1/* atof_generic.c - turn a string of digits into a Flonum
2   Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000, 2001
3   Free Software Foundation, Inc.
4
5   This file is part of GAS, the GNU Assembler.
6
7   GAS is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2, or (at your option)
10   any later version.
11
12   GAS is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GAS; see the file COPYING.  If not, write to the Free
19   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20   02111-1307, USA.  */
21
22#include <string.h>
23
24#include "as.h"
25#include "safe-ctype.h"
26
27#ifndef FALSE
28#define FALSE (0)
29#endif
30#ifndef TRUE
31#define TRUE  (1)
32#endif
33
34#ifdef TRACE
35static void flonum_print (const FLONUM_TYPE *);
36#endif
37
38#define ASSUME_DECIMAL_MARK_IS_DOT
39
40/***********************************************************************\
41 *									*
42 *	Given a string of decimal digits , with optional decimal	*
43 *	mark and optional decimal exponent (place value) of the		*
44 *	lowest_order decimal digit: produce a floating point		*
45 *	number. The number is 'generic' floating point: our		*
46 *	caller will encode it for a specific machine architecture.	*
47 *									*
48 *	Assumptions							*
49 *		uses base (radix) 2					*
50 *		this machine uses 2's complement binary integers	*
51 *		target flonums use "      "         "       "		*
52 *		target flonums exponents fit in a long			*
53 *									*
54 \***********************************************************************/
55
56/*
57
58  Syntax:
59
60  <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
61  <optional-sign> ::= '+' | '-' | {empty}
62  <decimal-number> ::= <integer>
63  | <integer> <radix-character>
64  | <integer> <radix-character> <integer>
65  | <radix-character> <integer>
66
67  <optional-exponent> ::= {empty}
68  | <exponent-character> <optional-sign> <integer>
69
70  <integer> ::= <digit> | <digit> <integer>
71  <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
72  <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
73  <radix-character> ::= {one character from "string_of_decimal_marks"}
74
75  */
76
77int
78atof_generic (/* return pointer to just AFTER number we read.  */
79	      char **address_of_string_pointer,
80	      /* At most one per number.  */
81	      const char *string_of_decimal_marks,
82	      const char *string_of_decimal_exponent_marks,
83	      FLONUM_TYPE *address_of_generic_floating_point_number)
84{
85  int return_value;		/* 0 means OK.  */
86  char *first_digit;
87  unsigned int number_of_digits_before_decimal;
88  unsigned int number_of_digits_after_decimal;
89  long decimal_exponent;
90  unsigned int number_of_digits_available;
91  char digits_sign_char;
92
93  /*
94   * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
95   * It would be simpler to modify the string, but we don't; just to be nice
96   * to caller.
97   * We need to know how many digits we have, so we can allocate space for
98   * the digits' value.
99   */
100
101  char *p;
102  char c;
103  int seen_significant_digit;
104
105#ifdef ASSUME_DECIMAL_MARK_IS_DOT
106  assert (string_of_decimal_marks[0] == '.'
107	  && string_of_decimal_marks[1] == 0);
108#define IS_DECIMAL_MARK(c)	((c) == '.')
109#else
110#define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
111#endif
112
113  first_digit = *address_of_string_pointer;
114  c = *first_digit;
115
116  if (c == '-' || c == '+')
117    {
118      digits_sign_char = c;
119      first_digit++;
120    }
121  else
122    digits_sign_char = '+';
123
124  switch (first_digit[0])
125    {
126    case 'n':
127    case 'N':
128      if (!strncasecmp ("nan", first_digit, 3))
129	{
130	  address_of_generic_floating_point_number->sign = 0;
131	  address_of_generic_floating_point_number->exponent = 0;
132	  address_of_generic_floating_point_number->leader =
133	    address_of_generic_floating_point_number->low;
134	  *address_of_string_pointer = first_digit + 3;
135	  return 0;
136	}
137      break;
138
139    case 'i':
140    case 'I':
141      if (!strncasecmp ("inf", first_digit, 3))
142	{
143	  address_of_generic_floating_point_number->sign =
144	    digits_sign_char == '+' ? 'P' : 'N';
145	  address_of_generic_floating_point_number->exponent = 0;
146	  address_of_generic_floating_point_number->leader =
147	    address_of_generic_floating_point_number->low;
148
149	  first_digit += 3;
150	  if (!strncasecmp ("inity", first_digit, 5))
151	    first_digit += 5;
152
153	  *address_of_string_pointer = first_digit;
154
155	  return 0;
156	}
157      break;
158    }
159
160  number_of_digits_before_decimal = 0;
161  number_of_digits_after_decimal = 0;
162  decimal_exponent = 0;
163  seen_significant_digit = 0;
164  for (p = first_digit;
165       (((c = *p) != '\0')
166	&& (!c || !IS_DECIMAL_MARK (c))
167	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
168       p++)
169    {
170      if (ISDIGIT (c))
171	{
172	  if (seen_significant_digit || c > '0')
173	    {
174	      ++number_of_digits_before_decimal;
175	      seen_significant_digit = 1;
176	    }
177	  else
178	    {
179	      first_digit++;
180	    }
181	}
182      else
183	{
184	  break;		/* p -> char after pre-decimal digits.  */
185	}
186    }				/* For each digit before decimal mark.  */
187
188#ifndef OLD_FLOAT_READS
189  /* Ignore trailing 0's after the decimal point.  The original code here
190   * (ifdef'd out) does not do this, and numbers like
191   *	4.29496729600000000000e+09	(2**31)
192   * come out inexact for some reason related to length of the digit
193   * string.
194   */
195  if (c && IS_DECIMAL_MARK (c))
196    {
197      unsigned int zeros = 0;	/* Length of current string of zeros */
198
199      for (p++; (c = *p) && ISDIGIT (c); p++)
200	{
201	  if (c == '0')
202	    {
203	      zeros++;
204	    }
205	  else
206	    {
207	      number_of_digits_after_decimal += 1 + zeros;
208	      zeros = 0;
209	    }
210	}
211    }
212#else
213  if (c && IS_DECIMAL_MARK (c))
214    {
215      for (p++;
216	   (((c = *p) != '\0')
217	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
218	   p++)
219	{
220	  if (ISDIGIT (c))
221	    {
222	      /* This may be retracted below.  */
223	      number_of_digits_after_decimal++;
224
225	      if ( /* seen_significant_digit || */ c > '0')
226		{
227		  seen_significant_digit = TRUE;
228		}
229	    }
230	  else
231	    {
232	      if (!seen_significant_digit)
233		{
234		  number_of_digits_after_decimal = 0;
235		}
236	      break;
237	    }
238	}			/* For each digit after decimal mark.  */
239    }
240
241  while (number_of_digits_after_decimal
242	 && first_digit[number_of_digits_before_decimal
243			+ number_of_digits_after_decimal] == '0')
244    --number_of_digits_after_decimal;
245#endif
246
247  if (flag_m68k_mri)
248    {
249      while (c == '_')
250	c = *++p;
251    }
252  if (c && strchr (string_of_decimal_exponent_marks, c))
253    {
254      char digits_exponent_sign_char;
255
256      c = *++p;
257      if (flag_m68k_mri)
258	{
259	  while (c == '_')
260	    c = *++p;
261	}
262      if (c && strchr ("+-", c))
263	{
264	  digits_exponent_sign_char = c;
265	  c = *++p;
266	}
267      else
268	{
269	  digits_exponent_sign_char = '+';
270	}
271
272      for (; (c); c = *++p)
273	{
274	  if (ISDIGIT (c))
275	    {
276	      decimal_exponent = decimal_exponent * 10 + c - '0';
277	      /*
278	       * BUG! If we overflow here, we lose!
279	       */
280	    }
281	  else
282	    {
283	      break;
284	    }
285	}
286
287      if (digits_exponent_sign_char == '-')
288	{
289	  decimal_exponent = -decimal_exponent;
290	}
291    }
292
293  *address_of_string_pointer = p;
294
295  number_of_digits_available =
296    number_of_digits_before_decimal + number_of_digits_after_decimal;
297  return_value = 0;
298  if (number_of_digits_available == 0)
299    {
300      address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
301      address_of_generic_floating_point_number->leader
302	= -1 + address_of_generic_floating_point_number->low;
303      address_of_generic_floating_point_number->sign = digits_sign_char;
304      /* We have just concocted (+/-)0.0E0 */
305
306    }
307  else
308    {
309      int count;		/* Number of useful digits left to scan.  */
310
311      LITTLENUM_TYPE *digits_binary_low;
312      unsigned int precision;
313      unsigned int maximum_useful_digits;
314      unsigned int number_of_digits_to_use;
315      unsigned int more_than_enough_bits_for_digits;
316      unsigned int more_than_enough_littlenums_for_digits;
317      unsigned int size_of_digits_in_littlenums;
318      unsigned int size_of_digits_in_chars;
319      FLONUM_TYPE power_of_10_flonum;
320      FLONUM_TYPE digits_flonum;
321
322      precision = (address_of_generic_floating_point_number->high
323		   - address_of_generic_floating_point_number->low
324		   + 1);	/* Number of destination littlenums.  */
325
326      /* Includes guard bits (two littlenums worth) */
327#if 0 /* The integer version below is very close, and it doesn't
328	 require floating point support (which is currently buggy on
329	 the Alpha).  */
330      maximum_useful_digits = (((double) (precision - 2))
331			       * ((double) (LITTLENUM_NUMBER_OF_BITS))
332			       / (LOG_TO_BASE_2_OF_10))
333	+ 2;			/* 2 :: guard digits.  */
334#else
335      maximum_useful_digits = (((precision - 2))
336			       * ( (LITTLENUM_NUMBER_OF_BITS))
337			       * 1000000 / 3321928)
338	+ 2;			/* 2 :: guard digits.  */
339#endif
340
341      if (number_of_digits_available > maximum_useful_digits)
342	{
343	  number_of_digits_to_use = maximum_useful_digits;
344	}
345      else
346	{
347	  number_of_digits_to_use = number_of_digits_available;
348	}
349
350      /* Cast these to SIGNED LONG first, otherwise, on systems with
351	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
352	 cause unexpected results.  */
353      decimal_exponent += ((long) number_of_digits_before_decimal
354			   - (long) number_of_digits_to_use);
355
356#if 0
357      more_than_enough_bits_for_digits
358	= ((((double) number_of_digits_to_use) * LOG_TO_BASE_2_OF_10) + 1);
359#else
360      more_than_enough_bits_for_digits
361	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
362#endif
363
364      more_than_enough_littlenums_for_digits
365	= (more_than_enough_bits_for_digits
366	   / LITTLENUM_NUMBER_OF_BITS)
367	+ 2;
368
369      /* Compute (digits) part. In "12.34E56" this is the "1234" part.
370	 Arithmetic is exact here. If no digits are supplied then this
371	 part is a 0 valued binary integer.  Allocate room to build up
372	 the binary number as littlenums.  We want this memory to
373	 disappear when we leave this function.  Assume no alignment
374	 problems => (room for n objects) == n * (room for 1
375	 object).  */
376
377      size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
378      size_of_digits_in_chars = size_of_digits_in_littlenums
379	* sizeof (LITTLENUM_TYPE);
380
381      digits_binary_low = (LITTLENUM_TYPE *)
382	alloca (size_of_digits_in_chars);
383
384      memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
385
386      /* Digits_binary_low[] is allocated and zeroed.  */
387
388      /*
389       * Parse the decimal digits as if * digits_low was in the units position.
390       * Emit a binary number into digits_binary_low[].
391       *
392       * Use a large-precision version of:
393       * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
394       */
395
396      for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
397	{
398	  c = *p;
399	  if (ISDIGIT (c))
400	    {
401	      /*
402	       * Multiply by 10. Assume can never overflow.
403	       * Add this digit to digits_binary_low[].
404	       */
405
406	      long carry;
407	      LITTLENUM_TYPE *littlenum_pointer;
408	      LITTLENUM_TYPE *littlenum_limit;
409
410	      littlenum_limit = digits_binary_low
411		+ more_than_enough_littlenums_for_digits
412		- 1;
413
414	      carry = c - '0';	/* char -> binary */
415
416	      for (littlenum_pointer = digits_binary_low;
417		   littlenum_pointer <= littlenum_limit;
418		   littlenum_pointer++)
419		{
420		  long work;
421
422		  work = carry + 10 * (long) (*littlenum_pointer);
423		  *littlenum_pointer = work & LITTLENUM_MASK;
424		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
425		}
426
427	      if (carry != 0)
428		{
429		  /*
430		   * We have a GROSS internal error.
431		   * This should never happen.
432		   */
433		  as_fatal (_("failed sanity check"));
434		}
435	    }
436	  else
437	    {
438	      ++count;		/* '.' doesn't alter digits used count.  */
439	    }
440	}
441
442      /*
443       * Digits_binary_low[] properly encodes the value of the digits.
444       * Forget about any high-order littlenums that are 0.
445       */
446      while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
447	     && size_of_digits_in_littlenums >= 2)
448	size_of_digits_in_littlenums--;
449
450      digits_flonum.low = digits_binary_low;
451      digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
452      digits_flonum.leader = digits_flonum.high;
453      digits_flonum.exponent = 0;
454      /*
455       * The value of digits_flonum . sign should not be important.
456       * We have already decided the output's sign.
457       * We trust that the sign won't influence the other parts of the number!
458       * So we give it a value for these reasons:
459       * (1) courtesy to humans reading/debugging
460       *     these numbers so they don't get excited about strange values
461       * (2) in future there may be more meaning attached to sign,
462       *     and what was
463       *     harmless noise may become disruptive, ill-conditioned (or worse)
464       *     input.
465       */
466      digits_flonum.sign = '+';
467
468      {
469	/*
470	 * Compute the mantssa (& exponent) of the power of 10.
471	 * If successful, then multiply the power of 10 by the digits
472	 * giving return_binary_mantissa and return_binary_exponent.
473	 */
474
475	LITTLENUM_TYPE *power_binary_low;
476	int decimal_exponent_is_negative;
477	/* This refers to the "-56" in "12.34E-56".  */
478	/* FALSE: decimal_exponent is positive (or 0) */
479	/* TRUE:  decimal_exponent is negative */
480	FLONUM_TYPE temporary_flonum;
481	LITTLENUM_TYPE *temporary_binary_low;
482	unsigned int size_of_power_in_littlenums;
483	unsigned int size_of_power_in_chars;
484
485	size_of_power_in_littlenums = precision;
486	/* Precision has a built-in fudge factor so we get a few guard bits.  */
487
488	decimal_exponent_is_negative = decimal_exponent < 0;
489	if (decimal_exponent_is_negative)
490	  {
491	    decimal_exponent = -decimal_exponent;
492	  }
493
494	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
495
496	size_of_power_in_chars = size_of_power_in_littlenums
497	  * sizeof (LITTLENUM_TYPE) + 2;
498
499	power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
500	temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
501	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
502	*power_binary_low = 1;
503	power_of_10_flonum.exponent = 0;
504	power_of_10_flonum.low = power_binary_low;
505	power_of_10_flonum.leader = power_binary_low;
506	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
507	power_of_10_flonum.sign = '+';
508	temporary_flonum.low = temporary_binary_low;
509	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
510	/*
511	 * (power) == 1.
512	 * Space for temporary_flonum allocated.
513	 */
514
515	/*
516	 * ...
517	 *
518	 * WHILE	more bits
519	 * DO	find next bit (with place value)
520	 *	multiply into power mantissa
521	 * OD
522	 */
523	{
524	  int place_number_limit;
525	  /* Any 10^(2^n) whose "n" exceeds this */
526	  /* value will fall off the end of */
527	  /* flonum_XXXX_powers_of_ten[].  */
528	  int place_number;
529	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
530
531	  place_number_limit = table_size_of_flonum_powers_of_ten;
532
533	  multiplicand = (decimal_exponent_is_negative
534			  ? flonum_negative_powers_of_ten
535			  : flonum_positive_powers_of_ten);
536
537	  for (place_number = 1;/* Place value of this bit of exponent.  */
538	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
539	       decimal_exponent >>= 1, place_number++)
540	    {
541	      if (decimal_exponent & 1)
542		{
543		  if (place_number > place_number_limit)
544		    {
545		      /* The decimal exponent has a magnitude so great
546			 that our tables can't help us fragment it.
547			 Although this routine is in error because it
548			 can't imagine a number that big, signal an
549			 error as if it is the user's fault for
550			 presenting such a big number.  */
551		      return_value = ERROR_EXPONENT_OVERFLOW;
552		      /* quit out of loop gracefully */
553		      decimal_exponent = 0;
554		    }
555		  else
556		    {
557#ifdef TRACE
558		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
559			      place_number);
560
561		      flonum_print (&power_of_10_flonum);
562		      (void) putchar ('\n');
563#endif
564#ifdef TRACE
565		      printf ("multiplier:\n");
566		      flonum_print (multiplicand + place_number);
567		      (void) putchar ('\n');
568#endif
569		      flonum_multip (multiplicand + place_number,
570				     &power_of_10_flonum, &temporary_flonum);
571#ifdef TRACE
572		      printf ("after multiply:\n");
573		      flonum_print (&temporary_flonum);
574		      (void) putchar ('\n');
575#endif
576		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
577#ifdef TRACE
578		      printf ("after copy:\n");
579		      flonum_print (&power_of_10_flonum);
580		      (void) putchar ('\n');
581#endif
582		    } /* If this bit of decimal_exponent was computable.*/
583		} /* If this bit of decimal_exponent was set.  */
584	    } /* For each bit of binary representation of exponent */
585#ifdef TRACE
586	  printf ("after computing power_of_10_flonum:\n");
587	  flonum_print (&power_of_10_flonum);
588	  (void) putchar ('\n');
589#endif
590	}
591
592      }
593
594      /*
595       * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
596       * It may be the number 1, in which case we don't NEED to multiply.
597       *
598       * Multiply (decimal digits) by power_of_10_flonum.
599       */
600
601      flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
602      /* Assert sign of the number we made is '+'.  */
603      address_of_generic_floating_point_number->sign = digits_sign_char;
604
605    }
606  return return_value;
607}
608
609#ifdef TRACE
610static void
611flonum_print (f)
612     const FLONUM_TYPE *f;
613{
614  LITTLENUM_TYPE *lp;
615  char littlenum_format[10];
616  sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
617#define print_littlenum(LP)	(printf (littlenum_format, LP))
618  printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
619  if (f->low < f->high)
620    for (lp = f->high; lp >= f->low; lp--)
621      print_littlenum (*lp);
622  else
623    for (lp = f->low; lp <= f->high; lp++)
624      print_littlenum (*lp);
625  printf ("\n");
626  fflush (stdout);
627}
628#endif
629
630/* end of atof_generic.c */
631