset)
284	{
285	  reg = insn & 0x3f;
286	  insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287	  offset = utmp * fs->data_align;
288	  dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289	  fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290	  fs->regs.reg[reg].loc.offset = offset;
291	}
292      else if ((insn & 0xc0) == DW_CFA_restore)
293	{
294	  gdb_assert (fs->initial.reg);
295	  reg = insn & 0x3f;
296	  dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297	  fs->regs.reg[reg] = fs->initial.reg[reg];
298	}
299      else
300	{
301	  switch (insn)
302	    {
303	    case DW_CFA_set_loc:
304	      fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305	      insn_ptr += bytes_read;
306	      break;
307
308	    case DW_CFA_advance_loc1:
309	      utmp = extract_unsigned_integer (insn_ptr, 1);
310	      fs->pc += utmp * fs->code_align;
311	      insn_ptr++;
312	      break;
313	    case DW_CFA_advance_loc2:
314	      utmp = extract_unsigned_integer (insn_ptr, 2);
315	      fs->pc += utmp * fs->code_align;
316	      insn_ptr += 2;
317	      break;
318	    case DW_CFA_advance_loc4:
319	      utmp = extract_unsigned_integer (insn_ptr, 4);
320	      fs->pc += utmp * fs->code_align;
321	      insn_ptr += 4;
322	      break;
323
324	    case DW_CFA_offset_extended:
325	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327	      offset = utmp * fs->data_align;
328	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330	      fs->regs.reg[reg].loc.offset = offset;
331	      break;
332
333	    case DW_CFA_restore_extended:
334	      gdb_assert (fs->initial.reg);
335	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337	      fs->regs.reg[reg] = fs->initial.reg[reg];
338	      break;
339
340	    case DW_CFA_undefined:
341	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344	      break;
345
346	    case DW_CFA_same_value:
347	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350	      break;
351
352	    case DW_CFA_register:
353	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357	      fs->regs.reg[reg].loc.reg = utmp;
358	      break;
359
360	    case DW_CFA_remember_state:
361	      {
362		struct dwarf2_frame_state_reg_info *new_rs;
363
364		new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365		*new_rs = fs->regs;
366		fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367		fs->regs.prev = new_rs;
368	      }
369	      break;
370
371	    case DW_CFA_restore_state:
372	      {
373		struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375		if (old_rs == NULL)
376		  {
377		    complaint (&symfile_complaints, "\
378bad CFI data; mismatched DW_CFA_restore_state at 0x%s", paddr (fs->pc));
379		  }
380		else
381		  {
382		    xfree (fs->regs.reg);
383		    fs->regs = *old_rs;
384		    xfree (old_rs);
385		  }
386	      }
387	      break;
388
389	    case DW_CFA_def_cfa:
390	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392	      fs->cfa_offset = utmp;
393	      fs->cfa_how = CFA_REG_OFFSET;
394	      break;
395
396	    case DW_CFA_def_cfa_register:
397	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398	      fs->cfa_how = CFA_REG_OFFSET;
399	      break;
400
401	    case DW_CFA_def_cfa_offset:
402	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403	      /* cfa_how deliberately not set.  */
404	      break;
405
406	    case DW_CFA_nop:
407	      break;
408
409	    case DW_CFA_def_cfa_expression:
410	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411	      fs->cfa_exp = insn_ptr;
412	      fs->cfa_how = CFA_EXP;
413	      insn_ptr += fs->cfa_exp_len;
414	      break;
415
416	    case DW_CFA_expression:
417	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
418	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420	      fs->regs.reg[reg].loc.exp = insn_ptr;
421	      fs->regs.reg[reg].exp_len = utmp;
422	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
423	      insn_ptr += utmp;
424	      break;
425
426	    case DW_CFA_offset_extended_sf:
427	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
428	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
429	      offset *= fs->data_align;
430	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432	      fs->regs.reg[reg].loc.offset = offset;
433	      break;
434
435	    case DW_CFA_def_cfa_sf:
436	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438	      fs->cfa_offset = offset * fs->data_align;
439	      fs->cfa_how = CFA_REG_OFFSET;
440	      break;
441
442	    case DW_CFA_def_cfa_offset_sf:
443	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444	      fs->cfa_offset = offset * fs->data_align;
445	      /* cfa_how deliberately not set.  */
446	      break;
447
448	    case DW_CFA_val_expression:
449	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
450	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
451	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
452	      fs->regs.reg[reg].loc.exp = insn_ptr;
453	      fs->regs.reg[reg].exp_len = utmp;
454	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
455	      insn_ptr += utmp;
456	      break;
457
458	    case DW_CFA_GNU_args_size:
459	      /* Ignored.  */
460	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
461	      break;
462
463	    default:
464	      internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
465	    }
466	}
467    }
468
469  /* Don't allow remember/restore between CIE and FDE programs.  */
470  dwarf2_frame_state_free_regs (fs->regs.prev);
471  fs->regs.prev = NULL;
472}
473
474
475/* Architecture-specific operations.  */
476
477/* Per-architecture data key.  */
478static struct gdbarch_data *dwarf2_frame_data;
479
480struct dwarf2_frame_ops
481{
482  /* Pre-initialize the register state REG for register REGNUM.  */
483  void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
484};
485
486/* Default architecture-specific register state initialization
487   function.  */
488
489static void
490dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
491			       struct dwarf2_frame_state_reg *reg)
492{
493  /* If we have a register that acts as a program counter, mark it as
494     a destination for the return address.  If we have a register that
495     serves as the stack pointer, arrange for it to be filled with the
496     call frame address (CFA).  The other registers are marked as
497     unspecified.
498
499     We copy the return address to the program counter, since many
500     parts in GDB assume that it is possible to get the return address
501     by unwinding the program counter register.  However, on ISA's
502     with a dedicated return address register, the CFI usually only
503     contains information to unwind that return address register.
504
505     The reason we're treating the stack pointer special here is
506     because in many cases GCC doesn't emit CFI for the stack pointer
507     and implicitly assumes that it is equal to the CFA.  This makes
508     some sense since the DWARF specification (version 3, draft 8,
509     p. 102) says that:
510
511     "Typically, the CFA is defined to be the value of the stack
512     pointer at the call site in the previous frame (which may be
513     different from its value on entry to the current frame)."
514
515     However, this isn't true for all platforms supported by GCC
516     (e.g. IBM S/390 and zSeries).  Those architectures should provide
517     their own architecture-specific initialization function.  */
518
519  if (regnum == PC_REGNUM)
520    reg->how = DWARF2_FRAME_REG_RA;
521  else if (regnum == SP_REGNUM)
522    reg->how = DWARF2_FRAME_REG_CFA;
523}
524
525/* Return a default for the architecture-specific operations.  */
526
527static void *
528dwarf2_frame_init (struct obstack *obstack)
529{
530  struct dwarf2_frame_ops *ops;
531
532  ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
533  ops->init_reg = dwarf2_frame_default_init_reg;
534  return ops;
535}
536
537/* Set the architecture-specific register state initialization
538   function for GDBARCH to INIT_REG.  */
539
540void
541dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
542			   void (*init_reg) (struct gdbarch *, int,
543					     struct dwarf2_frame_state_reg *))
544{
545  struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
546
547  ops->init_reg = init_reg;
548}
549
550/* Pre-initialize the register state REG for register REGNUM.  */
551
552static void
553dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
554		       struct dwarf2_frame_state_reg *reg)
555{
556  struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
557
558  ops->init_reg (gdbarch, regnum, reg);
559}
560
561
562struct dwarf2_frame_cache
563{
564  /* DWARF Call Frame Address.  */
565  CORE_ADDR cfa;
566
567  /* Saved registers, indexed by GDB register number, not by DWARF
568     register number.  */
569  struct dwarf2_frame_state_reg *reg;
570};
571
572static struct dwarf2_frame_cache *
573dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
574{
575  struct cleanup *old_chain;
576  struct gdbarch *gdbarch = get_frame_arch (next_frame);
577  const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
578  struct dwarf2_frame_cache *cache;
579  struct dwarf2_frame_state *fs;
580  struct dwarf2_fde *fde;
581
582  if (*this_cache)
583    return *this_cache;
584
585  /* Allocate a new cache.  */
586  cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
587  cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
588
589  /* Allocate and initialize the frame state.  */
590  fs = XMALLOC (struct dwarf2_frame_state);
591  memset (fs, 0, sizeof (struct dwarf2_frame_state));
592  old_chain = make_cleanup (dwarf2_frame_state_free, fs);
593
594  /* Unwind the PC.
595
596     Note that if NEXT_FRAME is never supposed to return (i.e. a call
597     to abort), the compiler might optimize away the instruction at
598     NEXT_FRAME's return address.  As a result the return address will
599     point at some random instruction, and the CFI for that
600     instruction is probably worthless to us.  GCC's unwinder solves
601     this problem by substracting 1 from the return address to get an
602     address in the middle of a presumed call instruction (or the
603     instruction in the associated delay slot).  This should only be
604     done for "normal" frames and not for resume-type frames (signal
605     handlers, sentinel frames, dummy frames).  The function
606     frame_unwind_address_in_block does just this.  It's not clear how
607     reliable the method is though; there is the potential for the
608     register state pre-call being different to that on return.  */
609  fs->pc = frame_unwind_address_in_block (next_frame);
610
611  /* Find the correct FDE.  */
612  fde = dwarf2_frame_find_fde (&fs->pc);
613  gdb_assert (fde != NULL);
614
615  /* Extract any interesting information from the CIE.  */
616  fs->data_align = fde->cie->data_alignment_factor;
617  fs->code_align = fde->cie->code_alignment_factor;
618  fs->retaddr_column = fde->cie->return_address_register;
619
620  /* First decode all the insns in the CIE.  */
621  execute_cfa_program (fde->cie->initial_instructions,
622		       fde->cie->end, next_frame, fs);
623
624  /* Save the initialized register set.  */
625  fs->initial = fs->regs;
626  fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
627
628  /* Then decode the insns in the FDE up to our target PC.  */
629  execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
630
631  /* Caclulate the CFA.  */
632  switch (fs->cfa_how)
633    {
634    case CFA_REG_OFFSET:
635      cache->cfa = read_reg (next_frame, fs->cfa_reg);
636      cache->cfa += fs->cfa_offset;
637      break;
638
639    case CFA_EXP:
640      cache->cfa =
641	execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
642      break;
643
644    default:
645      internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
646    }
647
648  /* Initialize the register state.  */
649  {
650    int regnum;
651
652    for (regnum = 0; regnum < num_regs; regnum++)
653      dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
654  }
655
656  /* Go through the DWARF2 CFI generated table and save its register
657     location information in the cache.  Note that we don't skip the
658     return address column; it's perfectly all right for it to
659     correspond to a real register.  If it doesn't correspond to a
660     real register, or if we shouldn't treat it as such,
661     DWARF2_REG_TO_REGNUM should be defined to return a number outside
662     the range [0, NUM_REGS).  */
663  {
664    int column;		/* CFI speak for "register number".  */
665
666    for (column = 0; column < fs->regs.num_regs; column++)
667      {
668	/* Use the GDB register number as the destination index.  */
669	int regnum = DWARF2_REG_TO_REGNUM (column);
670
671	/* If there's no corresponding GDB register, ignore it.  */
672	if (regnum < 0 || regnum >= num_regs)
673	  continue;
674
675	/* NOTE: cagney/2003-09-05: CFI should specify the disposition
676	   of all debug info registers.  If it doesn't, complain (but
677	   not too loudly).  It turns out that GCC assumes that an
678	   unspecified register implies "same value" when CFI (draft
679	   7) specifies nothing at all.  Such a register could equally
680	   be interpreted as "undefined".  Also note that this check
681	   isn't sufficient; it only checks that all registers in the
682	   range [0 .. max column] are specified, and won't detect
683	   problems when a debug info register falls outside of the
684	   table.  We need a way of iterating through all the valid
685	   DWARF2 register numbers.  */
686	if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
687	  complaint (&symfile_complaints,
688		     "Incomplete CFI data; unspecified registers at 0x%s",
689		     paddr (fs->pc));
690	else
691	  cache->reg[regnum] = fs->regs.reg[column];
692      }
693  }
694
695  /* Eliminate any DWARF2_FRAME_REG_RA rules.  */
696  {
697    int regnum;
698
699    for (regnum = 0; regnum < num_regs; regnum++)
700      {
701	if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
702	  {
703	    struct dwarf2_frame_state_reg *retaddr_reg =
704	      &fs->regs.reg[fs->retaddr_column];
705
706	    /* It seems rather bizarre to specify an "empty" column as
707               the return adress column.  However, this is exactly
708               what GCC does on some targets.  It turns out that GCC
709               assumes that the return address can be found in the
710               register corresponding to the return address column.
711               Incidentally, that's how should treat a return address
712               column specifying "same value" too.  */
713	    if (fs->retaddr_column < fs->regs.num_regs
714		&& retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
715		&& retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
716	      cache->reg[regnum] = *retaddr_reg;
717	    else
718	      {
719		cache->reg[regnum].loc.reg = fs->retaddr_column;
720		cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
721	      }
722	  }
723      }
724  }
725
726  do_cleanups (old_chain);
727
728  *this_cache = cache;
729  return cache;
730}
731
732static void
733dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
734		      struct frame_id *this_id)
735{
736  struct dwarf2_frame_cache *cache =
737    dwarf2_frame_cache (next_frame, this_cache);
738
739  (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
740}
741
742static void
743dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
744			    int regnum, int *optimizedp,
745			    enum lval_type *lvalp, CORE_ADDR *addrp,
746			    int *realnump, void *valuep)
747{
748  struct gdbarch *gdbarch = get_frame_arch (next_frame);
749  struct dwarf2_frame_cache *cache =
750    dwarf2_frame_cache (next_frame, this_cache);
751  CORE_ADDR value;
752
753  switch (cache->reg[regnum].how)
754    {
755    case DWARF2_FRAME_REG_UNDEFINED:
756      /* If CFI explicitly specified that the value isn't defined,
757	 mark it as optimized away; the value isn't available.  */
758      *optimizedp = 1;
759      *lvalp = not_lval;
760      *addrp = 0;
761      *realnump = -1;
762      if (valuep)
763	{
764	  /* In some cases, for example %eflags on the i386, we have
765	     to provide a sane value, even though this register wasn't
766	     saved.  Assume we can get it from NEXT_FRAME.  */
767	  frame_unwind_register (next_frame, regnum, valuep);
768	}
769      break;
770
771    case DWARF2_FRAME_REG_SAVED_OFFSET:
772      *optimizedp = 0;
773      *lvalp = lval_memory;
774      *addrp = cache->cfa + cache->reg[regnum].loc.offset;
775      *realnump = -1;
776      if (valuep)
777	{
778	  /* Read the value in from memory.  */
779	  read_memory (*addrp, valuep, register_size (gdbarch, regnum));
780	}
781      break;
782
783    case DWARF2_FRAME_REG_SAVED_REG:
784      regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
785      frame_register_unwind (next_frame, regnum,
786			     optimizedp, lvalp, addrp, realnump, valuep);
787      break;
788
789    case DWARF2_FRAME_REG_SAVED_EXP:
790      *optimizedp = 0;
791      *lvalp = lval_memory;
792      *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
793				 cache->reg[regnum].exp_len,
794				 next_frame, cache->cfa);
795      *realnump = -1;
796      if (valuep)
797	{
798	  /* Read the value in from memory.  */
799	  read_memory (*addrp, valuep, register_size (gdbarch, regnum));
800	}
801      break;
802
803    case DWARF2_FRAME_REG_SAVED_VAL_EXP:
804      *optimizedp = 0;
805      *lvalp = not_lval;
806      *addrp = 0;
807      value = execute_stack_op (cache->reg[regnum].loc.exp,
808				cache->reg[regnum].exp_len,
809				next_frame, cache->cfa);
810      *realnump = -1;
811      if (valuep)
812	{
813	  /* Store the value.  */
814	  store_typed_address (valuep, builtin_type_void_data_ptr, value);
815	}
816      break;
817
818    case DWARF2_FRAME_REG_UNSPECIFIED:
819      /* GCC, in its infinite wisdom decided to not provide unwind
820	 information for registers that are "same value".  Since
821	 DWARF2 (3 draft 7) doesn't define such behavior, said
822	 registers are actually undefined (which is different to CFI
823	 "undefined").  Code above issues a complaint about this.
824	 Here just fudge the books, assume GCC, and that the value is
825	 more inner on the stack.  */
826      frame_register_unwind (next_frame, regnum,
827			     optimizedp, lvalp, addrp, realnump, valuep);
828      break;
829
830    case DWARF2_FRAME_REG_SAME_VALUE:
831      frame_register_unwind (next_frame, regnum,
832			     optimizedp, lvalp, addrp, realnump, valuep);
833      break;
834
835    case DWARF2_FRAME_REG_CFA:
836      *optimizedp = 0;
837      *lvalp = not_lval;
838      *addrp = 0;
839      *realnump = -1;
840      if (valuep)
841	{
842	  /* Store the value.  */
843	  store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
844	}
845      break;
846
847    default:
848      internal_error (__FILE__, __LINE__, "Unknown register rule.");
849    }
850}
851
852static const struct frame_unwind dwarf2_frame_unwind =
853{
854  NORMAL_FRAME,
855  dwarf2_frame_this_id,
856  dwarf2_frame_prev_register
857};
858
859const struct frame_unwind *
860dwarf2_frame_sniffer (struct frame_info *next_frame)
861{
862  /* Grab an address that is guarenteed to reside somewhere within the
863     function.  frame_pc_unwind(), for a no-return next function, can
864     end up returning something past the end of this function's body.  */
865  CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
866  if (dwarf2_frame_find_fde (&block_addr))
867    return &dwarf2_frame_unwind;
868
869  return NULL;
870}
871
872
873/* There is no explicitly defined relationship between the CFA and the
874   location of frame's local variables and arguments/parameters.
875   Therefore, frame base methods on this page should probably only be
876   used as a last resort, just to avoid printing total garbage as a
877   response to the "info frame" command.  */
878
879static CORE_ADDR
880dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
881{
882  struct dwarf2_frame_cache *cache =
883    dwarf2_frame_cache (next_frame, this_cache);
884
885  return cache->cfa;
886}
887
888static const struct frame_base dwarf2_frame_base =
889{
890  &dwarf2_frame_unwind,
891  dwarf2_frame_base_address,
892  dwarf2_frame_base_address,
893  dwarf2_frame_base_address
894};
895
896const struct frame_base *
897dwarf2_frame_base_sniffer (struct frame_info *next_frame)
898{
899  CORE_ADDR pc = frame_pc_unwind (next_frame);
900  if (dwarf2_frame_find_fde (&pc))
901    return &dwarf2_frame_base;
902
903  return NULL;
904}
905
906/* A minimal decoding of DWARF2 compilation units.  We only decode
907   what's needed to get to the call frame information.  */
908
909struct comp_unit
910{
911  /* Keep the bfd convenient.  */
912  bfd *abfd;
913
914  struct objfile *objfile;
915
916  /* Linked list of CIEs for this object.  */
917  struct dwarf2_cie *cie;
918
919  /* Pointer to the .debug_frame section loaded into memory.  */
920  char *dwarf_frame_buffer;
921
922  /* Length of the loaded .debug_frame section.  */
923  unsigned long dwarf_frame_size;
924
925  /* Pointer to the .debug_frame section.  */
926  asection *dwarf_frame_section;
927
928  /* Base for DW_EH_PE_datarel encodings.  */
929  bfd_vma dbase;
930
931  /* Base for DW_EH_PE_textrel encodings.  */
932  bfd_vma tbase;
933};
934
935const struct objfile_data *dwarf2_frame_objfile_data;
936
937static unsigned int
938read_1_byte (bfd *bfd, char *buf)
939{
940  return bfd_get_8 (abfd, (bfd_byte *) buf);
941}
942
943static unsigned int
944read_4_bytes (bfd *abfd, char *buf)
945{
946  return bfd_get_32 (abfd, (bfd_byte *) buf);
947}
948
949static ULONGEST
950read_8_bytes (bfd *abfd, char *buf)
951{
952  return bfd_get_64 (abfd, (bfd_byte *) buf);
953}
954
955static ULONGEST
956read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
957{
958  ULONGEST result;
959  unsigned int num_read;
960  int shift;
961  unsigned char byte;
962
963  result = 0;
964  shift = 0;
965  num_read = 0;
966
967  do
968    {
969      byte = bfd_get_8 (abfd, (bfd_byte *) buf);
970      buf++;
971      num_read++;
972      result |= ((byte & 0x7f) << shift);
973      shift += 7;
974    }
975  while (byte & 0x80);
976
977  *bytes_read_ptr = num_read;
978
979  return result;
980}
981
982static LONGEST
983read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
984{
985  LONGEST result;
986  int shift;
987  unsigned int num_read;
988  unsigned char byte;
989
990  result = 0;
991  shift = 0;
992  num_read = 0;
993
994  do
995    {
996      byte = bfd_get_8 (abfd, (bfd_byte *) buf);
997      buf++;
998      num_read++;
999      result |= ((byte & 0x7f) << shift);
1000      shift += 7;
1001    }
1002  while (byte & 0x80);
1003
1004  if ((shift < 32) && (byte & 0x40))
1005    result |= -(1 << shift);
1006
1007  *bytes_read_ptr = num_read;
1008
1009  return result;
1010}
1011
1012static ULONGEST
1013read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1014{
1015  LONGEST result;
1016
1017  result = bfd_get_32 (abfd, (bfd_byte *) buf);
1018  if (result == 0xffffffff)
1019    {
1020      result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1021      *bytes_read_ptr = 12;
1022    }
1023  else
1024    *bytes_read_ptr = 4;
1025
1026  return result;
1027}
1028
1029
1030/* Pointer encoding helper functions.  */
1031
1032/* GCC supports exception handling based on DWARF2 CFI.  However, for
1033   technical reasons, it encodes addresses in its FDE's in a different
1034   way.  Several "pointer encodings" are supported.  The encoding
1035   that's used for a particular FDE is determined by the 'R'
1036   augmentation in the associated CIE.  The argument of this
1037   augmentation is a single byte.
1038
1039   The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1040   LEB128.  This is encoded in bits 0, 1 and 2.  Bit 3 encodes whether
1041   the address is signed or unsigned.  Bits 4, 5 and 6 encode how the
1042   address should be interpreted (absolute, relative to the current
1043   position in the FDE, ...).  Bit 7, indicates that the address
1044   should be dereferenced.  */
1045
1046static unsigned char
1047encoding_for_size (unsigned int size)
1048{
1049  switch (size)
1050    {
1051    case 2:
1052      return DW_EH_PE_udata2;
1053    case 4:
1054      return DW_EH_PE_udata4;
1055    case 8:
1056      return DW_EH_PE_udata8;
1057    default:
1058      internal_error (__FILE__, __LINE__, "Unsupported address size");
1059    }
1060}
1061
1062static unsigned int
1063size_of_encoded_value (unsigned char encoding)
1064{
1065  if (encoding == DW_EH_PE_omit)
1066    return 0;
1067
1068  switch (encoding & 0x07)
1069    {
1070    case DW_EH_PE_absptr:
1071      return TYPE_LENGTH (builtin_type_void_data_ptr);
1072    case DW_EH_PE_udata2:
1073      return 2;
1074    case DW_EH_PE_udata4:
1075      return 4;
1076    case DW_EH_PE_udata8:
1077      return 8;
1078    default:
1079      internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1080    }
1081}
1082
1083static CORE_ADDR
1084read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1085		    char *buf, unsigned int *bytes_read_ptr)
1086{
1087  int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1088  ptrdiff_t offset;
1089  CORE_ADDR base;
1090
1091  /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1092     FDE's.  */
1093  if (encoding & DW_EH_PE_indirect)
1094    internal_error (__FILE__, __LINE__,
1095		    "Unsupported encoding: DW_EH_PE_indirect");
1096
1097  *bytes_read_ptr = 0;
1098
1099  switch (encoding & 0x70)
1100    {
1101    case DW_EH_PE_absptr:
1102      base = 0;
1103      break;
1104    case DW_EH_PE_pcrel:
1105      base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1106      base += (buf - unit->dwarf_frame_buffer);
1107      break;
1108    case DW_EH_PE_datarel:
1109      base = unit->dbase;
1110      break;
1111    case DW_EH_PE_textrel:
1112      base = unit->tbase;
1113      break;
1114    case DW_EH_PE_funcrel:
1115      /* FIXME: kettenis/20040501: For now just pretend
1116         DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr.  For
1117         reading the initial location of an FDE it should be treated
1118         as such, and currently that's the only place where this code
1119         is used.  */
1120      base = 0;
1121      break;
1122    case DW_EH_PE_aligned:
1123      base = 0;
1124      offset = buf - unit->dwarf_frame_buffer;
1125      if ((offset % ptr_len) != 0)
1126	{
1127	  *bytes_read_ptr = ptr_len - (offset % ptr_len);
1128	  buf += *bytes_read_ptr;
1129	}
1130      break;
1131    default:
1132      internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1133    }
1134
1135  if ((encoding & 0x07) == 0x00)
1136    encoding |= encoding_for_size (ptr_len);
1137
1138  switch (encoding & 0x0f)
1139    {
1140    case DW_EH_PE_udata2:
1141      *bytes_read_ptr += 2;
1142      return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1143    case DW_EH_PE_udata4:
1144      *bytes_read_ptr += 4;
1145      return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1146    case DW_EH_PE_udata8:
1147      *bytes_read_ptr += 8;
1148      return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1149    case DW_EH_PE_sdata2:
1150      *bytes_read_ptr += 2;
1151      return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1152    case DW_EH_PE_sdata4:
1153      *bytes_read_ptr += 4;
1154      return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1155    case DW_EH_PE_sdata8:
1156      *bytes_read_ptr += 8;
1157      return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1158    default:
1159      internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1160    }
1161}
1162
1163
1164/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1165   That's why we use a simple linked list here.  */
1166
1167static struct dwarf2_cie *
1168find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1169{
1170  struct dwarf2_cie *cie = unit->cie;
1171
1172  while (cie)
1173    {
1174      if (cie->cie_pointer == cie_pointer)
1175	return cie;
1176
1177      cie = cie->next;
1178    }
1179
1180  return NULL;
1181}
1182
1183static void
1184add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1185{
1186  cie->next = unit->cie;
1187  unit->cie = cie;
1188}
1189
1190/* Find the FDE for *PC.  Return a pointer to the FDE, and store the
1191   inital location associated with it into *PC.  */
1192
1193static struct dwarf2_fde *
1194dwarf2_frame_find_fde (CORE_ADDR *pc)
1195{
1196  struct objfile *objfile;
1197
1198  ALL_OBJFILES (objfile)
1199    {
1200      struct dwarf2_fde *fde;
1201      CORE_ADDR offset;
1202
1203      fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1204      if (fde == NULL)
1205	continue;
1206
1207      gdb_assert (objfile->section_offsets);
1208      offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1209
1210      while (fde)
1211	{
1212	  if (*pc >= fde->initial_location + offset
1213	      && *pc < fde->initial_location + offset + fde->address_range)
1214	    {
1215	      *pc = fde->initial_location + offset;
1216	      return fde;
1217	    }
1218
1219	  fde = fde->next;
1220	}
1221    }
1222
1223  return NULL;
1224}
1225
1226static void
1227add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1228{
1229  fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1230  set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1231}
1232
1233#ifdef CC_HAS_LONG_LONG
1234#define DW64_CIE_ID 0xffffffffffffffffULL
1235#else
1236#define DW64_CIE_ID ~0
1237#endif
1238
1239static char *decode_frame_entry (struct comp_unit *unit, char *start,
1240				 int eh_frame_p);
1241
1242/* Decode the next CIE or FDE.  Return NULL if invalid input, otherwise
1243   the next byte to be processed.  */
1244static char *
1245decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
1246{
1247  char *buf;
1248  LONGEST length;
1249  unsigned int bytes_read;
1250  int dwarf64_p;
1251  ULONGEST cie_id;
1252  ULONGEST cie_pointer;
1253  char *end;
1254
1255  buf = start;
1256  length = read_initial_length (unit->abfd, buf, &bytes_read);
1257  buf += bytes_read;
1258  end = buf + length;
1259
1260  /* Are we still within the section? */
1261  if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1262    return NULL;
1263
1264  if (length == 0)
1265    return end;
1266
1267  /* Distinguish between 32 and 64-bit encoded frame info.  */
1268  dwarf64_p = (bytes_read == 12);
1269
1270  /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs.  */
1271  if (eh_frame_p)
1272    cie_id = 0;
1273  else if (dwarf64_p)
1274    cie_id = DW64_CIE_ID;
1275  else
1276    cie_id = DW_CIE_ID;
1277
1278  if (dwarf64_p)
1279    {
1280      cie_pointer = read_8_bytes (unit->abfd, buf);
1281      buf += 8;
1282    }
1283  else
1284    {
1285      cie_pointer = read_4_bytes (unit->abfd, buf);
1286      buf += 4;
1287    }
1288
1289  if (cie_pointer == cie_id)
1290    {
1291      /* This is a CIE.  */
1292      struct dwarf2_cie *cie;
1293      char *augmentation;
1294      unsigned int cie_version;
1295
1296      /* Record the offset into the .debug_frame section of this CIE.  */
1297      cie_pointer = start - unit->dwarf_frame_buffer;
1298
1299      /* Check whether we've already read it.  */
1300      if (find_cie (unit, cie_pointer))
1301	return end;
1302
1303      cie = (struct dwarf2_cie *)
1304	obstack_alloc (&unit->objfile->objfile_obstack,
1305		       sizeof (struct dwarf2_cie));
1306      cie->initial_instructions = NULL;
1307      cie->cie_pointer = cie_pointer;
1308
1309      /* The encoding for FDE's in a normal .debug_frame section
1310         depends on the target address size.  */
1311      cie->encoding = DW_EH_PE_absptr;
1312
1313      /* Check version number.  */
1314      cie_version = read_1_byte (unit->abfd, buf);
1315      if (cie_version != 1 && cie_version != 3)
1316	return NULL;
1317      buf += 1;
1318
1319      /* Interpret the interesting bits of the augmentation.  */
1320      augmentation = buf;
1321      buf = augmentation + strlen (augmentation) + 1;
1322
1323      /* The GCC 2.x "eh" augmentation has a pointer immediately
1324         following the augmentation string, so it must be handled
1325         first.  */
1326      if (augmentation[0] == 'e' && augmentation[1] == 'h')
1327	{
1328	  /* Skip.  */
1329	  buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1330	  augmentation += 2;
1331	}
1332
1333      cie->code_alignment_factor =
1334	read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1335      buf += bytes_read;
1336
1337      cie->data_alignment_factor =
1338	read_signed_leb128 (unit->abfd, buf, &bytes_read);
1339      buf += bytes_read;
1340
1341      if (cie_version == 1)
1342	{
1343	  cie->return_address_register = read_1_byte (unit->abfd, buf);
1344	  bytes_read = 1;
1345	}
1346      else
1347	cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1348							     &bytes_read);
1349      buf += bytes_read;
1350
1351      cie->saw_z_augmentation = (*augmentation == 'z');
1352      if (cie->saw_z_augmentation)
1353	{
1354	  ULONGEST length;
1355
1356	  length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1357	  buf += bytes_read;
1358	  if (buf > end)
1359	    return NULL;
1360	  cie->initial_instructions = buf + length;
1361	  augmentation++;
1362	}
1363
1364      while (*augmentation)
1365	{
1366	  /* "L" indicates a byte showing how the LSDA pointer is encoded.  */
1367	  if (*augmentation == 'L')
1368	    {
1369	      /* Skip.  */
1370	      buf++;
1371	      augmentation++;
1372	    }
1373
1374	  /* "R" indicates a byte indicating how FDE addresses are encoded.  */
1375	  else if (*augmentation == 'R')
1376	    {
1377	      cie->encoding = *buf++;
1378	      augmentation++;
1379	    }
1380
1381	  /* "P" indicates a personality routine in the CIE augmentation.  */
1382	  else if (*augmentation == 'P')
1383	    {
1384	      /* Skip.  */
1385	      buf += size_of_encoded_value (*buf++);
1386	      augmentation++;
1387	    }
1388
1389	  /* Otherwise we have an unknown augmentation.
1390	     Bail out unless we saw a 'z' prefix.  */
1391	  else
1392	    {
1393	      if (cie->initial_instructions == NULL)
1394		return end;
1395
1396	      /* Skip unknown augmentations.  */
1397	      buf = cie->initial_instructions;
1398	      break;
1399	    }
1400	}
1401
1402      cie->initial_instructions = buf;
1403      cie->end = end;
1404
1405      add_cie (unit, cie);
1406    }
1407  else
1408    {
1409      /* This is a FDE.  */
1410      struct dwarf2_fde *fde;
1411
1412      /* In an .eh_frame section, the CIE pointer is the delta between the
1413	 address within the FDE where the CIE pointer is stored and the
1414	 address of the CIE.  Convert it to an offset into the .eh_frame
1415	 section.  */
1416      if (eh_frame_p)
1417	{
1418	  cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1419	  cie_pointer -= (dwarf64_p ? 8 : 4);
1420	}
1421
1422      /* In either case, validate the result is still within the section.  */
1423      if (cie_pointer >= unit->dwarf_frame_size)
1424	return NULL;
1425
1426      fde = (struct dwarf2_fde *)
1427	obstack_alloc (&unit->objfile->objfile_obstack,
1428		       sizeof (struct dwarf2_fde));
1429      fde->cie = find_cie (unit, cie_pointer);
1430      if (fde->cie == NULL)
1431	{
1432	  decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1433			      eh_frame_p);
1434	  fde->cie = find_cie (unit, cie_pointer);
1435	}
1436
1437      gdb_assert (fde->cie != NULL);
1438
1439      fde->initial_location =
1440	read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1441      buf += bytes_read;
1442
1443      fde->address_range =
1444	read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1445      buf += bytes_read;
1446
1447      /* A 'z' augmentation in the CIE implies the presence of an
1448	 augmentation field in the FDE as well.  The only thing known
1449	 to be in here at present is the LSDA entry for EH.  So we
1450	 can skip the whole thing.  */
1451      if (fde->cie->saw_z_augmentation)
1452	{
1453	  ULONGEST length;
1454
1455	  length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1456	  buf += bytes_read + length;
1457	  if (buf > end)
1458	    return NULL;
1459	}
1460
1461      fde->instructions = buf;
1462      fde->end = end;
1463
1464      add_fde (unit, fde);
1465    }
1466
1467  return end;
1468}
1469
1470/* Read a CIE or FDE in BUF and decode it.  */
1471static char *
1472decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1473{
1474  enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1475  char *ret;
1476  const char *msg;
1477  ptrdiff_t start_offset;
1478
1479  while (1)
1480    {
1481      ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1482      if (ret != NULL)
1483	break;
1484
1485      /* We have corrupt input data of some form.  */
1486
1487      /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1488	 and mismatches wrt padding and alignment of debug sections.  */
1489      /* Note that there is no requirement in the standard for any
1490	 alignment at all in the frame unwind sections.  Testing for
1491	 alignment before trying to interpret data would be incorrect.
1492
1493	 However, GCC traditionally arranged for frame sections to be
1494	 sized such that the FDE length and CIE fields happen to be
1495	 aligned (in theory, for performance).  This, unfortunately,
1496	 was done with .align directives, which had the side effect of
1497	 forcing the section to be aligned by the linker.
1498
1499	 This becomes a problem when you have some other producer that
1500	 creates frame sections that are not as strictly aligned.  That
1501	 produces a hole in the frame info that gets filled by the
1502	 linker with zeros.
1503
1504	 The GCC behaviour is arguably a bug, but it's effectively now
1505	 part of the ABI, so we're now stuck with it, at least at the
1506	 object file level.  A smart linker may decide, in the process
1507	 of compressing duplicate CIE information, that it can rewrite
1508	 the entire output section without this extra padding.  */
1509
1510      start_offset = start - unit->dwarf_frame_buffer;
1511      if (workaround < ALIGN4 && (start_offset & 3) != 0)
1512	{
1513	  start += 4 - (start_offset & 3);
1514	  workaround = ALIGN4;
1515	  continue;
1516	}
1517      if (workaround < ALIGN8 && (start_offset & 7) != 0)
1518	{
1519	  start += 8 - (start_offset & 7);
1520	  workaround = ALIGN8;
1521	  continue;
1522	}
1523
1524      /* Nothing left to try.  Arrange to return as if we've consumed
1525	 the entire input section.  Hopefully we'll get valid info from
1526	 the other of .debug_frame/.eh_frame.  */
1527      workaround = FAIL;
1528      ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1529      break;
1530    }
1531
1532  switch (workaround)
1533    {
1534    case NONE:
1535      break;
1536
1537    case ALIGN4:
1538      complaint (&symfile_complaints,
1539		 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1540		 unit->dwarf_frame_section->owner->filename,
1541		 unit->dwarf_frame_section->name);
1542      break;
1543
1544    case ALIGN8:
1545      complaint (&symfile_complaints,
1546		 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1547		 unit->dwarf_frame_section->owner->filename,
1548		 unit->dwarf_frame_section->name);
1549      break;
1550
1551    default:
1552      complaint (&symfile_complaints,
1553		 "Corrupt data in %s:%s",
1554		 unit->dwarf_frame_section->owner->filename,
1555		 unit->dwarf_frame_section->name);
1556      break;
1557    }
1558
1559  return ret;
1560}
1561
1562
1563/* FIXME: kettenis/20030504: This still needs to be integrated with
1564   dwarf2read.c in a better way.  */
1565
1566/* Imported from dwarf2read.c.  */
1567extern asection *dwarf_frame_section;
1568extern asection *dwarf_eh_frame_section;
1569
1570/* Imported from dwarf2read.c.  */
1571extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1572
1573void
1574dwarf2_build_frame_info (struct objfile *objfile)
1575{
1576  struct comp_unit unit;
1577  char *frame_ptr;
1578
1579  /* Build a minimal decoding of the DWARF2 compilation unit.  */
1580  unit.abfd = objfile->obfd;
1581  unit.objfile = objfile;
1582  unit.dbase = 0;
1583  unit.tbase = 0;
1584
1585  /* First add the information from the .eh_frame section.  That way,
1586     the FDEs from that section are searched last.  */
1587  if (dwarf_eh_frame_section)
1588    {
1589      asection *got, *txt;
1590
1591      unit.cie = NULL;
1592      unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1593						     dwarf_eh_frame_section);
1594
1595      unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1596      unit.dwarf_frame_section = dwarf_eh_frame_section;
1597
1598      /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1599	 that is used for the i386/amd64 target, which currently is
1600	 the only target in GCC that supports/uses the
1601	 DW_EH_PE_datarel encoding.  */
1602      got = bfd_get_section_by_name (unit.abfd, ".got");
1603      if (got)
1604	unit.dbase = got->vma;
1605
1606      /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1607         so far.  */
1608      txt = bfd_get_section_by_name (unit.abfd, ".text");
1609      if (txt)
1610	unit.tbase = txt->vma;
1611
1612      frame_ptr = unit.dwarf_frame_buffer;
1613      while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1614	frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1615    }
1616
1617  if (dwarf_frame_section)
1618    {
1619      unit.cie = NULL;
1620      unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1621						     dwarf_frame_section);
1622      unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
1623      unit.dwarf_frame_section = dwarf_frame_section;
1624
1625      frame_ptr = unit.dwarf_frame_buffer;
1626      while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1627	frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1628    }
1629}
1630
1631/* Provide a prototype to silence -Wmissing-prototypes.  */
1632void _initialize_dwarf2_frame (void);
1633
1634void
1635_initialize_dwarf2_frame (void)
1636{
1637  dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1638  dwarf2_frame_objfile_data = register_objfile_data ();
1639}
1640