1//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the library calls simplifier. It does not implement
10// any pass, but can't be used by other passes to do simplifications.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15#include "llvm/ADT/APSInt.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/Analysis/Loads.h"
20#include "llvm/Analysis/OptimizationRemarkEmitter.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/IRBuilder.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/Intrinsics.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/PatternMatch.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/KnownBits.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Transforms/Utils/BuildLibCalls.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Transforms/Utils/SizeOpts.h"
35
36#include <cmath>
37
38using namespace llvm;
39using namespace PatternMatch;
40
41static cl::opt<bool>
42    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                         cl::init(false),
44                         cl::desc("Enable unsafe double to float "
45                                  "shrinking for math lib calls"));
46
47//===----------------------------------------------------------------------===//
48// Helper Functions
49//===----------------------------------------------------------------------===//
50
51static bool ignoreCallingConv(LibFunc Func) {
52  return Func == LibFunc_abs || Func == LibFunc_labs ||
53         Func == LibFunc_llabs || Func == LibFunc_strlen;
54}
55
56/// Return true if it is only used in equality comparisons with With.
57static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
58  for (User *U : V->users()) {
59    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
60      if (IC->isEquality() && IC->getOperand(1) == With)
61        continue;
62    // Unknown instruction.
63    return false;
64  }
65  return true;
66}
67
68static bool callHasFloatingPointArgument(const CallInst *CI) {
69  return any_of(CI->operands(), [](const Use &OI) {
70    return OI->getType()->isFloatingPointTy();
71  });
72}
73
74static bool callHasFP128Argument(const CallInst *CI) {
75  return any_of(CI->operands(), [](const Use &OI) {
76    return OI->getType()->isFP128Ty();
77  });
78}
79
80// Convert the entire string Str representing an integer in Base, up to
81// the terminating nul if present, to a constant according to the rules
82// of strtoul[l] or, when AsSigned is set, of strtol[l].  On success
83// return the result, otherwise null.
84// The function assumes the string is encoded in ASCII and carefully
85// avoids converting sequences (including "") that the corresponding
86// library call might fail and set errno for.
87static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
88                              uint64_t Base, bool AsSigned, IRBuilderBase &B) {
89  if (Base < 2 || Base > 36)
90    if (Base != 0)
91      // Fail for an invalid base (required by POSIX).
92      return nullptr;
93
94  // Current offset into the original string to reflect in EndPtr.
95  size_t Offset = 0;
96  // Strip leading whitespace.
97  for ( ; Offset != Str.size(); ++Offset)
98    if (!isSpace((unsigned char)Str[Offset])) {
99      Str = Str.substr(Offset);
100      break;
101    }
102
103  if (Str.empty())
104    // Fail for empty subject sequences (POSIX allows but doesn't require
105    // strtol[l]/strtoul[l] to fail with EINVAL).
106    return nullptr;
107
108  // Strip but remember the sign.
109  bool Negate = Str[0] == '-';
110  if (Str[0] == '-' || Str[0] == '+') {
111    Str = Str.drop_front();
112    if (Str.empty())
113      // Fail for a sign with nothing after it.
114      return nullptr;
115    ++Offset;
116  }
117
118  // Set Max to the absolute value of the minimum (for signed), or
119  // to the maximum (for unsigned) value representable in the type.
120  Type *RetTy = CI->getType();
121  unsigned NBits = RetTy->getPrimitiveSizeInBits();
122  uint64_t Max = AsSigned && Negate ? 1 : 0;
123  Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
124
125  // Autodetect Base if it's zero and consume the "0x" prefix.
126  if (Str.size() > 1) {
127    if (Str[0] == '0') {
128      if (toUpper((unsigned char)Str[1]) == 'X') {
129        if (Str.size() == 2 || (Base && Base != 16))
130          // Fail if Base doesn't allow the "0x" prefix or for the prefix
131          // alone that implementations like BSD set errno to EINVAL for.
132          return nullptr;
133
134        Str = Str.drop_front(2);
135        Offset += 2;
136        Base = 16;
137      }
138      else if (Base == 0)
139        Base = 8;
140    } else if (Base == 0)
141      Base = 10;
142  }
143  else if (Base == 0)
144    Base = 10;
145
146  // Convert the rest of the subject sequence, not including the sign,
147  // to its uint64_t representation (this assumes the source character
148  // set is ASCII).
149  uint64_t Result = 0;
150  for (unsigned i = 0; i != Str.size(); ++i) {
151    unsigned char DigVal = Str[i];
152    if (isDigit(DigVal))
153      DigVal = DigVal - '0';
154    else {
155      DigVal = toUpper(DigVal);
156      if (isAlpha(DigVal))
157        DigVal = DigVal - 'A' + 10;
158      else
159        return nullptr;
160    }
161
162    if (DigVal >= Base)
163      // Fail if the digit is not valid in the Base.
164      return nullptr;
165
166    // Add the digit and fail if the result is not representable in
167    // the (unsigned form of the) destination type.
168    bool VFlow;
169    Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
170    if (VFlow || Result > Max)
171      return nullptr;
172  }
173
174  if (EndPtr) {
175    // Store the pointer to the end.
176    Value *Off = B.getInt64(Offset + Str.size());
177    Value *StrBeg = CI->getArgOperand(0);
178    Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
179    B.CreateStore(StrEnd, EndPtr);
180  }
181
182  if (Negate)
183    // Unsigned negation doesn't overflow.
184    Result = -Result;
185
186  return ConstantInt::get(RetTy, Result);
187}
188
189static bool isOnlyUsedInComparisonWithZero(Value *V) {
190  for (User *U : V->users()) {
191    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
192      if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
193        if (C->isNullValue())
194          continue;
195    // Unknown instruction.
196    return false;
197  }
198  return true;
199}
200
201static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
202                                 const DataLayout &DL) {
203  if (!isOnlyUsedInComparisonWithZero(CI))
204    return false;
205
206  if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
207    return false;
208
209  if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
210    return false;
211
212  return true;
213}
214
215static void annotateDereferenceableBytes(CallInst *CI,
216                                         ArrayRef<unsigned> ArgNos,
217                                         uint64_t DereferenceableBytes) {
218  const Function *F = CI->getCaller();
219  if (!F)
220    return;
221  for (unsigned ArgNo : ArgNos) {
222    uint64_t DerefBytes = DereferenceableBytes;
223    unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
224    if (!llvm::NullPointerIsDefined(F, AS) ||
225        CI->paramHasAttr(ArgNo, Attribute::NonNull))
226      DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
227                            DereferenceableBytes);
228
229    if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
230      CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
231      if (!llvm::NullPointerIsDefined(F, AS) ||
232          CI->paramHasAttr(ArgNo, Attribute::NonNull))
233        CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
234      CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
235                                  CI->getContext(), DerefBytes));
236    }
237  }
238}
239
240static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
241                                         ArrayRef<unsigned> ArgNos) {
242  Function *F = CI->getCaller();
243  if (!F)
244    return;
245
246  for (unsigned ArgNo : ArgNos) {
247    if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
248      CI->addParamAttr(ArgNo, Attribute::NoUndef);
249
250    if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) {
251      unsigned AS =
252          CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
253      if (llvm::NullPointerIsDefined(F, AS))
254        continue;
255      CI->addParamAttr(ArgNo, Attribute::NonNull);
256    }
257
258    annotateDereferenceableBytes(CI, ArgNo, 1);
259  }
260}
261
262static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
263                               Value *Size, const DataLayout &DL) {
264  if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
265    annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
266    annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
267  } else if (isKnownNonZero(Size, DL)) {
268    annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
269    const APInt *X, *Y;
270    uint64_t DerefMin = 1;
271    if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
272      DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
273      annotateDereferenceableBytes(CI, ArgNos, DerefMin);
274    }
275  }
276}
277
278// Copy CallInst "flags" like musttail, notail, and tail. Return New param for
279// easier chaining. Calls to emit* and B.createCall should probably be wrapped
280// in this function when New is created to replace Old. Callers should take
281// care to check Old.isMustTailCall() if they aren't replacing Old directly
282// with New.
283static Value *copyFlags(const CallInst &Old, Value *New) {
284  assert(!Old.isMustTailCall() && "do not copy musttail call flags");
285  assert(!Old.isNoTailCall() && "do not copy notail call flags");
286  if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
287    NewCI->setTailCallKind(Old.getTailCallKind());
288  return New;
289}
290
291static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) {
292  NewCI->setAttributes(AttributeList::get(
293      NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
294  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
295  return copyFlags(Old, NewCI);
296}
297
298// Helper to avoid truncating the length if size_t is 32-bits.
299static StringRef substr(StringRef Str, uint64_t Len) {
300  return Len >= Str.size() ? Str : Str.substr(0, Len);
301}
302
303//===----------------------------------------------------------------------===//
304// String and Memory Library Call Optimizations
305//===----------------------------------------------------------------------===//
306
307Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
308  // Extract some information from the instruction
309  Value *Dst = CI->getArgOperand(0);
310  Value *Src = CI->getArgOperand(1);
311  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
312
313  // See if we can get the length of the input string.
314  uint64_t Len = GetStringLength(Src);
315  if (Len)
316    annotateDereferenceableBytes(CI, 1, Len);
317  else
318    return nullptr;
319  --Len; // Unbias length.
320
321  // Handle the simple, do-nothing case: strcat(x, "") -> x
322  if (Len == 0)
323    return Dst;
324
325  return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
326}
327
328Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
329                                           IRBuilderBase &B) {
330  // We need to find the end of the destination string.  That's where the
331  // memory is to be moved to. We just generate a call to strlen.
332  Value *DstLen = emitStrLen(Dst, B, DL, TLI);
333  if (!DstLen)
334    return nullptr;
335
336  // Now that we have the destination's length, we must index into the
337  // destination's pointer to get the actual memcpy destination (end of
338  // the string .. we're concatenating).
339  Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
340
341  // We have enough information to now generate the memcpy call to do the
342  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
343  B.CreateMemCpy(
344      CpyDst, Align(1), Src, Align(1),
345      ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
346  return Dst;
347}
348
349Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
350  // Extract some information from the instruction.
351  Value *Dst = CI->getArgOperand(0);
352  Value *Src = CI->getArgOperand(1);
353  Value *Size = CI->getArgOperand(2);
354  uint64_t Len;
355  annotateNonNullNoUndefBasedOnAccess(CI, 0);
356  if (isKnownNonZero(Size, DL))
357    annotateNonNullNoUndefBasedOnAccess(CI, 1);
358
359  // We don't do anything if length is not constant.
360  ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
361  if (LengthArg) {
362    Len = LengthArg->getZExtValue();
363    // strncat(x, c, 0) -> x
364    if (!Len)
365      return Dst;
366  } else {
367    return nullptr;
368  }
369
370  // See if we can get the length of the input string.
371  uint64_t SrcLen = GetStringLength(Src);
372  if (SrcLen) {
373    annotateDereferenceableBytes(CI, 1, SrcLen);
374    --SrcLen; // Unbias length.
375  } else {
376    return nullptr;
377  }
378
379  // strncat(x, "", c) -> x
380  if (SrcLen == 0)
381    return Dst;
382
383  // We don't optimize this case.
384  if (Len < SrcLen)
385    return nullptr;
386
387  // strncat(x, s, c) -> strcat(x, s)
388  // s is constant so the strcat can be optimized further.
389  return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
390}
391
392// Helper to transform memchr(S, C, N) == S to N && *S == C and, when
393// NBytes is null, strchr(S, C) to *S == C.  A precondition of the function
394// is that either S is dereferenceable or the value of N is nonzero.
395static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
396                                  IRBuilderBase &B, const DataLayout &DL)
397{
398  Value *Src = CI->getArgOperand(0);
399  Value *CharVal = CI->getArgOperand(1);
400
401  // Fold memchr(A, C, N) == A to N && *A == C.
402  Type *CharTy = B.getInt8Ty();
403  Value *Char0 = B.CreateLoad(CharTy, Src);
404  CharVal = B.CreateTrunc(CharVal, CharTy);
405  Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
406
407  if (NBytes) {
408    Value *Zero = ConstantInt::get(NBytes->getType(), 0);
409    Value *And = B.CreateICmpNE(NBytes, Zero);
410    Cmp = B.CreateLogicalAnd(And, Cmp);
411  }
412
413  Value *NullPtr = Constant::getNullValue(CI->getType());
414  return B.CreateSelect(Cmp, Src, NullPtr);
415}
416
417Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
418  Value *SrcStr = CI->getArgOperand(0);
419  Value *CharVal = CI->getArgOperand(1);
420  annotateNonNullNoUndefBasedOnAccess(CI, 0);
421
422  if (isOnlyUsedInEqualityComparison(CI, SrcStr))
423    return memChrToCharCompare(CI, nullptr, B, DL);
424
425  // If the second operand is non-constant, see if we can compute the length
426  // of the input string and turn this into memchr.
427  ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
428  if (!CharC) {
429    uint64_t Len = GetStringLength(SrcStr);
430    if (Len)
431      annotateDereferenceableBytes(CI, 0, Len);
432    else
433      return nullptr;
434
435    Function *Callee = CI->getCalledFunction();
436    FunctionType *FT = Callee->getFunctionType();
437    unsigned IntBits = TLI->getIntSize();
438    if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'.
439      return nullptr;
440
441    unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
442    Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
443    return copyFlags(*CI,
444                     emitMemChr(SrcStr, CharVal, // include nul.
445                                ConstantInt::get(SizeTTy, Len), B,
446                                DL, TLI));
447  }
448
449  if (CharC->isZero()) {
450    Value *NullPtr = Constant::getNullValue(CI->getType());
451    if (isOnlyUsedInEqualityComparison(CI, NullPtr))
452      // Pre-empt the transformation to strlen below and fold
453      // strchr(A, '\0') == null to false.
454      return B.CreateIntToPtr(B.getTrue(), CI->getType());
455  }
456
457  // Otherwise, the character is a constant, see if the first argument is
458  // a string literal.  If so, we can constant fold.
459  StringRef Str;
460  if (!getConstantStringInfo(SrcStr, Str)) {
461    if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
462      if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
463        return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
464    return nullptr;
465  }
466
467  // Compute the offset, make sure to handle the case when we're searching for
468  // zero (a weird way to spell strlen).
469  size_t I = (0xFF & CharC->getSExtValue()) == 0
470                 ? Str.size()
471                 : Str.find(CharC->getSExtValue());
472  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
473    return Constant::getNullValue(CI->getType());
474
475  // strchr(s+n,c)  -> gep(s+n+i,c)
476  return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
477}
478
479Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
480  Value *SrcStr = CI->getArgOperand(0);
481  Value *CharVal = CI->getArgOperand(1);
482  ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
483  annotateNonNullNoUndefBasedOnAccess(CI, 0);
484
485  StringRef Str;
486  if (!getConstantStringInfo(SrcStr, Str)) {
487    // strrchr(s, 0) -> strchr(s, 0)
488    if (CharC && CharC->isZero())
489      return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
490    return nullptr;
491  }
492
493  unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
494  Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
495
496  // Try to expand strrchr to the memrchr nonstandard extension if it's
497  // available, or simply fail otherwise.
498  uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
499  Value *Size = ConstantInt::get(SizeTTy, NBytes);
500  return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
501}
502
503Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
504  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
505  if (Str1P == Str2P) // strcmp(x,x)  -> 0
506    return ConstantInt::get(CI->getType(), 0);
507
508  StringRef Str1, Str2;
509  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
510  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
511
512  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
513  if (HasStr1 && HasStr2)
514    return ConstantInt::get(CI->getType(),
515                            std::clamp(Str1.compare(Str2), -1, 1));
516
517  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
518    return B.CreateNeg(B.CreateZExt(
519        B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
520
521  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
522    return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
523                        CI->getType());
524
525  // strcmp(P, "x") -> memcmp(P, "x", 2)
526  uint64_t Len1 = GetStringLength(Str1P);
527  if (Len1)
528    annotateDereferenceableBytes(CI, 0, Len1);
529  uint64_t Len2 = GetStringLength(Str2P);
530  if (Len2)
531    annotateDereferenceableBytes(CI, 1, Len2);
532
533  if (Len1 && Len2) {
534    return copyFlags(
535        *CI, emitMemCmp(Str1P, Str2P,
536                        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
537                                         std::min(Len1, Len2)),
538                        B, DL, TLI));
539  }
540
541  // strcmp to memcmp
542  if (!HasStr1 && HasStr2) {
543    if (canTransformToMemCmp(CI, Str1P, Len2, DL))
544      return copyFlags(
545          *CI,
546          emitMemCmp(Str1P, Str2P,
547                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
548                     B, DL, TLI));
549  } else if (HasStr1 && !HasStr2) {
550    if (canTransformToMemCmp(CI, Str2P, Len1, DL))
551      return copyFlags(
552          *CI,
553          emitMemCmp(Str1P, Str2P,
554                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
555                     B, DL, TLI));
556  }
557
558  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
559  return nullptr;
560}
561
562// Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
563// arrays LHS and RHS and nonconstant Size.
564static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
565                                    Value *Size, bool StrNCmp,
566                                    IRBuilderBase &B, const DataLayout &DL);
567
568Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
569  Value *Str1P = CI->getArgOperand(0);
570  Value *Str2P = CI->getArgOperand(1);
571  Value *Size = CI->getArgOperand(2);
572  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
573    return ConstantInt::get(CI->getType(), 0);
574
575  if (isKnownNonZero(Size, DL))
576    annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
577  // Get the length argument if it is constant.
578  uint64_t Length;
579  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
580    Length = LengthArg->getZExtValue();
581  else
582    return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
583
584  if (Length == 0) // strncmp(x,y,0)   -> 0
585    return ConstantInt::get(CI->getType(), 0);
586
587  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
588    return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
589
590  StringRef Str1, Str2;
591  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
592  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
593
594  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
595  if (HasStr1 && HasStr2) {
596    // Avoid truncating the 64-bit Length to 32 bits in ILP32.
597    StringRef SubStr1 = substr(Str1, Length);
598    StringRef SubStr2 = substr(Str2, Length);
599    return ConstantInt::get(CI->getType(),
600                            std::clamp(SubStr1.compare(SubStr2), -1, 1));
601  }
602
603  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
604    return B.CreateNeg(B.CreateZExt(
605        B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
606
607  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
608    return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
609                        CI->getType());
610
611  uint64_t Len1 = GetStringLength(Str1P);
612  if (Len1)
613    annotateDereferenceableBytes(CI, 0, Len1);
614  uint64_t Len2 = GetStringLength(Str2P);
615  if (Len2)
616    annotateDereferenceableBytes(CI, 1, Len2);
617
618  // strncmp to memcmp
619  if (!HasStr1 && HasStr2) {
620    Len2 = std::min(Len2, Length);
621    if (canTransformToMemCmp(CI, Str1P, Len2, DL))
622      return copyFlags(
623          *CI,
624          emitMemCmp(Str1P, Str2P,
625                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
626                     B, DL, TLI));
627  } else if (HasStr1 && !HasStr2) {
628    Len1 = std::min(Len1, Length);
629    if (canTransformToMemCmp(CI, Str2P, Len1, DL))
630      return copyFlags(
631          *CI,
632          emitMemCmp(Str1P, Str2P,
633                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
634                     B, DL, TLI));
635  }
636
637  return nullptr;
638}
639
640Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
641  Value *Src = CI->getArgOperand(0);
642  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
643  uint64_t SrcLen = GetStringLength(Src);
644  if (SrcLen && Size) {
645    annotateDereferenceableBytes(CI, 0, SrcLen);
646    if (SrcLen <= Size->getZExtValue() + 1)
647      return copyFlags(*CI, emitStrDup(Src, B, TLI));
648  }
649
650  return nullptr;
651}
652
653Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
654  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
655  if (Dst == Src) // strcpy(x,x)  -> x
656    return Src;
657
658  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
659  // See if we can get the length of the input string.
660  uint64_t Len = GetStringLength(Src);
661  if (Len)
662    annotateDereferenceableBytes(CI, 1, Len);
663  else
664    return nullptr;
665
666  // We have enough information to now generate the memcpy call to do the
667  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
668  CallInst *NewCI =
669      B.CreateMemCpy(Dst, Align(1), Src, Align(1),
670                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
671  mergeAttributesAndFlags(NewCI, *CI);
672  return Dst;
673}
674
675Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
676  Function *Callee = CI->getCalledFunction();
677  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
678
679  // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
680  if (CI->use_empty())
681    return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
682
683  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
684    Value *StrLen = emitStrLen(Src, B, DL, TLI);
685    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
686  }
687
688  // See if we can get the length of the input string.
689  uint64_t Len = GetStringLength(Src);
690  if (Len)
691    annotateDereferenceableBytes(CI, 1, Len);
692  else
693    return nullptr;
694
695  Type *PT = Callee->getFunctionType()->getParamType(0);
696  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
697  Value *DstEnd = B.CreateInBoundsGEP(
698      B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
699
700  // We have enough information to now generate the memcpy call to do the
701  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
702  CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
703  mergeAttributesAndFlags(NewCI, *CI);
704  return DstEnd;
705}
706
707// Optimize a call to size_t strlcpy(char*, const char*, size_t).
708
709Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
710  Value *Size = CI->getArgOperand(2);
711  if (isKnownNonZero(Size, DL))
712    // Like snprintf, the function stores into the destination only when
713    // the size argument is nonzero.
714    annotateNonNullNoUndefBasedOnAccess(CI, 0);
715  // The function reads the source argument regardless of Size (it returns
716  // its length).
717  annotateNonNullNoUndefBasedOnAccess(CI, 1);
718
719  uint64_t NBytes;
720  if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
721    NBytes = SizeC->getZExtValue();
722  else
723    return nullptr;
724
725  Value *Dst = CI->getArgOperand(0);
726  Value *Src = CI->getArgOperand(1);
727  if (NBytes <= 1) {
728    if (NBytes == 1)
729      // For a call to strlcpy(D, S, 1) first store a nul in *D.
730      B.CreateStore(B.getInt8(0), Dst);
731
732    // Transform strlcpy(D, S, 0) to a call to strlen(S).
733    return copyFlags(*CI, emitStrLen(Src, B, DL, TLI));
734  }
735
736  // Try to determine the length of the source, substituting its size
737  // when it's not nul-terminated (as it's required to be) to avoid
738  // reading past its end.
739  StringRef Str;
740  if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false))
741    return nullptr;
742
743  uint64_t SrcLen = Str.find('\0');
744  // Set if the terminating nul should be copied by the call to memcpy
745  // below.
746  bool NulTerm = SrcLen < NBytes;
747
748  if (NulTerm)
749    // Overwrite NBytes with the number of bytes to copy, including
750    // the terminating nul.
751    NBytes = SrcLen + 1;
752  else {
753    // Set the length of the source for the function to return to its
754    // size, and cap NBytes at the same.
755    SrcLen = std::min(SrcLen, uint64_t(Str.size()));
756    NBytes = std::min(NBytes - 1, SrcLen);
757  }
758
759  if (SrcLen == 0) {
760    // Transform strlcpy(D, "", N) to (*D = '\0, 0).
761    B.CreateStore(B.getInt8(0), Dst);
762    return ConstantInt::get(CI->getType(), 0);
763  }
764
765  Function *Callee = CI->getCalledFunction();
766  Type *PT = Callee->getFunctionType()->getParamType(0);
767  // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
768  // bound on strlen(S) + 1 and N, optionally followed by a nul store to
769  // D[N' - 1] if necessary.
770  CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
771                        ConstantInt::get(DL.getIntPtrType(PT), NBytes));
772  mergeAttributesAndFlags(NewCI, *CI);
773
774  if (!NulTerm) {
775    Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
776    Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
777    B.CreateStore(B.getInt8(0), EndPtr);
778  }
779
780  // Like snprintf, strlcpy returns the number of nonzero bytes that would
781  // have been copied if the bound had been sufficiently big (which in this
782  // case is strlen(Src)).
783  return ConstantInt::get(CI->getType(), SrcLen);
784}
785
786// Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
787// otherwise.
788Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
789                                             IRBuilderBase &B) {
790  Function *Callee = CI->getCalledFunction();
791  Value *Dst = CI->getArgOperand(0);
792  Value *Src = CI->getArgOperand(1);
793  Value *Size = CI->getArgOperand(2);
794
795  if (isKnownNonZero(Size, DL)) {
796    // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
797    // only when N is nonzero.
798    annotateNonNullNoUndefBasedOnAccess(CI, 0);
799    annotateNonNullNoUndefBasedOnAccess(CI, 1);
800  }
801
802  // If the "bound" argument is known set N to it.  Otherwise set it to
803  // UINT64_MAX and handle it later.
804  uint64_t N = UINT64_MAX;
805  if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
806    N = SizeC->getZExtValue();
807
808  if (N == 0)
809    // Fold st{p,r}ncpy(D, S, 0) to D.
810    return Dst;
811
812  if (N == 1) {
813    Type *CharTy = B.getInt8Ty();
814    Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0");
815    B.CreateStore(CharVal, Dst);
816    if (!RetEnd)
817      // Transform strncpy(D, S, 1) to return (*D = *S), D.
818      return Dst;
819
820    // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
821    Value *ZeroChar = ConstantInt::get(CharTy, 0);
822    Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp");
823
824    Value *Off1 = B.getInt32(1);
825    Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end");
826    return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel");
827  }
828
829  // If the length of the input string is known set SrcLen to it.
830  uint64_t SrcLen = GetStringLength(Src);
831  if (SrcLen)
832    annotateDereferenceableBytes(CI, 1, SrcLen);
833  else
834    return nullptr;
835
836  --SrcLen; // Unbias length.
837
838  if (SrcLen == 0) {
839    // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
840    Align MemSetAlign =
841      CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
842    CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
843    AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
844    NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
845        CI->getContext(), 0, ArgAttrs));
846    copyFlags(*CI, NewCI);
847    return Dst;
848  }
849
850  if (N > SrcLen + 1) {
851    if (N > 128)
852      // Bail if N is large or unknown.
853      return nullptr;
854
855    // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
856    StringRef Str;
857    if (!getConstantStringInfo(Src, Str))
858      return nullptr;
859    std::string SrcStr = Str.str();
860    // Create a bigger, nul-padded array with the same length, SrcLen,
861    // as the original string.
862    SrcStr.resize(N, '\0');
863    Src = B.CreateGlobalString(SrcStr, "str");
864  }
865
866  Type *PT = Callee->getFunctionType()->getParamType(0);
867  // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
868  // S and N are constant.
869  CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
870                                   ConstantInt::get(DL.getIntPtrType(PT), N));
871  mergeAttributesAndFlags(NewCI, *CI);
872  if (!RetEnd)
873    return Dst;
874
875  // stpncpy(D, S, N) returns the address of the first null in D if it writes
876  // one, otherwise D + N.
877  Value *Off = B.getInt64(std::min(SrcLen, N));
878  return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr");
879}
880
881Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
882                                               unsigned CharSize,
883                                               Value *Bound) {
884  Value *Src = CI->getArgOperand(0);
885  Type *CharTy = B.getIntNTy(CharSize);
886
887  if (isOnlyUsedInZeroEqualityComparison(CI) &&
888      (!Bound || isKnownNonZero(Bound, DL))) {
889    // Fold strlen:
890    //   strlen(x) != 0 --> *x != 0
891    //   strlen(x) == 0 --> *x == 0
892    // and likewise strnlen with constant N > 0:
893    //   strnlen(x, N) != 0 --> *x != 0
894    //   strnlen(x, N) == 0 --> *x == 0
895    return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
896                        CI->getType());
897  }
898
899  if (Bound) {
900    if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
901      if (BoundCst->isZero())
902        // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
903        return ConstantInt::get(CI->getType(), 0);
904
905      if (BoundCst->isOne()) {
906        // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
907        Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
908        Value *ZeroChar = ConstantInt::get(CharTy, 0);
909        Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
910        return B.CreateZExt(Cmp, CI->getType());
911      }
912    }
913  }
914
915  if (uint64_t Len = GetStringLength(Src, CharSize)) {
916    Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
917    // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
918    // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
919    if (Bound)
920      return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
921    return LenC;
922  }
923
924  if (Bound)
925    // Punt for strnlen for now.
926    return nullptr;
927
928  // If s is a constant pointer pointing to a string literal, we can fold
929  // strlen(s + x) to strlen(s) - x, when x is known to be in the range
930  // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
931  // We only try to simplify strlen when the pointer s points to an array
932  // of CharSize elements. Otherwise, we would need to scale the offset x before
933  // doing the subtraction. This will make the optimization more complex, and
934  // it's not very useful because calling strlen for a pointer of other types is
935  // very uncommon.
936  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
937    // TODO: Handle subobjects.
938    if (!isGEPBasedOnPointerToString(GEP, CharSize))
939      return nullptr;
940
941    ConstantDataArraySlice Slice;
942    if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
943      uint64_t NullTermIdx;
944      if (Slice.Array == nullptr) {
945        NullTermIdx = 0;
946      } else {
947        NullTermIdx = ~((uint64_t)0);
948        for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
949          if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
950            NullTermIdx = I;
951            break;
952          }
953        }
954        // If the string does not have '\0', leave it to strlen to compute
955        // its length.
956        if (NullTermIdx == ~((uint64_t)0))
957          return nullptr;
958      }
959
960      Value *Offset = GEP->getOperand(2);
961      KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
962      uint64_t ArrSize =
963             cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
964
965      // If Offset is not provably in the range [0, NullTermIdx], we can still
966      // optimize if we can prove that the program has undefined behavior when
967      // Offset is outside that range. That is the case when GEP->getOperand(0)
968      // is a pointer to an object whose memory extent is NullTermIdx+1.
969      if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
970          (isa<GlobalVariable>(GEP->getOperand(0)) &&
971           NullTermIdx == ArrSize - 1)) {
972        Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
973        return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
974                           Offset);
975      }
976    }
977  }
978
979  // strlen(x?"foo":"bars") --> x ? 3 : 4
980  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
981    uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
982    uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
983    if (LenTrue && LenFalse) {
984      ORE.emit([&]() {
985        return OptimizationRemark("instcombine", "simplify-libcalls", CI)
986               << "folded strlen(select) to select of constants";
987      });
988      return B.CreateSelect(SI->getCondition(),
989                            ConstantInt::get(CI->getType(), LenTrue - 1),
990                            ConstantInt::get(CI->getType(), LenFalse - 1));
991    }
992  }
993
994  return nullptr;
995}
996
997Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
998  if (Value *V = optimizeStringLength(CI, B, 8))
999    return V;
1000  annotateNonNullNoUndefBasedOnAccess(CI, 0);
1001  return nullptr;
1002}
1003
1004Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
1005  Value *Bound = CI->getArgOperand(1);
1006  if (Value *V = optimizeStringLength(CI, B, 8, Bound))
1007    return V;
1008
1009  if (isKnownNonZero(Bound, DL))
1010    annotateNonNullNoUndefBasedOnAccess(CI, 0);
1011  return nullptr;
1012}
1013
1014Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
1015  Module &M = *CI->getModule();
1016  unsigned WCharSize = TLI->getWCharSize(M) * 8;
1017  // We cannot perform this optimization without wchar_size metadata.
1018  if (WCharSize == 0)
1019    return nullptr;
1020
1021  return optimizeStringLength(CI, B, WCharSize);
1022}
1023
1024Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
1025  StringRef S1, S2;
1026  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1027  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1028
1029  // strpbrk(s, "") -> nullptr
1030  // strpbrk("", s) -> nullptr
1031  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1032    return Constant::getNullValue(CI->getType());
1033
1034  // Constant folding.
1035  if (HasS1 && HasS2) {
1036    size_t I = S1.find_first_of(S2);
1037    if (I == StringRef::npos) // No match.
1038      return Constant::getNullValue(CI->getType());
1039
1040    return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
1041                               B.getInt64(I), "strpbrk");
1042  }
1043
1044  // strpbrk(s, "a") -> strchr(s, 'a')
1045  if (HasS2 && S2.size() == 1)
1046    return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
1047
1048  return nullptr;
1049}
1050
1051Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
1052  Value *EndPtr = CI->getArgOperand(1);
1053  if (isa<ConstantPointerNull>(EndPtr)) {
1054    // With a null EndPtr, this function won't capture the main argument.
1055    // It would be readonly too, except that it still may write to errno.
1056    CI->addParamAttr(0, Attribute::NoCapture);
1057  }
1058
1059  return nullptr;
1060}
1061
1062Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
1063  StringRef S1, S2;
1064  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1065  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1066
1067  // strspn(s, "") -> 0
1068  // strspn("", s) -> 0
1069  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1070    return Constant::getNullValue(CI->getType());
1071
1072  // Constant folding.
1073  if (HasS1 && HasS2) {
1074    size_t Pos = S1.find_first_not_of(S2);
1075    if (Pos == StringRef::npos)
1076      Pos = S1.size();
1077    return ConstantInt::get(CI->getType(), Pos);
1078  }
1079
1080  return nullptr;
1081}
1082
1083Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
1084  StringRef S1, S2;
1085  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1086  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1087
1088  // strcspn("", s) -> 0
1089  if (HasS1 && S1.empty())
1090    return Constant::getNullValue(CI->getType());
1091
1092  // Constant folding.
1093  if (HasS1 && HasS2) {
1094    size_t Pos = S1.find_first_of(S2);
1095    if (Pos == StringRef::npos)
1096      Pos = S1.size();
1097    return ConstantInt::get(CI->getType(), Pos);
1098  }
1099
1100  // strcspn(s, "") -> strlen(s)
1101  if (HasS2 && S2.empty())
1102    return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
1103
1104  return nullptr;
1105}
1106
1107Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
1108  // fold strstr(x, x) -> x.
1109  if (CI->getArgOperand(0) == CI->getArgOperand(1))
1110    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
1111
1112  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1113  if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
1114    Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
1115    if (!StrLen)
1116      return nullptr;
1117    Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
1118                                 StrLen, B, DL, TLI);
1119    if (!StrNCmp)
1120      return nullptr;
1121    for (User *U : llvm::make_early_inc_range(CI->users())) {
1122      ICmpInst *Old = cast<ICmpInst>(U);
1123      Value *Cmp =
1124          B.CreateICmp(Old->getPredicate(), StrNCmp,
1125                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
1126      replaceAllUsesWith(Old, Cmp);
1127    }
1128    return CI;
1129  }
1130
1131  // See if either input string is a constant string.
1132  StringRef SearchStr, ToFindStr;
1133  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
1134  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
1135
1136  // fold strstr(x, "") -> x.
1137  if (HasStr2 && ToFindStr.empty())
1138    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
1139
1140  // If both strings are known, constant fold it.
1141  if (HasStr1 && HasStr2) {
1142    size_t Offset = SearchStr.find(ToFindStr);
1143
1144    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1145      return Constant::getNullValue(CI->getType());
1146
1147    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1148    Value *Result = castToCStr(CI->getArgOperand(0), B);
1149    Result =
1150        B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
1151    return B.CreateBitCast(Result, CI->getType());
1152  }
1153
1154  // fold strstr(x, "y") -> strchr(x, 'y').
1155  if (HasStr2 && ToFindStr.size() == 1) {
1156    Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
1157    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
1158  }
1159
1160  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
1161  return nullptr;
1162}
1163
1164Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1165  Value *SrcStr = CI->getArgOperand(0);
1166  Value *Size = CI->getArgOperand(2);
1167  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1168  Value *CharVal = CI->getArgOperand(1);
1169  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1170  Value *NullPtr = Constant::getNullValue(CI->getType());
1171
1172  if (LenC) {
1173    if (LenC->isZero())
1174      // Fold memrchr(x, y, 0) --> null.
1175      return NullPtr;
1176
1177    if (LenC->isOne()) {
1178      // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1179      // constant or otherwise.
1180      Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1181      // Slice off the character's high end bits.
1182      CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1183      Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1184      return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1185    }
1186  }
1187
1188  StringRef Str;
1189  if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1190    return nullptr;
1191
1192  if (Str.size() == 0)
1193    // If the array is empty fold memrchr(A, C, N) to null for any value
1194    // of C and N on the basis that the only valid value of N is zero
1195    // (otherwise the call is undefined).
1196    return NullPtr;
1197
1198  uint64_t EndOff = UINT64_MAX;
1199  if (LenC) {
1200    EndOff = LenC->getZExtValue();
1201    if (Str.size() < EndOff)
1202      // Punt out-of-bounds accesses to sanitizers and/or libc.
1203      return nullptr;
1204  }
1205
1206  if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1207    // Fold memrchr(S, C, N) for a constant C.
1208    size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1209    if (Pos == StringRef::npos)
1210      // When the character is not in the source array fold the result
1211      // to null regardless of Size.
1212      return NullPtr;
1213
1214    if (LenC)
1215      // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1216      return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1217
1218    if (Str.find(Str[Pos]) == Pos) {
1219      // When there is just a single occurrence of C in S, i.e., the one
1220      // in Str[Pos], fold
1221      //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1222      // for nonconstant N.
1223      Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1224                                   "memrchr.cmp");
1225      Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1226                                           B.getInt64(Pos), "memrchr.ptr_plus");
1227      return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1228    }
1229  }
1230
1231  // Truncate the string to search at most EndOff characters.
1232  Str = Str.substr(0, EndOff);
1233  if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1234    return nullptr;
1235
1236  // If the source array consists of all equal characters, then for any
1237  // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1238  //   N != 0 && *S == C ? S + N - 1 : null
1239  Type *SizeTy = Size->getType();
1240  Type *Int8Ty = B.getInt8Ty();
1241  Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1242  // Slice off the sought character's high end bits.
1243  CharVal = B.CreateTrunc(CharVal, Int8Ty);
1244  Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1245  Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1246  Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1247  Value *SrcPlus =
1248      B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1249  return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1250}
1251
1252Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1253  Value *SrcStr = CI->getArgOperand(0);
1254  Value *Size = CI->getArgOperand(2);
1255
1256  if (isKnownNonZero(Size, DL)) {
1257    annotateNonNullNoUndefBasedOnAccess(CI, 0);
1258    if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1259      return memChrToCharCompare(CI, Size, B, DL);
1260  }
1261
1262  Value *CharVal = CI->getArgOperand(1);
1263  ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1264  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1265  Value *NullPtr = Constant::getNullValue(CI->getType());
1266
1267  // memchr(x, y, 0) -> null
1268  if (LenC) {
1269    if (LenC->isZero())
1270      return NullPtr;
1271
1272    if (LenC->isOne()) {
1273      // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1274      // constant or otherwise.
1275      Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1276      // Slice off the character's high end bits.
1277      CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1278      Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1279      return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1280    }
1281  }
1282
1283  StringRef Str;
1284  if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1285    return nullptr;
1286
1287  if (CharC) {
1288    size_t Pos = Str.find(CharC->getZExtValue());
1289    if (Pos == StringRef::npos)
1290      // When the character is not in the source array fold the result
1291      // to null regardless of Size.
1292      return NullPtr;
1293
1294    // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1295    // When the constant Size is less than or equal to the character
1296    // position also fold the result to null.
1297    Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1298                                 "memchr.cmp");
1299    Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1300                                         "memchr.ptr");
1301    return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1302  }
1303
1304  if (Str.size() == 0)
1305    // If the array is empty fold memchr(A, C, N) to null for any value
1306    // of C and N on the basis that the only valid value of N is zero
1307    // (otherwise the call is undefined).
1308    return NullPtr;
1309
1310  if (LenC)
1311    Str = substr(Str, LenC->getZExtValue());
1312
1313  size_t Pos = Str.find_first_not_of(Str[0]);
1314  if (Pos == StringRef::npos
1315      || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1316    // If the source array consists of at most two consecutive sequences
1317    // of the same characters, then for any C and N (whether in bounds or
1318    // not), fold memchr(S, C, N) to
1319    //   N != 0 && *S == C ? S : null
1320    // or for the two sequences to:
1321    //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1322    //   ^Sel2                   ^Sel1 are denoted above.
1323    // The latter makes it also possible to fold strchr() calls with strings
1324    // of the same characters.
1325    Type *SizeTy = Size->getType();
1326    Type *Int8Ty = B.getInt8Ty();
1327
1328    // Slice off the sought character's high end bits.
1329    CharVal = B.CreateTrunc(CharVal, Int8Ty);
1330
1331    Value *Sel1 = NullPtr;
1332    if (Pos != StringRef::npos) {
1333      // Handle two consecutive sequences of the same characters.
1334      Value *PosVal = ConstantInt::get(SizeTy, Pos);
1335      Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1336      Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1337      Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1338      Value *And = B.CreateAnd(CEqSPos, NGtPos);
1339      Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1340      Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1341    }
1342
1343    Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1344    Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1345    Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1346    Value *And = B.CreateAnd(NNeZ, CEqS0);
1347    return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1348  }
1349
1350  if (!LenC) {
1351    if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1352      // S is dereferenceable so it's safe to load from it and fold
1353      //   memchr(S, C, N) == S to N && *S == C for any C and N.
1354      // TODO: This is safe even even for nonconstant S.
1355      return memChrToCharCompare(CI, Size, B, DL);
1356
1357    // From now on we need a constant length and constant array.
1358    return nullptr;
1359  }
1360
1361  // If the char is variable but the input str and length are not we can turn
1362  // this memchr call into a simple bit field test. Of course this only works
1363  // when the return value is only checked against null.
1364  //
1365  // It would be really nice to reuse switch lowering here but we can't change
1366  // the CFG at this point.
1367  //
1368  // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1369  // != 0
1370  //   after bounds check.
1371  if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1372    return nullptr;
1373
1374  unsigned char Max =
1375      *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1376                        reinterpret_cast<const unsigned char *>(Str.end()));
1377
1378  // Make sure the bit field we're about to create fits in a register on the
1379  // target.
1380  // FIXME: On a 64 bit architecture this prevents us from using the
1381  // interesting range of alpha ascii chars. We could do better by emitting
1382  // two bitfields or shifting the range by 64 if no lower chars are used.
1383  if (!DL.fitsInLegalInteger(Max + 1))
1384    return nullptr;
1385
1386  // For the bit field use a power-of-2 type with at least 8 bits to avoid
1387  // creating unnecessary illegal types.
1388  unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1389
1390  // Now build the bit field.
1391  APInt Bitfield(Width, 0);
1392  for (char C : Str)
1393    Bitfield.setBit((unsigned char)C);
1394  Value *BitfieldC = B.getInt(Bitfield);
1395
1396  // Adjust width of "C" to the bitfield width, then mask off the high bits.
1397  Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1398  C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1399
1400  // First check that the bit field access is within bounds.
1401  Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1402                               "memchr.bounds");
1403
1404  // Create code that checks if the given bit is set in the field.
1405  Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1406  Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1407
1408  // Finally merge both checks and cast to pointer type. The inttoptr
1409  // implicitly zexts the i1 to intptr type.
1410  return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1411                          CI->getType());
1412}
1413
1414// Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1415// arrays LHS and RHS and nonconstant Size.
1416static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1417                                    Value *Size, bool StrNCmp,
1418                                    IRBuilderBase &B, const DataLayout &DL) {
1419  if (LHS == RHS) // memcmp(s,s,x) -> 0
1420    return Constant::getNullValue(CI->getType());
1421
1422  StringRef LStr, RStr;
1423  if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) ||
1424      !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false))
1425    return nullptr;
1426
1427  // If the contents of both constant arrays are known, fold a call to
1428  // memcmp(A, B, N) to
1429  //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1430  // where Pos is the first mismatch between A and B, determined below.
1431
1432  uint64_t Pos = 0;
1433  Value *Zero = ConstantInt::get(CI->getType(), 0);
1434  for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1435    if (Pos == MinSize ||
1436        (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1437      // One array is a leading part of the other of equal or greater
1438      // size, or for strncmp, the arrays are equal strings.
1439      // Fold the result to zero.  Size is assumed to be in bounds, since
1440      // otherwise the call would be undefined.
1441      return Zero;
1442    }
1443
1444    if (LStr[Pos] != RStr[Pos])
1445      break;
1446  }
1447
1448  // Normalize the result.
1449  typedef unsigned char UChar;
1450  int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1451  Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1452  Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1453  Value *Res = ConstantInt::get(CI->getType(), IRes);
1454  return B.CreateSelect(Cmp, Zero, Res);
1455}
1456
1457// Optimize a memcmp call CI with constant size Len.
1458static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1459                                         uint64_t Len, IRBuilderBase &B,
1460                                         const DataLayout &DL) {
1461  if (Len == 0) // memcmp(s1,s2,0) -> 0
1462    return Constant::getNullValue(CI->getType());
1463
1464  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1465  if (Len == 1) {
1466    Value *LHSV =
1467        B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1468                     CI->getType(), "lhsv");
1469    Value *RHSV =
1470        B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1471                     CI->getType(), "rhsv");
1472    return B.CreateSub(LHSV, RHSV, "chardiff");
1473  }
1474
1475  // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1476  // TODO: The case where both inputs are constants does not need to be limited
1477  // to legal integers or equality comparison. See block below this.
1478  if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1479    IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1480    Align PrefAlignment = DL.getPrefTypeAlign(IntType);
1481
1482    // First, see if we can fold either argument to a constant.
1483    Value *LHSV = nullptr;
1484    if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1485      LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1486      LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1487    }
1488    Value *RHSV = nullptr;
1489    if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1490      RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1491      RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1492    }
1493
1494    // Don't generate unaligned loads. If either source is constant data,
1495    // alignment doesn't matter for that source because there is no load.
1496    if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1497        (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1498      if (!LHSV) {
1499        Type *LHSPtrTy =
1500            IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1501        LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1502      }
1503      if (!RHSV) {
1504        Type *RHSPtrTy =
1505            IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1506        RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1507      }
1508      return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1509    }
1510  }
1511
1512  return nullptr;
1513}
1514
1515// Most simplifications for memcmp also apply to bcmp.
1516Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1517                                                   IRBuilderBase &B) {
1518  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1519  Value *Size = CI->getArgOperand(2);
1520
1521  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1522
1523  if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1524    return Res;
1525
1526  // Handle constant Size.
1527  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1528  if (!LenC)
1529    return nullptr;
1530
1531  return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1532}
1533
1534Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1535  Module *M = CI->getModule();
1536  if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1537    return V;
1538
1539  // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1540  // bcmp can be more efficient than memcmp because it only has to know that
1541  // there is a difference, not how different one is to the other.
1542  if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1543      isOnlyUsedInZeroEqualityComparison(CI)) {
1544    Value *LHS = CI->getArgOperand(0);
1545    Value *RHS = CI->getArgOperand(1);
1546    Value *Size = CI->getArgOperand(2);
1547    return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1548  }
1549
1550  return nullptr;
1551}
1552
1553Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1554  return optimizeMemCmpBCmpCommon(CI, B);
1555}
1556
1557Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1558  Value *Size = CI->getArgOperand(2);
1559  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1560  if (isa<IntrinsicInst>(CI))
1561    return nullptr;
1562
1563  // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1564  CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1565                                   CI->getArgOperand(1), Align(1), Size);
1566  mergeAttributesAndFlags(NewCI, *CI);
1567  return CI->getArgOperand(0);
1568}
1569
1570Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1571  Value *Dst = CI->getArgOperand(0);
1572  Value *Src = CI->getArgOperand(1);
1573  ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1574  ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1575  StringRef SrcStr;
1576  if (CI->use_empty() && Dst == Src)
1577    return Dst;
1578  // memccpy(d, s, c, 0) -> nullptr
1579  if (N) {
1580    if (N->isNullValue())
1581      return Constant::getNullValue(CI->getType());
1582    if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) ||
1583        // TODO: Handle zeroinitializer.
1584        !StopChar)
1585      return nullptr;
1586  } else {
1587    return nullptr;
1588  }
1589
1590  // Wrap arg 'c' of type int to char
1591  size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1592  if (Pos == StringRef::npos) {
1593    if (N->getZExtValue() <= SrcStr.size()) {
1594      copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1595                                    CI->getArgOperand(3)));
1596      return Constant::getNullValue(CI->getType());
1597    }
1598    return nullptr;
1599  }
1600
1601  Value *NewN =
1602      ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1603  // memccpy -> llvm.memcpy
1604  copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1605  return Pos + 1 <= N->getZExtValue()
1606             ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1607             : Constant::getNullValue(CI->getType());
1608}
1609
1610Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1611  Value *Dst = CI->getArgOperand(0);
1612  Value *N = CI->getArgOperand(2);
1613  // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1614  CallInst *NewCI =
1615      B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1616  // Propagate attributes, but memcpy has no return value, so make sure that
1617  // any return attributes are compliant.
1618  // TODO: Attach return value attributes to the 1st operand to preserve them?
1619  mergeAttributesAndFlags(NewCI, *CI);
1620  return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1621}
1622
1623Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1624  Value *Size = CI->getArgOperand(2);
1625  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1626  if (isa<IntrinsicInst>(CI))
1627    return nullptr;
1628
1629  // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1630  CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1631                                    CI->getArgOperand(1), Align(1), Size);
1632  mergeAttributesAndFlags(NewCI, *CI);
1633  return CI->getArgOperand(0);
1634}
1635
1636Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1637  Value *Size = CI->getArgOperand(2);
1638  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1639  if (isa<IntrinsicInst>(CI))
1640    return nullptr;
1641
1642  // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1643  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1644  CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1645  mergeAttributesAndFlags(NewCI, *CI);
1646  return CI->getArgOperand(0);
1647}
1648
1649Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1650  if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1651    return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1652
1653  return nullptr;
1654}
1655
1656//===----------------------------------------------------------------------===//
1657// Math Library Optimizations
1658//===----------------------------------------------------------------------===//
1659
1660// Replace a libcall \p CI with a call to intrinsic \p IID
1661static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1662                               Intrinsic::ID IID) {
1663  // Propagate fast-math flags from the existing call to the new call.
1664  IRBuilderBase::FastMathFlagGuard Guard(B);
1665  B.setFastMathFlags(CI->getFastMathFlags());
1666
1667  Module *M = CI->getModule();
1668  Value *V = CI->getArgOperand(0);
1669  Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1670  CallInst *NewCall = B.CreateCall(F, V);
1671  NewCall->takeName(CI);
1672  return copyFlags(*CI, NewCall);
1673}
1674
1675/// Return a variant of Val with float type.
1676/// Currently this works in two cases: If Val is an FPExtension of a float
1677/// value to something bigger, simply return the operand.
1678/// If Val is a ConstantFP but can be converted to a float ConstantFP without
1679/// loss of precision do so.
1680static Value *valueHasFloatPrecision(Value *Val) {
1681  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1682    Value *Op = Cast->getOperand(0);
1683    if (Op->getType()->isFloatTy())
1684      return Op;
1685  }
1686  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1687    APFloat F = Const->getValueAPF();
1688    bool losesInfo;
1689    (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1690                    &losesInfo);
1691    if (!losesInfo)
1692      return ConstantFP::get(Const->getContext(), F);
1693  }
1694  return nullptr;
1695}
1696
1697/// Shrink double -> float functions.
1698static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1699                               bool isBinary, const TargetLibraryInfo *TLI,
1700                               bool isPrecise = false) {
1701  Function *CalleeFn = CI->getCalledFunction();
1702  if (!CI->getType()->isDoubleTy() || !CalleeFn)
1703    return nullptr;
1704
1705  // If not all the uses of the function are converted to float, then bail out.
1706  // This matters if the precision of the result is more important than the
1707  // precision of the arguments.
1708  if (isPrecise)
1709    for (User *U : CI->users()) {
1710      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1711      if (!Cast || !Cast->getType()->isFloatTy())
1712        return nullptr;
1713    }
1714
1715  // If this is something like 'g((double) float)', convert to 'gf(float)'.
1716  Value *V[2];
1717  V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1718  V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1719  if (!V[0] || (isBinary && !V[1]))
1720    return nullptr;
1721
1722  // If call isn't an intrinsic, check that it isn't within a function with the
1723  // same name as the float version of this call, otherwise the result is an
1724  // infinite loop.  For example, from MinGW-w64:
1725  //
1726  // float expf(float val) { return (float) exp((double) val); }
1727  StringRef CalleeName = CalleeFn->getName();
1728  bool IsIntrinsic = CalleeFn->isIntrinsic();
1729  if (!IsIntrinsic) {
1730    StringRef CallerName = CI->getFunction()->getName();
1731    if (!CallerName.empty() && CallerName.back() == 'f' &&
1732        CallerName.size() == (CalleeName.size() + 1) &&
1733        CallerName.startswith(CalleeName))
1734      return nullptr;
1735  }
1736
1737  // Propagate the math semantics from the current function to the new function.
1738  IRBuilderBase::FastMathFlagGuard Guard(B);
1739  B.setFastMathFlags(CI->getFastMathFlags());
1740
1741  // g((double) float) -> (double) gf(float)
1742  Value *R;
1743  if (IsIntrinsic) {
1744    Module *M = CI->getModule();
1745    Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1746    Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1747    R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1748  } else {
1749    AttributeList CalleeAttrs = CalleeFn->getAttributes();
1750    R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1751                                         CalleeAttrs)
1752                 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1753  }
1754  return B.CreateFPExt(R, B.getDoubleTy());
1755}
1756
1757/// Shrink double -> float for unary functions.
1758static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1759                                    const TargetLibraryInfo *TLI,
1760                                    bool isPrecise = false) {
1761  return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1762}
1763
1764/// Shrink double -> float for binary functions.
1765static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1766                                     const TargetLibraryInfo *TLI,
1767                                     bool isPrecise = false) {
1768  return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1769}
1770
1771// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1772Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1773  if (!CI->isFast())
1774    return nullptr;
1775
1776  // Propagate fast-math flags from the existing call to new instructions.
1777  IRBuilderBase::FastMathFlagGuard Guard(B);
1778  B.setFastMathFlags(CI->getFastMathFlags());
1779
1780  Value *Real, *Imag;
1781  if (CI->arg_size() == 1) {
1782    Value *Op = CI->getArgOperand(0);
1783    assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1784    Real = B.CreateExtractValue(Op, 0, "real");
1785    Imag = B.CreateExtractValue(Op, 1, "imag");
1786  } else {
1787    assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1788    Real = CI->getArgOperand(0);
1789    Imag = CI->getArgOperand(1);
1790  }
1791
1792  Value *RealReal = B.CreateFMul(Real, Real);
1793  Value *ImagImag = B.CreateFMul(Imag, Imag);
1794
1795  Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1796                                              CI->getType());
1797  return copyFlags(
1798      *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1799}
1800
1801static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1802                                      IRBuilderBase &B) {
1803  if (!isa<FPMathOperator>(Call))
1804    return nullptr;
1805
1806  IRBuilderBase::FastMathFlagGuard Guard(B);
1807  B.setFastMathFlags(Call->getFastMathFlags());
1808
1809  // TODO: Can this be shared to also handle LLVM intrinsics?
1810  Value *X;
1811  switch (Func) {
1812  case LibFunc_sin:
1813  case LibFunc_sinf:
1814  case LibFunc_sinl:
1815  case LibFunc_tan:
1816  case LibFunc_tanf:
1817  case LibFunc_tanl:
1818    // sin(-X) --> -sin(X)
1819    // tan(-X) --> -tan(X)
1820    if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1821      return B.CreateFNeg(
1822          copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1823    break;
1824  case LibFunc_cos:
1825  case LibFunc_cosf:
1826  case LibFunc_cosl:
1827    // cos(-X) --> cos(X)
1828    if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1829      return copyFlags(*Call,
1830                       B.CreateCall(Call->getCalledFunction(), X, "cos"));
1831    break;
1832  default:
1833    break;
1834  }
1835  return nullptr;
1836}
1837
1838// Return a properly extended integer (DstWidth bits wide) if the operation is
1839// an itofp.
1840static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1841  if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1842    Value *Op = cast<Instruction>(I2F)->getOperand(0);
1843    // Make sure that the exponent fits inside an "int" of size DstWidth,
1844    // thus avoiding any range issues that FP has not.
1845    unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1846    if (BitWidth < DstWidth ||
1847        (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1848      return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1849                                  : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1850  }
1851
1852  return nullptr;
1853}
1854
1855/// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1856/// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1857/// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1858Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1859  Module *M = Pow->getModule();
1860  Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1861  Module *Mod = Pow->getModule();
1862  Type *Ty = Pow->getType();
1863  bool Ignored;
1864
1865  // Evaluate special cases related to a nested function as the base.
1866
1867  // pow(exp(x), y) -> exp(x * y)
1868  // pow(exp2(x), y) -> exp2(x * y)
1869  // If exp{,2}() is used only once, it is better to fold two transcendental
1870  // math functions into one.  If used again, exp{,2}() would still have to be
1871  // called with the original argument, then keep both original transcendental
1872  // functions.  However, this transformation is only safe with fully relaxed
1873  // math semantics, since, besides rounding differences, it changes overflow
1874  // and underflow behavior quite dramatically.  For example:
1875  //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1876  // Whereas:
1877  //   exp(1000 * 0.001) = exp(1)
1878  // TODO: Loosen the requirement for fully relaxed math semantics.
1879  // TODO: Handle exp10() when more targets have it available.
1880  CallInst *BaseFn = dyn_cast<CallInst>(Base);
1881  if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1882    LibFunc LibFn;
1883
1884    Function *CalleeFn = BaseFn->getCalledFunction();
1885    if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1886        isLibFuncEmittable(M, TLI, LibFn)) {
1887      StringRef ExpName;
1888      Intrinsic::ID ID;
1889      Value *ExpFn;
1890      LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1891
1892      switch (LibFn) {
1893      default:
1894        return nullptr;
1895      case LibFunc_expf:
1896      case LibFunc_exp:
1897      case LibFunc_expl:
1898        ExpName = TLI->getName(LibFunc_exp);
1899        ID = Intrinsic::exp;
1900        LibFnFloat = LibFunc_expf;
1901        LibFnDouble = LibFunc_exp;
1902        LibFnLongDouble = LibFunc_expl;
1903        break;
1904      case LibFunc_exp2f:
1905      case LibFunc_exp2:
1906      case LibFunc_exp2l:
1907        ExpName = TLI->getName(LibFunc_exp2);
1908        ID = Intrinsic::exp2;
1909        LibFnFloat = LibFunc_exp2f;
1910        LibFnDouble = LibFunc_exp2;
1911        LibFnLongDouble = LibFunc_exp2l;
1912        break;
1913      }
1914
1915      // Create new exp{,2}() with the product as its argument.
1916      Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1917      ExpFn = BaseFn->doesNotAccessMemory()
1918              ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1919                             FMul, ExpName)
1920              : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1921                                     LibFnLongDouble, B,
1922                                     BaseFn->getAttributes());
1923
1924      // Since the new exp{,2}() is different from the original one, dead code
1925      // elimination cannot be trusted to remove it, since it may have side
1926      // effects (e.g., errno).  When the only consumer for the original
1927      // exp{,2}() is pow(), then it has to be explicitly erased.
1928      substituteInParent(BaseFn, ExpFn);
1929      return ExpFn;
1930    }
1931  }
1932
1933  // Evaluate special cases related to a constant base.
1934
1935  const APFloat *BaseF;
1936  if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1937    return nullptr;
1938
1939  AttributeList NoAttrs; // Attributes are only meaningful on the original call
1940
1941  // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1942  if (match(Base, m_SpecificFP(2.0)) &&
1943      (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1944      hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1945    if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1946      return copyFlags(*Pow,
1947                       emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1948                                             TLI, LibFunc_ldexp, LibFunc_ldexpf,
1949                                             LibFunc_ldexpl, B, NoAttrs));
1950  }
1951
1952  // pow(2.0 ** n, x) -> exp2(n * x)
1953  if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1954    APFloat BaseR = APFloat(1.0);
1955    BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1956    BaseR = BaseR / *BaseF;
1957    bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1958    const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1959    APSInt NI(64, false);
1960    if ((IsInteger || IsReciprocal) &&
1961        NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1962            APFloat::opOK &&
1963        NI > 1 && NI.isPowerOf2()) {
1964      double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1965      Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1966      if (Pow->doesNotAccessMemory())
1967        return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1968                                                Mod, Intrinsic::exp2, Ty),
1969                                            FMul, "exp2"));
1970      else
1971        return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1972                                                    LibFunc_exp2f,
1973                                                    LibFunc_exp2l, B, NoAttrs));
1974    }
1975  }
1976
1977  // pow(10.0, x) -> exp10(x)
1978  // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1979  if (match(Base, m_SpecificFP(10.0)) &&
1980      hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1981    return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1982                                                LibFunc_exp10f, LibFunc_exp10l,
1983                                                B, NoAttrs));
1984
1985  // pow(x, y) -> exp2(log2(x) * y)
1986  if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1987      !BaseF->isNegative()) {
1988    // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1989    // Luckily optimizePow has already handled the x == 1 case.
1990    assert(!match(Base, m_FPOne()) &&
1991           "pow(1.0, y) should have been simplified earlier!");
1992
1993    Value *Log = nullptr;
1994    if (Ty->isFloatTy())
1995      Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1996    else if (Ty->isDoubleTy())
1997      Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1998
1999    if (Log) {
2000      Value *FMul = B.CreateFMul(Log, Expo, "mul");
2001      if (Pow->doesNotAccessMemory())
2002        return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
2003                                                Mod, Intrinsic::exp2, Ty),
2004                                            FMul, "exp2"));
2005      else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2006                          LibFunc_exp2l))
2007        return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2008                                                    LibFunc_exp2f,
2009                                                    LibFunc_exp2l, B, NoAttrs));
2010    }
2011  }
2012
2013  return nullptr;
2014}
2015
2016static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
2017                          Module *M, IRBuilderBase &B,
2018                          const TargetLibraryInfo *TLI) {
2019  // If errno is never set, then use the intrinsic for sqrt().
2020  if (NoErrno) {
2021    Function *SqrtFn =
2022        Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
2023    return B.CreateCall(SqrtFn, V, "sqrt");
2024  }
2025
2026  // Otherwise, use the libcall for sqrt().
2027  if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2028                 LibFunc_sqrtl))
2029    // TODO: We also should check that the target can in fact lower the sqrt()
2030    // libcall. We currently have no way to ask this question, so we ask if
2031    // the target has a sqrt() libcall, which is not exactly the same.
2032    return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
2033                                LibFunc_sqrtl, B, Attrs);
2034
2035  return nullptr;
2036}
2037
2038/// Use square root in place of pow(x, +/-0.5).
2039Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
2040  Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2041  Module *Mod = Pow->getModule();
2042  Type *Ty = Pow->getType();
2043
2044  const APFloat *ExpoF;
2045  if (!match(Expo, m_APFloat(ExpoF)) ||
2046      (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
2047    return nullptr;
2048
2049  // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2050  // so that requires fast-math-flags (afn or reassoc).
2051  if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
2052    return nullptr;
2053
2054  // If we have a pow() library call (accesses memory) and we can't guarantee
2055  // that the base is not an infinity, give up:
2056  // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2057  // errno), but sqrt(-Inf) is required by various standards to set errno.
2058  if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
2059      !isKnownNeverInfinity(Base, TLI))
2060    return nullptr;
2061
2062  Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B,
2063                     TLI);
2064  if (!Sqrt)
2065    return nullptr;
2066
2067  // Handle signed zero base by expanding to fabs(sqrt(x)).
2068  if (!Pow->hasNoSignedZeros()) {
2069    Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
2070    Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
2071  }
2072
2073  Sqrt = copyFlags(*Pow, Sqrt);
2074
2075  // Handle non finite base by expanding to
2076  // (x == -infinity ? +infinity : sqrt(x)).
2077  if (!Pow->hasNoInfs()) {
2078    Value *PosInf = ConstantFP::getInfinity(Ty),
2079          *NegInf = ConstantFP::getInfinity(Ty, true);
2080    Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
2081    Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
2082  }
2083
2084  // If the exponent is negative, then get the reciprocal.
2085  if (ExpoF->isNegative())
2086    Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
2087
2088  return Sqrt;
2089}
2090
2091static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
2092                                           IRBuilderBase &B) {
2093  Value *Args[] = {Base, Expo};
2094  Type *Types[] = {Base->getType(), Expo->getType()};
2095  Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
2096  return B.CreateCall(F, Args);
2097}
2098
2099Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
2100  Value *Base = Pow->getArgOperand(0);
2101  Value *Expo = Pow->getArgOperand(1);
2102  Function *Callee = Pow->getCalledFunction();
2103  StringRef Name = Callee->getName();
2104  Type *Ty = Pow->getType();
2105  Module *M = Pow->getModule();
2106  bool AllowApprox = Pow->hasApproxFunc();
2107  bool Ignored;
2108
2109  // Propagate the math semantics from the call to any created instructions.
2110  IRBuilderBase::FastMathFlagGuard Guard(B);
2111  B.setFastMathFlags(Pow->getFastMathFlags());
2112  // Evaluate special cases related to the base.
2113
2114  // pow(1.0, x) -> 1.0
2115  if (match(Base, m_FPOne()))
2116    return Base;
2117
2118  if (Value *Exp = replacePowWithExp(Pow, B))
2119    return Exp;
2120
2121  // Evaluate special cases related to the exponent.
2122
2123  // pow(x, -1.0) -> 1.0 / x
2124  if (match(Expo, m_SpecificFP(-1.0)))
2125    return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2126
2127  // pow(x, +/-0.0) -> 1.0
2128  if (match(Expo, m_AnyZeroFP()))
2129    return ConstantFP::get(Ty, 1.0);
2130
2131  // pow(x, 1.0) -> x
2132  if (match(Expo, m_FPOne()))
2133    return Base;
2134
2135  // pow(x, 2.0) -> x * x
2136  if (match(Expo, m_SpecificFP(2.0)))
2137    return B.CreateFMul(Base, Base, "square");
2138
2139  if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2140    return Sqrt;
2141
2142  // If we can approximate pow:
2143  // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2144  // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2145  const APFloat *ExpoF;
2146  if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
2147      !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
2148    APFloat ExpoA(abs(*ExpoF));
2149    APFloat ExpoI(*ExpoF);
2150    Value *Sqrt = nullptr;
2151    if (!ExpoA.isInteger()) {
2152      APFloat Expo2 = ExpoA;
2153      // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2154      // is no floating point exception and the result is an integer, then
2155      // ExpoA == integer + 0.5
2156      if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
2157        return nullptr;
2158
2159      if (!Expo2.isInteger())
2160        return nullptr;
2161
2162      if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
2163          APFloat::opInexact)
2164        return nullptr;
2165      if (!ExpoI.isInteger())
2166        return nullptr;
2167      ExpoF = &ExpoI;
2168
2169      Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M,
2170                         B, TLI);
2171      if (!Sqrt)
2172        return nullptr;
2173    }
2174
2175    // 0.5 fraction is now optionally handled.
2176    // Do pow -> powi for remaining integer exponent
2177    APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2178    if (ExpoF->isInteger() &&
2179        ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2180            APFloat::opOK) {
2181      Value *PowI = copyFlags(
2182          *Pow,
2183          createPowWithIntegerExponent(
2184              Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2185              M, B));
2186
2187      if (PowI && Sqrt)
2188        return B.CreateFMul(PowI, Sqrt);
2189
2190      return PowI;
2191    }
2192  }
2193
2194  // powf(x, itofp(y)) -> powi(x, y)
2195  if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2196    if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2197      return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2198  }
2199
2200  // Shrink pow() to powf() if the arguments are single precision,
2201  // unless the result is expected to be double precision.
2202  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2203      hasFloatVersion(M, Name)) {
2204    if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2205      return Shrunk;
2206  }
2207
2208  return nullptr;
2209}
2210
2211Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2212  Module *M = CI->getModule();
2213  Function *Callee = CI->getCalledFunction();
2214  StringRef Name = Callee->getName();
2215  Value *Ret = nullptr;
2216  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2217      hasFloatVersion(M, Name))
2218    Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2219
2220  Type *Ty = CI->getType();
2221  Value *Op = CI->getArgOperand(0);
2222
2223  // exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2224  // exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2225  if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2226      hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
2227    if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
2228      return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
2229                                   LibFunc_ldexp, LibFunc_ldexpf,
2230                                   LibFunc_ldexpl, B, AttributeList());
2231  }
2232
2233  return Ret;
2234}
2235
2236Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2237  Module *M = CI->getModule();
2238
2239  // If we can shrink the call to a float function rather than a double
2240  // function, do that first.
2241  Function *Callee = CI->getCalledFunction();
2242  StringRef Name = Callee->getName();
2243  if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2244    if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2245      return Ret;
2246
2247  // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2248  // the intrinsics for improved optimization (for example, vectorization).
2249  // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2250  // From the C standard draft WG14/N1256:
2251  // "Ideally, fmax would be sensitive to the sign of zero, for example
2252  // fmax(-0.0, +0.0) would return +0; however, implementation in software
2253  // might be impractical."
2254  IRBuilderBase::FastMathFlagGuard Guard(B);
2255  FastMathFlags FMF = CI->getFastMathFlags();
2256  FMF.setNoSignedZeros();
2257  B.setFastMathFlags(FMF);
2258
2259  Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
2260                                                           : Intrinsic::maxnum;
2261  Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
2262  return copyFlags(
2263      *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
2264}
2265
2266Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2267  Function *LogFn = Log->getCalledFunction();
2268  StringRef LogNm = LogFn->getName();
2269  Intrinsic::ID LogID = LogFn->getIntrinsicID();
2270  Module *Mod = Log->getModule();
2271  Type *Ty = Log->getType();
2272  Value *Ret = nullptr;
2273
2274  if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2275    Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2276
2277  // The earlier call must also be 'fast' in order to do these transforms.
2278  CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2279  if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2280    return Ret;
2281
2282  LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2283
2284  // This is only applicable to log(), log2(), log10().
2285  if (TLI->getLibFunc(LogNm, LogLb))
2286    switch (LogLb) {
2287    case LibFunc_logf:
2288      LogID = Intrinsic::log;
2289      ExpLb = LibFunc_expf;
2290      Exp2Lb = LibFunc_exp2f;
2291      Exp10Lb = LibFunc_exp10f;
2292      PowLb = LibFunc_powf;
2293      break;
2294    case LibFunc_log:
2295      LogID = Intrinsic::log;
2296      ExpLb = LibFunc_exp;
2297      Exp2Lb = LibFunc_exp2;
2298      Exp10Lb = LibFunc_exp10;
2299      PowLb = LibFunc_pow;
2300      break;
2301    case LibFunc_logl:
2302      LogID = Intrinsic::log;
2303      ExpLb = LibFunc_expl;
2304      Exp2Lb = LibFunc_exp2l;
2305      Exp10Lb = LibFunc_exp10l;
2306      PowLb = LibFunc_powl;
2307      break;
2308    case LibFunc_log2f:
2309      LogID = Intrinsic::log2;
2310      ExpLb = LibFunc_expf;
2311      Exp2Lb = LibFunc_exp2f;
2312      Exp10Lb = LibFunc_exp10f;
2313      PowLb = LibFunc_powf;
2314      break;
2315    case LibFunc_log2:
2316      LogID = Intrinsic::log2;
2317      ExpLb = LibFunc_exp;
2318      Exp2Lb = LibFunc_exp2;
2319      Exp10Lb = LibFunc_exp10;
2320      PowLb = LibFunc_pow;
2321      break;
2322    case LibFunc_log2l:
2323      LogID = Intrinsic::log2;
2324      ExpLb = LibFunc_expl;
2325      Exp2Lb = LibFunc_exp2l;
2326      Exp10Lb = LibFunc_exp10l;
2327      PowLb = LibFunc_powl;
2328      break;
2329    case LibFunc_log10f:
2330      LogID = Intrinsic::log10;
2331      ExpLb = LibFunc_expf;
2332      Exp2Lb = LibFunc_exp2f;
2333      Exp10Lb = LibFunc_exp10f;
2334      PowLb = LibFunc_powf;
2335      break;
2336    case LibFunc_log10:
2337      LogID = Intrinsic::log10;
2338      ExpLb = LibFunc_exp;
2339      Exp2Lb = LibFunc_exp2;
2340      Exp10Lb = LibFunc_exp10;
2341      PowLb = LibFunc_pow;
2342      break;
2343    case LibFunc_log10l:
2344      LogID = Intrinsic::log10;
2345      ExpLb = LibFunc_expl;
2346      Exp2Lb = LibFunc_exp2l;
2347      Exp10Lb = LibFunc_exp10l;
2348      PowLb = LibFunc_powl;
2349      break;
2350    default:
2351      return Ret;
2352    }
2353  else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2354           LogID == Intrinsic::log10) {
2355    if (Ty->getScalarType()->isFloatTy()) {
2356      ExpLb = LibFunc_expf;
2357      Exp2Lb = LibFunc_exp2f;
2358      Exp10Lb = LibFunc_exp10f;
2359      PowLb = LibFunc_powf;
2360    } else if (Ty->getScalarType()->isDoubleTy()) {
2361      ExpLb = LibFunc_exp;
2362      Exp2Lb = LibFunc_exp2;
2363      Exp10Lb = LibFunc_exp10;
2364      PowLb = LibFunc_pow;
2365    } else
2366      return Ret;
2367  } else
2368    return Ret;
2369
2370  IRBuilderBase::FastMathFlagGuard Guard(B);
2371  B.setFastMathFlags(FastMathFlags::getFast());
2372
2373  Intrinsic::ID ArgID = Arg->getIntrinsicID();
2374  LibFunc ArgLb = NotLibFunc;
2375  TLI->getLibFunc(*Arg, ArgLb);
2376
2377  // log(pow(x,y)) -> y*log(x)
2378  AttributeList NoAttrs;
2379  if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
2380    Value *LogX =
2381        Log->doesNotAccessMemory()
2382            ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2383                           Arg->getOperand(0), "log")
2384            : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs);
2385    Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2386    // Since pow() may have side effects, e.g. errno,
2387    // dead code elimination may not be trusted to remove it.
2388    substituteInParent(Arg, MulY);
2389    return MulY;
2390  }
2391
2392  // log(exp{,2,10}(y)) -> y*log({e,2,10})
2393  // TODO: There is no exp10() intrinsic yet.
2394  if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2395           ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2396    Constant *Eul;
2397    if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2398      // FIXME: Add more precise value of e for long double.
2399      Eul = ConstantFP::get(Log->getType(), numbers::e);
2400    else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2401      Eul = ConstantFP::get(Log->getType(), 2.0);
2402    else
2403      Eul = ConstantFP::get(Log->getType(), 10.0);
2404    Value *LogE = Log->doesNotAccessMemory()
2405                      ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2406                                     Eul, "log")
2407                      : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs);
2408    Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2409    // Since exp() may have side effects, e.g. errno,
2410    // dead code elimination may not be trusted to remove it.
2411    substituteInParent(Arg, MulY);
2412    return MulY;
2413  }
2414
2415  return Ret;
2416}
2417
2418Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2419  Module *M = CI->getModule();
2420  Function *Callee = CI->getCalledFunction();
2421  Value *Ret = nullptr;
2422  // TODO: Once we have a way (other than checking for the existince of the
2423  // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2424  // condition below.
2425  if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2426      (Callee->getName() == "sqrt" ||
2427       Callee->getIntrinsicID() == Intrinsic::sqrt))
2428    Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2429
2430  if (!CI->isFast())
2431    return Ret;
2432
2433  Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2434  if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2435    return Ret;
2436
2437  // We're looking for a repeated factor in a multiplication tree,
2438  // so we can do this fold: sqrt(x * x) -> fabs(x);
2439  // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2440  Value *Op0 = I->getOperand(0);
2441  Value *Op1 = I->getOperand(1);
2442  Value *RepeatOp = nullptr;
2443  Value *OtherOp = nullptr;
2444  if (Op0 == Op1) {
2445    // Simple match: the operands of the multiply are identical.
2446    RepeatOp = Op0;
2447  } else {
2448    // Look for a more complicated pattern: one of the operands is itself
2449    // a multiply, so search for a common factor in that multiply.
2450    // Note: We don't bother looking any deeper than this first level or for
2451    // variations of this pattern because instcombine's visitFMUL and/or the
2452    // reassociation pass should give us this form.
2453    Value *OtherMul0, *OtherMul1;
2454    if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2455      // Pattern: sqrt((x * y) * z)
2456      if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2457        // Matched: sqrt((x * x) * z)
2458        RepeatOp = OtherMul0;
2459        OtherOp = Op1;
2460      }
2461    }
2462  }
2463  if (!RepeatOp)
2464    return Ret;
2465
2466  // Fast math flags for any created instructions should match the sqrt
2467  // and multiply.
2468  IRBuilderBase::FastMathFlagGuard Guard(B);
2469  B.setFastMathFlags(I->getFastMathFlags());
2470
2471  // If we found a repeated factor, hoist it out of the square root and
2472  // replace it with the fabs of that factor.
2473  Type *ArgType = I->getType();
2474  Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2475  Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2476  if (OtherOp) {
2477    // If we found a non-repeated factor, we still need to get its square
2478    // root. We then multiply that by the value that was simplified out
2479    // of the square root calculation.
2480    Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2481    Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2482    return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2483  }
2484  return copyFlags(*CI, FabsCall);
2485}
2486
2487// TODO: Generalize to handle any trig function and its inverse.
2488Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2489  Module *M = CI->getModule();
2490  Function *Callee = CI->getCalledFunction();
2491  Value *Ret = nullptr;
2492  StringRef Name = Callee->getName();
2493  if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
2494    Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2495
2496  Value *Op1 = CI->getArgOperand(0);
2497  auto *OpC = dyn_cast<CallInst>(Op1);
2498  if (!OpC)
2499    return Ret;
2500
2501  // Both calls must be 'fast' in order to remove them.
2502  if (!CI->isFast() || !OpC->isFast())
2503    return Ret;
2504
2505  // tan(atan(x)) -> x
2506  // tanf(atanf(x)) -> x
2507  // tanl(atanl(x)) -> x
2508  LibFunc Func;
2509  Function *F = OpC->getCalledFunction();
2510  if (F && TLI->getLibFunc(F->getName(), Func) &&
2511      isLibFuncEmittable(M, TLI, Func) &&
2512      ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2513       (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2514       (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2515    Ret = OpC->getArgOperand(0);
2516  return Ret;
2517}
2518
2519static bool isTrigLibCall(CallInst *CI) {
2520  // We can only hope to do anything useful if we can ignore things like errno
2521  // and floating-point exceptions.
2522  // We already checked the prototype.
2523  return CI->doesNotThrow() && CI->doesNotAccessMemory();
2524}
2525
2526static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2527                             bool UseFloat, Value *&Sin, Value *&Cos,
2528                             Value *&SinCos, const TargetLibraryInfo *TLI) {
2529  Module *M = OrigCallee->getParent();
2530  Type *ArgTy = Arg->getType();
2531  Type *ResTy;
2532  StringRef Name;
2533
2534  Triple T(OrigCallee->getParent()->getTargetTriple());
2535  if (UseFloat) {
2536    Name = "__sincospif_stret";
2537
2538    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2539    // x86_64 can't use {float, float} since that would be returned in both
2540    // xmm0 and xmm1, which isn't what a real struct would do.
2541    ResTy = T.getArch() == Triple::x86_64
2542                ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2543                : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2544  } else {
2545    Name = "__sincospi_stret";
2546    ResTy = StructType::get(ArgTy, ArgTy);
2547  }
2548
2549  if (!isLibFuncEmittable(M, TLI, Name))
2550    return false;
2551  LibFunc TheLibFunc;
2552  TLI->getLibFunc(Name, TheLibFunc);
2553  FunctionCallee Callee = getOrInsertLibFunc(
2554      M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2555
2556  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2557    // If the argument is an instruction, it must dominate all uses so put our
2558    // sincos call there.
2559    B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2560  } else {
2561    // Otherwise (e.g. for a constant) the beginning of the function is as
2562    // good a place as any.
2563    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2564    B.SetInsertPoint(&EntryBB, EntryBB.begin());
2565  }
2566
2567  SinCos = B.CreateCall(Callee, Arg, "sincospi");
2568
2569  if (SinCos->getType()->isStructTy()) {
2570    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2571    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2572  } else {
2573    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2574                                 "sinpi");
2575    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2576                                 "cospi");
2577  }
2578
2579  return true;
2580}
2581
2582Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2583  // Make sure the prototype is as expected, otherwise the rest of the
2584  // function is probably invalid and likely to abort.
2585  if (!isTrigLibCall(CI))
2586    return nullptr;
2587
2588  Value *Arg = CI->getArgOperand(0);
2589  SmallVector<CallInst *, 1> SinCalls;
2590  SmallVector<CallInst *, 1> CosCalls;
2591  SmallVector<CallInst *, 1> SinCosCalls;
2592
2593  bool IsFloat = Arg->getType()->isFloatTy();
2594
2595  // Look for all compatible sinpi, cospi and sincospi calls with the same
2596  // argument. If there are enough (in some sense) we can make the
2597  // substitution.
2598  Function *F = CI->getFunction();
2599  for (User *U : Arg->users())
2600    classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2601
2602  // It's only worthwhile if both sinpi and cospi are actually used.
2603  if (SinCalls.empty() || CosCalls.empty())
2604    return nullptr;
2605
2606  Value *Sin, *Cos, *SinCos;
2607  if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2608                        SinCos, TLI))
2609    return nullptr;
2610
2611  auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2612                                 Value *Res) {
2613    for (CallInst *C : Calls)
2614      replaceAllUsesWith(C, Res);
2615  };
2616
2617  replaceTrigInsts(SinCalls, Sin);
2618  replaceTrigInsts(CosCalls, Cos);
2619  replaceTrigInsts(SinCosCalls, SinCos);
2620
2621  return nullptr;
2622}
2623
2624void LibCallSimplifier::classifyArgUse(
2625    Value *Val, Function *F, bool IsFloat,
2626    SmallVectorImpl<CallInst *> &SinCalls,
2627    SmallVectorImpl<CallInst *> &CosCalls,
2628    SmallVectorImpl<CallInst *> &SinCosCalls) {
2629  auto *CI = dyn_cast<CallInst>(Val);
2630  if (!CI || CI->use_empty())
2631    return;
2632
2633  // Don't consider calls in other functions.
2634  if (CI->getFunction() != F)
2635    return;
2636
2637  Module *M = CI->getModule();
2638  Function *Callee = CI->getCalledFunction();
2639  LibFunc Func;
2640  if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
2641      !isLibFuncEmittable(M, TLI, Func) ||
2642      !isTrigLibCall(CI))
2643    return;
2644
2645  if (IsFloat) {
2646    if (Func == LibFunc_sinpif)
2647      SinCalls.push_back(CI);
2648    else if (Func == LibFunc_cospif)
2649      CosCalls.push_back(CI);
2650    else if (Func == LibFunc_sincospif_stret)
2651      SinCosCalls.push_back(CI);
2652  } else {
2653    if (Func == LibFunc_sinpi)
2654      SinCalls.push_back(CI);
2655    else if (Func == LibFunc_cospi)
2656      CosCalls.push_back(CI);
2657    else if (Func == LibFunc_sincospi_stret)
2658      SinCosCalls.push_back(CI);
2659  }
2660}
2661
2662//===----------------------------------------------------------------------===//
2663// Integer Library Call Optimizations
2664//===----------------------------------------------------------------------===//
2665
2666Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2667  // All variants of ffs return int which need not be 32 bits wide.
2668  // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
2669  Type *RetType = CI->getType();
2670  Value *Op = CI->getArgOperand(0);
2671  Type *ArgType = Op->getType();
2672  Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2673                                          Intrinsic::cttz, ArgType);
2674  Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2675  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2676  V = B.CreateIntCast(V, RetType, false);
2677
2678  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2679  return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
2680}
2681
2682Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2683  // All variants of fls return int which need not be 32 bits wide.
2684  // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
2685  Value *Op = CI->getArgOperand(0);
2686  Type *ArgType = Op->getType();
2687  Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2688                                          Intrinsic::ctlz, ArgType);
2689  Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2690  V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2691                  V);
2692  return B.CreateIntCast(V, CI->getType(), false);
2693}
2694
2695Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2696  // abs(x) -> x <s 0 ? -x : x
2697  // The negation has 'nsw' because abs of INT_MIN is undefined.
2698  Value *X = CI->getArgOperand(0);
2699  Value *IsNeg = B.CreateIsNeg(X);
2700  Value *NegX = B.CreateNSWNeg(X, "neg");
2701  return B.CreateSelect(IsNeg, NegX, X);
2702}
2703
2704Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2705  // isdigit(c) -> (c-'0') <u 10
2706  Value *Op = CI->getArgOperand(0);
2707  Type *ArgType = Op->getType();
2708  Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
2709  Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
2710  return B.CreateZExt(Op, CI->getType());
2711}
2712
2713Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2714  // isascii(c) -> c <u 128
2715  Value *Op = CI->getArgOperand(0);
2716  Type *ArgType = Op->getType();
2717  Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
2718  return B.CreateZExt(Op, CI->getType());
2719}
2720
2721Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2722  // toascii(c) -> c & 0x7f
2723  return B.CreateAnd(CI->getArgOperand(0),
2724                     ConstantInt::get(CI->getType(), 0x7F));
2725}
2726
2727// Fold calls to atoi, atol, and atoll.
2728Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2729  CI->addParamAttr(0, Attribute::NoCapture);
2730
2731  StringRef Str;
2732  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2733    return nullptr;
2734
2735  return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
2736}
2737
2738// Fold calls to strtol, strtoll, strtoul, and strtoull.
2739Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
2740                                           bool AsSigned) {
2741  Value *EndPtr = CI->getArgOperand(1);
2742  if (isa<ConstantPointerNull>(EndPtr)) {
2743    // With a null EndPtr, this function won't capture the main argument.
2744    // It would be readonly too, except that it still may write to errno.
2745    CI->addParamAttr(0, Attribute::NoCapture);
2746    EndPtr = nullptr;
2747  } else if (!isKnownNonZero(EndPtr, DL))
2748    return nullptr;
2749
2750  StringRef Str;
2751  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2752    return nullptr;
2753
2754  if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2755    return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
2756  }
2757
2758  return nullptr;
2759}
2760
2761//===----------------------------------------------------------------------===//
2762// Formatting and IO Library Call Optimizations
2763//===----------------------------------------------------------------------===//
2764
2765static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2766
2767Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2768                                                 int StreamArg) {
2769  Function *Callee = CI->getCalledFunction();
2770  // Error reporting calls should be cold, mark them as such.
2771  // This applies even to non-builtin calls: it is only a hint and applies to
2772  // functions that the frontend might not understand as builtins.
2773
2774  // This heuristic was suggested in:
2775  // Improving Static Branch Prediction in a Compiler
2776  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2777  // Proceedings of PACT'98, Oct. 1998, IEEE
2778  if (!CI->hasFnAttr(Attribute::Cold) &&
2779      isReportingError(Callee, CI, StreamArg)) {
2780    CI->addFnAttr(Attribute::Cold);
2781  }
2782
2783  return nullptr;
2784}
2785
2786static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2787  if (!Callee || !Callee->isDeclaration())
2788    return false;
2789
2790  if (StreamArg < 0)
2791    return true;
2792
2793  // These functions might be considered cold, but only if their stream
2794  // argument is stderr.
2795
2796  if (StreamArg >= (int)CI->arg_size())
2797    return false;
2798  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2799  if (!LI)
2800    return false;
2801  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2802  if (!GV || !GV->isDeclaration())
2803    return false;
2804  return GV->getName() == "stderr";
2805}
2806
2807Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2808  // Check for a fixed format string.
2809  StringRef FormatStr;
2810  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2811    return nullptr;
2812
2813  // Empty format string -> noop.
2814  if (FormatStr.empty()) // Tolerate printf's declared void.
2815    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2816
2817  // Do not do any of the following transformations if the printf return value
2818  // is used, in general the printf return value is not compatible with either
2819  // putchar() or puts().
2820  if (!CI->use_empty())
2821    return nullptr;
2822
2823  Type *IntTy = CI->getType();
2824  // printf("x") -> putchar('x'), even for "%" and "%%".
2825  if (FormatStr.size() == 1 || FormatStr == "%%") {
2826    // Convert the character to unsigned char before passing it to putchar
2827    // to avoid host-specific sign extension in the IR.  Putchar converts
2828    // it to unsigned char regardless.
2829    Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
2830    return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
2831  }
2832
2833  // Try to remove call or emit putchar/puts.
2834  if (FormatStr == "%s" && CI->arg_size() > 1) {
2835    StringRef OperandStr;
2836    if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2837      return nullptr;
2838    // printf("%s", "") --> NOP
2839    if (OperandStr.empty())
2840      return (Value *)CI;
2841    // printf("%s", "a") --> putchar('a')
2842    if (OperandStr.size() == 1) {
2843      // Convert the character to unsigned char before passing it to putchar
2844      // to avoid host-specific sign extension in the IR.  Putchar converts
2845      // it to unsigned char regardless.
2846      Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
2847      return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
2848    }
2849    // printf("%s", str"\n") --> puts(str)
2850    if (OperandStr.back() == '\n') {
2851      OperandStr = OperandStr.drop_back();
2852      Value *GV = B.CreateGlobalString(OperandStr, "str");
2853      return copyFlags(*CI, emitPutS(GV, B, TLI));
2854    }
2855    return nullptr;
2856  }
2857
2858  // printf("foo\n") --> puts("foo")
2859  if (FormatStr.back() == '\n' &&
2860      !FormatStr.contains('%')) { // No format characters.
2861    // Create a string literal with no \n on it.  We expect the constant merge
2862    // pass to be run after this pass, to merge duplicate strings.
2863    FormatStr = FormatStr.drop_back();
2864    Value *GV = B.CreateGlobalString(FormatStr, "str");
2865    return copyFlags(*CI, emitPutS(GV, B, TLI));
2866  }
2867
2868  // Optimize specific format strings.
2869  // printf("%c", chr) --> putchar(chr)
2870  if (FormatStr == "%c" && CI->arg_size() > 1 &&
2871      CI->getArgOperand(1)->getType()->isIntegerTy()) {
2872    // Convert the argument to the type expected by putchar, i.e., int, which
2873    // need not be 32 bits wide but which is the same as printf's return type.
2874    Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false);
2875    return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
2876  }
2877
2878  // printf("%s\n", str) --> puts(str)
2879  if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2880      CI->getArgOperand(1)->getType()->isPointerTy())
2881    return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2882  return nullptr;
2883}
2884
2885Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2886
2887  Module *M = CI->getModule();
2888  Function *Callee = CI->getCalledFunction();
2889  FunctionType *FT = Callee->getFunctionType();
2890  if (Value *V = optimizePrintFString(CI, B)) {
2891    return V;
2892  }
2893
2894  annotateNonNullNoUndefBasedOnAccess(CI, 0);
2895
2896  // printf(format, ...) -> iprintf(format, ...) if no floating point
2897  // arguments.
2898  if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
2899      !callHasFloatingPointArgument(CI)) {
2900    FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
2901                                                  Callee->getAttributes());
2902    CallInst *New = cast<CallInst>(CI->clone());
2903    New->setCalledFunction(IPrintFFn);
2904    B.Insert(New);
2905    return New;
2906  }
2907
2908  // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2909  // arguments.
2910  if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
2911      !callHasFP128Argument(CI)) {
2912    auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
2913                                            Callee->getAttributes());
2914    CallInst *New = cast<CallInst>(CI->clone());
2915    New->setCalledFunction(SmallPrintFFn);
2916    B.Insert(New);
2917    return New;
2918  }
2919
2920  return nullptr;
2921}
2922
2923Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2924                                                IRBuilderBase &B) {
2925  // Check for a fixed format string.
2926  StringRef FormatStr;
2927  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2928    return nullptr;
2929
2930  // If we just have a format string (nothing else crazy) transform it.
2931  Value *Dest = CI->getArgOperand(0);
2932  if (CI->arg_size() == 2) {
2933    // Make sure there's no % in the constant array.  We could try to handle
2934    // %% -> % in the future if we cared.
2935    if (FormatStr.contains('%'))
2936      return nullptr; // we found a format specifier, bail out.
2937
2938    // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2939    B.CreateMemCpy(
2940        Dest, Align(1), CI->getArgOperand(1), Align(1),
2941        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2942                         FormatStr.size() + 1)); // Copy the null byte.
2943    return ConstantInt::get(CI->getType(), FormatStr.size());
2944  }
2945
2946  // The remaining optimizations require the format string to be "%s" or "%c"
2947  // and have an extra operand.
2948  if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2949    return nullptr;
2950
2951  // Decode the second character of the format string.
2952  if (FormatStr[1] == 'c') {
2953    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2954    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2955      return nullptr;
2956    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2957    Value *Ptr = castToCStr(Dest, B);
2958    B.CreateStore(V, Ptr);
2959    Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2960    B.CreateStore(B.getInt8(0), Ptr);
2961
2962    return ConstantInt::get(CI->getType(), 1);
2963  }
2964
2965  if (FormatStr[1] == 's') {
2966    // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2967    // strlen(str)+1)
2968    if (!CI->getArgOperand(2)->getType()->isPointerTy())
2969      return nullptr;
2970
2971    if (CI->use_empty())
2972      // sprintf(dest, "%s", str) -> strcpy(dest, str)
2973      return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2974
2975    uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2976    if (SrcLen) {
2977      B.CreateMemCpy(
2978          Dest, Align(1), CI->getArgOperand(2), Align(1),
2979          ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2980      // Returns total number of characters written without null-character.
2981      return ConstantInt::get(CI->getType(), SrcLen - 1);
2982    } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2983      // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2984      // Handle mismatched pointer types (goes away with typeless pointers?).
2985      V = B.CreatePointerCast(V, B.getInt8PtrTy());
2986      Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2987      Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2988      return B.CreateIntCast(PtrDiff, CI->getType(), false);
2989    }
2990
2991    bool OptForSize = CI->getFunction()->hasOptSize() ||
2992                      llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2993                                                  PGSOQueryType::IRPass);
2994    if (OptForSize)
2995      return nullptr;
2996
2997    Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2998    if (!Len)
2999      return nullptr;
3000    Value *IncLen =
3001        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
3002    B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
3003
3004    // The sprintf result is the unincremented number of bytes in the string.
3005    return B.CreateIntCast(Len, CI->getType(), false);
3006  }
3007  return nullptr;
3008}
3009
3010Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
3011  Module *M = CI->getModule();
3012  Function *Callee = CI->getCalledFunction();
3013  FunctionType *FT = Callee->getFunctionType();
3014  if (Value *V = optimizeSPrintFString(CI, B)) {
3015    return V;
3016  }
3017
3018  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
3019
3020  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3021  // point arguments.
3022  if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
3023      !callHasFloatingPointArgument(CI)) {
3024    FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
3025                                                   FT, Callee->getAttributes());
3026    CallInst *New = cast<CallInst>(CI->clone());
3027    New->setCalledFunction(SIPrintFFn);
3028    B.Insert(New);
3029    return New;
3030  }
3031
3032  // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3033  // floating point arguments.
3034  if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
3035      !callHasFP128Argument(CI)) {
3036    auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
3037                                             Callee->getAttributes());
3038    CallInst *New = cast<CallInst>(CI->clone());
3039    New->setCalledFunction(SmallSPrintFFn);
3040    B.Insert(New);
3041    return New;
3042  }
3043
3044  return nullptr;
3045}
3046
3047// Transform an snprintf call CI with the bound N to format the string Str
3048// either to a call to memcpy, or to single character a store, or to nothing,
3049// and fold the result to a constant.  A nonnull StrArg refers to the string
3050// argument being formatted.  Otherwise the call is one with N < 2 and
3051// the "%c" directive to format a single character.
3052Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3053                                             StringRef Str, uint64_t N,
3054                                             IRBuilderBase &B) {
3055  assert(StrArg || (N < 2 && Str.size() == 1));
3056
3057  unsigned IntBits = TLI->getIntSize();
3058  uint64_t IntMax = maxIntN(IntBits);
3059  if (Str.size() > IntMax)
3060    // Bail if the string is longer than INT_MAX.  POSIX requires
3061    // implementations to set errno to EOVERFLOW in this case, in
3062    // addition to when N is larger than that (checked by the caller).
3063    return nullptr;
3064
3065  Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
3066  if (N == 0)
3067    return StrLen;
3068
3069  // Set to the number of bytes to copy fron StrArg which is also
3070  // the offset of the terinating nul.
3071  uint64_t NCopy;
3072  if (N > Str.size())
3073    // Copy the full string, including the terminating nul (which must
3074    // be present regardless of the bound).
3075    NCopy = Str.size() + 1;
3076  else
3077    NCopy = N - 1;
3078
3079  Value *DstArg = CI->getArgOperand(0);
3080  if (NCopy && StrArg)
3081    // Transform the call to lvm.memcpy(dst, fmt, N).
3082    copyFlags(
3083         *CI,
3084          B.CreateMemCpy(
3085                         DstArg, Align(1), StrArg, Align(1),
3086              ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy)));
3087
3088  if (N > Str.size())
3089    // Return early when the whole format string, including the final nul,
3090    // has been copied.
3091    return StrLen;
3092
3093  // Otherwise, when truncating the string append a terminating nul.
3094  Type *Int8Ty = B.getInt8Ty();
3095  Value *NulOff = B.getIntN(IntBits, NCopy);
3096  Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
3097  B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3098  return StrLen;
3099}
3100
3101Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3102                                                 IRBuilderBase &B) {
3103  // Check for size
3104  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3105  if (!Size)
3106    return nullptr;
3107
3108  uint64_t N = Size->getZExtValue();
3109  uint64_t IntMax = maxIntN(TLI->getIntSize());
3110  if (N > IntMax)
3111    // Bail if the bound exceeds INT_MAX.  POSIX requires implementations
3112    // to set errno to EOVERFLOW in this case.
3113    return nullptr;
3114
3115  Value *DstArg = CI->getArgOperand(0);
3116  Value *FmtArg = CI->getArgOperand(2);
3117
3118  // Check for a fixed format string.
3119  StringRef FormatStr;
3120  if (!getConstantStringInfo(FmtArg, FormatStr))
3121    return nullptr;
3122
3123  // If we just have a format string (nothing else crazy) transform it.
3124  if (CI->arg_size() == 3) {
3125    if (FormatStr.contains('%'))
3126      // Bail if the format string contains a directive and there are
3127      // no arguments.  We could handle "%%" in the future.
3128      return nullptr;
3129
3130    return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
3131  }
3132
3133  // The remaining optimizations require the format string to be "%s" or "%c"
3134  // and have an extra operand.
3135  if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3136    return nullptr;
3137
3138  // Decode the second character of the format string.
3139  if (FormatStr[1] == 'c') {
3140    if (N <= 1) {
3141      // Use an arbitary string of length 1 to transform the call into
3142      // either a nul store (N == 1) or a no-op (N == 0) and fold it
3143      // to one.
3144      StringRef CharStr("*");
3145      return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
3146    }
3147
3148    // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3149    if (!CI->getArgOperand(3)->getType()->isIntegerTy())
3150      return nullptr;
3151    Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
3152    Value *Ptr = castToCStr(DstArg, B);
3153    B.CreateStore(V, Ptr);
3154    Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3155    B.CreateStore(B.getInt8(0), Ptr);
3156    return ConstantInt::get(CI->getType(), 1);
3157  }
3158
3159  if (FormatStr[1] != 's')
3160    return nullptr;
3161
3162  Value *StrArg = CI->getArgOperand(3);
3163  // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3164  StringRef Str;
3165  if (!getConstantStringInfo(StrArg, Str))
3166    return nullptr;
3167
3168  return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3169}
3170
3171Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
3172  if (Value *V = optimizeSnPrintFString(CI, B)) {
3173    return V;
3174  }
3175
3176  if (isKnownNonZero(CI->getOperand(1), DL))
3177    annotateNonNullNoUndefBasedOnAccess(CI, 0);
3178  return nullptr;
3179}
3180
3181Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3182                                                IRBuilderBase &B) {
3183  optimizeErrorReporting(CI, B, 0);
3184
3185  // All the optimizations depend on the format string.
3186  StringRef FormatStr;
3187  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3188    return nullptr;
3189
3190  // Do not do any of the following transformations if the fprintf return
3191  // value is used, in general the fprintf return value is not compatible
3192  // with fwrite(), fputc() or fputs().
3193  if (!CI->use_empty())
3194    return nullptr;
3195
3196  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3197  if (CI->arg_size() == 2) {
3198    // Could handle %% -> % if we cared.
3199    if (FormatStr.contains('%'))
3200      return nullptr; // We found a format specifier.
3201
3202    unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3203    Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3204    return copyFlags(
3205        *CI, emitFWrite(CI->getArgOperand(1),
3206                        ConstantInt::get(SizeTTy, FormatStr.size()),
3207                        CI->getArgOperand(0), B, DL, TLI));
3208  }
3209
3210  // The remaining optimizations require the format string to be "%s" or "%c"
3211  // and have an extra operand.
3212  if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3213    return nullptr;
3214
3215  // Decode the second character of the format string.
3216  if (FormatStr[1] == 'c') {
3217    // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3218    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3219      return nullptr;
3220    Type *IntTy = B.getIntNTy(TLI->getIntSize());
3221    Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true,
3222                               "chari");
3223    return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI));
3224  }
3225
3226  if (FormatStr[1] == 's') {
3227    // fprintf(F, "%s", str) --> fputs(str, F)
3228    if (!CI->getArgOperand(2)->getType()->isPointerTy())
3229      return nullptr;
3230    return copyFlags(
3231        *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3232  }
3233  return nullptr;
3234}
3235
3236Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3237  Module *M = CI->getModule();
3238  Function *Callee = CI->getCalledFunction();
3239  FunctionType *FT = Callee->getFunctionType();
3240  if (Value *V = optimizeFPrintFString(CI, B)) {
3241    return V;
3242  }
3243
3244  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3245  // floating point arguments.
3246  if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3247      !callHasFloatingPointArgument(CI)) {
3248    FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3249                                                   FT, Callee->getAttributes());
3250    CallInst *New = cast<CallInst>(CI->clone());
3251    New->setCalledFunction(FIPrintFFn);
3252    B.Insert(New);
3253    return New;
3254  }
3255
3256  // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3257  // 128-bit floating point arguments.
3258  if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3259      !callHasFP128Argument(CI)) {
3260    auto SmallFPrintFFn =
3261        getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3262                           Callee->getAttributes());
3263    CallInst *New = cast<CallInst>(CI->clone());
3264    New->setCalledFunction(SmallFPrintFFn);
3265    B.Insert(New);
3266    return New;
3267  }
3268
3269  return nullptr;
3270}
3271
3272Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3273  optimizeErrorReporting(CI, B, 3);
3274
3275  // Get the element size and count.
3276  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3277  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3278  if (SizeC && CountC) {
3279    uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3280
3281    // If this is writing zero records, remove the call (it's a noop).
3282    if (Bytes == 0)
3283      return ConstantInt::get(CI->getType(), 0);
3284
3285    // If this is writing one byte, turn it into fputc.
3286    // This optimisation is only valid, if the return value is unused.
3287    if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3288      Value *Char = B.CreateLoad(B.getInt8Ty(),
3289                                 castToCStr(CI->getArgOperand(0), B), "char");
3290      Type *IntTy = B.getIntNTy(TLI->getIntSize());
3291      Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari");
3292      Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI);
3293      return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3294    }
3295  }
3296
3297  return nullptr;
3298}
3299
3300Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3301  optimizeErrorReporting(CI, B, 1);
3302
3303  // Don't rewrite fputs to fwrite when optimising for size because fwrite
3304  // requires more arguments and thus extra MOVs are required.
3305  bool OptForSize = CI->getFunction()->hasOptSize() ||
3306                    llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3307                                                PGSOQueryType::IRPass);
3308  if (OptForSize)
3309    return nullptr;
3310
3311  // We can't optimize if return value is used.
3312  if (!CI->use_empty())
3313    return nullptr;
3314
3315  // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3316  uint64_t Len = GetStringLength(CI->getArgOperand(0));
3317  if (!Len)
3318    return nullptr;
3319
3320  // Known to have no uses (see above).
3321  unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3322  Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3323  return copyFlags(
3324      *CI,
3325      emitFWrite(CI->getArgOperand(0),
3326                 ConstantInt::get(SizeTTy, Len - 1),
3327                 CI->getArgOperand(1), B, DL, TLI));
3328}
3329
3330Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3331  annotateNonNullNoUndefBasedOnAccess(CI, 0);
3332  if (!CI->use_empty())
3333    return nullptr;
3334
3335  // Check for a constant string.
3336  // puts("") -> putchar('\n')
3337  StringRef Str;
3338  if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) {
3339    // putchar takes an argument of the same type as puts returns, i.e.,
3340    // int, which need not be 32 bits wide.
3341    Type *IntTy = CI->getType();
3342    return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI));
3343  }
3344
3345  return nullptr;
3346}
3347
3348Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3349  // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3350  return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3351                                        CI->getArgOperand(0), Align(1),
3352                                        CI->getArgOperand(2)));
3353}
3354
3355bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3356  SmallString<20> FloatFuncName = FuncName;
3357  FloatFuncName += 'f';
3358  return isLibFuncEmittable(M, TLI, FloatFuncName);
3359}
3360
3361Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3362                                                      IRBuilderBase &Builder) {
3363  Module *M = CI->getModule();
3364  LibFunc Func;
3365  Function *Callee = CI->getCalledFunction();
3366  // Check for string/memory library functions.
3367  if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3368    // Make sure we never change the calling convention.
3369    assert(
3370        (ignoreCallingConv(Func) ||
3371         TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3372        "Optimizing string/memory libcall would change the calling convention");
3373    switch (Func) {
3374    case LibFunc_strcat:
3375      return optimizeStrCat(CI, Builder);
3376    case LibFunc_strncat:
3377      return optimizeStrNCat(CI, Builder);
3378    case LibFunc_strchr:
3379      return optimizeStrChr(CI, Builder);
3380    case LibFunc_strrchr:
3381      return optimizeStrRChr(CI, Builder);
3382    case LibFunc_strcmp:
3383      return optimizeStrCmp(CI, Builder);
3384    case LibFunc_strncmp:
3385      return optimizeStrNCmp(CI, Builder);
3386    case LibFunc_strcpy:
3387      return optimizeStrCpy(CI, Builder);
3388    case LibFunc_stpcpy:
3389      return optimizeStpCpy(CI, Builder);
3390    case LibFunc_strlcpy:
3391      return optimizeStrLCpy(CI, Builder);
3392    case LibFunc_stpncpy:
3393      return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder);
3394    case LibFunc_strncpy:
3395      return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder);
3396    case LibFunc_strlen:
3397      return optimizeStrLen(CI, Builder);
3398    case LibFunc_strnlen:
3399      return optimizeStrNLen(CI, Builder);
3400    case LibFunc_strpbrk:
3401      return optimizeStrPBrk(CI, Builder);
3402    case LibFunc_strndup:
3403      return optimizeStrNDup(CI, Builder);
3404    case LibFunc_strtol:
3405    case LibFunc_strtod:
3406    case LibFunc_strtof:
3407    case LibFunc_strtoul:
3408    case LibFunc_strtoll:
3409    case LibFunc_strtold:
3410    case LibFunc_strtoull:
3411      return optimizeStrTo(CI, Builder);
3412    case LibFunc_strspn:
3413      return optimizeStrSpn(CI, Builder);
3414    case LibFunc_strcspn:
3415      return optimizeStrCSpn(CI, Builder);
3416    case LibFunc_strstr:
3417      return optimizeStrStr(CI, Builder);
3418    case LibFunc_memchr:
3419      return optimizeMemChr(CI, Builder);
3420    case LibFunc_memrchr:
3421      return optimizeMemRChr(CI, Builder);
3422    case LibFunc_bcmp:
3423      return optimizeBCmp(CI, Builder);
3424    case LibFunc_memcmp:
3425      return optimizeMemCmp(CI, Builder);
3426    case LibFunc_memcpy:
3427      return optimizeMemCpy(CI, Builder);
3428    case LibFunc_memccpy:
3429      return optimizeMemCCpy(CI, Builder);
3430    case LibFunc_mempcpy:
3431      return optimizeMemPCpy(CI, Builder);
3432    case LibFunc_memmove:
3433      return optimizeMemMove(CI, Builder);
3434    case LibFunc_memset:
3435      return optimizeMemSet(CI, Builder);
3436    case LibFunc_realloc:
3437      return optimizeRealloc(CI, Builder);
3438    case LibFunc_wcslen:
3439      return optimizeWcslen(CI, Builder);
3440    case LibFunc_bcopy:
3441      return optimizeBCopy(CI, Builder);
3442    default:
3443      break;
3444    }
3445  }
3446  return nullptr;
3447}
3448
3449Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3450                                                       LibFunc Func,
3451                                                       IRBuilderBase &Builder) {
3452  const Module *M = CI->getModule();
3453
3454  // Don't optimize calls that require strict floating point semantics.
3455  if (CI->isStrictFP())
3456    return nullptr;
3457
3458  if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3459    return V;
3460
3461  switch (Func) {
3462  case LibFunc_sinpif:
3463  case LibFunc_sinpi:
3464  case LibFunc_cospif:
3465  case LibFunc_cospi:
3466    return optimizeSinCosPi(CI, Builder);
3467  case LibFunc_powf:
3468  case LibFunc_pow:
3469  case LibFunc_powl:
3470    return optimizePow(CI, Builder);
3471  case LibFunc_exp2l:
3472  case LibFunc_exp2:
3473  case LibFunc_exp2f:
3474    return optimizeExp2(CI, Builder);
3475  case LibFunc_fabsf:
3476  case LibFunc_fabs:
3477  case LibFunc_fabsl:
3478    return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3479  case LibFunc_sqrtf:
3480  case LibFunc_sqrt:
3481  case LibFunc_sqrtl:
3482    return optimizeSqrt(CI, Builder);
3483  case LibFunc_logf:
3484  case LibFunc_log:
3485  case LibFunc_logl:
3486  case LibFunc_log10f:
3487  case LibFunc_log10:
3488  case LibFunc_log10l:
3489  case LibFunc_log1pf:
3490  case LibFunc_log1p:
3491  case LibFunc_log1pl:
3492  case LibFunc_log2f:
3493  case LibFunc_log2:
3494  case LibFunc_log2l:
3495  case LibFunc_logbf:
3496  case LibFunc_logb:
3497  case LibFunc_logbl:
3498    return optimizeLog(CI, Builder);
3499  case LibFunc_tan:
3500  case LibFunc_tanf:
3501  case LibFunc_tanl:
3502    return optimizeTan(CI, Builder);
3503  case LibFunc_ceil:
3504    return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3505  case LibFunc_floor:
3506    return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3507  case LibFunc_round:
3508    return replaceUnaryCall(CI, Builder, Intrinsic::round);
3509  case LibFunc_roundeven:
3510    return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3511  case LibFunc_nearbyint:
3512    return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3513  case LibFunc_rint:
3514    return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3515  case LibFunc_trunc:
3516    return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3517  case LibFunc_acos:
3518  case LibFunc_acosh:
3519  case LibFunc_asin:
3520  case LibFunc_asinh:
3521  case LibFunc_atan:
3522  case LibFunc_atanh:
3523  case LibFunc_cbrt:
3524  case LibFunc_cosh:
3525  case LibFunc_exp:
3526  case LibFunc_exp10:
3527  case LibFunc_expm1:
3528  case LibFunc_cos:
3529  case LibFunc_sin:
3530  case LibFunc_sinh:
3531  case LibFunc_tanh:
3532    if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
3533      return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
3534    return nullptr;
3535  case LibFunc_copysign:
3536    if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
3537      return optimizeBinaryDoubleFP(CI, Builder, TLI);
3538    return nullptr;
3539  case LibFunc_fminf:
3540  case LibFunc_fmin:
3541  case LibFunc_fminl:
3542  case LibFunc_fmaxf:
3543  case LibFunc_fmax:
3544  case LibFunc_fmaxl:
3545    return optimizeFMinFMax(CI, Builder);
3546  case LibFunc_cabs:
3547  case LibFunc_cabsf:
3548  case LibFunc_cabsl:
3549    return optimizeCAbs(CI, Builder);
3550  default:
3551    return nullptr;
3552  }
3553}
3554
3555Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3556  Module *M = CI->getModule();
3557  assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3558
3559  // TODO: Split out the code below that operates on FP calls so that
3560  //       we can all non-FP calls with the StrictFP attribute to be
3561  //       optimized.
3562  if (CI->isNoBuiltin())
3563    return nullptr;
3564
3565  LibFunc Func;
3566  Function *Callee = CI->getCalledFunction();
3567  bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3568
3569  SmallVector<OperandBundleDef, 2> OpBundles;
3570  CI->getOperandBundlesAsDefs(OpBundles);
3571
3572  IRBuilderBase::OperandBundlesGuard Guard(Builder);
3573  Builder.setDefaultOperandBundles(OpBundles);
3574
3575  // Command-line parameter overrides instruction attribute.
3576  // This can't be moved to optimizeFloatingPointLibCall() because it may be
3577  // used by the intrinsic optimizations.
3578  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3579    UnsafeFPShrink = EnableUnsafeFPShrink;
3580  else if (isa<FPMathOperator>(CI) && CI->isFast())
3581    UnsafeFPShrink = true;
3582
3583  // First, check for intrinsics.
3584  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3585    if (!IsCallingConvC)
3586      return nullptr;
3587    // The FP intrinsics have corresponding constrained versions so we don't
3588    // need to check for the StrictFP attribute here.
3589    switch (II->getIntrinsicID()) {
3590    case Intrinsic::pow:
3591      return optimizePow(CI, Builder);
3592    case Intrinsic::exp2:
3593      return optimizeExp2(CI, Builder);
3594    case Intrinsic::log:
3595    case Intrinsic::log2:
3596    case Intrinsic::log10:
3597      return optimizeLog(CI, Builder);
3598    case Intrinsic::sqrt:
3599      return optimizeSqrt(CI, Builder);
3600    case Intrinsic::memset:
3601      return optimizeMemSet(CI, Builder);
3602    case Intrinsic::memcpy:
3603      return optimizeMemCpy(CI, Builder);
3604    case Intrinsic::memmove:
3605      return optimizeMemMove(CI, Builder);
3606    default:
3607      return nullptr;
3608    }
3609  }
3610
3611  // Also try to simplify calls to fortified library functions.
3612  if (Value *SimplifiedFortifiedCI =
3613          FortifiedSimplifier.optimizeCall(CI, Builder)) {
3614    // Try to further simplify the result.
3615    CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3616    if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3617      // Ensure that SimplifiedCI's uses are complete, since some calls have
3618      // their uses analyzed.
3619      replaceAllUsesWith(CI, SimplifiedCI);
3620
3621      // Set insertion point to SimplifiedCI to guarantee we reach all uses
3622      // we might replace later on.
3623      IRBuilderBase::InsertPointGuard Guard(Builder);
3624      Builder.SetInsertPoint(SimplifiedCI);
3625      if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3626        // If we were able to further simplify, remove the now redundant call.
3627        substituteInParent(SimplifiedCI, V);
3628        return V;
3629      }
3630    }
3631    return SimplifiedFortifiedCI;
3632  }
3633
3634  // Then check for known library functions.
3635  if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3636    // We never change the calling convention.
3637    if (!ignoreCallingConv(Func) && !IsCallingConvC)
3638      return nullptr;
3639    if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3640      return V;
3641    if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3642      return V;
3643    switch (Func) {
3644    case LibFunc_ffs:
3645    case LibFunc_ffsl:
3646    case LibFunc_ffsll:
3647      return optimizeFFS(CI, Builder);
3648    case LibFunc_fls:
3649    case LibFunc_flsl:
3650    case LibFunc_flsll:
3651      return optimizeFls(CI, Builder);
3652    case LibFunc_abs:
3653    case LibFunc_labs:
3654    case LibFunc_llabs:
3655      return optimizeAbs(CI, Builder);
3656    case LibFunc_isdigit:
3657      return optimizeIsDigit(CI, Builder);
3658    case LibFunc_isascii:
3659      return optimizeIsAscii(CI, Builder);
3660    case LibFunc_toascii:
3661      return optimizeToAscii(CI, Builder);
3662    case LibFunc_atoi:
3663    case LibFunc_atol:
3664    case LibFunc_atoll:
3665      return optimizeAtoi(CI, Builder);
3666    case LibFunc_strtol:
3667    case LibFunc_strtoll:
3668      return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
3669    case LibFunc_strtoul:
3670    case LibFunc_strtoull:
3671      return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
3672    case LibFunc_printf:
3673      return optimizePrintF(CI, Builder);
3674    case LibFunc_sprintf:
3675      return optimizeSPrintF(CI, Builder);
3676    case LibFunc_snprintf:
3677      return optimizeSnPrintF(CI, Builder);
3678    case LibFunc_fprintf:
3679      return optimizeFPrintF(CI, Builder);
3680    case LibFunc_fwrite:
3681      return optimizeFWrite(CI, Builder);
3682    case LibFunc_fputs:
3683      return optimizeFPuts(CI, Builder);
3684    case LibFunc_puts:
3685      return optimizePuts(CI, Builder);
3686    case LibFunc_perror:
3687      return optimizeErrorReporting(CI, Builder);
3688    case LibFunc_vfprintf:
3689    case LibFunc_fiprintf:
3690      return optimizeErrorReporting(CI, Builder, 0);
3691    default:
3692      return nullptr;
3693    }
3694  }
3695  return nullptr;
3696}
3697
3698LibCallSimplifier::LibCallSimplifier(
3699    const DataLayout &DL, const TargetLibraryInfo *TLI,
3700    OptimizationRemarkEmitter &ORE,
3701    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3702    function_ref<void(Instruction *, Value *)> Replacer,
3703    function_ref<void(Instruction *)> Eraser)
3704    : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3705      Replacer(Replacer), Eraser(Eraser) {}
3706
3707void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3708  // Indirect through the replacer used in this instance.
3709  Replacer(I, With);
3710}
3711
3712void LibCallSimplifier::eraseFromParent(Instruction *I) {
3713  Eraser(I);
3714}
3715
3716// TODO:
3717//   Additional cases that we need to add to this file:
3718//
3719// cbrt:
3720//   * cbrt(expN(X))  -> expN(x/3)
3721//   * cbrt(sqrt(x))  -> pow(x,1/6)
3722//   * cbrt(cbrt(x))  -> pow(x,1/9)
3723//
3724// exp, expf, expl:
3725//   * exp(log(x))  -> x
3726//
3727// log, logf, logl:
3728//   * log(exp(x))   -> x
3729//   * log(exp(y))   -> y*log(e)
3730//   * log(exp10(y)) -> y*log(10)
3731//   * log(sqrt(x))  -> 0.5*log(x)
3732//
3733// pow, powf, powl:
3734//   * pow(sqrt(x),y) -> pow(x,y*0.5)
3735//   * pow(pow(x,y),z)-> pow(x,y*z)
3736//
3737// signbit:
3738//   * signbit(cnst) -> cnst'
3739//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3740//
3741// sqrt, sqrtf, sqrtl:
3742//   * sqrt(expN(x))  -> expN(x*0.5)
3743//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3744//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3745//
3746
3747//===----------------------------------------------------------------------===//
3748// Fortified Library Call Optimizations
3749//===----------------------------------------------------------------------===//
3750
3751bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
3752    CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
3753    std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
3754  // If this function takes a flag argument, the implementation may use it to
3755  // perform extra checks. Don't fold into the non-checking variant.
3756  if (FlagOp) {
3757    ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3758    if (!Flag || !Flag->isZero())
3759      return false;
3760  }
3761
3762  if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3763    return true;
3764
3765  if (ConstantInt *ObjSizeCI =
3766          dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3767    if (ObjSizeCI->isMinusOne())
3768      return true;
3769    // If the object size wasn't -1 (unknown), bail out if we were asked to.
3770    if (OnlyLowerUnknownSize)
3771      return false;
3772    if (StrOp) {
3773      uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3774      // If the length is 0 we don't know how long it is and so we can't
3775      // remove the check.
3776      if (Len)
3777        annotateDereferenceableBytes(CI, *StrOp, Len);
3778      else
3779        return false;
3780      return ObjSizeCI->getZExtValue() >= Len;
3781    }
3782
3783    if (SizeOp) {
3784      if (ConstantInt *SizeCI =
3785              dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3786        return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3787    }
3788  }
3789  return false;
3790}
3791
3792Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3793                                                     IRBuilderBase &B) {
3794  if (isFortifiedCallFoldable(CI, 3, 2)) {
3795    CallInst *NewCI =
3796        B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3797                       Align(1), CI->getArgOperand(2));
3798    mergeAttributesAndFlags(NewCI, *CI);
3799    return CI->getArgOperand(0);
3800  }
3801  return nullptr;
3802}
3803
3804Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3805                                                      IRBuilderBase &B) {
3806  if (isFortifiedCallFoldable(CI, 3, 2)) {
3807    CallInst *NewCI =
3808        B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3809                        Align(1), CI->getArgOperand(2));
3810    mergeAttributesAndFlags(NewCI, *CI);
3811    return CI->getArgOperand(0);
3812  }
3813  return nullptr;
3814}
3815
3816Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3817                                                     IRBuilderBase &B) {
3818  if (isFortifiedCallFoldable(CI, 3, 2)) {
3819    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3820    CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3821                                     CI->getArgOperand(2), Align(1));
3822    mergeAttributesAndFlags(NewCI, *CI);
3823    return CI->getArgOperand(0);
3824  }
3825  return nullptr;
3826}
3827
3828Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3829                                                      IRBuilderBase &B) {
3830  const DataLayout &DL = CI->getModule()->getDataLayout();
3831  if (isFortifiedCallFoldable(CI, 3, 2))
3832    if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3833                                  CI->getArgOperand(2), B, DL, TLI)) {
3834      return mergeAttributesAndFlags(cast<CallInst>(Call), *CI);
3835    }
3836  return nullptr;
3837}
3838
3839Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3840                                                      IRBuilderBase &B,
3841                                                      LibFunc Func) {
3842  const DataLayout &DL = CI->getModule()->getDataLayout();
3843  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3844        *ObjSize = CI->getArgOperand(2);
3845
3846  // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3847  if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3848    Value *StrLen = emitStrLen(Src, B, DL, TLI);
3849    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3850  }
3851
3852  // If a) we don't have any length information, or b) we know this will
3853  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3854  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3855  // TODO: It might be nice to get a maximum length out of the possible
3856  // string lengths for varying.
3857  if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
3858    if (Func == LibFunc_strcpy_chk)
3859      return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3860    else
3861      return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3862  }
3863
3864  if (OnlyLowerUnknownSize)
3865    return nullptr;
3866
3867  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3868  uint64_t Len = GetStringLength(Src);
3869  if (Len)
3870    annotateDereferenceableBytes(CI, 1, Len);
3871  else
3872    return nullptr;
3873
3874  unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3875  Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3876  Value *LenV = ConstantInt::get(SizeTTy, Len);
3877  Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3878  // If the function was an __stpcpy_chk, and we were able to fold it into
3879  // a __memcpy_chk, we still need to return the correct end pointer.
3880  if (Ret && Func == LibFunc_stpcpy_chk)
3881    return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
3882                               ConstantInt::get(SizeTTy, Len - 1));
3883  return copyFlags(*CI, cast<CallInst>(Ret));
3884}
3885
3886Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3887                                                     IRBuilderBase &B) {
3888  if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
3889    return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3890                                     CI->getModule()->getDataLayout(), TLI));
3891  return nullptr;
3892}
3893
3894Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3895                                                       IRBuilderBase &B,
3896                                                       LibFunc Func) {
3897  if (isFortifiedCallFoldable(CI, 3, 2)) {
3898    if (Func == LibFunc_strncpy_chk)
3899      return copyFlags(*CI,
3900                       emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3901                                   CI->getArgOperand(2), B, TLI));
3902    else
3903      return copyFlags(*CI,
3904                       emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3905                                   CI->getArgOperand(2), B, TLI));
3906  }
3907
3908  return nullptr;
3909}
3910
3911Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3912                                                      IRBuilderBase &B) {
3913  if (isFortifiedCallFoldable(CI, 4, 3))
3914    return copyFlags(
3915        *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3916                         CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3917
3918  return nullptr;
3919}
3920
3921Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3922                                                       IRBuilderBase &B) {
3923  if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
3924    SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3925    return copyFlags(*CI,
3926                     emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3927                                  CI->getArgOperand(4), VariadicArgs, B, TLI));
3928  }
3929
3930  return nullptr;
3931}
3932
3933Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3934                                                      IRBuilderBase &B) {
3935  if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
3936    SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3937    return copyFlags(*CI,
3938                     emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3939                                 VariadicArgs, B, TLI));
3940  }
3941
3942  return nullptr;
3943}
3944
3945Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3946                                                     IRBuilderBase &B) {
3947  if (isFortifiedCallFoldable(CI, 2))
3948    return copyFlags(
3949        *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3950
3951  return nullptr;
3952}
3953
3954Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3955                                                   IRBuilderBase &B) {
3956  if (isFortifiedCallFoldable(CI, 3))
3957    return copyFlags(*CI,
3958                     emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3959                                 CI->getArgOperand(2), B, TLI));
3960
3961  return nullptr;
3962}
3963
3964Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3965                                                      IRBuilderBase &B) {
3966  if (isFortifiedCallFoldable(CI, 3))
3967    return copyFlags(*CI,
3968                     emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3969                                 CI->getArgOperand(2), B, TLI));
3970
3971  return nullptr;
3972}
3973
3974Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3975                                                      IRBuilderBase &B) {
3976  if (isFortifiedCallFoldable(CI, 3))
3977    return copyFlags(*CI,
3978                     emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3979                                 CI->getArgOperand(2), B, TLI));
3980
3981  return nullptr;
3982}
3983
3984Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3985                                                        IRBuilderBase &B) {
3986  if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
3987    return copyFlags(
3988        *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3989                           CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3990
3991  return nullptr;
3992}
3993
3994Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3995                                                       IRBuilderBase &B) {
3996  if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
3997    return copyFlags(*CI,
3998                     emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3999                                  CI->getArgOperand(4), B, TLI));
4000
4001  return nullptr;
4002}
4003
4004Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
4005                                                IRBuilderBase &Builder) {
4006  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4007  // Some clang users checked for _chk libcall availability using:
4008  //   __has_builtin(__builtin___memcpy_chk)
4009  // When compiling with -fno-builtin, this is always true.
4010  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4011  // end up with fortified libcalls, which isn't acceptable in a freestanding
4012  // environment which only provides their non-fortified counterparts.
4013  //
4014  // Until we change clang and/or teach external users to check for availability
4015  // differently, disregard the "nobuiltin" attribute and TLI::has.
4016  //
4017  // PR23093.
4018
4019  LibFunc Func;
4020  Function *Callee = CI->getCalledFunction();
4021  bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4022
4023  SmallVector<OperandBundleDef, 2> OpBundles;
4024  CI->getOperandBundlesAsDefs(OpBundles);
4025
4026  IRBuilderBase::OperandBundlesGuard Guard(Builder);
4027  Builder.setDefaultOperandBundles(OpBundles);
4028
4029  // First, check that this is a known library functions and that the prototype
4030  // is correct.
4031  if (!TLI->getLibFunc(*Callee, Func))
4032    return nullptr;
4033
4034  // We never change the calling convention.
4035  if (!ignoreCallingConv(Func) && !IsCallingConvC)
4036    return nullptr;
4037
4038  switch (Func) {
4039  case LibFunc_memcpy_chk:
4040    return optimizeMemCpyChk(CI, Builder);
4041  case LibFunc_mempcpy_chk:
4042    return optimizeMemPCpyChk(CI, Builder);
4043  case LibFunc_memmove_chk:
4044    return optimizeMemMoveChk(CI, Builder);
4045  case LibFunc_memset_chk:
4046    return optimizeMemSetChk(CI, Builder);
4047  case LibFunc_stpcpy_chk:
4048  case LibFunc_strcpy_chk:
4049    return optimizeStrpCpyChk(CI, Builder, Func);
4050  case LibFunc_strlen_chk:
4051    return optimizeStrLenChk(CI, Builder);
4052  case LibFunc_stpncpy_chk:
4053  case LibFunc_strncpy_chk:
4054    return optimizeStrpNCpyChk(CI, Builder, Func);
4055  case LibFunc_memccpy_chk:
4056    return optimizeMemCCpyChk(CI, Builder);
4057  case LibFunc_snprintf_chk:
4058    return optimizeSNPrintfChk(CI, Builder);
4059  case LibFunc_sprintf_chk:
4060    return optimizeSPrintfChk(CI, Builder);
4061  case LibFunc_strcat_chk:
4062    return optimizeStrCatChk(CI, Builder);
4063  case LibFunc_strlcat_chk:
4064    return optimizeStrLCat(CI, Builder);
4065  case LibFunc_strncat_chk:
4066    return optimizeStrNCatChk(CI, Builder);
4067  case LibFunc_strlcpy_chk:
4068    return optimizeStrLCpyChk(CI, Builder);
4069  case LibFunc_vsnprintf_chk:
4070    return optimizeVSNPrintfChk(CI, Builder);
4071  case LibFunc_vsprintf_chk:
4072    return optimizeVSPrintfChk(CI, Builder);
4073  default:
4074    break;
4075  }
4076  return nullptr;
4077}
4078
4079FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4080    const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
4081    : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
4082