1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This transformation implements the well known scalar replacement of
10/// aggregates transformation. It tries to identify promotable elements of an
11/// aggregate alloca, and promote them to registers. It will also try to
12/// convert uses of an element (or set of elements) of an alloca into a vector
13/// or bitfield-style integer scalar if appropriate.
14///
15/// It works to do this with minimal slicing of the alloca so that regions
16/// which are merely transferred in and out of external memory remain unchanged
17/// and are not decomposed to scalar code.
18///
19/// Because this also performs alloca promotion, it can be thought of as also
20/// serving the purpose of SSA formation. The algorithm iterates on the
21/// function until all opportunities for promotion have been realized.
22///
23//===----------------------------------------------------------------------===//
24
25#include "llvm/Transforms/Scalar/SROA.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringRef.h"
37#include "llvm/ADT/Twine.h"
38#include "llvm/ADT/iterator.h"
39#include "llvm/ADT/iterator_range.h"
40#include "llvm/Analysis/AssumptionCache.h"
41#include "llvm/Analysis/DomTreeUpdater.h"
42#include "llvm/Analysis/GlobalsModRef.h"
43#include "llvm/Analysis/Loads.h"
44#include "llvm/Analysis/PtrUseVisitor.h"
45#include "llvm/Config/llvm-config.h"
46#include "llvm/IR/BasicBlock.h"
47#include "llvm/IR/Constant.h"
48#include "llvm/IR/ConstantFolder.h"
49#include "llvm/IR/Constants.h"
50#include "llvm/IR/DIBuilder.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/DebugInfo.h"
53#include "llvm/IR/DebugInfoMetadata.h"
54#include "llvm/IR/DerivedTypes.h"
55#include "llvm/IR/Dominators.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/GetElementPtrTypeIterator.h"
58#include "llvm/IR/GlobalAlias.h"
59#include "llvm/IR/IRBuilder.h"
60#include "llvm/IR/InstVisitor.h"
61#include "llvm/IR/Instruction.h"
62#include "llvm/IR/Instructions.h"
63#include "llvm/IR/IntrinsicInst.h"
64#include "llvm/IR/LLVMContext.h"
65#include "llvm/IR/Metadata.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/Operator.h"
68#include "llvm/IR/PassManager.h"
69#include "llvm/IR/Type.h"
70#include "llvm/IR/Use.h"
71#include "llvm/IR/User.h"
72#include "llvm/IR/Value.h"
73#include "llvm/InitializePasses.h"
74#include "llvm/Pass.h"
75#include "llvm/Support/Casting.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/Transforms/Scalar.h"
82#include "llvm/Transforms/Utils/BasicBlockUtils.h"
83#include "llvm/Transforms/Utils/Local.h"
84#include "llvm/Transforms/Utils/PromoteMemToReg.h"
85#include <algorithm>
86#include <cassert>
87#include <cstddef>
88#include <cstdint>
89#include <cstring>
90#include <iterator>
91#include <string>
92#include <tuple>
93#include <utility>
94#include <vector>
95
96using namespace llvm;
97using namespace llvm::sroa;
98
99#define DEBUG_TYPE "sroa"
100
101STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
102STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
103STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
104STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
105STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
106STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
107STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
108STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
109STATISTIC(NumLoadsPredicated,
110          "Number of loads rewritten into predicated loads to allow promotion");
111STATISTIC(
112    NumStoresPredicated,
113    "Number of stores rewritten into predicated loads to allow promotion");
114STATISTIC(NumDeleted, "Number of instructions deleted");
115STATISTIC(NumVectorized, "Number of vectorized aggregates");
116
117/// Hidden option to experiment with completely strict handling of inbounds
118/// GEPs.
119static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
120                                        cl::Hidden);
121namespace {
122/// Find linked dbg.assign and generate a new one with the correct
123/// FragmentInfo. Link Inst to the new dbg.assign.  If Value is nullptr the
124/// value component is copied from the old dbg.assign to the new.
125/// \param OldAlloca             Alloca for the variable before splitting.
126/// \param RelativeOffsetInBits  Offset into \p OldAlloca relative to the
127///                              offset prior to splitting (change in offset).
128/// \param SliceSizeInBits       New number of bits being written to.
129/// \param OldInst               Instruction that is being split.
130/// \param Inst                  New instruction performing this part of the
131///                              split store.
132/// \param Dest                  Store destination.
133/// \param Value                 Stored value.
134/// \param DL                    Datalayout.
135static void migrateDebugInfo(AllocaInst *OldAlloca,
136                             uint64_t RelativeOffsetInBits,
137                             uint64_t SliceSizeInBits, Instruction *OldInst,
138                             Instruction *Inst, Value *Dest, Value *Value,
139                             const DataLayout &DL) {
140  auto MarkerRange = at::getAssignmentMarkers(OldInst);
141  // Nothing to do if OldInst has no linked dbg.assign intrinsics.
142  if (MarkerRange.empty())
143    return;
144
145  LLVM_DEBUG(dbgs() << "  migrateDebugInfo\n");
146  LLVM_DEBUG(dbgs() << "    OldAlloca: " << *OldAlloca << "\n");
147  LLVM_DEBUG(dbgs() << "    RelativeOffset: " << RelativeOffsetInBits << "\n");
148  LLVM_DEBUG(dbgs() << "    SliceSizeInBits: " << SliceSizeInBits << "\n");
149  LLVM_DEBUG(dbgs() << "    OldInst: " << *OldInst << "\n");
150  LLVM_DEBUG(dbgs() << "    Inst: " << *Inst << "\n");
151  LLVM_DEBUG(dbgs() << "    Dest: " << *Dest << "\n");
152  if (Value)
153    LLVM_DEBUG(dbgs() << "    Value: " << *Value << "\n");
154
155  // The new inst needs a DIAssignID unique metadata tag (if OldInst has
156  // one). It shouldn't already have one: assert this assumption.
157  assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID));
158  DIAssignID *NewID = nullptr;
159  auto &Ctx = Inst->getContext();
160  DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false);
161  uint64_t AllocaSizeInBits = *OldAlloca->getAllocationSizeInBits(DL);
162  assert(OldAlloca->isStaticAlloca());
163
164  for (DbgAssignIntrinsic *DbgAssign : MarkerRange) {
165    LLVM_DEBUG(dbgs() << "      existing dbg.assign is: " << *DbgAssign
166                      << "\n");
167    auto *Expr = DbgAssign->getExpression();
168
169    // Check if the dbg.assign already describes a fragment.
170    auto GetCurrentFragSize = [AllocaSizeInBits, DbgAssign,
171                               Expr]() -> uint64_t {
172      if (auto FI = Expr->getFragmentInfo())
173        return FI->SizeInBits;
174      if (auto VarSize = DbgAssign->getVariable()->getSizeInBits())
175        return *VarSize;
176      // The variable type has an unspecified size. This can happen in the
177      // case of DW_TAG_unspecified_type types, e.g.  std::nullptr_t. Because
178      // there is no fragment and we do not know the size of the variable type,
179      // we'll guess by looking at the alloca.
180      return AllocaSizeInBits;
181    };
182    uint64_t CurrentFragSize = GetCurrentFragSize();
183    bool MakeNewFragment = CurrentFragSize != SliceSizeInBits;
184    assert(MakeNewFragment || RelativeOffsetInBits == 0);
185
186    assert(SliceSizeInBits <= AllocaSizeInBits);
187    if (MakeNewFragment) {
188      assert(RelativeOffsetInBits + SliceSizeInBits <= CurrentFragSize);
189      auto E = DIExpression::createFragmentExpression(
190          Expr, RelativeOffsetInBits, SliceSizeInBits);
191      assert(E && "Failed to create fragment expr!");
192      Expr = *E;
193    }
194
195    // If we haven't created a DIAssignID ID do that now and attach it to Inst.
196    if (!NewID) {
197      NewID = DIAssignID::getDistinct(Ctx);
198      Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID);
199    }
200
201    Value = Value ? Value : DbgAssign->getValue();
202    auto *NewAssign = DIB.insertDbgAssign(
203        Inst, Value, DbgAssign->getVariable(), Expr, Dest,
204        DIExpression::get(Ctx, std::nullopt), DbgAssign->getDebugLoc());
205
206    // We could use more precision here at the cost of some additional (code)
207    // complexity - if the original dbg.assign was adjacent to its store, we
208    // could position this new dbg.assign adjacent to its store rather than the
209    // old dbg.assgn. That would result in interleaved dbg.assigns rather than
210    // what we get now:
211    //    split store !1
212    //    split store !2
213    //    dbg.assign !1
214    //    dbg.assign !2
215    // This (current behaviour) results results in debug assignments being
216    // noted as slightly offset (in code) from the store. In practice this
217    // should have little effect on the debugging experience due to the fact
218    // that all the split stores should get the same line number.
219    NewAssign->moveBefore(DbgAssign);
220
221    NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
222    LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign
223                      << "\n");
224  }
225}
226
227/// A custom IRBuilder inserter which prefixes all names, but only in
228/// Assert builds.
229class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
230  std::string Prefix;
231
232  Twine getNameWithPrefix(const Twine &Name) const {
233    return Name.isTriviallyEmpty() ? Name : Prefix + Name;
234  }
235
236public:
237  void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
238
239  void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
240                    BasicBlock::iterator InsertPt) const override {
241    IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
242                                           InsertPt);
243  }
244};
245
246/// Provide a type for IRBuilder that drops names in release builds.
247using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
248
249/// A used slice of an alloca.
250///
251/// This structure represents a slice of an alloca used by some instruction. It
252/// stores both the begin and end offsets of this use, a pointer to the use
253/// itself, and a flag indicating whether we can classify the use as splittable
254/// or not when forming partitions of the alloca.
255class Slice {
256  /// The beginning offset of the range.
257  uint64_t BeginOffset = 0;
258
259  /// The ending offset, not included in the range.
260  uint64_t EndOffset = 0;
261
262  /// Storage for both the use of this slice and whether it can be
263  /// split.
264  PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
265
266public:
267  Slice() = default;
268
269  Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
270      : BeginOffset(BeginOffset), EndOffset(EndOffset),
271        UseAndIsSplittable(U, IsSplittable) {}
272
273  uint64_t beginOffset() const { return BeginOffset; }
274  uint64_t endOffset() const { return EndOffset; }
275
276  bool isSplittable() const { return UseAndIsSplittable.getInt(); }
277  void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
278
279  Use *getUse() const { return UseAndIsSplittable.getPointer(); }
280
281  bool isDead() const { return getUse() == nullptr; }
282  void kill() { UseAndIsSplittable.setPointer(nullptr); }
283
284  /// Support for ordering ranges.
285  ///
286  /// This provides an ordering over ranges such that start offsets are
287  /// always increasing, and within equal start offsets, the end offsets are
288  /// decreasing. Thus the spanning range comes first in a cluster with the
289  /// same start position.
290  bool operator<(const Slice &RHS) const {
291    if (beginOffset() < RHS.beginOffset())
292      return true;
293    if (beginOffset() > RHS.beginOffset())
294      return false;
295    if (isSplittable() != RHS.isSplittable())
296      return !isSplittable();
297    if (endOffset() > RHS.endOffset())
298      return true;
299    return false;
300  }
301
302  /// Support comparison with a single offset to allow binary searches.
303  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
304                                              uint64_t RHSOffset) {
305    return LHS.beginOffset() < RHSOffset;
306  }
307  friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
308                                              const Slice &RHS) {
309    return LHSOffset < RHS.beginOffset();
310  }
311
312  bool operator==(const Slice &RHS) const {
313    return isSplittable() == RHS.isSplittable() &&
314           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
315  }
316  bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
317};
318
319} // end anonymous namespace
320
321/// Representation of the alloca slices.
322///
323/// This class represents the slices of an alloca which are formed by its
324/// various uses. If a pointer escapes, we can't fully build a representation
325/// for the slices used and we reflect that in this structure. The uses are
326/// stored, sorted by increasing beginning offset and with unsplittable slices
327/// starting at a particular offset before splittable slices.
328class llvm::sroa::AllocaSlices {
329public:
330  /// Construct the slices of a particular alloca.
331  AllocaSlices(const DataLayout &DL, AllocaInst &AI);
332
333  /// Test whether a pointer to the allocation escapes our analysis.
334  ///
335  /// If this is true, the slices are never fully built and should be
336  /// ignored.
337  bool isEscaped() const { return PointerEscapingInstr; }
338
339  /// Support for iterating over the slices.
340  /// @{
341  using iterator = SmallVectorImpl<Slice>::iterator;
342  using range = iterator_range<iterator>;
343
344  iterator begin() { return Slices.begin(); }
345  iterator end() { return Slices.end(); }
346
347  using const_iterator = SmallVectorImpl<Slice>::const_iterator;
348  using const_range = iterator_range<const_iterator>;
349
350  const_iterator begin() const { return Slices.begin(); }
351  const_iterator end() const { return Slices.end(); }
352  /// @}
353
354  /// Erase a range of slices.
355  void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
356
357  /// Insert new slices for this alloca.
358  ///
359  /// This moves the slices into the alloca's slices collection, and re-sorts
360  /// everything so that the usual ordering properties of the alloca's slices
361  /// hold.
362  void insert(ArrayRef<Slice> NewSlices) {
363    int OldSize = Slices.size();
364    Slices.append(NewSlices.begin(), NewSlices.end());
365    auto SliceI = Slices.begin() + OldSize;
366    llvm::sort(SliceI, Slices.end());
367    std::inplace_merge(Slices.begin(), SliceI, Slices.end());
368  }
369
370  // Forward declare the iterator and range accessor for walking the
371  // partitions.
372  class partition_iterator;
373  iterator_range<partition_iterator> partitions();
374
375  /// Access the dead users for this alloca.
376  ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
377
378  /// Access Uses that should be dropped if the alloca is promotable.
379  ArrayRef<Use *> getDeadUsesIfPromotable() const {
380    return DeadUseIfPromotable;
381  }
382
383  /// Access the dead operands referring to this alloca.
384  ///
385  /// These are operands which have cannot actually be used to refer to the
386  /// alloca as they are outside its range and the user doesn't correct for
387  /// that. These mostly consist of PHI node inputs and the like which we just
388  /// need to replace with undef.
389  ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
390
391#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
392  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
393  void printSlice(raw_ostream &OS, const_iterator I,
394                  StringRef Indent = "  ") const;
395  void printUse(raw_ostream &OS, const_iterator I,
396                StringRef Indent = "  ") const;
397  void print(raw_ostream &OS) const;
398  void dump(const_iterator I) const;
399  void dump() const;
400#endif
401
402private:
403  template <typename DerivedT, typename RetT = void> class BuilderBase;
404  class SliceBuilder;
405
406  friend class AllocaSlices::SliceBuilder;
407
408#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409  /// Handle to alloca instruction to simplify method interfaces.
410  AllocaInst &AI;
411#endif
412
413  /// The instruction responsible for this alloca not having a known set
414  /// of slices.
415  ///
416  /// When an instruction (potentially) escapes the pointer to the alloca, we
417  /// store a pointer to that here and abort trying to form slices of the
418  /// alloca. This will be null if the alloca slices are analyzed successfully.
419  Instruction *PointerEscapingInstr;
420
421  /// The slices of the alloca.
422  ///
423  /// We store a vector of the slices formed by uses of the alloca here. This
424  /// vector is sorted by increasing begin offset, and then the unsplittable
425  /// slices before the splittable ones. See the Slice inner class for more
426  /// details.
427  SmallVector<Slice, 8> Slices;
428
429  /// Instructions which will become dead if we rewrite the alloca.
430  ///
431  /// Note that these are not separated by slice. This is because we expect an
432  /// alloca to be completely rewritten or not rewritten at all. If rewritten,
433  /// all these instructions can simply be removed and replaced with poison as
434  /// they come from outside of the allocated space.
435  SmallVector<Instruction *, 8> DeadUsers;
436
437  /// Uses which will become dead if can promote the alloca.
438  SmallVector<Use *, 8> DeadUseIfPromotable;
439
440  /// Operands which will become dead if we rewrite the alloca.
441  ///
442  /// These are operands that in their particular use can be replaced with
443  /// poison when we rewrite the alloca. These show up in out-of-bounds inputs
444  /// to PHI nodes and the like. They aren't entirely dead (there might be
445  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
446  /// want to swap this particular input for poison to simplify the use lists of
447  /// the alloca.
448  SmallVector<Use *, 8> DeadOperands;
449};
450
451/// A partition of the slices.
452///
453/// An ephemeral representation for a range of slices which can be viewed as
454/// a partition of the alloca. This range represents a span of the alloca's
455/// memory which cannot be split, and provides access to all of the slices
456/// overlapping some part of the partition.
457///
458/// Objects of this type are produced by traversing the alloca's slices, but
459/// are only ephemeral and not persistent.
460class llvm::sroa::Partition {
461private:
462  friend class AllocaSlices;
463  friend class AllocaSlices::partition_iterator;
464
465  using iterator = AllocaSlices::iterator;
466
467  /// The beginning and ending offsets of the alloca for this
468  /// partition.
469  uint64_t BeginOffset = 0, EndOffset = 0;
470
471  /// The start and end iterators of this partition.
472  iterator SI, SJ;
473
474  /// A collection of split slice tails overlapping the partition.
475  SmallVector<Slice *, 4> SplitTails;
476
477  /// Raw constructor builds an empty partition starting and ending at
478  /// the given iterator.
479  Partition(iterator SI) : SI(SI), SJ(SI) {}
480
481public:
482  /// The start offset of this partition.
483  ///
484  /// All of the contained slices start at or after this offset.
485  uint64_t beginOffset() const { return BeginOffset; }
486
487  /// The end offset of this partition.
488  ///
489  /// All of the contained slices end at or before this offset.
490  uint64_t endOffset() const { return EndOffset; }
491
492  /// The size of the partition.
493  ///
494  /// Note that this can never be zero.
495  uint64_t size() const {
496    assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
497    return EndOffset - BeginOffset;
498  }
499
500  /// Test whether this partition contains no slices, and merely spans
501  /// a region occupied by split slices.
502  bool empty() const { return SI == SJ; }
503
504  /// \name Iterate slices that start within the partition.
505  /// These may be splittable or unsplittable. They have a begin offset >= the
506  /// partition begin offset.
507  /// @{
508  // FIXME: We should probably define a "concat_iterator" helper and use that
509  // to stitch together pointee_iterators over the split tails and the
510  // contiguous iterators of the partition. That would give a much nicer
511  // interface here. We could then additionally expose filtered iterators for
512  // split, unsplit, and unsplittable splices based on the usage patterns.
513  iterator begin() const { return SI; }
514  iterator end() const { return SJ; }
515  /// @}
516
517  /// Get the sequence of split slice tails.
518  ///
519  /// These tails are of slices which start before this partition but are
520  /// split and overlap into the partition. We accumulate these while forming
521  /// partitions.
522  ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
523};
524
525/// An iterator over partitions of the alloca's slices.
526///
527/// This iterator implements the core algorithm for partitioning the alloca's
528/// slices. It is a forward iterator as we don't support backtracking for
529/// efficiency reasons, and re-use a single storage area to maintain the
530/// current set of split slices.
531///
532/// It is templated on the slice iterator type to use so that it can operate
533/// with either const or non-const slice iterators.
534class AllocaSlices::partition_iterator
535    : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
536                                  Partition> {
537  friend class AllocaSlices;
538
539  /// Most of the state for walking the partitions is held in a class
540  /// with a nice interface for examining them.
541  Partition P;
542
543  /// We need to keep the end of the slices to know when to stop.
544  AllocaSlices::iterator SE;
545
546  /// We also need to keep track of the maximum split end offset seen.
547  /// FIXME: Do we really?
548  uint64_t MaxSplitSliceEndOffset = 0;
549
550  /// Sets the partition to be empty at given iterator, and sets the
551  /// end iterator.
552  partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
553      : P(SI), SE(SE) {
554    // If not already at the end, advance our state to form the initial
555    // partition.
556    if (SI != SE)
557      advance();
558  }
559
560  /// Advance the iterator to the next partition.
561  ///
562  /// Requires that the iterator not be at the end of the slices.
563  void advance() {
564    assert((P.SI != SE || !P.SplitTails.empty()) &&
565           "Cannot advance past the end of the slices!");
566
567    // Clear out any split uses which have ended.
568    if (!P.SplitTails.empty()) {
569      if (P.EndOffset >= MaxSplitSliceEndOffset) {
570        // If we've finished all splits, this is easy.
571        P.SplitTails.clear();
572        MaxSplitSliceEndOffset = 0;
573      } else {
574        // Remove the uses which have ended in the prior partition. This
575        // cannot change the max split slice end because we just checked that
576        // the prior partition ended prior to that max.
577        llvm::erase_if(P.SplitTails,
578                       [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
579        assert(llvm::any_of(P.SplitTails,
580                            [&](Slice *S) {
581                              return S->endOffset() == MaxSplitSliceEndOffset;
582                            }) &&
583               "Could not find the current max split slice offset!");
584        assert(llvm::all_of(P.SplitTails,
585                            [&](Slice *S) {
586                              return S->endOffset() <= MaxSplitSliceEndOffset;
587                            }) &&
588               "Max split slice end offset is not actually the max!");
589      }
590    }
591
592    // If P.SI is already at the end, then we've cleared the split tail and
593    // now have an end iterator.
594    if (P.SI == SE) {
595      assert(P.SplitTails.empty() && "Failed to clear the split slices!");
596      return;
597    }
598
599    // If we had a non-empty partition previously, set up the state for
600    // subsequent partitions.
601    if (P.SI != P.SJ) {
602      // Accumulate all the splittable slices which started in the old
603      // partition into the split list.
604      for (Slice &S : P)
605        if (S.isSplittable() && S.endOffset() > P.EndOffset) {
606          P.SplitTails.push_back(&S);
607          MaxSplitSliceEndOffset =
608              std::max(S.endOffset(), MaxSplitSliceEndOffset);
609        }
610
611      // Start from the end of the previous partition.
612      P.SI = P.SJ;
613
614      // If P.SI is now at the end, we at most have a tail of split slices.
615      if (P.SI == SE) {
616        P.BeginOffset = P.EndOffset;
617        P.EndOffset = MaxSplitSliceEndOffset;
618        return;
619      }
620
621      // If the we have split slices and the next slice is after a gap and is
622      // not splittable immediately form an empty partition for the split
623      // slices up until the next slice begins.
624      if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
625          !P.SI->isSplittable()) {
626        P.BeginOffset = P.EndOffset;
627        P.EndOffset = P.SI->beginOffset();
628        return;
629      }
630    }
631
632    // OK, we need to consume new slices. Set the end offset based on the
633    // current slice, and step SJ past it. The beginning offset of the
634    // partition is the beginning offset of the next slice unless we have
635    // pre-existing split slices that are continuing, in which case we begin
636    // at the prior end offset.
637    P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
638    P.EndOffset = P.SI->endOffset();
639    ++P.SJ;
640
641    // There are two strategies to form a partition based on whether the
642    // partition starts with an unsplittable slice or a splittable slice.
643    if (!P.SI->isSplittable()) {
644      // When we're forming an unsplittable region, it must always start at
645      // the first slice and will extend through its end.
646      assert(P.BeginOffset == P.SI->beginOffset());
647
648      // Form a partition including all of the overlapping slices with this
649      // unsplittable slice.
650      while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
651        if (!P.SJ->isSplittable())
652          P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
653        ++P.SJ;
654      }
655
656      // We have a partition across a set of overlapping unsplittable
657      // partitions.
658      return;
659    }
660
661    // If we're starting with a splittable slice, then we need to form
662    // a synthetic partition spanning it and any other overlapping splittable
663    // splices.
664    assert(P.SI->isSplittable() && "Forming a splittable partition!");
665
666    // Collect all of the overlapping splittable slices.
667    while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
668           P.SJ->isSplittable()) {
669      P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
670      ++P.SJ;
671    }
672
673    // Back upiP.EndOffset if we ended the span early when encountering an
674    // unsplittable slice. This synthesizes the early end offset of
675    // a partition spanning only splittable slices.
676    if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
677      assert(!P.SJ->isSplittable());
678      P.EndOffset = P.SJ->beginOffset();
679    }
680  }
681
682public:
683  bool operator==(const partition_iterator &RHS) const {
684    assert(SE == RHS.SE &&
685           "End iterators don't match between compared partition iterators!");
686
687    // The observed positions of partitions is marked by the P.SI iterator and
688    // the emptiness of the split slices. The latter is only relevant when
689    // P.SI == SE, as the end iterator will additionally have an empty split
690    // slices list, but the prior may have the same P.SI and a tail of split
691    // slices.
692    if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
693      assert(P.SJ == RHS.P.SJ &&
694             "Same set of slices formed two different sized partitions!");
695      assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
696             "Same slice position with differently sized non-empty split "
697             "slice tails!");
698      return true;
699    }
700    return false;
701  }
702
703  partition_iterator &operator++() {
704    advance();
705    return *this;
706  }
707
708  Partition &operator*() { return P; }
709};
710
711/// A forward range over the partitions of the alloca's slices.
712///
713/// This accesses an iterator range over the partitions of the alloca's
714/// slices. It computes these partitions on the fly based on the overlapping
715/// offsets of the slices and the ability to split them. It will visit "empty"
716/// partitions to cover regions of the alloca only accessed via split
717/// slices.
718iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
719  return make_range(partition_iterator(begin(), end()),
720                    partition_iterator(end(), end()));
721}
722
723static Value *foldSelectInst(SelectInst &SI) {
724  // If the condition being selected on is a constant or the same value is
725  // being selected between, fold the select. Yes this does (rarely) happen
726  // early on.
727  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
728    return SI.getOperand(1 + CI->isZero());
729  if (SI.getOperand(1) == SI.getOperand(2))
730    return SI.getOperand(1);
731
732  return nullptr;
733}
734
735/// A helper that folds a PHI node or a select.
736static Value *foldPHINodeOrSelectInst(Instruction &I) {
737  if (PHINode *PN = dyn_cast<PHINode>(&I)) {
738    // If PN merges together the same value, return that value.
739    return PN->hasConstantValue();
740  }
741  return foldSelectInst(cast<SelectInst>(I));
742}
743
744/// Builder for the alloca slices.
745///
746/// This class builds a set of alloca slices by recursively visiting the uses
747/// of an alloca and making a slice for each load and store at each offset.
748class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
749  friend class PtrUseVisitor<SliceBuilder>;
750  friend class InstVisitor<SliceBuilder>;
751
752  using Base = PtrUseVisitor<SliceBuilder>;
753
754  const uint64_t AllocSize;
755  AllocaSlices &AS;
756
757  SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
758  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
759
760  /// Set to de-duplicate dead instructions found in the use walk.
761  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
762
763public:
764  SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
765      : PtrUseVisitor<SliceBuilder>(DL),
766        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()),
767        AS(AS) {}
768
769private:
770  void markAsDead(Instruction &I) {
771    if (VisitedDeadInsts.insert(&I).second)
772      AS.DeadUsers.push_back(&I);
773  }
774
775  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
776                 bool IsSplittable = false) {
777    // Completely skip uses which have a zero size or start either before or
778    // past the end of the allocation.
779    if (Size == 0 || Offset.uge(AllocSize)) {
780      LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
781                        << Offset
782                        << " which has zero size or starts outside of the "
783                        << AllocSize << " byte alloca:\n"
784                        << "    alloca: " << AS.AI << "\n"
785                        << "       use: " << I << "\n");
786      return markAsDead(I);
787    }
788
789    uint64_t BeginOffset = Offset.getZExtValue();
790    uint64_t EndOffset = BeginOffset + Size;
791
792    // Clamp the end offset to the end of the allocation. Note that this is
793    // formulated to handle even the case where "BeginOffset + Size" overflows.
794    // This may appear superficially to be something we could ignore entirely,
795    // but that is not so! There may be widened loads or PHI-node uses where
796    // some instructions are dead but not others. We can't completely ignore
797    // them, and so have to record at least the information here.
798    assert(AllocSize >= BeginOffset); // Established above.
799    if (Size > AllocSize - BeginOffset) {
800      LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
801                        << Offset << " to remain within the " << AllocSize
802                        << " byte alloca:\n"
803                        << "    alloca: " << AS.AI << "\n"
804                        << "       use: " << I << "\n");
805      EndOffset = AllocSize;
806    }
807
808    AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
809  }
810
811  void visitBitCastInst(BitCastInst &BC) {
812    if (BC.use_empty())
813      return markAsDead(BC);
814
815    return Base::visitBitCastInst(BC);
816  }
817
818  void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
819    if (ASC.use_empty())
820      return markAsDead(ASC);
821
822    return Base::visitAddrSpaceCastInst(ASC);
823  }
824
825  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
826    if (GEPI.use_empty())
827      return markAsDead(GEPI);
828
829    if (SROAStrictInbounds && GEPI.isInBounds()) {
830      // FIXME: This is a manually un-factored variant of the basic code inside
831      // of GEPs with checking of the inbounds invariant specified in the
832      // langref in a very strict sense. If we ever want to enable
833      // SROAStrictInbounds, this code should be factored cleanly into
834      // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
835      // by writing out the code here where we have the underlying allocation
836      // size readily available.
837      APInt GEPOffset = Offset;
838      const DataLayout &DL = GEPI.getModule()->getDataLayout();
839      for (gep_type_iterator GTI = gep_type_begin(GEPI),
840                             GTE = gep_type_end(GEPI);
841           GTI != GTE; ++GTI) {
842        ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
843        if (!OpC)
844          break;
845
846        // Handle a struct index, which adds its field offset to the pointer.
847        if (StructType *STy = GTI.getStructTypeOrNull()) {
848          unsigned ElementIdx = OpC->getZExtValue();
849          const StructLayout *SL = DL.getStructLayout(STy);
850          GEPOffset +=
851              APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
852        } else {
853          // For array or vector indices, scale the index by the size of the
854          // type.
855          APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
856          GEPOffset +=
857              Index *
858              APInt(Offset.getBitWidth(),
859                    DL.getTypeAllocSize(GTI.getIndexedType()).getFixedValue());
860        }
861
862        // If this index has computed an intermediate pointer which is not
863        // inbounds, then the result of the GEP is a poison value and we can
864        // delete it and all uses.
865        if (GEPOffset.ugt(AllocSize))
866          return markAsDead(GEPI);
867      }
868    }
869
870    return Base::visitGetElementPtrInst(GEPI);
871  }
872
873  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
874                         uint64_t Size, bool IsVolatile) {
875    // We allow splitting of non-volatile loads and stores where the type is an
876    // integer type. These may be used to implement 'memcpy' or other "transfer
877    // of bits" patterns.
878    bool IsSplittable =
879        Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
880
881    insertUse(I, Offset, Size, IsSplittable);
882  }
883
884  void visitLoadInst(LoadInst &LI) {
885    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
886           "All simple FCA loads should have been pre-split");
887
888    if (!IsOffsetKnown)
889      return PI.setAborted(&LI);
890
891    if (isa<ScalableVectorType>(LI.getType()))
892      return PI.setAborted(&LI);
893
894    uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedValue();
895    return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
896  }
897
898  void visitStoreInst(StoreInst &SI) {
899    Value *ValOp = SI.getValueOperand();
900    if (ValOp == *U)
901      return PI.setEscapedAndAborted(&SI);
902    if (!IsOffsetKnown)
903      return PI.setAborted(&SI);
904
905    if (isa<ScalableVectorType>(ValOp->getType()))
906      return PI.setAborted(&SI);
907
908    uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedValue();
909
910    // If this memory access can be shown to *statically* extend outside the
911    // bounds of the allocation, it's behavior is undefined, so simply
912    // ignore it. Note that this is more strict than the generic clamping
913    // behavior of insertUse. We also try to handle cases which might run the
914    // risk of overflow.
915    // FIXME: We should instead consider the pointer to have escaped if this
916    // function is being instrumented for addressing bugs or race conditions.
917    if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
918      LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
919                        << Offset << " which extends past the end of the "
920                        << AllocSize << " byte alloca:\n"
921                        << "    alloca: " << AS.AI << "\n"
922                        << "       use: " << SI << "\n");
923      return markAsDead(SI);
924    }
925
926    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
927           "All simple FCA stores should have been pre-split");
928    handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
929  }
930
931  void visitMemSetInst(MemSetInst &II) {
932    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
933    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
934    if ((Length && Length->getValue() == 0) ||
935        (IsOffsetKnown && Offset.uge(AllocSize)))
936      // Zero-length mem transfer intrinsics can be ignored entirely.
937      return markAsDead(II);
938
939    if (!IsOffsetKnown)
940      return PI.setAborted(&II);
941
942    insertUse(II, Offset, Length ? Length->getLimitedValue()
943                                 : AllocSize - Offset.getLimitedValue(),
944              (bool)Length);
945  }
946
947  void visitMemTransferInst(MemTransferInst &II) {
948    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
949    if (Length && Length->getValue() == 0)
950      // Zero-length mem transfer intrinsics can be ignored entirely.
951      return markAsDead(II);
952
953    // Because we can visit these intrinsics twice, also check to see if the
954    // first time marked this instruction as dead. If so, skip it.
955    if (VisitedDeadInsts.count(&II))
956      return;
957
958    if (!IsOffsetKnown)
959      return PI.setAborted(&II);
960
961    // This side of the transfer is completely out-of-bounds, and so we can
962    // nuke the entire transfer. However, we also need to nuke the other side
963    // if already added to our partitions.
964    // FIXME: Yet another place we really should bypass this when
965    // instrumenting for ASan.
966    if (Offset.uge(AllocSize)) {
967      SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
968          MemTransferSliceMap.find(&II);
969      if (MTPI != MemTransferSliceMap.end())
970        AS.Slices[MTPI->second].kill();
971      return markAsDead(II);
972    }
973
974    uint64_t RawOffset = Offset.getLimitedValue();
975    uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
976
977    // Check for the special case where the same exact value is used for both
978    // source and dest.
979    if (*U == II.getRawDest() && *U == II.getRawSource()) {
980      // For non-volatile transfers this is a no-op.
981      if (!II.isVolatile())
982        return markAsDead(II);
983
984      return insertUse(II, Offset, Size, /*IsSplittable=*/false);
985    }
986
987    // If we have seen both source and destination for a mem transfer, then
988    // they both point to the same alloca.
989    bool Inserted;
990    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
991    std::tie(MTPI, Inserted) =
992        MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
993    unsigned PrevIdx = MTPI->second;
994    if (!Inserted) {
995      Slice &PrevP = AS.Slices[PrevIdx];
996
997      // Check if the begin offsets match and this is a non-volatile transfer.
998      // In that case, we can completely elide the transfer.
999      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
1000        PrevP.kill();
1001        return markAsDead(II);
1002      }
1003
1004      // Otherwise we have an offset transfer within the same alloca. We can't
1005      // split those.
1006      PrevP.makeUnsplittable();
1007    }
1008
1009    // Insert the use now that we've fixed up the splittable nature.
1010    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
1011
1012    // Check that we ended up with a valid index in the map.
1013    assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
1014           "Map index doesn't point back to a slice with this user.");
1015  }
1016
1017  // Disable SRoA for any intrinsics except for lifetime invariants and
1018  // invariant group.
1019  // FIXME: What about debug intrinsics? This matches old behavior, but
1020  // doesn't make sense.
1021  void visitIntrinsicInst(IntrinsicInst &II) {
1022    if (II.isDroppable()) {
1023      AS.DeadUseIfPromotable.push_back(U);
1024      return;
1025    }
1026
1027    if (!IsOffsetKnown)
1028      return PI.setAborted(&II);
1029
1030    if (II.isLifetimeStartOrEnd()) {
1031      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
1032      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
1033                               Length->getLimitedValue());
1034      insertUse(II, Offset, Size, true);
1035      return;
1036    }
1037
1038    if (II.isLaunderOrStripInvariantGroup()) {
1039      enqueueUsers(II);
1040      return;
1041    }
1042
1043    Base::visitIntrinsicInst(II);
1044  }
1045
1046  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
1047    // We consider any PHI or select that results in a direct load or store of
1048    // the same offset to be a viable use for slicing purposes. These uses
1049    // are considered unsplittable and the size is the maximum loaded or stored
1050    // size.
1051    SmallPtrSet<Instruction *, 4> Visited;
1052    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
1053    Visited.insert(Root);
1054    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
1055    const DataLayout &DL = Root->getModule()->getDataLayout();
1056    // If there are no loads or stores, the access is dead. We mark that as
1057    // a size zero access.
1058    Size = 0;
1059    do {
1060      Instruction *I, *UsedI;
1061      std::tie(UsedI, I) = Uses.pop_back_val();
1062
1063      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1064        Size =
1065            std::max(Size, DL.getTypeStoreSize(LI->getType()).getFixedValue());
1066        continue;
1067      }
1068      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1069        Value *Op = SI->getOperand(0);
1070        if (Op == UsedI)
1071          return SI;
1072        Size =
1073            std::max(Size, DL.getTypeStoreSize(Op->getType()).getFixedValue());
1074        continue;
1075      }
1076
1077      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
1078        if (!GEP->hasAllZeroIndices())
1079          return GEP;
1080      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
1081                 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
1082        return I;
1083      }
1084
1085      for (User *U : I->users())
1086        if (Visited.insert(cast<Instruction>(U)).second)
1087          Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
1088    } while (!Uses.empty());
1089
1090    return nullptr;
1091  }
1092
1093  void visitPHINodeOrSelectInst(Instruction &I) {
1094    assert(isa<PHINode>(I) || isa<SelectInst>(I));
1095    if (I.use_empty())
1096      return markAsDead(I);
1097
1098    // If this is a PHI node before a catchswitch, we cannot insert any non-PHI
1099    // instructions in this BB, which may be required during rewriting. Bail out
1100    // on these cases.
1101    if (isa<PHINode>(I) &&
1102        I.getParent()->getFirstInsertionPt() == I.getParent()->end())
1103      return PI.setAborted(&I);
1104
1105    // TODO: We could use simplifyInstruction here to fold PHINodes and
1106    // SelectInsts. However, doing so requires to change the current
1107    // dead-operand-tracking mechanism. For instance, suppose neither loading
1108    // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1109    // trap either.  However, if we simply replace %U with undef using the
1110    // current dead-operand-tracking mechanism, "load (select undef, undef,
1111    // %other)" may trap because the select may return the first operand
1112    // "undef".
1113    if (Value *Result = foldPHINodeOrSelectInst(I)) {
1114      if (Result == *U)
1115        // If the result of the constant fold will be the pointer, recurse
1116        // through the PHI/select as if we had RAUW'ed it.
1117        enqueueUsers(I);
1118      else
1119        // Otherwise the operand to the PHI/select is dead, and we can replace
1120        // it with poison.
1121        AS.DeadOperands.push_back(U);
1122
1123      return;
1124    }
1125
1126    if (!IsOffsetKnown)
1127      return PI.setAborted(&I);
1128
1129    // See if we already have computed info on this node.
1130    uint64_t &Size = PHIOrSelectSizes[&I];
1131    if (!Size) {
1132      // This is a new PHI/Select, check for an unsafe use of it.
1133      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1134        return PI.setAborted(UnsafeI);
1135    }
1136
1137    // For PHI and select operands outside the alloca, we can't nuke the entire
1138    // phi or select -- the other side might still be relevant, so we special
1139    // case them here and use a separate structure to track the operands
1140    // themselves which should be replaced with poison.
1141    // FIXME: This should instead be escaped in the event we're instrumenting
1142    // for address sanitization.
1143    if (Offset.uge(AllocSize)) {
1144      AS.DeadOperands.push_back(U);
1145      return;
1146    }
1147
1148    insertUse(I, Offset, Size);
1149  }
1150
1151  void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1152
1153  void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1154
1155  /// Disable SROA entirely if there are unhandled users of the alloca.
1156  void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1157};
1158
1159AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1160    :
1161#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1162      AI(AI),
1163#endif
1164      PointerEscapingInstr(nullptr) {
1165  SliceBuilder PB(DL, AI, *this);
1166  SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1167  if (PtrI.isEscaped() || PtrI.isAborted()) {
1168    // FIXME: We should sink the escape vs. abort info into the caller nicely,
1169    // possibly by just storing the PtrInfo in the AllocaSlices.
1170    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1171                                                  : PtrI.getAbortingInst();
1172    assert(PointerEscapingInstr && "Did not track a bad instruction");
1173    return;
1174  }
1175
1176  llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1177
1178  // Sort the uses. This arranges for the offsets to be in ascending order,
1179  // and the sizes to be in descending order.
1180  llvm::stable_sort(Slices);
1181}
1182
1183#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1184
1185void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1186                         StringRef Indent) const {
1187  printSlice(OS, I, Indent);
1188  OS << "\n";
1189  printUse(OS, I, Indent);
1190}
1191
1192void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1193                              StringRef Indent) const {
1194  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1195     << " slice #" << (I - begin())
1196     << (I->isSplittable() ? " (splittable)" : "");
1197}
1198
1199void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1200                            StringRef Indent) const {
1201  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1202}
1203
1204void AllocaSlices::print(raw_ostream &OS) const {
1205  if (PointerEscapingInstr) {
1206    OS << "Can't analyze slices for alloca: " << AI << "\n"
1207       << "  A pointer to this alloca escaped by:\n"
1208       << "  " << *PointerEscapingInstr << "\n";
1209    return;
1210  }
1211
1212  OS << "Slices of alloca: " << AI << "\n";
1213  for (const_iterator I = begin(), E = end(); I != E; ++I)
1214    print(OS, I);
1215}
1216
1217LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1218  print(dbgs(), I);
1219}
1220LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1221
1222#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1223
1224/// Walk the range of a partitioning looking for a common type to cover this
1225/// sequence of slices.
1226static std::pair<Type *, IntegerType *>
1227findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1228               uint64_t EndOffset) {
1229  Type *Ty = nullptr;
1230  bool TyIsCommon = true;
1231  IntegerType *ITy = nullptr;
1232
1233  // Note that we need to look at *every* alloca slice's Use to ensure we
1234  // always get consistent results regardless of the order of slices.
1235  for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1236    Use *U = I->getUse();
1237    if (isa<IntrinsicInst>(*U->getUser()))
1238      continue;
1239    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1240      continue;
1241
1242    Type *UserTy = nullptr;
1243    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1244      UserTy = LI->getType();
1245    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1246      UserTy = SI->getValueOperand()->getType();
1247    }
1248
1249    if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1250      // If the type is larger than the partition, skip it. We only encounter
1251      // this for split integer operations where we want to use the type of the
1252      // entity causing the split. Also skip if the type is not a byte width
1253      // multiple.
1254      if (UserITy->getBitWidth() % 8 != 0 ||
1255          UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1256        continue;
1257
1258      // Track the largest bitwidth integer type used in this way in case there
1259      // is no common type.
1260      if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1261        ITy = UserITy;
1262    }
1263
1264    // To avoid depending on the order of slices, Ty and TyIsCommon must not
1265    // depend on types skipped above.
1266    if (!UserTy || (Ty && Ty != UserTy))
1267      TyIsCommon = false; // Give up on anything but an iN type.
1268    else
1269      Ty = UserTy;
1270  }
1271
1272  return {TyIsCommon ? Ty : nullptr, ITy};
1273}
1274
1275/// PHI instructions that use an alloca and are subsequently loaded can be
1276/// rewritten to load both input pointers in the pred blocks and then PHI the
1277/// results, allowing the load of the alloca to be promoted.
1278/// From this:
1279///   %P2 = phi [i32* %Alloca, i32* %Other]
1280///   %V = load i32* %P2
1281/// to:
1282///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1283///   ...
1284///   %V2 = load i32* %Other
1285///   ...
1286///   %V = phi [i32 %V1, i32 %V2]
1287///
1288/// We can do this to a select if its only uses are loads and if the operands
1289/// to the select can be loaded unconditionally.
1290///
1291/// FIXME: This should be hoisted into a generic utility, likely in
1292/// Transforms/Util/Local.h
1293static bool isSafePHIToSpeculate(PHINode &PN) {
1294  const DataLayout &DL = PN.getModule()->getDataLayout();
1295
1296  // For now, we can only do this promotion if the load is in the same block
1297  // as the PHI, and if there are no stores between the phi and load.
1298  // TODO: Allow recursive phi users.
1299  // TODO: Allow stores.
1300  BasicBlock *BB = PN.getParent();
1301  Align MaxAlign;
1302  uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1303  Type *LoadType = nullptr;
1304  for (User *U : PN.users()) {
1305    LoadInst *LI = dyn_cast<LoadInst>(U);
1306    if (!LI || !LI->isSimple())
1307      return false;
1308
1309    // For now we only allow loads in the same block as the PHI.  This is
1310    // a common case that happens when instcombine merges two loads through
1311    // a PHI.
1312    if (LI->getParent() != BB)
1313      return false;
1314
1315    if (LoadType) {
1316      if (LoadType != LI->getType())
1317        return false;
1318    } else {
1319      LoadType = LI->getType();
1320    }
1321
1322    // Ensure that there are no instructions between the PHI and the load that
1323    // could store.
1324    for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1325      if (BBI->mayWriteToMemory())
1326        return false;
1327
1328    MaxAlign = std::max(MaxAlign, LI->getAlign());
1329  }
1330
1331  if (!LoadType)
1332    return false;
1333
1334  APInt LoadSize =
1335      APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue());
1336
1337  // We can only transform this if it is safe to push the loads into the
1338  // predecessor blocks. The only thing to watch out for is that we can't put
1339  // a possibly trapping load in the predecessor if it is a critical edge.
1340  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1341    Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1342    Value *InVal = PN.getIncomingValue(Idx);
1343
1344    // If the value is produced by the terminator of the predecessor (an
1345    // invoke) or it has side-effects, there is no valid place to put a load
1346    // in the predecessor.
1347    if (TI == InVal || TI->mayHaveSideEffects())
1348      return false;
1349
1350    // If the predecessor has a single successor, then the edge isn't
1351    // critical.
1352    if (TI->getNumSuccessors() == 1)
1353      continue;
1354
1355    // If this pointer is always safe to load, or if we can prove that there
1356    // is already a load in the block, then we can move the load to the pred
1357    // block.
1358    if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI))
1359      continue;
1360
1361    return false;
1362  }
1363
1364  return true;
1365}
1366
1367static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) {
1368  LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1369
1370  LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1371  Type *LoadTy = SomeLoad->getType();
1372  IRB.SetInsertPoint(&PN);
1373  PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1374                                 PN.getName() + ".sroa.speculated");
1375
1376  // Get the AA tags and alignment to use from one of the loads. It does not
1377  // matter which one we get and if any differ.
1378  AAMDNodes AATags = SomeLoad->getAAMetadata();
1379  Align Alignment = SomeLoad->getAlign();
1380
1381  // Rewrite all loads of the PN to use the new PHI.
1382  while (!PN.use_empty()) {
1383    LoadInst *LI = cast<LoadInst>(PN.user_back());
1384    LI->replaceAllUsesWith(NewPN);
1385    LI->eraseFromParent();
1386  }
1387
1388  // Inject loads into all of the pred blocks.
1389  DenseMap<BasicBlock*, Value*> InjectedLoads;
1390  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1391    BasicBlock *Pred = PN.getIncomingBlock(Idx);
1392    Value *InVal = PN.getIncomingValue(Idx);
1393
1394    // A PHI node is allowed to have multiple (duplicated) entries for the same
1395    // basic block, as long as the value is the same. So if we already injected
1396    // a load in the predecessor, then we should reuse the same load for all
1397    // duplicated entries.
1398    if (Value* V = InjectedLoads.lookup(Pred)) {
1399      NewPN->addIncoming(V, Pred);
1400      continue;
1401    }
1402
1403    Instruction *TI = Pred->getTerminator();
1404    IRB.SetInsertPoint(TI);
1405
1406    LoadInst *Load = IRB.CreateAlignedLoad(
1407        LoadTy, InVal, Alignment,
1408        (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1409    ++NumLoadsSpeculated;
1410    if (AATags)
1411      Load->setAAMetadata(AATags);
1412    NewPN->addIncoming(Load, Pred);
1413    InjectedLoads[Pred] = Load;
1414  }
1415
1416  LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1417  PN.eraseFromParent();
1418}
1419
1420sroa::SelectHandSpeculativity &
1421sroa::SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) {
1422  if (isTrueVal)
1423    Bitfield::set<sroa::SelectHandSpeculativity::TrueVal>(Storage, true);
1424  else
1425    Bitfield::set<sroa::SelectHandSpeculativity::FalseVal>(Storage, true);
1426  return *this;
1427}
1428
1429bool sroa::SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const {
1430  return isTrueVal
1431             ? Bitfield::get<sroa::SelectHandSpeculativity::TrueVal>(Storage)
1432             : Bitfield::get<sroa::SelectHandSpeculativity::FalseVal>(Storage);
1433}
1434
1435bool sroa::SelectHandSpeculativity::areAllSpeculatable() const {
1436  return isSpeculatable(/*isTrueVal=*/true) &&
1437         isSpeculatable(/*isTrueVal=*/false);
1438}
1439
1440bool sroa::SelectHandSpeculativity::areAnySpeculatable() const {
1441  return isSpeculatable(/*isTrueVal=*/true) ||
1442         isSpeculatable(/*isTrueVal=*/false);
1443}
1444bool sroa::SelectHandSpeculativity::areNoneSpeculatable() const {
1445  return !areAnySpeculatable();
1446}
1447
1448static sroa::SelectHandSpeculativity
1449isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) {
1450  assert(LI.isSimple() && "Only for simple loads");
1451  sroa::SelectHandSpeculativity Spec;
1452
1453  const DataLayout &DL = SI.getModule()->getDataLayout();
1454  for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()})
1455    if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL,
1456                                    &LI))
1457      Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue());
1458    else if (PreserveCFG)
1459      return Spec;
1460
1461  return Spec;
1462}
1463
1464std::optional<sroa::RewriteableMemOps>
1465SROAPass::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) {
1466  RewriteableMemOps Ops;
1467
1468  for (User *U : SI.users()) {
1469    if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse())
1470      U = *BC->user_begin();
1471
1472    if (auto *Store = dyn_cast<StoreInst>(U)) {
1473      // Note that atomic stores can be transformed; atomic semantics do not
1474      // have any meaning for a local alloca. Stores are not speculatable,
1475      // however, so if we can't turn it into a predicated store, we are done.
1476      if (Store->isVolatile() || PreserveCFG)
1477        return {}; // Give up on this `select`.
1478      Ops.emplace_back(Store);
1479      continue;
1480    }
1481
1482    auto *LI = dyn_cast<LoadInst>(U);
1483
1484    // Note that atomic loads can be transformed;
1485    // atomic semantics do not have any meaning for a local alloca.
1486    if (!LI || LI->isVolatile())
1487      return {}; // Give up on this `select`.
1488
1489    PossiblySpeculatableLoad Load(LI);
1490    if (!LI->isSimple()) {
1491      // If the `load` is not simple, we can't speculatively execute it,
1492      // but we could handle this via a CFG modification. But can we?
1493      if (PreserveCFG)
1494        return {}; // Give up on this `select`.
1495      Ops.emplace_back(Load);
1496      continue;
1497    }
1498
1499    sroa::SelectHandSpeculativity Spec =
1500        isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG);
1501    if (PreserveCFG && !Spec.areAllSpeculatable())
1502      return {}; // Give up on this `select`.
1503
1504    Load.setInt(Spec);
1505    Ops.emplace_back(Load);
1506  }
1507
1508  return Ops;
1509}
1510
1511static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI,
1512                                     IRBuilderTy &IRB) {
1513  LLVM_DEBUG(dbgs() << "    original load: " << SI << "\n");
1514
1515  Value *TV = SI.getTrueValue();
1516  Value *FV = SI.getFalseValue();
1517  // Replace the given load of the select with a select of two loads.
1518
1519  assert(LI.isSimple() && "We only speculate simple loads");
1520
1521  IRB.SetInsertPoint(&LI);
1522
1523  if (auto *TypedPtrTy = LI.getPointerOperandType();
1524      !TypedPtrTy->isOpaquePointerTy() && SI.getType() != TypedPtrTy) {
1525    TV = IRB.CreateBitOrPointerCast(TV, TypedPtrTy, "");
1526    FV = IRB.CreateBitOrPointerCast(FV, TypedPtrTy, "");
1527  }
1528
1529  LoadInst *TL =
1530      IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(),
1531                            LI.getName() + ".sroa.speculate.load.true");
1532  LoadInst *FL =
1533      IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(),
1534                            LI.getName() + ".sroa.speculate.load.false");
1535  NumLoadsSpeculated += 2;
1536
1537  // Transfer alignment and AA info if present.
1538  TL->setAlignment(LI.getAlign());
1539  FL->setAlignment(LI.getAlign());
1540
1541  AAMDNodes Tags = LI.getAAMetadata();
1542  if (Tags) {
1543    TL->setAAMetadata(Tags);
1544    FL->setAAMetadata(Tags);
1545  }
1546
1547  Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1548                              LI.getName() + ".sroa.speculated");
1549
1550  LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1551  LI.replaceAllUsesWith(V);
1552}
1553
1554template <typename T>
1555static void rewriteMemOpOfSelect(SelectInst &SI, T &I,
1556                                 sroa::SelectHandSpeculativity Spec,
1557                                 DomTreeUpdater &DTU) {
1558  assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!");
1559  LLVM_DEBUG(dbgs() << "    original mem op: " << I << "\n");
1560  BasicBlock *Head = I.getParent();
1561  Instruction *ThenTerm = nullptr;
1562  Instruction *ElseTerm = nullptr;
1563  if (Spec.areNoneSpeculatable())
1564    SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm,
1565                                  SI.getMetadata(LLVMContext::MD_prof), &DTU);
1566  else {
1567    SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false,
1568                              SI.getMetadata(LLVMContext::MD_prof), &DTU,
1569                              /*LI=*/nullptr, /*ThenBlock=*/nullptr);
1570    if (Spec.isSpeculatable(/*isTrueVal=*/true))
1571      cast<BranchInst>(Head->getTerminator())->swapSuccessors();
1572  }
1573  auto *HeadBI = cast<BranchInst>(Head->getTerminator());
1574  Spec = {}; // Do not use `Spec` beyond this point.
1575  BasicBlock *Tail = I.getParent();
1576  Tail->setName(Head->getName() + ".cont");
1577  PHINode *PN;
1578  if (isa<LoadInst>(I))
1579    PN = PHINode::Create(I.getType(), 2, "", &I);
1580  for (BasicBlock *SuccBB : successors(Head)) {
1581    bool IsThen = SuccBB == HeadBI->getSuccessor(0);
1582    int SuccIdx = IsThen ? 0 : 1;
1583    auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB;
1584    auto &CondMemOp = cast<T>(*I.clone());
1585    if (NewMemOpBB != Head) {
1586      NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else"));
1587      if (isa<LoadInst>(I))
1588        ++NumLoadsPredicated;
1589      else
1590        ++NumStoresPredicated;
1591    } else {
1592      CondMemOp.dropUndefImplyingAttrsAndUnknownMetadata();
1593      ++NumLoadsSpeculated;
1594    }
1595    CondMemOp.insertBefore(NewMemOpBB->getTerminator());
1596    Value *Ptr = SI.getOperand(1 + SuccIdx);
1597    if (auto *PtrTy = Ptr->getType();
1598        !PtrTy->isOpaquePointerTy() &&
1599        PtrTy != CondMemOp.getPointerOperandType())
1600      Ptr = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
1601          Ptr, CondMemOp.getPointerOperandType(), "", &CondMemOp);
1602    CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr);
1603    if (isa<LoadInst>(I)) {
1604      CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val");
1605      PN->addIncoming(&CondMemOp, NewMemOpBB);
1606    } else
1607      LLVM_DEBUG(dbgs() << "                 to: " << CondMemOp << "\n");
1608  }
1609  if (isa<LoadInst>(I)) {
1610    PN->takeName(&I);
1611    LLVM_DEBUG(dbgs() << "          to: " << *PN << "\n");
1612    I.replaceAllUsesWith(PN);
1613  }
1614}
1615
1616static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I,
1617                                 sroa::SelectHandSpeculativity Spec,
1618                                 DomTreeUpdater &DTU) {
1619  if (auto *LI = dyn_cast<LoadInst>(&I))
1620    rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU);
1621  else if (auto *SI = dyn_cast<StoreInst>(&I))
1622    rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU);
1623  else
1624    llvm_unreachable_internal("Only for load and store.");
1625}
1626
1627static bool rewriteSelectInstMemOps(SelectInst &SI,
1628                                    const sroa::RewriteableMemOps &Ops,
1629                                    IRBuilderTy &IRB, DomTreeUpdater *DTU) {
1630  bool CFGChanged = false;
1631  LLVM_DEBUG(dbgs() << "    original select: " << SI << "\n");
1632
1633  for (const RewriteableMemOp &Op : Ops) {
1634    sroa::SelectHandSpeculativity Spec;
1635    Instruction *I;
1636    if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) {
1637      I = *US;
1638    } else {
1639      auto PSL = std::get<PossiblySpeculatableLoad>(Op);
1640      I = PSL.getPointer();
1641      Spec = PSL.getInt();
1642    }
1643    if (Spec.areAllSpeculatable()) {
1644      speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB);
1645    } else {
1646      assert(DTU && "Should not get here when not allowed to modify the CFG!");
1647      rewriteMemOpOfSelect(SI, *I, Spec, *DTU);
1648      CFGChanged = true;
1649    }
1650    I->eraseFromParent();
1651  }
1652
1653  for (User *U : make_early_inc_range(SI.users()))
1654    cast<BitCastInst>(U)->eraseFromParent();
1655  SI.eraseFromParent();
1656  return CFGChanged;
1657}
1658
1659/// Build a GEP out of a base pointer and indices.
1660///
1661/// This will return the BasePtr if that is valid, or build a new GEP
1662/// instruction using the IRBuilder if GEP-ing is needed.
1663static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1664                       SmallVectorImpl<Value *> &Indices,
1665                       const Twine &NamePrefix) {
1666  if (Indices.empty())
1667    return BasePtr;
1668
1669  // A single zero index is a no-op, so check for this and avoid building a GEP
1670  // in that case.
1671  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1672    return BasePtr;
1673
1674  // buildGEP() is only called for non-opaque pointers.
1675  return IRB.CreateInBoundsGEP(
1676      BasePtr->getType()->getNonOpaquePointerElementType(), BasePtr, Indices,
1677      NamePrefix + "sroa_idx");
1678}
1679
1680/// Get a natural GEP off of the BasePtr walking through Ty toward
1681/// TargetTy without changing the offset of the pointer.
1682///
1683/// This routine assumes we've already established a properly offset GEP with
1684/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1685/// zero-indices down through type layers until we find one the same as
1686/// TargetTy. If we can't find one with the same type, we at least try to use
1687/// one with the same size. If none of that works, we just produce the GEP as
1688/// indicated by Indices to have the correct offset.
1689static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1690                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1691                                    SmallVectorImpl<Value *> &Indices,
1692                                    const Twine &NamePrefix) {
1693  if (Ty == TargetTy)
1694    return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1695
1696  // Offset size to use for the indices.
1697  unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1698
1699  // See if we can descend into a struct and locate a field with the correct
1700  // type.
1701  unsigned NumLayers = 0;
1702  Type *ElementTy = Ty;
1703  do {
1704    if (ElementTy->isPointerTy())
1705      break;
1706
1707    if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1708      ElementTy = ArrayTy->getElementType();
1709      Indices.push_back(IRB.getIntN(OffsetSize, 0));
1710    } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1711      ElementTy = VectorTy->getElementType();
1712      Indices.push_back(IRB.getInt32(0));
1713    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1714      if (STy->element_begin() == STy->element_end())
1715        break; // Nothing left to descend into.
1716      ElementTy = *STy->element_begin();
1717      Indices.push_back(IRB.getInt32(0));
1718    } else {
1719      break;
1720    }
1721    ++NumLayers;
1722  } while (ElementTy != TargetTy);
1723  if (ElementTy != TargetTy)
1724    Indices.erase(Indices.end() - NumLayers, Indices.end());
1725
1726  return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1727}
1728
1729/// Get a natural GEP from a base pointer to a particular offset and
1730/// resulting in a particular type.
1731///
1732/// The goal is to produce a "natural" looking GEP that works with the existing
1733/// composite types to arrive at the appropriate offset and element type for
1734/// a pointer. TargetTy is the element type the returned GEP should point-to if
1735/// possible. We recurse by decreasing Offset, adding the appropriate index to
1736/// Indices, and setting Ty to the result subtype.
1737///
1738/// If no natural GEP can be constructed, this function returns null.
1739static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1740                                      Value *Ptr, APInt Offset, Type *TargetTy,
1741                                      SmallVectorImpl<Value *> &Indices,
1742                                      const Twine &NamePrefix) {
1743  PointerType *Ty = cast<PointerType>(Ptr->getType());
1744
1745  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1746  // an i8.
1747  if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1748    return nullptr;
1749
1750  Type *ElementTy = Ty->getNonOpaquePointerElementType();
1751  if (!ElementTy->isSized())
1752    return nullptr; // We can't GEP through an unsized element.
1753
1754  SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset);
1755  if (Offset != 0)
1756    return nullptr;
1757
1758  for (const APInt &Index : IntIndices)
1759    Indices.push_back(IRB.getInt(Index));
1760  return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices,
1761                               NamePrefix);
1762}
1763
1764/// Compute an adjusted pointer from Ptr by Offset bytes where the
1765/// resulting pointer has PointerTy.
1766///
1767/// This tries very hard to compute a "natural" GEP which arrives at the offset
1768/// and produces the pointer type desired. Where it cannot, it will try to use
1769/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1770/// fails, it will try to use an existing i8* and GEP to the byte offset and
1771/// bitcast to the type.
1772///
1773/// The strategy for finding the more natural GEPs is to peel off layers of the
1774/// pointer, walking back through bit casts and GEPs, searching for a base
1775/// pointer from which we can compute a natural GEP with the desired
1776/// properties. The algorithm tries to fold as many constant indices into
1777/// a single GEP as possible, thus making each GEP more independent of the
1778/// surrounding code.
1779static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1780                             APInt Offset, Type *PointerTy,
1781                             const Twine &NamePrefix) {
1782  // Create i8 GEP for opaque pointers.
1783  if (Ptr->getType()->isOpaquePointerTy()) {
1784    if (Offset != 0)
1785      Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset),
1786                                  NamePrefix + "sroa_idx");
1787    return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy,
1788                                                   NamePrefix + "sroa_cast");
1789  }
1790
1791  // Even though we don't look through PHI nodes, we could be called on an
1792  // instruction in an unreachable block, which may be on a cycle.
1793  SmallPtrSet<Value *, 4> Visited;
1794  Visited.insert(Ptr);
1795  SmallVector<Value *, 4> Indices;
1796
1797  // We may end up computing an offset pointer that has the wrong type. If we
1798  // never are able to compute one directly that has the correct type, we'll
1799  // fall back to it, so keep it and the base it was computed from around here.
1800  Value *OffsetPtr = nullptr;
1801  Value *OffsetBasePtr;
1802
1803  // Remember any i8 pointer we come across to re-use if we need to do a raw
1804  // byte offset.
1805  Value *Int8Ptr = nullptr;
1806  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1807
1808  PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1809  Type *TargetTy = TargetPtrTy->getNonOpaquePointerElementType();
1810
1811  // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1812  // address space from the expected `PointerTy` (the pointer to be used).
1813  // Adjust the pointer type based the original storage pointer.
1814  auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1815  PointerTy = TargetTy->getPointerTo(AS);
1816
1817  do {
1818    // First fold any existing GEPs into the offset.
1819    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1820      APInt GEPOffset(Offset.getBitWidth(), 0);
1821      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1822        break;
1823      Offset += GEPOffset;
1824      Ptr = GEP->getPointerOperand();
1825      if (!Visited.insert(Ptr).second)
1826        break;
1827    }
1828
1829    // See if we can perform a natural GEP here.
1830    Indices.clear();
1831    if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1832                                           Indices, NamePrefix)) {
1833      // If we have a new natural pointer at the offset, clear out any old
1834      // offset pointer we computed. Unless it is the base pointer or
1835      // a non-instruction, we built a GEP we don't need. Zap it.
1836      if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1837        if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1838          assert(I->use_empty() && "Built a GEP with uses some how!");
1839          I->eraseFromParent();
1840        }
1841      OffsetPtr = P;
1842      OffsetBasePtr = Ptr;
1843      // If we also found a pointer of the right type, we're done.
1844      if (P->getType() == PointerTy)
1845        break;
1846    }
1847
1848    // Stash this pointer if we've found an i8*.
1849    if (Ptr->getType()->isIntegerTy(8)) {
1850      Int8Ptr = Ptr;
1851      Int8PtrOffset = Offset;
1852    }
1853
1854    // Peel off a layer of the pointer and update the offset appropriately.
1855    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1856      Ptr = cast<Operator>(Ptr)->getOperand(0);
1857    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1858      if (GA->isInterposable())
1859        break;
1860      Ptr = GA->getAliasee();
1861    } else {
1862      break;
1863    }
1864    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1865  } while (Visited.insert(Ptr).second);
1866
1867  if (!OffsetPtr) {
1868    if (!Int8Ptr) {
1869      Int8Ptr = IRB.CreateBitCast(
1870          Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1871          NamePrefix + "sroa_raw_cast");
1872      Int8PtrOffset = Offset;
1873    }
1874
1875    OffsetPtr = Int8PtrOffset == 0
1876                    ? Int8Ptr
1877                    : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1878                                            IRB.getInt(Int8PtrOffset),
1879                                            NamePrefix + "sroa_raw_idx");
1880  }
1881  Ptr = OffsetPtr;
1882
1883  // On the off chance we were targeting i8*, guard the bitcast here.
1884  if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1885    Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1886                                                  TargetPtrTy,
1887                                                  NamePrefix + "sroa_cast");
1888  }
1889
1890  return Ptr;
1891}
1892
1893/// Compute the adjusted alignment for a load or store from an offset.
1894static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1895  return commonAlignment(getLoadStoreAlignment(I), Offset);
1896}
1897
1898/// Test whether we can convert a value from the old to the new type.
1899///
1900/// This predicate should be used to guard calls to convertValue in order to
1901/// ensure that we only try to convert viable values. The strategy is that we
1902/// will peel off single element struct and array wrappings to get to an
1903/// underlying value, and convert that value.
1904static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1905  if (OldTy == NewTy)
1906    return true;
1907
1908  // For integer types, we can't handle any bit-width differences. This would
1909  // break both vector conversions with extension and introduce endianness
1910  // issues when in conjunction with loads and stores.
1911  if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1912    assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1913               cast<IntegerType>(NewTy)->getBitWidth() &&
1914           "We can't have the same bitwidth for different int types");
1915    return false;
1916  }
1917
1918  if (DL.getTypeSizeInBits(NewTy).getFixedValue() !=
1919      DL.getTypeSizeInBits(OldTy).getFixedValue())
1920    return false;
1921  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1922    return false;
1923
1924  // We can convert pointers to integers and vice-versa. Same for vectors
1925  // of pointers and integers.
1926  OldTy = OldTy->getScalarType();
1927  NewTy = NewTy->getScalarType();
1928  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1929    if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1930      unsigned OldAS = OldTy->getPointerAddressSpace();
1931      unsigned NewAS = NewTy->getPointerAddressSpace();
1932      // Convert pointers if they are pointers from the same address space or
1933      // different integral (not non-integral) address spaces with the same
1934      // pointer size.
1935      return OldAS == NewAS ||
1936             (!DL.isNonIntegralAddressSpace(OldAS) &&
1937              !DL.isNonIntegralAddressSpace(NewAS) &&
1938              DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1939    }
1940
1941    // We can convert integers to integral pointers, but not to non-integral
1942    // pointers.
1943    if (OldTy->isIntegerTy())
1944      return !DL.isNonIntegralPointerType(NewTy);
1945
1946    // We can convert integral pointers to integers, but non-integral pointers
1947    // need to remain pointers.
1948    if (!DL.isNonIntegralPointerType(OldTy))
1949      return NewTy->isIntegerTy();
1950
1951    return false;
1952  }
1953
1954  if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy())
1955    return false;
1956
1957  return true;
1958}
1959
1960/// Generic routine to convert an SSA value to a value of a different
1961/// type.
1962///
1963/// This will try various different casting techniques, such as bitcasts,
1964/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1965/// two types for viability with this routine.
1966static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1967                           Type *NewTy) {
1968  Type *OldTy = V->getType();
1969  assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1970
1971  if (OldTy == NewTy)
1972    return V;
1973
1974  assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1975         "Integer types must be the exact same to convert.");
1976
1977  // See if we need inttoptr for this type pair. May require additional bitcast.
1978  if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1979    // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1980    // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1981    // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1982    // Directly handle i64 to i8*
1983    return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1984                              NewTy);
1985  }
1986
1987  // See if we need ptrtoint for this type pair. May require additional bitcast.
1988  if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1989    // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1990    // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1991    // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1992    // Expand i8* to i64 --> i8* to i64 to i64
1993    return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1994                             NewTy);
1995  }
1996
1997  if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1998    unsigned OldAS = OldTy->getPointerAddressSpace();
1999    unsigned NewAS = NewTy->getPointerAddressSpace();
2000    // To convert pointers with different address spaces (they are already
2001    // checked convertible, i.e. they have the same pointer size), so far we
2002    // cannot use `bitcast` (which has restrict on the same address space) or
2003    // `addrspacecast` (which is not always no-op casting). Instead, use a pair
2004    // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
2005    // size.
2006    if (OldAS != NewAS) {
2007      assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
2008      return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
2009                                NewTy);
2010    }
2011  }
2012
2013  return IRB.CreateBitCast(V, NewTy);
2014}
2015
2016/// Test whether the given slice use can be promoted to a vector.
2017///
2018/// This function is called to test each entry in a partition which is slated
2019/// for a single slice.
2020static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
2021                                            VectorType *Ty,
2022                                            uint64_t ElementSize,
2023                                            const DataLayout &DL) {
2024  // First validate the slice offsets.
2025  uint64_t BeginOffset =
2026      std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
2027  uint64_t BeginIndex = BeginOffset / ElementSize;
2028  if (BeginIndex * ElementSize != BeginOffset ||
2029      BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
2030    return false;
2031  uint64_t EndOffset =
2032      std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
2033  uint64_t EndIndex = EndOffset / ElementSize;
2034  if (EndIndex * ElementSize != EndOffset ||
2035      EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
2036    return false;
2037
2038  assert(EndIndex > BeginIndex && "Empty vector!");
2039  uint64_t NumElements = EndIndex - BeginIndex;
2040  Type *SliceTy = (NumElements == 1)
2041                      ? Ty->getElementType()
2042                      : FixedVectorType::get(Ty->getElementType(), NumElements);
2043
2044  Type *SplitIntTy =
2045      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
2046
2047  Use *U = S.getUse();
2048
2049  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2050    if (MI->isVolatile())
2051      return false;
2052    if (!S.isSplittable())
2053      return false; // Skip any unsplittable intrinsics.
2054  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2055    if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2056      return false;
2057  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2058    if (LI->isVolatile())
2059      return false;
2060    Type *LTy = LI->getType();
2061    // Disable vector promotion when there are loads or stores of an FCA.
2062    if (LTy->isStructTy())
2063      return false;
2064    if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2065      assert(LTy->isIntegerTy());
2066      LTy = SplitIntTy;
2067    }
2068    if (!canConvertValue(DL, SliceTy, LTy))
2069      return false;
2070  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2071    if (SI->isVolatile())
2072      return false;
2073    Type *STy = SI->getValueOperand()->getType();
2074    // Disable vector promotion when there are loads or stores of an FCA.
2075    if (STy->isStructTy())
2076      return false;
2077    if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2078      assert(STy->isIntegerTy());
2079      STy = SplitIntTy;
2080    }
2081    if (!canConvertValue(DL, STy, SliceTy))
2082      return false;
2083  } else {
2084    return false;
2085  }
2086
2087  return true;
2088}
2089
2090/// Test whether a vector type is viable for promotion.
2091///
2092/// This implements the necessary checking for \c isVectorPromotionViable over
2093/// all slices of the alloca for the given VectorType.
2094static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy,
2095                                        const DataLayout &DL) {
2096  uint64_t ElementSize =
2097      DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue();
2098
2099  // While the definition of LLVM vectors is bitpacked, we don't support sizes
2100  // that aren't byte sized.
2101  if (ElementSize % 8)
2102    return false;
2103  assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 &&
2104         "vector size not a multiple of element size?");
2105  ElementSize /= 8;
2106
2107  for (const Slice &S : P)
2108    if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
2109      return false;
2110
2111  for (const Slice *S : P.splitSliceTails())
2112    if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
2113      return false;
2114
2115  return true;
2116}
2117
2118/// Test whether the given alloca partitioning and range of slices can be
2119/// promoted to a vector.
2120///
2121/// This is a quick test to check whether we can rewrite a particular alloca
2122/// partition (and its newly formed alloca) into a vector alloca with only
2123/// whole-vector loads and stores such that it could be promoted to a vector
2124/// SSA value. We only can ensure this for a limited set of operations, and we
2125/// don't want to do the rewrites unless we are confident that the result will
2126/// be promotable, so we have an early test here.
2127static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
2128  // Collect the candidate types for vector-based promotion. Also track whether
2129  // we have different element types.
2130  SmallVector<VectorType *, 4> CandidateTys;
2131  Type *CommonEltTy = nullptr;
2132  VectorType *CommonVecPtrTy = nullptr;
2133  bool HaveVecPtrTy = false;
2134  bool HaveCommonEltTy = true;
2135  bool HaveCommonVecPtrTy = true;
2136  auto CheckCandidateType = [&](Type *Ty) {
2137    if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2138      // Return if bitcast to vectors is different for total size in bits.
2139      if (!CandidateTys.empty()) {
2140        VectorType *V = CandidateTys[0];
2141        if (DL.getTypeSizeInBits(VTy).getFixedValue() !=
2142            DL.getTypeSizeInBits(V).getFixedValue()) {
2143          CandidateTys.clear();
2144          return;
2145        }
2146      }
2147      CandidateTys.push_back(VTy);
2148      Type *EltTy = VTy->getElementType();
2149
2150      if (!CommonEltTy)
2151        CommonEltTy = EltTy;
2152      else if (CommonEltTy != EltTy)
2153        HaveCommonEltTy = false;
2154
2155      if (EltTy->isPointerTy()) {
2156        HaveVecPtrTy = true;
2157        if (!CommonVecPtrTy)
2158          CommonVecPtrTy = VTy;
2159        else if (CommonVecPtrTy != VTy)
2160          HaveCommonVecPtrTy = false;
2161      }
2162    }
2163  };
2164  // Consider any loads or stores that are the exact size of the slice.
2165  for (const Slice &S : P)
2166    if (S.beginOffset() == P.beginOffset() &&
2167        S.endOffset() == P.endOffset()) {
2168      if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
2169        CheckCandidateType(LI->getType());
2170      else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
2171        CheckCandidateType(SI->getValueOperand()->getType());
2172    }
2173
2174  // If we didn't find a vector type, nothing to do here.
2175  if (CandidateTys.empty())
2176    return nullptr;
2177
2178  // Pointer-ness is sticky, if we had a vector-of-pointers candidate type,
2179  // then we should choose it, not some other alternative.
2180  // But, we can't perform a no-op pointer address space change via bitcast,
2181  // so if we didn't have a common pointer element type, bail.
2182  if (HaveVecPtrTy && !HaveCommonVecPtrTy)
2183    return nullptr;
2184
2185  // Try to pick the "best" element type out of the choices.
2186  if (!HaveCommonEltTy && HaveVecPtrTy) {
2187    // If there was a pointer element type, there's really only one choice.
2188    CandidateTys.clear();
2189    CandidateTys.push_back(CommonVecPtrTy);
2190  } else if (!HaveCommonEltTy && !HaveVecPtrTy) {
2191    // Integer-ify vector types.
2192    for (VectorType *&VTy : CandidateTys) {
2193      if (!VTy->getElementType()->isIntegerTy())
2194        VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy(
2195            VTy->getContext(), VTy->getScalarSizeInBits())));
2196    }
2197
2198    // Rank the remaining candidate vector types. This is easy because we know
2199    // they're all integer vectors. We sort by ascending number of elements.
2200    auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
2201      (void)DL;
2202      assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() ==
2203                 DL.getTypeSizeInBits(LHSTy).getFixedValue() &&
2204             "Cannot have vector types of different sizes!");
2205      assert(RHSTy->getElementType()->isIntegerTy() &&
2206             "All non-integer types eliminated!");
2207      assert(LHSTy->getElementType()->isIntegerTy() &&
2208             "All non-integer types eliminated!");
2209      return cast<FixedVectorType>(RHSTy)->getNumElements() <
2210             cast<FixedVectorType>(LHSTy)->getNumElements();
2211    };
2212    llvm::sort(CandidateTys, RankVectorTypes);
2213    CandidateTys.erase(
2214        std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
2215        CandidateTys.end());
2216  } else {
2217// The only way to have the same element type in every vector type is to
2218// have the same vector type. Check that and remove all but one.
2219#ifndef NDEBUG
2220    for (VectorType *VTy : CandidateTys) {
2221      assert(VTy->getElementType() == CommonEltTy &&
2222             "Unaccounted for element type!");
2223      assert(VTy == CandidateTys[0] &&
2224             "Different vector types with the same element type!");
2225    }
2226#endif
2227    CandidateTys.resize(1);
2228  }
2229
2230  // FIXME: hack. Do we have a named constant for this?
2231  // SDAG SDNode can't have more than 65535 operands.
2232  llvm::erase_if(CandidateTys, [](VectorType *VTy) {
2233    return cast<FixedVectorType>(VTy)->getNumElements() >
2234           std::numeric_limits<unsigned short>::max();
2235  });
2236
2237  for (VectorType *VTy : CandidateTys)
2238    if (checkVectorTypeForPromotion(P, VTy, DL))
2239      return VTy;
2240
2241  return nullptr;
2242}
2243
2244/// Test whether a slice of an alloca is valid for integer widening.
2245///
2246/// This implements the necessary checking for the \c isIntegerWideningViable
2247/// test below on a single slice of the alloca.
2248static bool isIntegerWideningViableForSlice(const Slice &S,
2249                                            uint64_t AllocBeginOffset,
2250                                            Type *AllocaTy,
2251                                            const DataLayout &DL,
2252                                            bool &WholeAllocaOp) {
2253  uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue();
2254
2255  uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2256  uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2257
2258  Use *U = S.getUse();
2259
2260  // Lifetime intrinsics operate over the whole alloca whose sizes are usually
2261  // larger than other load/store slices (RelEnd > Size). But lifetime are
2262  // always promotable and should not impact other slices' promotability of the
2263  // partition.
2264  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2265    if (II->isLifetimeStartOrEnd() || II->isDroppable())
2266      return true;
2267  }
2268
2269  // We can't reasonably handle cases where the load or store extends past
2270  // the end of the alloca's type and into its padding.
2271  if (RelEnd > Size)
2272    return false;
2273
2274  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2275    if (LI->isVolatile())
2276      return false;
2277    // We can't handle loads that extend past the allocated memory.
2278    if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size)
2279      return false;
2280    // So far, AllocaSliceRewriter does not support widening split slice tails
2281    // in rewriteIntegerLoad.
2282    if (S.beginOffset() < AllocBeginOffset)
2283      return false;
2284    // Note that we don't count vector loads or stores as whole-alloca
2285    // operations which enable integer widening because we would prefer to use
2286    // vector widening instead.
2287    if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2288      WholeAllocaOp = true;
2289    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2290      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2291        return false;
2292    } else if (RelBegin != 0 || RelEnd != Size ||
2293               !canConvertValue(DL, AllocaTy, LI->getType())) {
2294      // Non-integer loads need to be convertible from the alloca type so that
2295      // they are promotable.
2296      return false;
2297    }
2298  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2299    Type *ValueTy = SI->getValueOperand()->getType();
2300    if (SI->isVolatile())
2301      return false;
2302    // We can't handle stores that extend past the allocated memory.
2303    if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size)
2304      return false;
2305    // So far, AllocaSliceRewriter does not support widening split slice tails
2306    // in rewriteIntegerStore.
2307    if (S.beginOffset() < AllocBeginOffset)
2308      return false;
2309    // Note that we don't count vector loads or stores as whole-alloca
2310    // operations which enable integer widening because we would prefer to use
2311    // vector widening instead.
2312    if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2313      WholeAllocaOp = true;
2314    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2315      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2316        return false;
2317    } else if (RelBegin != 0 || RelEnd != Size ||
2318               !canConvertValue(DL, ValueTy, AllocaTy)) {
2319      // Non-integer stores need to be convertible to the alloca type so that
2320      // they are promotable.
2321      return false;
2322    }
2323  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2324    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2325      return false;
2326    if (!S.isSplittable())
2327      return false; // Skip any unsplittable intrinsics.
2328  } else {
2329    return false;
2330  }
2331
2332  return true;
2333}
2334
2335/// Test whether the given alloca partition's integer operations can be
2336/// widened to promotable ones.
2337///
2338/// This is a quick test to check whether we can rewrite the integer loads and
2339/// stores to a particular alloca into wider loads and stores and be able to
2340/// promote the resulting alloca.
2341static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2342                                    const DataLayout &DL) {
2343  uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue();
2344  // Don't create integer types larger than the maximum bitwidth.
2345  if (SizeInBits > IntegerType::MAX_INT_BITS)
2346    return false;
2347
2348  // Don't try to handle allocas with bit-padding.
2349  if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue())
2350    return false;
2351
2352  // We need to ensure that an integer type with the appropriate bitwidth can
2353  // be converted to the alloca type, whatever that is. We don't want to force
2354  // the alloca itself to have an integer type if there is a more suitable one.
2355  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2356  if (!canConvertValue(DL, AllocaTy, IntTy) ||
2357      !canConvertValue(DL, IntTy, AllocaTy))
2358    return false;
2359
2360  // While examining uses, we ensure that the alloca has a covering load or
2361  // store. We don't want to widen the integer operations only to fail to
2362  // promote due to some other unsplittable entry (which we may make splittable
2363  // later). However, if there are only splittable uses, go ahead and assume
2364  // that we cover the alloca.
2365  // FIXME: We shouldn't consider split slices that happen to start in the
2366  // partition here...
2367  bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2368
2369  for (const Slice &S : P)
2370    if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2371                                         WholeAllocaOp))
2372      return false;
2373
2374  for (const Slice *S : P.splitSliceTails())
2375    if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2376                                         WholeAllocaOp))
2377      return false;
2378
2379  return WholeAllocaOp;
2380}
2381
2382static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2383                             IntegerType *Ty, uint64_t Offset,
2384                             const Twine &Name) {
2385  LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2386  IntegerType *IntTy = cast<IntegerType>(V->getType());
2387  assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2388             DL.getTypeStoreSize(IntTy).getFixedValue() &&
2389         "Element extends past full value");
2390  uint64_t ShAmt = 8 * Offset;
2391  if (DL.isBigEndian())
2392    ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2393                 DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2394  if (ShAmt) {
2395    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2396    LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2397  }
2398  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2399         "Cannot extract to a larger integer!");
2400  if (Ty != IntTy) {
2401    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2402    LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2403  }
2404  return V;
2405}
2406
2407static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2408                            Value *V, uint64_t Offset, const Twine &Name) {
2409  IntegerType *IntTy = cast<IntegerType>(Old->getType());
2410  IntegerType *Ty = cast<IntegerType>(V->getType());
2411  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2412         "Cannot insert a larger integer!");
2413  LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2414  if (Ty != IntTy) {
2415    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2416    LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2417  }
2418  assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2419             DL.getTypeStoreSize(IntTy).getFixedValue() &&
2420         "Element store outside of alloca store");
2421  uint64_t ShAmt = 8 * Offset;
2422  if (DL.isBigEndian())
2423    ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2424                 DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2425  if (ShAmt) {
2426    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2427    LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2428  }
2429
2430  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2431    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2432    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2433    LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2434    V = IRB.CreateOr(Old, V, Name + ".insert");
2435    LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2436  }
2437  return V;
2438}
2439
2440static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2441                            unsigned EndIndex, const Twine &Name) {
2442  auto *VecTy = cast<FixedVectorType>(V->getType());
2443  unsigned NumElements = EndIndex - BeginIndex;
2444  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2445
2446  if (NumElements == VecTy->getNumElements())
2447    return V;
2448
2449  if (NumElements == 1) {
2450    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2451                                 Name + ".extract");
2452    LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2453    return V;
2454  }
2455
2456  auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex));
2457  V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2458  LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2459  return V;
2460}
2461
2462static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2463                           unsigned BeginIndex, const Twine &Name) {
2464  VectorType *VecTy = cast<VectorType>(Old->getType());
2465  assert(VecTy && "Can only insert a vector into a vector");
2466
2467  VectorType *Ty = dyn_cast<VectorType>(V->getType());
2468  if (!Ty) {
2469    // Single element to insert.
2470    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2471                                Name + ".insert");
2472    LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2473    return V;
2474  }
2475
2476  assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2477             cast<FixedVectorType>(VecTy)->getNumElements() &&
2478         "Too many elements!");
2479  if (cast<FixedVectorType>(Ty)->getNumElements() ==
2480      cast<FixedVectorType>(VecTy)->getNumElements()) {
2481    assert(V->getType() == VecTy && "Vector type mismatch");
2482    return V;
2483  }
2484  unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2485
2486  // When inserting a smaller vector into the larger to store, we first
2487  // use a shuffle vector to widen it with undef elements, and then
2488  // a second shuffle vector to select between the loaded vector and the
2489  // incoming vector.
2490  SmallVector<int, 8> Mask;
2491  Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2492  for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2493    if (i >= BeginIndex && i < EndIndex)
2494      Mask.push_back(i - BeginIndex);
2495    else
2496      Mask.push_back(-1);
2497  V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2498  LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2499
2500  SmallVector<Constant *, 8> Mask2;
2501  Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2502  for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2503    Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2504
2505  V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2506
2507  LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2508  return V;
2509}
2510
2511/// Visitor to rewrite instructions using p particular slice of an alloca
2512/// to use a new alloca.
2513///
2514/// Also implements the rewriting to vector-based accesses when the partition
2515/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2516/// lives here.
2517class llvm::sroa::AllocaSliceRewriter
2518    : public InstVisitor<AllocaSliceRewriter, bool> {
2519  // Befriend the base class so it can delegate to private visit methods.
2520  friend class InstVisitor<AllocaSliceRewriter, bool>;
2521
2522  using Base = InstVisitor<AllocaSliceRewriter, bool>;
2523
2524  const DataLayout &DL;
2525  AllocaSlices &AS;
2526  SROAPass &Pass;
2527  AllocaInst &OldAI, &NewAI;
2528  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2529  Type *NewAllocaTy;
2530
2531  // This is a convenience and flag variable that will be null unless the new
2532  // alloca's integer operations should be widened to this integer type due to
2533  // passing isIntegerWideningViable above. If it is non-null, the desired
2534  // integer type will be stored here for easy access during rewriting.
2535  IntegerType *IntTy;
2536
2537  // If we are rewriting an alloca partition which can be written as pure
2538  // vector operations, we stash extra information here. When VecTy is
2539  // non-null, we have some strict guarantees about the rewritten alloca:
2540  //   - The new alloca is exactly the size of the vector type here.
2541  //   - The accesses all either map to the entire vector or to a single
2542  //     element.
2543  //   - The set of accessing instructions is only one of those handled above
2544  //     in isVectorPromotionViable. Generally these are the same access kinds
2545  //     which are promotable via mem2reg.
2546  VectorType *VecTy;
2547  Type *ElementTy;
2548  uint64_t ElementSize;
2549
2550  // The original offset of the slice currently being rewritten relative to
2551  // the original alloca.
2552  uint64_t BeginOffset = 0;
2553  uint64_t EndOffset = 0;
2554
2555  // The new offsets of the slice currently being rewritten relative to the
2556  // original alloca.
2557  uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2558
2559  uint64_t RelativeOffset = 0;
2560  uint64_t SliceSize = 0;
2561  bool IsSplittable = false;
2562  bool IsSplit = false;
2563  Use *OldUse = nullptr;
2564  Instruction *OldPtr = nullptr;
2565
2566  // Track post-rewrite users which are PHI nodes and Selects.
2567  SmallSetVector<PHINode *, 8> &PHIUsers;
2568  SmallSetVector<SelectInst *, 8> &SelectUsers;
2569
2570  // Utility IR builder, whose name prefix is setup for each visited use, and
2571  // the insertion point is set to point to the user.
2572  IRBuilderTy IRB;
2573
2574  // Return the new alloca, addrspacecasted if required to avoid changing the
2575  // addrspace of a volatile access.
2576  Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) {
2577    if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace())
2578      return &NewAI;
2579
2580    Type *AccessTy = NewAI.getAllocatedType()->getPointerTo(AddrSpace);
2581    return IRB.CreateAddrSpaceCast(&NewAI, AccessTy);
2582  }
2583
2584public:
2585  AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass,
2586                      AllocaInst &OldAI, AllocaInst &NewAI,
2587                      uint64_t NewAllocaBeginOffset,
2588                      uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2589                      VectorType *PromotableVecTy,
2590                      SmallSetVector<PHINode *, 8> &PHIUsers,
2591                      SmallSetVector<SelectInst *, 8> &SelectUsers)
2592      : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2593        NewAllocaBeginOffset(NewAllocaBeginOffset),
2594        NewAllocaEndOffset(NewAllocaEndOffset),
2595        NewAllocaTy(NewAI.getAllocatedType()),
2596        IntTy(
2597            IsIntegerPromotable
2598                ? Type::getIntNTy(NewAI.getContext(),
2599                                  DL.getTypeSizeInBits(NewAI.getAllocatedType())
2600                                      .getFixedValue())
2601                : nullptr),
2602        VecTy(PromotableVecTy),
2603        ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2604        ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8
2605                          : 0),
2606        PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2607        IRB(NewAI.getContext(), ConstantFolder()) {
2608    if (VecTy) {
2609      assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 &&
2610             "Only multiple-of-8 sized vector elements are viable");
2611      ++NumVectorized;
2612    }
2613    assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2614  }
2615
2616  bool visit(AllocaSlices::const_iterator I) {
2617    bool CanSROA = true;
2618    BeginOffset = I->beginOffset();
2619    EndOffset = I->endOffset();
2620    IsSplittable = I->isSplittable();
2621    IsSplit =
2622        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2623    LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2624    LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2625    LLVM_DEBUG(dbgs() << "\n");
2626
2627    // Compute the intersecting offset range.
2628    assert(BeginOffset < NewAllocaEndOffset);
2629    assert(EndOffset > NewAllocaBeginOffset);
2630    NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2631    NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2632
2633    RelativeOffset = NewBeginOffset - BeginOffset;
2634    SliceSize = NewEndOffset - NewBeginOffset;
2635    LLVM_DEBUG(dbgs() << "   Begin:(" << BeginOffset << ", " << EndOffset
2636                      << ") NewBegin:(" << NewBeginOffset << ", "
2637                      << NewEndOffset << ") NewAllocaBegin:("
2638                      << NewAllocaBeginOffset << ", " << NewAllocaEndOffset
2639                      << ")\n");
2640    assert(IsSplit || RelativeOffset == 0);
2641    OldUse = I->getUse();
2642    OldPtr = cast<Instruction>(OldUse->get());
2643
2644    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2645    IRB.SetInsertPoint(OldUserI);
2646    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2647    IRB.getInserter().SetNamePrefix(
2648        Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2649
2650    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2651    if (VecTy || IntTy)
2652      assert(CanSROA);
2653    return CanSROA;
2654  }
2655
2656private:
2657  // Make sure the other visit overloads are visible.
2658  using Base::visit;
2659
2660  // Every instruction which can end up as a user must have a rewrite rule.
2661  bool visitInstruction(Instruction &I) {
2662    LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2663    llvm_unreachable("No rewrite rule for this instruction!");
2664  }
2665
2666  Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2667    // Note that the offset computation can use BeginOffset or NewBeginOffset
2668    // interchangeably for unsplit slices.
2669    assert(IsSplit || BeginOffset == NewBeginOffset);
2670    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2671
2672#ifndef NDEBUG
2673    StringRef OldName = OldPtr->getName();
2674    // Skip through the last '.sroa.' component of the name.
2675    size_t LastSROAPrefix = OldName.rfind(".sroa.");
2676    if (LastSROAPrefix != StringRef::npos) {
2677      OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2678      // Look for an SROA slice index.
2679      size_t IndexEnd = OldName.find_first_not_of("0123456789");
2680      if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2681        // Strip the index and look for the offset.
2682        OldName = OldName.substr(IndexEnd + 1);
2683        size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2684        if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2685          // Strip the offset.
2686          OldName = OldName.substr(OffsetEnd + 1);
2687      }
2688    }
2689    // Strip any SROA suffixes as well.
2690    OldName = OldName.substr(0, OldName.find(".sroa_"));
2691#endif
2692
2693    return getAdjustedPtr(IRB, DL, &NewAI,
2694                          APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2695                          PointerTy,
2696#ifndef NDEBUG
2697                          Twine(OldName) + "."
2698#else
2699                          Twine()
2700#endif
2701                          );
2702  }
2703
2704  /// Compute suitable alignment to access this slice of the *new*
2705  /// alloca.
2706  ///
2707  /// You can optionally pass a type to this routine and if that type's ABI
2708  /// alignment is itself suitable, this will return zero.
2709  Align getSliceAlign() {
2710    return commonAlignment(NewAI.getAlign(),
2711                           NewBeginOffset - NewAllocaBeginOffset);
2712  }
2713
2714  unsigned getIndex(uint64_t Offset) {
2715    assert(VecTy && "Can only call getIndex when rewriting a vector");
2716    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2717    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2718    uint32_t Index = RelOffset / ElementSize;
2719    assert(Index * ElementSize == RelOffset);
2720    return Index;
2721  }
2722
2723  void deleteIfTriviallyDead(Value *V) {
2724    Instruction *I = cast<Instruction>(V);
2725    if (isInstructionTriviallyDead(I))
2726      Pass.DeadInsts.push_back(I);
2727  }
2728
2729  Value *rewriteVectorizedLoadInst(LoadInst &LI) {
2730    unsigned BeginIndex = getIndex(NewBeginOffset);
2731    unsigned EndIndex = getIndex(NewEndOffset);
2732    assert(EndIndex > BeginIndex && "Empty vector!");
2733
2734    LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2735                                           NewAI.getAlign(), "load");
2736
2737    Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2738                            LLVMContext::MD_access_group});
2739    return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
2740  }
2741
2742  Value *rewriteIntegerLoad(LoadInst &LI) {
2743    assert(IntTy && "We cannot insert an integer to the alloca");
2744    assert(!LI.isVolatile());
2745    Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2746                                     NewAI.getAlign(), "load");
2747    V = convertValue(DL, IRB, V, IntTy);
2748    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2749    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2750    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2751      IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2752      V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2753    }
2754    // It is possible that the extracted type is not the load type. This
2755    // happens if there is a load past the end of the alloca, and as
2756    // a consequence the slice is narrower but still a candidate for integer
2757    // lowering. To handle this case, we just zero extend the extracted
2758    // integer.
2759    assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2760           "Can only handle an extract for an overly wide load");
2761    if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2762      V = IRB.CreateZExt(V, LI.getType());
2763    return V;
2764  }
2765
2766  bool visitLoadInst(LoadInst &LI) {
2767    LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2768    Value *OldOp = LI.getOperand(0);
2769    assert(OldOp == OldPtr);
2770
2771    AAMDNodes AATags = LI.getAAMetadata();
2772
2773    unsigned AS = LI.getPointerAddressSpace();
2774
2775    Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2776                             : LI.getType();
2777    const bool IsLoadPastEnd =
2778        DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize;
2779    bool IsPtrAdjusted = false;
2780    Value *V;
2781    if (VecTy) {
2782      V = rewriteVectorizedLoadInst(LI);
2783    } else if (IntTy && LI.getType()->isIntegerTy()) {
2784      V = rewriteIntegerLoad(LI);
2785    } else if (NewBeginOffset == NewAllocaBeginOffset &&
2786               NewEndOffset == NewAllocaEndOffset &&
2787               (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2788                (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2789                 TargetTy->isIntegerTy()))) {
2790      Value *NewPtr =
2791          getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile());
2792      LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr,
2793                                              NewAI.getAlign(), LI.isVolatile(),
2794                                              LI.getName());
2795      if (LI.isVolatile())
2796        NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2797      if (NewLI->isAtomic())
2798        NewLI->setAlignment(LI.getAlign());
2799
2800      // Copy any metadata that is valid for the new load. This may require
2801      // conversion to a different kind of metadata, e.g. !nonnull might change
2802      // to !range or vice versa.
2803      copyMetadataForLoad(*NewLI, LI);
2804
2805      // Do this after copyMetadataForLoad() to preserve the TBAA shift.
2806      if (AATags)
2807        NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2808
2809      // Try to preserve nonnull metadata
2810      V = NewLI;
2811
2812      // If this is an integer load past the end of the slice (which means the
2813      // bytes outside the slice are undef or this load is dead) just forcibly
2814      // fix the integer size with correct handling of endianness.
2815      if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2816        if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2817          if (AITy->getBitWidth() < TITy->getBitWidth()) {
2818            V = IRB.CreateZExt(V, TITy, "load.ext");
2819            if (DL.isBigEndian())
2820              V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2821                                "endian_shift");
2822          }
2823    } else {
2824      Type *LTy = TargetTy->getPointerTo(AS);
2825      LoadInst *NewLI =
2826          IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2827                                getSliceAlign(), LI.isVolatile(), LI.getName());
2828      if (AATags)
2829        NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2830      if (LI.isVolatile())
2831        NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2832      NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2833                               LLVMContext::MD_access_group});
2834
2835      V = NewLI;
2836      IsPtrAdjusted = true;
2837    }
2838    V = convertValue(DL, IRB, V, TargetTy);
2839
2840    if (IsSplit) {
2841      assert(!LI.isVolatile());
2842      assert(LI.getType()->isIntegerTy() &&
2843             "Only integer type loads and stores are split");
2844      assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() &&
2845             "Split load isn't smaller than original load");
2846      assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2847             "Non-byte-multiple bit width");
2848      // Move the insertion point just past the load so that we can refer to it.
2849      IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2850      // Create a placeholder value with the same type as LI to use as the
2851      // basis for the new value. This allows us to replace the uses of LI with
2852      // the computed value, and then replace the placeholder with LI, leaving
2853      // LI only used for this computation.
2854      Value *Placeholder = new LoadInst(
2855          LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "",
2856          false, Align(1));
2857      V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2858                        "insert");
2859      LI.replaceAllUsesWith(V);
2860      Placeholder->replaceAllUsesWith(&LI);
2861      Placeholder->deleteValue();
2862    } else {
2863      LI.replaceAllUsesWith(V);
2864    }
2865
2866    Pass.DeadInsts.push_back(&LI);
2867    deleteIfTriviallyDead(OldOp);
2868    LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2869    return !LI.isVolatile() && !IsPtrAdjusted;
2870  }
2871
2872  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2873                                  AAMDNodes AATags) {
2874    // Capture V for the purpose of debug-info accounting once it's converted
2875    // to a vector store.
2876    Value *OrigV = V;
2877    if (V->getType() != VecTy) {
2878      unsigned BeginIndex = getIndex(NewBeginOffset);
2879      unsigned EndIndex = getIndex(NewEndOffset);
2880      assert(EndIndex > BeginIndex && "Empty vector!");
2881      unsigned NumElements = EndIndex - BeginIndex;
2882      assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2883             "Too many elements!");
2884      Type *SliceTy = (NumElements == 1)
2885                          ? ElementTy
2886                          : FixedVectorType::get(ElementTy, NumElements);
2887      if (V->getType() != SliceTy)
2888        V = convertValue(DL, IRB, V, SliceTy);
2889
2890      // Mix in the existing elements.
2891      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2892                                         NewAI.getAlign(), "load");
2893      V = insertVector(IRB, Old, V, BeginIndex, "vec");
2894    }
2895    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2896    Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2897                             LLVMContext::MD_access_group});
2898    if (AATags)
2899      Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2900    Pass.DeadInsts.push_back(&SI);
2901
2902    // NOTE: Careful to use OrigV rather than V.
2903    migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store,
2904                     Store->getPointerOperand(), OrigV, DL);
2905    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2906    return true;
2907  }
2908
2909  bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2910    assert(IntTy && "We cannot extract an integer from the alloca");
2911    assert(!SI.isVolatile());
2912    if (DL.getTypeSizeInBits(V->getType()).getFixedValue() !=
2913        IntTy->getBitWidth()) {
2914      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2915                                         NewAI.getAlign(), "oldload");
2916      Old = convertValue(DL, IRB, Old, IntTy);
2917      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2918      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2919      V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2920    }
2921    V = convertValue(DL, IRB, V, NewAllocaTy);
2922    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2923    Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2924                             LLVMContext::MD_access_group});
2925    if (AATags)
2926      Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2927
2928    migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store,
2929                     Store->getPointerOperand(), Store->getValueOperand(), DL);
2930
2931    Pass.DeadInsts.push_back(&SI);
2932    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2933    return true;
2934  }
2935
2936  bool visitStoreInst(StoreInst &SI) {
2937    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2938    Value *OldOp = SI.getOperand(1);
2939    assert(OldOp == OldPtr);
2940
2941    AAMDNodes AATags = SI.getAAMetadata();
2942    Value *V = SI.getValueOperand();
2943
2944    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2945    // alloca that should be re-examined after promoting this alloca.
2946    if (V->getType()->isPointerTy())
2947      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2948        Pass.PostPromotionWorklist.insert(AI);
2949
2950    if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) {
2951      assert(!SI.isVolatile());
2952      assert(V->getType()->isIntegerTy() &&
2953             "Only integer type loads and stores are split");
2954      assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2955             "Non-byte-multiple bit width");
2956      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2957      V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2958                         "extract");
2959    }
2960
2961    if (VecTy)
2962      return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2963    if (IntTy && V->getType()->isIntegerTy())
2964      return rewriteIntegerStore(V, SI, AATags);
2965
2966    const bool IsStorePastEnd =
2967        DL.getTypeStoreSize(V->getType()).getFixedValue() > SliceSize;
2968    StoreInst *NewSI;
2969    if (NewBeginOffset == NewAllocaBeginOffset &&
2970        NewEndOffset == NewAllocaEndOffset &&
2971        (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2972         (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2973          V->getType()->isIntegerTy()))) {
2974      // If this is an integer store past the end of slice (and thus the bytes
2975      // past that point are irrelevant or this is unreachable), truncate the
2976      // value prior to storing.
2977      if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2978        if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2979          if (VITy->getBitWidth() > AITy->getBitWidth()) {
2980            if (DL.isBigEndian())
2981              V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2982                                 "endian_shift");
2983            V = IRB.CreateTrunc(V, AITy, "load.trunc");
2984          }
2985
2986      V = convertValue(DL, IRB, V, NewAllocaTy);
2987      Value *NewPtr =
2988          getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile());
2989
2990      NewSI =
2991          IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile());
2992    } else {
2993      unsigned AS = SI.getPointerAddressSpace();
2994      Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2995      NewSI =
2996          IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2997    }
2998    NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2999                             LLVMContext::MD_access_group});
3000    if (AATags)
3001      NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3002    if (SI.isVolatile())
3003      NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
3004    if (NewSI->isAtomic())
3005      NewSI->setAlignment(SI.getAlign());
3006
3007    migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, NewSI,
3008                     NewSI->getPointerOperand(), NewSI->getValueOperand(), DL);
3009
3010    Pass.DeadInsts.push_back(&SI);
3011    deleteIfTriviallyDead(OldOp);
3012
3013    LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
3014    return NewSI->getPointerOperand() == &NewAI &&
3015           NewSI->getValueOperand()->getType() == NewAllocaTy &&
3016           !SI.isVolatile();
3017  }
3018
3019  /// Compute an integer value from splatting an i8 across the given
3020  /// number of bytes.
3021  ///
3022  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
3023  /// call this routine.
3024  /// FIXME: Heed the advice above.
3025  ///
3026  /// \param V The i8 value to splat.
3027  /// \param Size The number of bytes in the output (assuming i8 is one byte)
3028  Value *getIntegerSplat(Value *V, unsigned Size) {
3029    assert(Size > 0 && "Expected a positive number of bytes.");
3030    IntegerType *VTy = cast<IntegerType>(V->getType());
3031    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
3032    if (Size == 1)
3033      return V;
3034
3035    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
3036    V = IRB.CreateMul(
3037        IRB.CreateZExt(V, SplatIntTy, "zext"),
3038        IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy),
3039                       IRB.CreateZExt(Constant::getAllOnesValue(V->getType()),
3040                                      SplatIntTy)),
3041        "isplat");
3042    return V;
3043  }
3044
3045  /// Compute a vector splat for a given element value.
3046  Value *getVectorSplat(Value *V, unsigned NumElements) {
3047    V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
3048    LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
3049    return V;
3050  }
3051
3052  bool visitMemSetInst(MemSetInst &II) {
3053    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3054    assert(II.getRawDest() == OldPtr);
3055
3056    AAMDNodes AATags = II.getAAMetadata();
3057
3058    // If the memset has a variable size, it cannot be split, just adjust the
3059    // pointer to the new alloca.
3060    if (!isa<ConstantInt>(II.getLength())) {
3061      assert(!IsSplit);
3062      assert(NewBeginOffset == BeginOffset);
3063      II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
3064      II.setDestAlignment(getSliceAlign());
3065      // In theory we should call migrateDebugInfo here. However, we do not
3066      // emit dbg.assign intrinsics for mem intrinsics storing through non-
3067      // constant geps, or storing a variable number of bytes.
3068      assert(at::getAssignmentMarkers(&II).empty() &&
3069             "AT: Unexpected link to non-const GEP");
3070      deleteIfTriviallyDead(OldPtr);
3071      return false;
3072    }
3073
3074    // Record this instruction for deletion.
3075    Pass.DeadInsts.push_back(&II);
3076
3077    Type *AllocaTy = NewAI.getAllocatedType();
3078    Type *ScalarTy = AllocaTy->getScalarType();
3079
3080    const bool CanContinue = [&]() {
3081      if (VecTy || IntTy)
3082        return true;
3083      if (BeginOffset > NewAllocaBeginOffset ||
3084          EndOffset < NewAllocaEndOffset)
3085        return false;
3086      // Length must be in range for FixedVectorType.
3087      auto *C = cast<ConstantInt>(II.getLength());
3088      const uint64_t Len = C->getLimitedValue();
3089      if (Len > std::numeric_limits<unsigned>::max())
3090        return false;
3091      auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
3092      auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
3093      return canConvertValue(DL, SrcTy, AllocaTy) &&
3094             DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue());
3095    }();
3096
3097    // If this doesn't map cleanly onto the alloca type, and that type isn't
3098    // a single value type, just emit a memset.
3099    if (!CanContinue) {
3100      Type *SizeTy = II.getLength()->getType();
3101      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3102      MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet(
3103          getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
3104          MaybeAlign(getSliceAlign()), II.isVolatile()));
3105      if (AATags)
3106        New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3107
3108      migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3109                       New->getRawDest(), nullptr, DL);
3110
3111      LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3112      return false;
3113    }
3114
3115    // If we can represent this as a simple value, we have to build the actual
3116    // value to store, which requires expanding the byte present in memset to
3117    // a sensible representation for the alloca type. This is essentially
3118    // splatting the byte to a sufficiently wide integer, splatting it across
3119    // any desired vector width, and bitcasting to the final type.
3120    Value *V;
3121
3122    if (VecTy) {
3123      // If this is a memset of a vectorized alloca, insert it.
3124      assert(ElementTy == ScalarTy);
3125
3126      unsigned BeginIndex = getIndex(NewBeginOffset);
3127      unsigned EndIndex = getIndex(NewEndOffset);
3128      assert(EndIndex > BeginIndex && "Empty vector!");
3129      unsigned NumElements = EndIndex - BeginIndex;
3130      assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
3131             "Too many elements!");
3132
3133      Value *Splat = getIntegerSplat(
3134          II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8);
3135      Splat = convertValue(DL, IRB, Splat, ElementTy);
3136      if (NumElements > 1)
3137        Splat = getVectorSplat(Splat, NumElements);
3138
3139      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3140                                         NewAI.getAlign(), "oldload");
3141      V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
3142    } else if (IntTy) {
3143      // If this is a memset on an alloca where we can widen stores, insert the
3144      // set integer.
3145      assert(!II.isVolatile());
3146
3147      uint64_t Size = NewEndOffset - NewBeginOffset;
3148      V = getIntegerSplat(II.getValue(), Size);
3149
3150      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
3151                    EndOffset != NewAllocaBeginOffset)) {
3152        Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3153                                           NewAI.getAlign(), "oldload");
3154        Old = convertValue(DL, IRB, Old, IntTy);
3155        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3156        V = insertInteger(DL, IRB, Old, V, Offset, "insert");
3157      } else {
3158        assert(V->getType() == IntTy &&
3159               "Wrong type for an alloca wide integer!");
3160      }
3161      V = convertValue(DL, IRB, V, AllocaTy);
3162    } else {
3163      // Established these invariants above.
3164      assert(NewBeginOffset == NewAllocaBeginOffset);
3165      assert(NewEndOffset == NewAllocaEndOffset);
3166
3167      V = getIntegerSplat(II.getValue(),
3168                          DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8);
3169      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
3170        V = getVectorSplat(
3171            V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
3172
3173      V = convertValue(DL, IRB, V, AllocaTy);
3174    }
3175
3176    Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3177    StoreInst *New =
3178        IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile());
3179    New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3180                           LLVMContext::MD_access_group});
3181    if (AATags)
3182      New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3183
3184    migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3185                     New->getPointerOperand(), V, DL);
3186
3187    LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3188    return !II.isVolatile();
3189  }
3190
3191  bool visitMemTransferInst(MemTransferInst &II) {
3192    // Rewriting of memory transfer instructions can be a bit tricky. We break
3193    // them into two categories: split intrinsics and unsplit intrinsics.
3194
3195    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3196
3197    AAMDNodes AATags = II.getAAMetadata();
3198
3199    bool IsDest = &II.getRawDestUse() == OldUse;
3200    assert((IsDest && II.getRawDest() == OldPtr) ||
3201           (!IsDest && II.getRawSource() == OldPtr));
3202
3203    Align SliceAlign = getSliceAlign();
3204    // For unsplit intrinsics, we simply modify the source and destination
3205    // pointers in place. This isn't just an optimization, it is a matter of
3206    // correctness. With unsplit intrinsics we may be dealing with transfers
3207    // within a single alloca before SROA ran, or with transfers that have
3208    // a variable length. We may also be dealing with memmove instead of
3209    // memcpy, and so simply updating the pointers is the necessary for us to
3210    // update both source and dest of a single call.
3211    if (!IsSplittable) {
3212      Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3213      if (IsDest) {
3214        // Update the address component of linked dbg.assigns.
3215        for (auto *DAI : at::getAssignmentMarkers(&II)) {
3216          if (any_of(DAI->location_ops(),
3217                     [&](Value *V) { return V == II.getDest(); }) ||
3218              DAI->getAddress() == II.getDest())
3219            DAI->replaceVariableLocationOp(II.getDest(), AdjustedPtr);
3220        }
3221        II.setDest(AdjustedPtr);
3222        II.setDestAlignment(SliceAlign);
3223      } else {
3224        II.setSource(AdjustedPtr);
3225        II.setSourceAlignment(SliceAlign);
3226      }
3227
3228      LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
3229      deleteIfTriviallyDead(OldPtr);
3230      return false;
3231    }
3232    // For split transfer intrinsics we have an incredibly useful assurance:
3233    // the source and destination do not reside within the same alloca, and at
3234    // least one of them does not escape. This means that we can replace
3235    // memmove with memcpy, and we don't need to worry about all manner of
3236    // downsides to splitting and transforming the operations.
3237
3238    // If this doesn't map cleanly onto the alloca type, and that type isn't
3239    // a single value type, just emit a memcpy.
3240    bool EmitMemCpy =
3241        !VecTy && !IntTy &&
3242        (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
3243         SliceSize !=
3244             DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() ||
3245         !NewAI.getAllocatedType()->isSingleValueType());
3246
3247    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
3248    // size hasn't been shrunk based on analysis of the viable range, this is
3249    // a no-op.
3250    if (EmitMemCpy && &OldAI == &NewAI) {
3251      // Ensure the start lines up.
3252      assert(NewBeginOffset == BeginOffset);
3253
3254      // Rewrite the size as needed.
3255      if (NewEndOffset != EndOffset)
3256        II.setLength(ConstantInt::get(II.getLength()->getType(),
3257                                      NewEndOffset - NewBeginOffset));
3258      return false;
3259    }
3260    // Record this instruction for deletion.
3261    Pass.DeadInsts.push_back(&II);
3262
3263    // Strip all inbounds GEPs and pointer casts to try to dig out any root
3264    // alloca that should be re-examined after rewriting this instruction.
3265    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
3266    if (AllocaInst *AI =
3267            dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
3268      assert(AI != &OldAI && AI != &NewAI &&
3269             "Splittable transfers cannot reach the same alloca on both ends.");
3270      Pass.Worklist.insert(AI);
3271    }
3272
3273    Type *OtherPtrTy = OtherPtr->getType();
3274    unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
3275
3276    // Compute the relative offset for the other pointer within the transfer.
3277    unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
3278    APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
3279    Align OtherAlign =
3280        (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
3281    OtherAlign =
3282        commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
3283
3284    if (EmitMemCpy) {
3285      // Compute the other pointer, folding as much as possible to produce
3286      // a single, simple GEP in most cases.
3287      OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3288                                OtherPtr->getName() + ".");
3289
3290      Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3291      Type *SizeTy = II.getLength()->getType();
3292      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3293
3294      Value *DestPtr, *SrcPtr;
3295      MaybeAlign DestAlign, SrcAlign;
3296      // Note: IsDest is true iff we're copying into the new alloca slice
3297      if (IsDest) {
3298        DestPtr = OurPtr;
3299        DestAlign = SliceAlign;
3300        SrcPtr = OtherPtr;
3301        SrcAlign = OtherAlign;
3302      } else {
3303        DestPtr = OtherPtr;
3304        DestAlign = OtherAlign;
3305        SrcPtr = OurPtr;
3306        SrcAlign = SliceAlign;
3307      }
3308      CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
3309                                       Size, II.isVolatile());
3310      if (AATags)
3311        New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3312
3313      migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3314                       DestPtr, nullptr, DL);
3315      LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3316      return false;
3317    }
3318
3319    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3320                         NewEndOffset == NewAllocaEndOffset;
3321    uint64_t Size = NewEndOffset - NewBeginOffset;
3322    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3323    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3324    unsigned NumElements = EndIndex - BeginIndex;
3325    IntegerType *SubIntTy =
3326        IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3327
3328    // Reset the other pointer type to match the register type we're going to
3329    // use, but using the address space of the original other pointer.
3330    Type *OtherTy;
3331    if (VecTy && !IsWholeAlloca) {
3332      if (NumElements == 1)
3333        OtherTy = VecTy->getElementType();
3334      else
3335        OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3336    } else if (IntTy && !IsWholeAlloca) {
3337      OtherTy = SubIntTy;
3338    } else {
3339      OtherTy = NewAllocaTy;
3340    }
3341    OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3342
3343    Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3344                                   OtherPtr->getName() + ".");
3345    MaybeAlign SrcAlign = OtherAlign;
3346    MaybeAlign DstAlign = SliceAlign;
3347    if (!IsDest)
3348      std::swap(SrcAlign, DstAlign);
3349
3350    Value *SrcPtr;
3351    Value *DstPtr;
3352
3353    if (IsDest) {
3354      DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3355      SrcPtr = AdjPtr;
3356    } else {
3357      DstPtr = AdjPtr;
3358      SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile());
3359    }
3360
3361    Value *Src;
3362    if (VecTy && !IsWholeAlloca && !IsDest) {
3363      Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3364                                  NewAI.getAlign(), "load");
3365      Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3366    } else if (IntTy && !IsWholeAlloca && !IsDest) {
3367      Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3368                                  NewAI.getAlign(), "load");
3369      Src = convertValue(DL, IRB, Src, IntTy);
3370      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3371      Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3372    } else {
3373      LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3374                                             II.isVolatile(), "copyload");
3375      Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3376                              LLVMContext::MD_access_group});
3377      if (AATags)
3378        Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3379      Src = Load;
3380    }
3381
3382    if (VecTy && !IsWholeAlloca && IsDest) {
3383      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3384                                         NewAI.getAlign(), "oldload");
3385      Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3386    } else if (IntTy && !IsWholeAlloca && IsDest) {
3387      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3388                                         NewAI.getAlign(), "oldload");
3389      Old = convertValue(DL, IRB, Old, IntTy);
3390      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3391      Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3392      Src = convertValue(DL, IRB, Src, NewAllocaTy);
3393    }
3394
3395    StoreInst *Store = cast<StoreInst>(
3396        IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3397    Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3398                             LLVMContext::MD_access_group});
3399    if (AATags)
3400      Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3401
3402    migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, Store,
3403                     DstPtr, Src, DL);
3404    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3405    return !II.isVolatile();
3406  }
3407
3408  bool visitIntrinsicInst(IntrinsicInst &II) {
3409    assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&
3410           "Unexpected intrinsic!");
3411    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3412
3413    // Record this instruction for deletion.
3414    Pass.DeadInsts.push_back(&II);
3415
3416    if (II.isDroppable()) {
3417      assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3418      // TODO For now we forget assumed information, this can be improved.
3419      OldPtr->dropDroppableUsesIn(II);
3420      return true;
3421    }
3422
3423    assert(II.getArgOperand(1) == OldPtr);
3424    // Lifetime intrinsics are only promotable if they cover the whole alloca.
3425    // Therefore, we drop lifetime intrinsics which don't cover the whole
3426    // alloca.
3427    // (In theory, intrinsics which partially cover an alloca could be
3428    // promoted, but PromoteMemToReg doesn't handle that case.)
3429    // FIXME: Check whether the alloca is promotable before dropping the
3430    // lifetime intrinsics?
3431    if (NewBeginOffset != NewAllocaBeginOffset ||
3432        NewEndOffset != NewAllocaEndOffset)
3433      return true;
3434
3435    ConstantInt *Size =
3436        ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3437                         NewEndOffset - NewBeginOffset);
3438    // Lifetime intrinsics always expect an i8* so directly get such a pointer
3439    // for the new alloca slice.
3440    Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3441    Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3442    Value *New;
3443    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3444      New = IRB.CreateLifetimeStart(Ptr, Size);
3445    else
3446      New = IRB.CreateLifetimeEnd(Ptr, Size);
3447
3448    (void)New;
3449    LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3450
3451    return true;
3452  }
3453
3454  void fixLoadStoreAlign(Instruction &Root) {
3455    // This algorithm implements the same visitor loop as
3456    // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3457    // or store found.
3458    SmallPtrSet<Instruction *, 4> Visited;
3459    SmallVector<Instruction *, 4> Uses;
3460    Visited.insert(&Root);
3461    Uses.push_back(&Root);
3462    do {
3463      Instruction *I = Uses.pop_back_val();
3464
3465      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3466        LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3467        continue;
3468      }
3469      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3470        SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3471        continue;
3472      }
3473
3474      assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3475             isa<PHINode>(I) || isa<SelectInst>(I) ||
3476             isa<GetElementPtrInst>(I));
3477      for (User *U : I->users())
3478        if (Visited.insert(cast<Instruction>(U)).second)
3479          Uses.push_back(cast<Instruction>(U));
3480    } while (!Uses.empty());
3481  }
3482
3483  bool visitPHINode(PHINode &PN) {
3484    LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3485    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3486    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3487
3488    // We would like to compute a new pointer in only one place, but have it be
3489    // as local as possible to the PHI. To do that, we re-use the location of
3490    // the old pointer, which necessarily must be in the right position to
3491    // dominate the PHI.
3492    IRBuilderBase::InsertPointGuard Guard(IRB);
3493    if (isa<PHINode>(OldPtr))
3494      IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3495    else
3496      IRB.SetInsertPoint(OldPtr);
3497    IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3498
3499    Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3500    // Replace the operands which were using the old pointer.
3501    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3502
3503    LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3504    deleteIfTriviallyDead(OldPtr);
3505
3506    // Fix the alignment of any loads or stores using this PHI node.
3507    fixLoadStoreAlign(PN);
3508
3509    // PHIs can't be promoted on their own, but often can be speculated. We
3510    // check the speculation outside of the rewriter so that we see the
3511    // fully-rewritten alloca.
3512    PHIUsers.insert(&PN);
3513    return true;
3514  }
3515
3516  bool visitSelectInst(SelectInst &SI) {
3517    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3518    assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3519           "Pointer isn't an operand!");
3520    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3521    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3522
3523    Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3524    // Replace the operands which were using the old pointer.
3525    if (SI.getOperand(1) == OldPtr)
3526      SI.setOperand(1, NewPtr);
3527    if (SI.getOperand(2) == OldPtr)
3528      SI.setOperand(2, NewPtr);
3529
3530    LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3531    deleteIfTriviallyDead(OldPtr);
3532
3533    // Fix the alignment of any loads or stores using this select.
3534    fixLoadStoreAlign(SI);
3535
3536    // Selects can't be promoted on their own, but often can be speculated. We
3537    // check the speculation outside of the rewriter so that we see the
3538    // fully-rewritten alloca.
3539    SelectUsers.insert(&SI);
3540    return true;
3541  }
3542};
3543
3544namespace {
3545
3546/// Visitor to rewrite aggregate loads and stores as scalar.
3547///
3548/// This pass aggressively rewrites all aggregate loads and stores on
3549/// a particular pointer (or any pointer derived from it which we can identify)
3550/// with scalar loads and stores.
3551class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3552  // Befriend the base class so it can delegate to private visit methods.
3553  friend class InstVisitor<AggLoadStoreRewriter, bool>;
3554
3555  /// Queue of pointer uses to analyze and potentially rewrite.
3556  SmallVector<Use *, 8> Queue;
3557
3558  /// Set to prevent us from cycling with phi nodes and loops.
3559  SmallPtrSet<User *, 8> Visited;
3560
3561  /// The current pointer use being rewritten. This is used to dig up the used
3562  /// value (as opposed to the user).
3563  Use *U = nullptr;
3564
3565  /// Used to calculate offsets, and hence alignment, of subobjects.
3566  const DataLayout &DL;
3567
3568  IRBuilderTy &IRB;
3569
3570public:
3571  AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB)
3572      : DL(DL), IRB(IRB) {}
3573
3574  /// Rewrite loads and stores through a pointer and all pointers derived from
3575  /// it.
3576  bool rewrite(Instruction &I) {
3577    LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3578    enqueueUsers(I);
3579    bool Changed = false;
3580    while (!Queue.empty()) {
3581      U = Queue.pop_back_val();
3582      Changed |= visit(cast<Instruction>(U->getUser()));
3583    }
3584    return Changed;
3585  }
3586
3587private:
3588  /// Enqueue all the users of the given instruction for further processing.
3589  /// This uses a set to de-duplicate users.
3590  void enqueueUsers(Instruction &I) {
3591    for (Use &U : I.uses())
3592      if (Visited.insert(U.getUser()).second)
3593        Queue.push_back(&U);
3594  }
3595
3596  // Conservative default is to not rewrite anything.
3597  bool visitInstruction(Instruction &I) { return false; }
3598
3599  /// Generic recursive split emission class.
3600  template <typename Derived> class OpSplitter {
3601  protected:
3602    /// The builder used to form new instructions.
3603    IRBuilderTy &IRB;
3604
3605    /// The indices which to be used with insert- or extractvalue to select the
3606    /// appropriate value within the aggregate.
3607    SmallVector<unsigned, 4> Indices;
3608
3609    /// The indices to a GEP instruction which will move Ptr to the correct slot
3610    /// within the aggregate.
3611    SmallVector<Value *, 4> GEPIndices;
3612
3613    /// The base pointer of the original op, used as a base for GEPing the
3614    /// split operations.
3615    Value *Ptr;
3616
3617    /// The base pointee type being GEPed into.
3618    Type *BaseTy;
3619
3620    /// Known alignment of the base pointer.
3621    Align BaseAlign;
3622
3623    /// To calculate offset of each component so we can correctly deduce
3624    /// alignments.
3625    const DataLayout &DL;
3626
3627    /// Initialize the splitter with an insertion point, Ptr and start with a
3628    /// single zero GEP index.
3629    OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3630               Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB)
3631        : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy),
3632          BaseAlign(BaseAlign), DL(DL) {
3633      IRB.SetInsertPoint(InsertionPoint);
3634    }
3635
3636  public:
3637    /// Generic recursive split emission routine.
3638    ///
3639    /// This method recursively splits an aggregate op (load or store) into
3640    /// scalar or vector ops. It splits recursively until it hits a single value
3641    /// and emits that single value operation via the template argument.
3642    ///
3643    /// The logic of this routine relies on GEPs and insertvalue and
3644    /// extractvalue all operating with the same fundamental index list, merely
3645    /// formatted differently (GEPs need actual values).
3646    ///
3647    /// \param Ty  The type being split recursively into smaller ops.
3648    /// \param Agg The aggregate value being built up or stored, depending on
3649    /// whether this is splitting a load or a store respectively.
3650    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3651      if (Ty->isSingleValueType()) {
3652        unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3653        return static_cast<Derived *>(this)->emitFunc(
3654            Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3655      }
3656
3657      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3658        unsigned OldSize = Indices.size();
3659        (void)OldSize;
3660        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3661             ++Idx) {
3662          assert(Indices.size() == OldSize && "Did not return to the old size");
3663          Indices.push_back(Idx);
3664          GEPIndices.push_back(IRB.getInt32(Idx));
3665          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3666          GEPIndices.pop_back();
3667          Indices.pop_back();
3668        }
3669        return;
3670      }
3671
3672      if (StructType *STy = dyn_cast<StructType>(Ty)) {
3673        unsigned OldSize = Indices.size();
3674        (void)OldSize;
3675        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3676             ++Idx) {
3677          assert(Indices.size() == OldSize && "Did not return to the old size");
3678          Indices.push_back(Idx);
3679          GEPIndices.push_back(IRB.getInt32(Idx));
3680          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3681          GEPIndices.pop_back();
3682          Indices.pop_back();
3683        }
3684        return;
3685      }
3686
3687      llvm_unreachable("Only arrays and structs are aggregate loadable types");
3688    }
3689  };
3690
3691  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3692    AAMDNodes AATags;
3693
3694    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3695                   AAMDNodes AATags, Align BaseAlign, const DataLayout &DL,
3696                   IRBuilderTy &IRB)
3697        : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL,
3698                                     IRB),
3699          AATags(AATags) {}
3700
3701    /// Emit a leaf load of a single value. This is called at the leaves of the
3702    /// recursive emission to actually load values.
3703    void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3704      assert(Ty->isSingleValueType());
3705      // Load the single value and insert it using the indices.
3706      Value *GEP =
3707          IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3708      LoadInst *Load =
3709          IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3710
3711      APInt Offset(
3712          DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3713      if (AATags &&
3714          GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3715        Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3716
3717      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3718      LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3719    }
3720  };
3721
3722  bool visitLoadInst(LoadInst &LI) {
3723    assert(LI.getPointerOperand() == *U);
3724    if (!LI.isSimple() || LI.getType()->isSingleValueType())
3725      return false;
3726
3727    // We have an aggregate being loaded, split it apart.
3728    LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3729    LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(),
3730                            getAdjustedAlignment(&LI, 0), DL, IRB);
3731    Value *V = PoisonValue::get(LI.getType());
3732    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3733    Visited.erase(&LI);
3734    LI.replaceAllUsesWith(V);
3735    LI.eraseFromParent();
3736    return true;
3737  }
3738
3739  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3740    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3741                    AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign,
3742                    const DataLayout &DL, IRBuilderTy &IRB)
3743        : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3744                                      DL, IRB),
3745          AATags(AATags), AggStore(AggStore) {}
3746    AAMDNodes AATags;
3747    StoreInst *AggStore;
3748    /// Emit a leaf store of a single value. This is called at the leaves of the
3749    /// recursive emission to actually produce stores.
3750    void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3751      assert(Ty->isSingleValueType());
3752      // Extract the single value and store it using the indices.
3753      //
3754      // The gep and extractvalue values are factored out of the CreateStore
3755      // call to make the output independent of the argument evaluation order.
3756      Value *ExtractValue =
3757          IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3758      Value *InBoundsGEP =
3759          IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3760      StoreInst *Store =
3761          IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3762
3763      APInt Offset(
3764          DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3765      if (AATags &&
3766          GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3767        Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3768
3769      // migrateDebugInfo requires the base Alloca. Walk to it from this gep.
3770      // If we cannot (because there's an intervening non-const or unbounded
3771      // gep) then we wouldn't expect to see dbg.assign intrinsics linked to
3772      // this instruction.
3773      APInt OffsetInBytes(DL.getTypeSizeInBits(Ptr->getType()), false);
3774      Value *Base = InBoundsGEP->stripAndAccumulateInBoundsConstantOffsets(
3775          DL, OffsetInBytes);
3776      if (auto *OldAI = dyn_cast<AllocaInst>(Base)) {
3777        uint64_t SizeInBits =
3778            DL.getTypeSizeInBits(Store->getValueOperand()->getType());
3779        migrateDebugInfo(OldAI, OffsetInBytes.getZExtValue() * 8, SizeInBits,
3780                         AggStore, Store, Store->getPointerOperand(),
3781                         Store->getValueOperand(), DL);
3782      } else {
3783        assert(at::getAssignmentMarkers(Store).empty() &&
3784               "AT: unexpected debug.assign linked to store through "
3785               "unbounded GEP");
3786      }
3787      LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3788    }
3789  };
3790
3791  bool visitStoreInst(StoreInst &SI) {
3792    if (!SI.isSimple() || SI.getPointerOperand() != *U)
3793      return false;
3794    Value *V = SI.getValueOperand();
3795    if (V->getType()->isSingleValueType())
3796      return false;
3797
3798    // We have an aggregate being stored, split it apart.
3799    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3800    StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI,
3801                             getAdjustedAlignment(&SI, 0), DL, IRB);
3802    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3803    Visited.erase(&SI);
3804    SI.eraseFromParent();
3805    return true;
3806  }
3807
3808  bool visitBitCastInst(BitCastInst &BC) {
3809    enqueueUsers(BC);
3810    return false;
3811  }
3812
3813  bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3814    enqueueUsers(ASC);
3815    return false;
3816  }
3817
3818  // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3819  bool foldGEPSelect(GetElementPtrInst &GEPI) {
3820    if (!GEPI.hasAllConstantIndices())
3821      return false;
3822
3823    SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3824
3825    LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3826                      << "\n    original: " << *Sel
3827                      << "\n              " << GEPI);
3828
3829    IRB.SetInsertPoint(&GEPI);
3830    SmallVector<Value *, 4> Index(GEPI.indices());
3831    bool IsInBounds = GEPI.isInBounds();
3832
3833    Type *Ty = GEPI.getSourceElementType();
3834    Value *True = Sel->getTrueValue();
3835    Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep",
3836                                 IsInBounds);
3837
3838    Value *False = Sel->getFalseValue();
3839
3840    Value *NFalse = IRB.CreateGEP(Ty, False, Index,
3841                                  False->getName() + ".sroa.gep", IsInBounds);
3842
3843    Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3844                                   Sel->getName() + ".sroa.sel");
3845    Visited.erase(&GEPI);
3846    GEPI.replaceAllUsesWith(NSel);
3847    GEPI.eraseFromParent();
3848    Instruction *NSelI = cast<Instruction>(NSel);
3849    Visited.insert(NSelI);
3850    enqueueUsers(*NSelI);
3851
3852    LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
3853                      << "\n              " << *NFalse
3854                      << "\n              " << *NSel << '\n');
3855
3856    return true;
3857  }
3858
3859  // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
3860  bool foldGEPPhi(GetElementPtrInst &GEPI) {
3861    if (!GEPI.hasAllConstantIndices())
3862      return false;
3863
3864    PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3865    if (GEPI.getParent() != PHI->getParent() ||
3866        llvm::any_of(PHI->incoming_values(), [](Value *In)
3867          { Instruction *I = dyn_cast<Instruction>(In);
3868            return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3869                   succ_empty(I->getParent()) ||
3870                   !I->getParent()->isLegalToHoistInto();
3871          }))
3872      return false;
3873
3874    LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
3875                      << "\n    original: " << *PHI
3876                      << "\n              " << GEPI
3877                      << "\n          to: ");
3878
3879    SmallVector<Value *, 4> Index(GEPI.indices());
3880    bool IsInBounds = GEPI.isInBounds();
3881    IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI());
3882    PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(),
3883                                   PHI->getName() + ".sroa.phi");
3884    for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3885      BasicBlock *B = PHI->getIncomingBlock(I);
3886      Value *NewVal = nullptr;
3887      int Idx = NewPN->getBasicBlockIndex(B);
3888      if (Idx >= 0) {
3889        NewVal = NewPN->getIncomingValue(Idx);
3890      } else {
3891        Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3892
3893        IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator()));
3894        Type *Ty = GEPI.getSourceElementType();
3895        NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep",
3896                               IsInBounds);
3897      }
3898      NewPN->addIncoming(NewVal, B);
3899    }
3900
3901    Visited.erase(&GEPI);
3902    GEPI.replaceAllUsesWith(NewPN);
3903    GEPI.eraseFromParent();
3904    Visited.insert(NewPN);
3905    enqueueUsers(*NewPN);
3906
3907    LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
3908                 dbgs() << "\n              " << *In;
3909               dbgs() << "\n              " << *NewPN << '\n');
3910
3911    return true;
3912  }
3913
3914  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3915    if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3916        foldGEPSelect(GEPI))
3917      return true;
3918
3919    if (isa<PHINode>(GEPI.getPointerOperand()) &&
3920        foldGEPPhi(GEPI))
3921      return true;
3922
3923    enqueueUsers(GEPI);
3924    return false;
3925  }
3926
3927  bool visitPHINode(PHINode &PN) {
3928    enqueueUsers(PN);
3929    return false;
3930  }
3931
3932  bool visitSelectInst(SelectInst &SI) {
3933    enqueueUsers(SI);
3934    return false;
3935  }
3936};
3937
3938} // end anonymous namespace
3939
3940/// Strip aggregate type wrapping.
3941///
3942/// This removes no-op aggregate types wrapping an underlying type. It will
3943/// strip as many layers of types as it can without changing either the type
3944/// size or the allocated size.
3945static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3946  if (Ty->isSingleValueType())
3947    return Ty;
3948
3949  uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue();
3950  uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue();
3951
3952  Type *InnerTy;
3953  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3954    InnerTy = ArrTy->getElementType();
3955  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3956    const StructLayout *SL = DL.getStructLayout(STy);
3957    unsigned Index = SL->getElementContainingOffset(0);
3958    InnerTy = STy->getElementType(Index);
3959  } else {
3960    return Ty;
3961  }
3962
3963  if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() ||
3964      TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue())
3965    return Ty;
3966
3967  return stripAggregateTypeWrapping(DL, InnerTy);
3968}
3969
3970/// Try to find a partition of the aggregate type passed in for a given
3971/// offset and size.
3972///
3973/// This recurses through the aggregate type and tries to compute a subtype
3974/// based on the offset and size. When the offset and size span a sub-section
3975/// of an array, it will even compute a new array type for that sub-section,
3976/// and the same for structs.
3977///
3978/// Note that this routine is very strict and tries to find a partition of the
3979/// type which produces the *exact* right offset and size. It is not forgiving
3980/// when the size or offset cause either end of type-based partition to be off.
3981/// Also, this is a best-effort routine. It is reasonable to give up and not
3982/// return a type if necessary.
3983static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3984                              uint64_t Size) {
3985  if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size)
3986    return stripAggregateTypeWrapping(DL, Ty);
3987  if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() ||
3988      (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size)
3989    return nullptr;
3990
3991  if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3992     Type *ElementTy;
3993     uint64_t TyNumElements;
3994     if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3995       ElementTy = AT->getElementType();
3996       TyNumElements = AT->getNumElements();
3997     } else {
3998       // FIXME: This isn't right for vectors with non-byte-sized or
3999       // non-power-of-two sized elements.
4000       auto *VT = cast<FixedVectorType>(Ty);
4001       ElementTy = VT->getElementType();
4002       TyNumElements = VT->getNumElements();
4003    }
4004    uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4005    uint64_t NumSkippedElements = Offset / ElementSize;
4006    if (NumSkippedElements >= TyNumElements)
4007      return nullptr;
4008    Offset -= NumSkippedElements * ElementSize;
4009
4010    // First check if we need to recurse.
4011    if (Offset > 0 || Size < ElementSize) {
4012      // Bail if the partition ends in a different array element.
4013      if ((Offset + Size) > ElementSize)
4014        return nullptr;
4015      // Recurse through the element type trying to peel off offset bytes.
4016      return getTypePartition(DL, ElementTy, Offset, Size);
4017    }
4018    assert(Offset == 0);
4019
4020    if (Size == ElementSize)
4021      return stripAggregateTypeWrapping(DL, ElementTy);
4022    assert(Size > ElementSize);
4023    uint64_t NumElements = Size / ElementSize;
4024    if (NumElements * ElementSize != Size)
4025      return nullptr;
4026    return ArrayType::get(ElementTy, NumElements);
4027  }
4028
4029  StructType *STy = dyn_cast<StructType>(Ty);
4030  if (!STy)
4031    return nullptr;
4032
4033  const StructLayout *SL = DL.getStructLayout(STy);
4034  if (Offset >= SL->getSizeInBytes())
4035    return nullptr;
4036  uint64_t EndOffset = Offset + Size;
4037  if (EndOffset > SL->getSizeInBytes())
4038    return nullptr;
4039
4040  unsigned Index = SL->getElementContainingOffset(Offset);
4041  Offset -= SL->getElementOffset(Index);
4042
4043  Type *ElementTy = STy->getElementType(Index);
4044  uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4045  if (Offset >= ElementSize)
4046    return nullptr; // The offset points into alignment padding.
4047
4048  // See if any partition must be contained by the element.
4049  if (Offset > 0 || Size < ElementSize) {
4050    if ((Offset + Size) > ElementSize)
4051      return nullptr;
4052    return getTypePartition(DL, ElementTy, Offset, Size);
4053  }
4054  assert(Offset == 0);
4055
4056  if (Size == ElementSize)
4057    return stripAggregateTypeWrapping(DL, ElementTy);
4058
4059  StructType::element_iterator EI = STy->element_begin() + Index,
4060                               EE = STy->element_end();
4061  if (EndOffset < SL->getSizeInBytes()) {
4062    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
4063    if (Index == EndIndex)
4064      return nullptr; // Within a single element and its padding.
4065
4066    // Don't try to form "natural" types if the elements don't line up with the
4067    // expected size.
4068    // FIXME: We could potentially recurse down through the last element in the
4069    // sub-struct to find a natural end point.
4070    if (SL->getElementOffset(EndIndex) != EndOffset)
4071      return nullptr;
4072
4073    assert(Index < EndIndex);
4074    EE = STy->element_begin() + EndIndex;
4075  }
4076
4077  // Try to build up a sub-structure.
4078  StructType *SubTy =
4079      StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked());
4080  const StructLayout *SubSL = DL.getStructLayout(SubTy);
4081  if (Size != SubSL->getSizeInBytes())
4082    return nullptr; // The sub-struct doesn't have quite the size needed.
4083
4084  return SubTy;
4085}
4086
4087/// Pre-split loads and stores to simplify rewriting.
4088///
4089/// We want to break up the splittable load+store pairs as much as
4090/// possible. This is important to do as a preprocessing step, as once we
4091/// start rewriting the accesses to partitions of the alloca we lose the
4092/// necessary information to correctly split apart paired loads and stores
4093/// which both point into this alloca. The case to consider is something like
4094/// the following:
4095///
4096///   %a = alloca [12 x i8]
4097///   %gep1 = getelementptr i8, ptr %a, i32 0
4098///   %gep2 = getelementptr i8, ptr %a, i32 4
4099///   %gep3 = getelementptr i8, ptr %a, i32 8
4100///   store float 0.0, ptr %gep1
4101///   store float 1.0, ptr %gep2
4102///   %v = load i64, ptr %gep1
4103///   store i64 %v, ptr %gep2
4104///   %f1 = load float, ptr %gep2
4105///   %f2 = load float, ptr %gep3
4106///
4107/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
4108/// promote everything so we recover the 2 SSA values that should have been
4109/// there all along.
4110///
4111/// \returns true if any changes are made.
4112bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
4113  LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
4114
4115  // Track the loads and stores which are candidates for pre-splitting here, in
4116  // the order they first appear during the partition scan. These give stable
4117  // iteration order and a basis for tracking which loads and stores we
4118  // actually split.
4119  SmallVector<LoadInst *, 4> Loads;
4120  SmallVector<StoreInst *, 4> Stores;
4121
4122  // We need to accumulate the splits required of each load or store where we
4123  // can find them via a direct lookup. This is important to cross-check loads
4124  // and stores against each other. We also track the slice so that we can kill
4125  // all the slices that end up split.
4126  struct SplitOffsets {
4127    Slice *S;
4128    std::vector<uint64_t> Splits;
4129  };
4130  SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
4131
4132  // Track loads out of this alloca which cannot, for any reason, be pre-split.
4133  // This is important as we also cannot pre-split stores of those loads!
4134  // FIXME: This is all pretty gross. It means that we can be more aggressive
4135  // in pre-splitting when the load feeding the store happens to come from
4136  // a separate alloca. Put another way, the effectiveness of SROA would be
4137  // decreased by a frontend which just concatenated all of its local allocas
4138  // into one big flat alloca. But defeating such patterns is exactly the job
4139  // SROA is tasked with! Sadly, to not have this discrepancy we would have
4140  // change store pre-splitting to actually force pre-splitting of the load
4141  // that feeds it *and all stores*. That makes pre-splitting much harder, but
4142  // maybe it would make it more principled?
4143  SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
4144
4145  LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
4146  for (auto &P : AS.partitions()) {
4147    for (Slice &S : P) {
4148      Instruction *I = cast<Instruction>(S.getUse()->getUser());
4149      if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
4150        // If this is a load we have to track that it can't participate in any
4151        // pre-splitting. If this is a store of a load we have to track that
4152        // that load also can't participate in any pre-splitting.
4153        if (auto *LI = dyn_cast<LoadInst>(I))
4154          UnsplittableLoads.insert(LI);
4155        else if (auto *SI = dyn_cast<StoreInst>(I))
4156          if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
4157            UnsplittableLoads.insert(LI);
4158        continue;
4159      }
4160      assert(P.endOffset() > S.beginOffset() &&
4161             "Empty or backwards partition!");
4162
4163      // Determine if this is a pre-splittable slice.
4164      if (auto *LI = dyn_cast<LoadInst>(I)) {
4165        assert(!LI->isVolatile() && "Cannot split volatile loads!");
4166
4167        // The load must be used exclusively to store into other pointers for
4168        // us to be able to arbitrarily pre-split it. The stores must also be
4169        // simple to avoid changing semantics.
4170        auto IsLoadSimplyStored = [](LoadInst *LI) {
4171          for (User *LU : LI->users()) {
4172            auto *SI = dyn_cast<StoreInst>(LU);
4173            if (!SI || !SI->isSimple())
4174              return false;
4175          }
4176          return true;
4177        };
4178        if (!IsLoadSimplyStored(LI)) {
4179          UnsplittableLoads.insert(LI);
4180          continue;
4181        }
4182
4183        Loads.push_back(LI);
4184      } else if (auto *SI = dyn_cast<StoreInst>(I)) {
4185        if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
4186          // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
4187          continue;
4188        auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
4189        if (!StoredLoad || !StoredLoad->isSimple())
4190          continue;
4191        assert(!SI->isVolatile() && "Cannot split volatile stores!");
4192
4193        Stores.push_back(SI);
4194      } else {
4195        // Other uses cannot be pre-split.
4196        continue;
4197      }
4198
4199      // Record the initial split.
4200      LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
4201      auto &Offsets = SplitOffsetsMap[I];
4202      assert(Offsets.Splits.empty() &&
4203             "Should not have splits the first time we see an instruction!");
4204      Offsets.S = &S;
4205      Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
4206    }
4207
4208    // Now scan the already split slices, and add a split for any of them which
4209    // we're going to pre-split.
4210    for (Slice *S : P.splitSliceTails()) {
4211      auto SplitOffsetsMapI =
4212          SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
4213      if (SplitOffsetsMapI == SplitOffsetsMap.end())
4214        continue;
4215      auto &Offsets = SplitOffsetsMapI->second;
4216
4217      assert(Offsets.S == S && "Found a mismatched slice!");
4218      assert(!Offsets.Splits.empty() &&
4219             "Cannot have an empty set of splits on the second partition!");
4220      assert(Offsets.Splits.back() ==
4221                 P.beginOffset() - Offsets.S->beginOffset() &&
4222             "Previous split does not end where this one begins!");
4223
4224      // Record each split. The last partition's end isn't needed as the size
4225      // of the slice dictates that.
4226      if (S->endOffset() > P.endOffset())
4227        Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
4228    }
4229  }
4230
4231  // We may have split loads where some of their stores are split stores. For
4232  // such loads and stores, we can only pre-split them if their splits exactly
4233  // match relative to their starting offset. We have to verify this prior to
4234  // any rewriting.
4235  llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
4236    // Lookup the load we are storing in our map of split
4237    // offsets.
4238    auto *LI = cast<LoadInst>(SI->getValueOperand());
4239    // If it was completely unsplittable, then we're done,
4240    // and this store can't be pre-split.
4241    if (UnsplittableLoads.count(LI))
4242      return true;
4243
4244    auto LoadOffsetsI = SplitOffsetsMap.find(LI);
4245    if (LoadOffsetsI == SplitOffsetsMap.end())
4246      return false; // Unrelated loads are definitely safe.
4247    auto &LoadOffsets = LoadOffsetsI->second;
4248
4249    // Now lookup the store's offsets.
4250    auto &StoreOffsets = SplitOffsetsMap[SI];
4251
4252    // If the relative offsets of each split in the load and
4253    // store match exactly, then we can split them and we
4254    // don't need to remove them here.
4255    if (LoadOffsets.Splits == StoreOffsets.Splits)
4256      return false;
4257
4258    LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
4259                      << "      " << *LI << "\n"
4260                      << "      " << *SI << "\n");
4261
4262    // We've found a store and load that we need to split
4263    // with mismatched relative splits. Just give up on them
4264    // and remove both instructions from our list of
4265    // candidates.
4266    UnsplittableLoads.insert(LI);
4267    return true;
4268  });
4269  // Now we have to go *back* through all the stores, because a later store may
4270  // have caused an earlier store's load to become unsplittable and if it is
4271  // unsplittable for the later store, then we can't rely on it being split in
4272  // the earlier store either.
4273  llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
4274    auto *LI = cast<LoadInst>(SI->getValueOperand());
4275    return UnsplittableLoads.count(LI);
4276  });
4277  // Once we've established all the loads that can't be split for some reason,
4278  // filter any that made it into our list out.
4279  llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
4280    return UnsplittableLoads.count(LI);
4281  });
4282
4283  // If no loads or stores are left, there is no pre-splitting to be done for
4284  // this alloca.
4285  if (Loads.empty() && Stores.empty())
4286    return false;
4287
4288  // From here on, we can't fail and will be building new accesses, so rig up
4289  // an IR builder.
4290  IRBuilderTy IRB(&AI);
4291
4292  // Collect the new slices which we will merge into the alloca slices.
4293  SmallVector<Slice, 4> NewSlices;
4294
4295  // Track any allocas we end up splitting loads and stores for so we iterate
4296  // on them.
4297  SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
4298
4299  // At this point, we have collected all of the loads and stores we can
4300  // pre-split, and the specific splits needed for them. We actually do the
4301  // splitting in a specific order in order to handle when one of the loads in
4302  // the value operand to one of the stores.
4303  //
4304  // First, we rewrite all of the split loads, and just accumulate each split
4305  // load in a parallel structure. We also build the slices for them and append
4306  // them to the alloca slices.
4307  SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
4308  std::vector<LoadInst *> SplitLoads;
4309  const DataLayout &DL = AI.getModule()->getDataLayout();
4310  for (LoadInst *LI : Loads) {
4311    SplitLoads.clear();
4312
4313    auto &Offsets = SplitOffsetsMap[LI];
4314    unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset();
4315    assert(LI->getType()->getIntegerBitWidth() % 8 == 0 &&
4316           "Load must have type size equal to store size");
4317    assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize &&
4318           "Load must be >= slice size");
4319
4320    uint64_t BaseOffset = Offsets.S->beginOffset();
4321    assert(BaseOffset + SliceSize > BaseOffset &&
4322           "Cannot represent alloca access size using 64-bit integers!");
4323
4324    Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
4325    IRB.SetInsertPoint(LI);
4326
4327    LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
4328
4329    uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4330    int Idx = 0, Size = Offsets.Splits.size();
4331    for (;;) {
4332      auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8);
4333      auto AS = LI->getPointerAddressSpace();
4334      auto *PartPtrTy = PartTy->getPointerTo(AS);
4335      LoadInst *PLoad = IRB.CreateAlignedLoad(
4336          PartTy,
4337          getAdjustedPtr(IRB, DL, BasePtr,
4338                         APInt(DL.getIndexSizeInBits(AS), PartOffset),
4339                         PartPtrTy, BasePtr->getName() + "."),
4340          getAdjustedAlignment(LI, PartOffset),
4341          /*IsVolatile*/ false, LI->getName());
4342      PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4343                                LLVMContext::MD_access_group});
4344
4345      // Append this load onto the list of split loads so we can find it later
4346      // to rewrite the stores.
4347      SplitLoads.push_back(PLoad);
4348
4349      // Now build a new slice for the alloca.
4350      NewSlices.push_back(
4351          Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4352                &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4353                /*IsSplittable*/ false));
4354      LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4355                        << ", " << NewSlices.back().endOffset()
4356                        << "): " << *PLoad << "\n");
4357
4358      // See if we've handled all the splits.
4359      if (Idx >= Size)
4360        break;
4361
4362      // Setup the next partition.
4363      PartOffset = Offsets.Splits[Idx];
4364      ++Idx;
4365      PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset;
4366    }
4367
4368    // Now that we have the split loads, do the slow walk over all uses of the
4369    // load and rewrite them as split stores, or save the split loads to use
4370    // below if the store is going to be split there anyways.
4371    bool DeferredStores = false;
4372    for (User *LU : LI->users()) {
4373      StoreInst *SI = cast<StoreInst>(LU);
4374      if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4375        DeferredStores = true;
4376        LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4377                          << "\n");
4378        continue;
4379      }
4380
4381      Value *StoreBasePtr = SI->getPointerOperand();
4382      IRB.SetInsertPoint(SI);
4383
4384      LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4385
4386      for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4387        LoadInst *PLoad = SplitLoads[Idx];
4388        uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4389        auto *PartPtrTy =
4390            PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4391
4392        auto AS = SI->getPointerAddressSpace();
4393        StoreInst *PStore = IRB.CreateAlignedStore(
4394            PLoad,
4395            getAdjustedPtr(IRB, DL, StoreBasePtr,
4396                           APInt(DL.getIndexSizeInBits(AS), PartOffset),
4397                           PartPtrTy, StoreBasePtr->getName() + "."),
4398            getAdjustedAlignment(SI, PartOffset),
4399            /*IsVolatile*/ false);
4400        PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4401                                   LLVMContext::MD_access_group,
4402                                   LLVMContext::MD_DIAssignID});
4403        LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4404      }
4405
4406      // We want to immediately iterate on any allocas impacted by splitting
4407      // this store, and we have to track any promotable alloca (indicated by
4408      // a direct store) as needing to be resplit because it is no longer
4409      // promotable.
4410      if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4411        ResplitPromotableAllocas.insert(OtherAI);
4412        Worklist.insert(OtherAI);
4413      } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4414                     StoreBasePtr->stripInBoundsOffsets())) {
4415        Worklist.insert(OtherAI);
4416      }
4417
4418      // Mark the original store as dead.
4419      DeadInsts.push_back(SI);
4420    }
4421
4422    // Save the split loads if there are deferred stores among the users.
4423    if (DeferredStores)
4424      SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4425
4426    // Mark the original load as dead and kill the original slice.
4427    DeadInsts.push_back(LI);
4428    Offsets.S->kill();
4429  }
4430
4431  // Second, we rewrite all of the split stores. At this point, we know that
4432  // all loads from this alloca have been split already. For stores of such
4433  // loads, we can simply look up the pre-existing split loads. For stores of
4434  // other loads, we split those loads first and then write split stores of
4435  // them.
4436  for (StoreInst *SI : Stores) {
4437    auto *LI = cast<LoadInst>(SI->getValueOperand());
4438    IntegerType *Ty = cast<IntegerType>(LI->getType());
4439    assert(Ty->getBitWidth() % 8 == 0);
4440    uint64_t StoreSize = Ty->getBitWidth() / 8;
4441    assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4442
4443    auto &Offsets = SplitOffsetsMap[SI];
4444    assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4445           "Slice size should always match load size exactly!");
4446    uint64_t BaseOffset = Offsets.S->beginOffset();
4447    assert(BaseOffset + StoreSize > BaseOffset &&
4448           "Cannot represent alloca access size using 64-bit integers!");
4449
4450    Value *LoadBasePtr = LI->getPointerOperand();
4451    Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4452
4453    LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4454
4455    // Check whether we have an already split load.
4456    auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4457    std::vector<LoadInst *> *SplitLoads = nullptr;
4458    if (SplitLoadsMapI != SplitLoadsMap.end()) {
4459      SplitLoads = &SplitLoadsMapI->second;
4460      assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4461             "Too few split loads for the number of splits in the store!");
4462    } else {
4463      LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4464    }
4465
4466    uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4467    int Idx = 0, Size = Offsets.Splits.size();
4468    for (;;) {
4469      auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4470      auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4471      auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4472
4473      // Either lookup a split load or create one.
4474      LoadInst *PLoad;
4475      if (SplitLoads) {
4476        PLoad = (*SplitLoads)[Idx];
4477      } else {
4478        IRB.SetInsertPoint(LI);
4479        auto AS = LI->getPointerAddressSpace();
4480        PLoad = IRB.CreateAlignedLoad(
4481            PartTy,
4482            getAdjustedPtr(IRB, DL, LoadBasePtr,
4483                           APInt(DL.getIndexSizeInBits(AS), PartOffset),
4484                           LoadPartPtrTy, LoadBasePtr->getName() + "."),
4485            getAdjustedAlignment(LI, PartOffset),
4486            /*IsVolatile*/ false, LI->getName());
4487        PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4488                                  LLVMContext::MD_access_group});
4489      }
4490
4491      // And store this partition.
4492      IRB.SetInsertPoint(SI);
4493      auto AS = SI->getPointerAddressSpace();
4494      StoreInst *PStore = IRB.CreateAlignedStore(
4495          PLoad,
4496          getAdjustedPtr(IRB, DL, StoreBasePtr,
4497                         APInt(DL.getIndexSizeInBits(AS), PartOffset),
4498                         StorePartPtrTy, StoreBasePtr->getName() + "."),
4499          getAdjustedAlignment(SI, PartOffset),
4500          /*IsVolatile*/ false);
4501      PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4502                                 LLVMContext::MD_access_group});
4503
4504      // Now build a new slice for the alloca.
4505      NewSlices.push_back(
4506          Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4507                &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4508                /*IsSplittable*/ false));
4509      LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4510                        << ", " << NewSlices.back().endOffset()
4511                        << "): " << *PStore << "\n");
4512      if (!SplitLoads) {
4513        LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4514      }
4515
4516      // See if we've finished all the splits.
4517      if (Idx >= Size)
4518        break;
4519
4520      // Setup the next partition.
4521      PartOffset = Offsets.Splits[Idx];
4522      ++Idx;
4523      PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4524    }
4525
4526    // We want to immediately iterate on any allocas impacted by splitting
4527    // this load, which is only relevant if it isn't a load of this alloca and
4528    // thus we didn't already split the loads above. We also have to keep track
4529    // of any promotable allocas we split loads on as they can no longer be
4530    // promoted.
4531    if (!SplitLoads) {
4532      if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4533        assert(OtherAI != &AI && "We can't re-split our own alloca!");
4534        ResplitPromotableAllocas.insert(OtherAI);
4535        Worklist.insert(OtherAI);
4536      } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4537                     LoadBasePtr->stripInBoundsOffsets())) {
4538        assert(OtherAI != &AI && "We can't re-split our own alloca!");
4539        Worklist.insert(OtherAI);
4540      }
4541    }
4542
4543    // Mark the original store as dead now that we've split it up and kill its
4544    // slice. Note that we leave the original load in place unless this store
4545    // was its only use. It may in turn be split up if it is an alloca load
4546    // for some other alloca, but it may be a normal load. This may introduce
4547    // redundant loads, but where those can be merged the rest of the optimizer
4548    // should handle the merging, and this uncovers SSA splits which is more
4549    // important. In practice, the original loads will almost always be fully
4550    // split and removed eventually, and the splits will be merged by any
4551    // trivial CSE, including instcombine.
4552    if (LI->hasOneUse()) {
4553      assert(*LI->user_begin() == SI && "Single use isn't this store!");
4554      DeadInsts.push_back(LI);
4555    }
4556    DeadInsts.push_back(SI);
4557    Offsets.S->kill();
4558  }
4559
4560  // Remove the killed slices that have ben pre-split.
4561  llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4562
4563  // Insert our new slices. This will sort and merge them into the sorted
4564  // sequence.
4565  AS.insert(NewSlices);
4566
4567  LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4568#ifndef NDEBUG
4569  for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4570    LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4571#endif
4572
4573  // Finally, don't try to promote any allocas that new require re-splitting.
4574  // They have already been added to the worklist above.
4575  llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4576    return ResplitPromotableAllocas.count(AI);
4577  });
4578
4579  return true;
4580}
4581
4582/// Rewrite an alloca partition's users.
4583///
4584/// This routine drives both of the rewriting goals of the SROA pass. It tries
4585/// to rewrite uses of an alloca partition to be conducive for SSA value
4586/// promotion. If the partition needs a new, more refined alloca, this will
4587/// build that new alloca, preserving as much type information as possible, and
4588/// rewrite the uses of the old alloca to point at the new one and have the
4589/// appropriate new offsets. It also evaluates how successful the rewrite was
4590/// at enabling promotion and if it was successful queues the alloca to be
4591/// promoted.
4592AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4593                                       Partition &P) {
4594  // Try to compute a friendly type for this partition of the alloca. This
4595  // won't always succeed, in which case we fall back to a legal integer type
4596  // or an i8 array of an appropriate size.
4597  Type *SliceTy = nullptr;
4598  VectorType *SliceVecTy = nullptr;
4599  const DataLayout &DL = AI.getModule()->getDataLayout();
4600  std::pair<Type *, IntegerType *> CommonUseTy =
4601      findCommonType(P.begin(), P.end(), P.endOffset());
4602  // Do all uses operate on the same type?
4603  if (CommonUseTy.first)
4604    if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) {
4605      SliceTy = CommonUseTy.first;
4606      SliceVecTy = dyn_cast<VectorType>(SliceTy);
4607    }
4608  // If not, can we find an appropriate subtype in the original allocated type?
4609  if (!SliceTy)
4610    if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4611                                                 P.beginOffset(), P.size()))
4612      SliceTy = TypePartitionTy;
4613
4614  // If still not, can we use the largest bitwidth integer type used?
4615  if (!SliceTy && CommonUseTy.second)
4616    if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) {
4617      SliceTy = CommonUseTy.second;
4618      SliceVecTy = dyn_cast<VectorType>(SliceTy);
4619    }
4620  if ((!SliceTy || (SliceTy->isArrayTy() &&
4621                    SliceTy->getArrayElementType()->isIntegerTy())) &&
4622      DL.isLegalInteger(P.size() * 8)) {
4623    SliceTy = Type::getIntNTy(*C, P.size() * 8);
4624  }
4625
4626  // If the common use types are not viable for promotion then attempt to find
4627  // another type that is viable.
4628  if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL))
4629    if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4630                                                 P.beginOffset(), P.size())) {
4631      VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy);
4632      if (TypePartitionVecTy &&
4633          checkVectorTypeForPromotion(P, TypePartitionVecTy, DL))
4634        SliceTy = TypePartitionTy;
4635    }
4636
4637  if (!SliceTy)
4638    SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4639  assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size());
4640
4641  bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4642
4643  VectorType *VecTy =
4644      IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4645  if (VecTy)
4646    SliceTy = VecTy;
4647
4648  // Check for the case where we're going to rewrite to a new alloca of the
4649  // exact same type as the original, and with the same access offsets. In that
4650  // case, re-use the existing alloca, but still run through the rewriter to
4651  // perform phi and select speculation.
4652  // P.beginOffset() can be non-zero even with the same type in a case with
4653  // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4654  AllocaInst *NewAI;
4655  if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4656    NewAI = &AI;
4657    // FIXME: We should be able to bail at this point with "nothing changed".
4658    // FIXME: We might want to defer PHI speculation until after here.
4659    // FIXME: return nullptr;
4660  } else {
4661    // Make sure the alignment is compatible with P.beginOffset().
4662    const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4663    // If we will get at least this much alignment from the type alone, leave
4664    // the alloca's alignment unconstrained.
4665    const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4666    NewAI = new AllocaInst(
4667        SliceTy, AI.getAddressSpace(), nullptr,
4668        IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4669        AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4670    // Copy the old AI debug location over to the new one.
4671    NewAI->setDebugLoc(AI.getDebugLoc());
4672    ++NumNewAllocas;
4673  }
4674
4675  LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4676                    << "[" << P.beginOffset() << "," << P.endOffset()
4677                    << ") to: " << *NewAI << "\n");
4678
4679  // Track the high watermark on the worklist as it is only relevant for
4680  // promoted allocas. We will reset it to this point if the alloca is not in
4681  // fact scheduled for promotion.
4682  unsigned PPWOldSize = PostPromotionWorklist.size();
4683  unsigned NumUses = 0;
4684  SmallSetVector<PHINode *, 8> PHIUsers;
4685  SmallSetVector<SelectInst *, 8> SelectUsers;
4686
4687  AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4688                               P.endOffset(), IsIntegerPromotable, VecTy,
4689                               PHIUsers, SelectUsers);
4690  bool Promotable = true;
4691  for (Slice *S : P.splitSliceTails()) {
4692    Promotable &= Rewriter.visit(S);
4693    ++NumUses;
4694  }
4695  for (Slice &S : P) {
4696    Promotable &= Rewriter.visit(&S);
4697    ++NumUses;
4698  }
4699
4700  NumAllocaPartitionUses += NumUses;
4701  MaxUsesPerAllocaPartition.updateMax(NumUses);
4702
4703  // Now that we've processed all the slices in the new partition, check if any
4704  // PHIs or Selects would block promotion.
4705  for (PHINode *PHI : PHIUsers)
4706    if (!isSafePHIToSpeculate(*PHI)) {
4707      Promotable = false;
4708      PHIUsers.clear();
4709      SelectUsers.clear();
4710      break;
4711    }
4712
4713  SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2>
4714      NewSelectsToRewrite;
4715  NewSelectsToRewrite.reserve(SelectUsers.size());
4716  for (SelectInst *Sel : SelectUsers) {
4717    std::optional<RewriteableMemOps> Ops =
4718        isSafeSelectToSpeculate(*Sel, PreserveCFG);
4719    if (!Ops) {
4720      Promotable = false;
4721      PHIUsers.clear();
4722      SelectUsers.clear();
4723      NewSelectsToRewrite.clear();
4724      break;
4725    }
4726    NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops));
4727  }
4728
4729  if (Promotable) {
4730    for (Use *U : AS.getDeadUsesIfPromotable()) {
4731      auto *OldInst = dyn_cast<Instruction>(U->get());
4732      Value::dropDroppableUse(*U);
4733      if (OldInst)
4734        if (isInstructionTriviallyDead(OldInst))
4735          DeadInsts.push_back(OldInst);
4736    }
4737    if (PHIUsers.empty() && SelectUsers.empty()) {
4738      // Promote the alloca.
4739      PromotableAllocas.push_back(NewAI);
4740    } else {
4741      // If we have either PHIs or Selects to speculate, add them to those
4742      // worklists and re-queue the new alloca so that we promote in on the
4743      // next iteration.
4744      for (PHINode *PHIUser : PHIUsers)
4745        SpeculatablePHIs.insert(PHIUser);
4746      SelectsToRewrite.reserve(SelectsToRewrite.size() +
4747                               NewSelectsToRewrite.size());
4748      for (auto &&KV : llvm::make_range(
4749               std::make_move_iterator(NewSelectsToRewrite.begin()),
4750               std::make_move_iterator(NewSelectsToRewrite.end())))
4751        SelectsToRewrite.insert(std::move(KV));
4752      Worklist.insert(NewAI);
4753    }
4754  } else {
4755    // Drop any post-promotion work items if promotion didn't happen.
4756    while (PostPromotionWorklist.size() > PPWOldSize)
4757      PostPromotionWorklist.pop_back();
4758
4759    // We couldn't promote and we didn't create a new partition, nothing
4760    // happened.
4761    if (NewAI == &AI)
4762      return nullptr;
4763
4764    // If we can't promote the alloca, iterate on it to check for new
4765    // refinements exposed by splitting the current alloca. Don't iterate on an
4766    // alloca which didn't actually change and didn't get promoted.
4767    Worklist.insert(NewAI);
4768  }
4769
4770  return NewAI;
4771}
4772
4773/// Walks the slices of an alloca and form partitions based on them,
4774/// rewriting each of their uses.
4775bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4776  if (AS.begin() == AS.end())
4777    return false;
4778
4779  unsigned NumPartitions = 0;
4780  bool Changed = false;
4781  const DataLayout &DL = AI.getModule()->getDataLayout();
4782
4783  // First try to pre-split loads and stores.
4784  Changed |= presplitLoadsAndStores(AI, AS);
4785
4786  // Now that we have identified any pre-splitting opportunities,
4787  // mark loads and stores unsplittable except for the following case.
4788  // We leave a slice splittable if all other slices are disjoint or fully
4789  // included in the slice, such as whole-alloca loads and stores.
4790  // If we fail to split these during pre-splitting, we want to force them
4791  // to be rewritten into a partition.
4792  bool IsSorted = true;
4793
4794  uint64_t AllocaSize =
4795      DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue();
4796  const uint64_t MaxBitVectorSize = 1024;
4797  if (AllocaSize <= MaxBitVectorSize) {
4798    // If a byte boundary is included in any load or store, a slice starting or
4799    // ending at the boundary is not splittable.
4800    SmallBitVector SplittableOffset(AllocaSize + 1, true);
4801    for (Slice &S : AS)
4802      for (unsigned O = S.beginOffset() + 1;
4803           O < S.endOffset() && O < AllocaSize; O++)
4804        SplittableOffset.reset(O);
4805
4806    for (Slice &S : AS) {
4807      if (!S.isSplittable())
4808        continue;
4809
4810      if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4811          (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4812        continue;
4813
4814      if (isa<LoadInst>(S.getUse()->getUser()) ||
4815          isa<StoreInst>(S.getUse()->getUser())) {
4816        S.makeUnsplittable();
4817        IsSorted = false;
4818      }
4819    }
4820  }
4821  else {
4822    // We only allow whole-alloca splittable loads and stores
4823    // for a large alloca to avoid creating too large BitVector.
4824    for (Slice &S : AS) {
4825      if (!S.isSplittable())
4826        continue;
4827
4828      if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4829        continue;
4830
4831      if (isa<LoadInst>(S.getUse()->getUser()) ||
4832          isa<StoreInst>(S.getUse()->getUser())) {
4833        S.makeUnsplittable();
4834        IsSorted = false;
4835      }
4836    }
4837  }
4838
4839  if (!IsSorted)
4840    llvm::sort(AS);
4841
4842  /// Describes the allocas introduced by rewritePartition in order to migrate
4843  /// the debug info.
4844  struct Fragment {
4845    AllocaInst *Alloca;
4846    uint64_t Offset;
4847    uint64_t Size;
4848    Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4849      : Alloca(AI), Offset(O), Size(S) {}
4850  };
4851  SmallVector<Fragment, 4> Fragments;
4852
4853  // Rewrite each partition.
4854  for (auto &P : AS.partitions()) {
4855    if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4856      Changed = true;
4857      if (NewAI != &AI) {
4858        uint64_t SizeOfByte = 8;
4859        uint64_t AllocaSize =
4860            DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue();
4861        // Don't include any padding.
4862        uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4863        Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4864      }
4865    }
4866    ++NumPartitions;
4867  }
4868
4869  NumAllocaPartitions += NumPartitions;
4870  MaxPartitionsPerAlloca.updateMax(NumPartitions);
4871
4872  // Migrate debug information from the old alloca to the new alloca(s)
4873  // and the individual partitions.
4874  TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4875  for (auto *DbgAssign : at::getAssignmentMarkers(&AI))
4876    DbgDeclares.push_back(DbgAssign);
4877  for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
4878    auto *Expr = DbgDeclare->getExpression();
4879    DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4880    uint64_t AllocaSize =
4881        DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedValue();
4882    for (auto Fragment : Fragments) {
4883      // Create a fragment expression describing the new partition or reuse AI's
4884      // expression if there is only one partition.
4885      auto *FragmentExpr = Expr;
4886      if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4887        // If this alloca is already a scalar replacement of a larger aggregate,
4888        // Fragment.Offset describes the offset inside the scalar.
4889        auto ExprFragment = Expr->getFragmentInfo();
4890        uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4891        uint64_t Start = Offset + Fragment.Offset;
4892        uint64_t Size = Fragment.Size;
4893        if (ExprFragment) {
4894          uint64_t AbsEnd =
4895              ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4896          if (Start >= AbsEnd) {
4897            // No need to describe a SROAed padding.
4898            continue;
4899          }
4900          Size = std::min(Size, AbsEnd - Start);
4901        }
4902        // The new, smaller fragment is stenciled out from the old fragment.
4903        if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4904          assert(Start >= OrigFragment->OffsetInBits &&
4905                 "new fragment is outside of original fragment");
4906          Start -= OrigFragment->OffsetInBits;
4907        }
4908
4909        // The alloca may be larger than the variable.
4910        auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
4911        if (VarSize) {
4912          if (Size > *VarSize)
4913            Size = *VarSize;
4914          if (Size == 0 || Start + Size > *VarSize)
4915            continue;
4916        }
4917
4918        // Avoid creating a fragment expression that covers the entire variable.
4919        if (!VarSize || *VarSize != Size) {
4920          if (auto E =
4921                  DIExpression::createFragmentExpression(Expr, Start, Size))
4922            FragmentExpr = *E;
4923          else
4924            continue;
4925        }
4926      }
4927
4928      // Remove any existing intrinsics on the new alloca describing
4929      // the variable fragment.
4930      for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
4931        auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
4932                                       const DbgVariableIntrinsic *RHS) {
4933          return LHS->getVariable() == RHS->getVariable() &&
4934                 LHS->getDebugLoc()->getInlinedAt() ==
4935                     RHS->getDebugLoc()->getInlinedAt();
4936        };
4937        if (SameVariableFragment(OldDII, DbgDeclare))
4938          OldDII->eraseFromParent();
4939      }
4940
4941      if (auto *DbgAssign = dyn_cast<DbgAssignIntrinsic>(DbgDeclare)) {
4942        if (!Fragment.Alloca->hasMetadata(LLVMContext::MD_DIAssignID)) {
4943          Fragment.Alloca->setMetadata(
4944              LLVMContext::MD_DIAssignID,
4945              DIAssignID::getDistinct(AI.getContext()));
4946        }
4947        auto *NewAssign = DIB.insertDbgAssign(
4948            Fragment.Alloca, DbgAssign->getValue(), DbgAssign->getVariable(),
4949            FragmentExpr, Fragment.Alloca, DbgAssign->getAddressExpression(),
4950            DbgAssign->getDebugLoc());
4951        NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
4952        LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign
4953                          << "\n");
4954      } else {
4955        DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(),
4956                          FragmentExpr, DbgDeclare->getDebugLoc(), &AI);
4957      }
4958    }
4959  }
4960  return Changed;
4961}
4962
4963/// Clobber a use with poison, deleting the used value if it becomes dead.
4964void SROAPass::clobberUse(Use &U) {
4965  Value *OldV = U;
4966  // Replace the use with an poison value.
4967  U = PoisonValue::get(OldV->getType());
4968
4969  // Check for this making an instruction dead. We have to garbage collect
4970  // all the dead instructions to ensure the uses of any alloca end up being
4971  // minimal.
4972  if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4973    if (isInstructionTriviallyDead(OldI)) {
4974      DeadInsts.push_back(OldI);
4975    }
4976}
4977
4978/// Analyze an alloca for SROA.
4979///
4980/// This analyzes the alloca to ensure we can reason about it, builds
4981/// the slices of the alloca, and then hands it off to be split and
4982/// rewritten as needed.
4983std::pair<bool /*Changed*/, bool /*CFGChanged*/>
4984SROAPass::runOnAlloca(AllocaInst &AI) {
4985  bool Changed = false;
4986  bool CFGChanged = false;
4987
4988  LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4989  ++NumAllocasAnalyzed;
4990
4991  // Special case dead allocas, as they're trivial.
4992  if (AI.use_empty()) {
4993    AI.eraseFromParent();
4994    Changed = true;
4995    return {Changed, CFGChanged};
4996  }
4997  const DataLayout &DL = AI.getModule()->getDataLayout();
4998
4999  // Skip alloca forms that this analysis can't handle.
5000  auto *AT = AI.getAllocatedType();
5001  if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
5002      DL.getTypeAllocSize(AT).getFixedValue() == 0)
5003    return {Changed, CFGChanged};
5004
5005  // First, split any FCA loads and stores touching this alloca to promote
5006  // better splitting and promotion opportunities.
5007  IRBuilderTy IRB(&AI);
5008  AggLoadStoreRewriter AggRewriter(DL, IRB);
5009  Changed |= AggRewriter.rewrite(AI);
5010
5011  // Build the slices using a recursive instruction-visiting builder.
5012  AllocaSlices AS(DL, AI);
5013  LLVM_DEBUG(AS.print(dbgs()));
5014  if (AS.isEscaped())
5015    return {Changed, CFGChanged};
5016
5017  // Delete all the dead users of this alloca before splitting and rewriting it.
5018  for (Instruction *DeadUser : AS.getDeadUsers()) {
5019    // Free up everything used by this instruction.
5020    for (Use &DeadOp : DeadUser->operands())
5021      clobberUse(DeadOp);
5022
5023    // Now replace the uses of this instruction.
5024    DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType()));
5025
5026    // And mark it for deletion.
5027    DeadInsts.push_back(DeadUser);
5028    Changed = true;
5029  }
5030  for (Use *DeadOp : AS.getDeadOperands()) {
5031    clobberUse(*DeadOp);
5032    Changed = true;
5033  }
5034
5035  // No slices to split. Leave the dead alloca for a later pass to clean up.
5036  if (AS.begin() == AS.end())
5037    return {Changed, CFGChanged};
5038
5039  Changed |= splitAlloca(AI, AS);
5040
5041  LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
5042  while (!SpeculatablePHIs.empty())
5043    speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val());
5044
5045  LLVM_DEBUG(dbgs() << "  Rewriting Selects\n");
5046  auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector();
5047  while (!RemainingSelectsToRewrite.empty()) {
5048    const auto [K, V] = RemainingSelectsToRewrite.pop_back_val();
5049    CFGChanged |=
5050        rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU);
5051  }
5052
5053  return {Changed, CFGChanged};
5054}
5055
5056/// Delete the dead instructions accumulated in this run.
5057///
5058/// Recursively deletes the dead instructions we've accumulated. This is done
5059/// at the very end to maximize locality of the recursive delete and to
5060/// minimize the problems of invalidated instruction pointers as such pointers
5061/// are used heavily in the intermediate stages of the algorithm.
5062///
5063/// We also record the alloca instructions deleted here so that they aren't
5064/// subsequently handed to mem2reg to promote.
5065bool SROAPass::deleteDeadInstructions(
5066    SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
5067  bool Changed = false;
5068  while (!DeadInsts.empty()) {
5069    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
5070    if (!I)
5071      continue;
5072    LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
5073
5074    // If the instruction is an alloca, find the possible dbg.declare connected
5075    // to it, and remove it too. We must do this before calling RAUW or we will
5076    // not be able to find it.
5077    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5078      DeletedAllocas.insert(AI);
5079      for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
5080        OldDII->eraseFromParent();
5081    }
5082
5083    at::deleteAssignmentMarkers(I);
5084    I->replaceAllUsesWith(UndefValue::get(I->getType()));
5085
5086    for (Use &Operand : I->operands())
5087      if (Instruction *U = dyn_cast<Instruction>(Operand)) {
5088        // Zero out the operand and see if it becomes trivially dead.
5089        Operand = nullptr;
5090        if (isInstructionTriviallyDead(U))
5091          DeadInsts.push_back(U);
5092      }
5093
5094    ++NumDeleted;
5095    I->eraseFromParent();
5096    Changed = true;
5097  }
5098  return Changed;
5099}
5100
5101/// Promote the allocas, using the best available technique.
5102///
5103/// This attempts to promote whatever allocas have been identified as viable in
5104/// the PromotableAllocas list. If that list is empty, there is nothing to do.
5105/// This function returns whether any promotion occurred.
5106bool SROAPass::promoteAllocas(Function &F) {
5107  if (PromotableAllocas.empty())
5108    return false;
5109
5110  NumPromoted += PromotableAllocas.size();
5111
5112  LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
5113  PromoteMemToReg(PromotableAllocas, DTU->getDomTree(), AC);
5114  PromotableAllocas.clear();
5115  return true;
5116}
5117
5118PreservedAnalyses SROAPass::runImpl(Function &F, DomTreeUpdater &RunDTU,
5119                                    AssumptionCache &RunAC) {
5120  LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
5121  C = &F.getContext();
5122  DTU = &RunDTU;
5123  AC = &RunAC;
5124
5125  BasicBlock &EntryBB = F.getEntryBlock();
5126  for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
5127       I != E; ++I) {
5128    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5129      if (isa<ScalableVectorType>(AI->getAllocatedType())) {
5130        if (isAllocaPromotable(AI))
5131          PromotableAllocas.push_back(AI);
5132      } else {
5133        Worklist.insert(AI);
5134      }
5135    }
5136  }
5137
5138  bool Changed = false;
5139  bool CFGChanged = false;
5140  // A set of deleted alloca instruction pointers which should be removed from
5141  // the list of promotable allocas.
5142  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
5143
5144  do {
5145    while (!Worklist.empty()) {
5146      auto [IterationChanged, IterationCFGChanged] =
5147          runOnAlloca(*Worklist.pop_back_val());
5148      Changed |= IterationChanged;
5149      CFGChanged |= IterationCFGChanged;
5150
5151      Changed |= deleteDeadInstructions(DeletedAllocas);
5152
5153      // Remove the deleted allocas from various lists so that we don't try to
5154      // continue processing them.
5155      if (!DeletedAllocas.empty()) {
5156        auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
5157        Worklist.remove_if(IsInSet);
5158        PostPromotionWorklist.remove_if(IsInSet);
5159        llvm::erase_if(PromotableAllocas, IsInSet);
5160        DeletedAllocas.clear();
5161      }
5162    }
5163
5164    Changed |= promoteAllocas(F);
5165
5166    Worklist = PostPromotionWorklist;
5167    PostPromotionWorklist.clear();
5168  } while (!Worklist.empty());
5169
5170  assert((!CFGChanged || Changed) && "Can not only modify the CFG.");
5171  assert((!CFGChanged || !PreserveCFG) &&
5172         "Should not have modified the CFG when told to preserve it.");
5173
5174  if (!Changed)
5175    return PreservedAnalyses::all();
5176
5177  PreservedAnalyses PA;
5178  if (!CFGChanged)
5179    PA.preserveSet<CFGAnalyses>();
5180  PA.preserve<DominatorTreeAnalysis>();
5181  return PA;
5182}
5183
5184PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT,
5185                                    AssumptionCache &RunAC) {
5186  DomTreeUpdater DTU(RunDT, DomTreeUpdater::UpdateStrategy::Lazy);
5187  return runImpl(F, DTU, RunAC);
5188}
5189
5190PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) {
5191  return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
5192                 AM.getResult<AssumptionAnalysis>(F));
5193}
5194
5195void SROAPass::printPipeline(
5196    raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
5197  static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline(
5198      OS, MapClassName2PassName);
5199  OS << (PreserveCFG ? "<preserve-cfg>" : "<modify-cfg>");
5200}
5201
5202SROAPass::SROAPass(SROAOptions PreserveCFG_)
5203    : PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {}
5204
5205/// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
5206///
5207/// This is in the llvm namespace purely to allow it to be a friend of the \c
5208/// SROA pass.
5209class llvm::sroa::SROALegacyPass : public FunctionPass {
5210  /// The SROA implementation.
5211  SROAPass Impl;
5212
5213public:
5214  static char ID;
5215
5216  SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG)
5217      : FunctionPass(ID), Impl(PreserveCFG) {
5218    initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
5219  }
5220
5221  bool runOnFunction(Function &F) override {
5222    if (skipFunction(F))
5223      return false;
5224
5225    auto PA = Impl.runImpl(
5226        F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
5227        getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
5228    return !PA.areAllPreserved();
5229  }
5230
5231  void getAnalysisUsage(AnalysisUsage &AU) const override {
5232    AU.addRequired<AssumptionCacheTracker>();
5233    AU.addRequired<DominatorTreeWrapperPass>();
5234    AU.addPreserved<GlobalsAAWrapperPass>();
5235    AU.addPreserved<DominatorTreeWrapperPass>();
5236  }
5237
5238  StringRef getPassName() const override { return "SROA"; }
5239};
5240
5241char SROALegacyPass::ID = 0;
5242
5243FunctionPass *llvm::createSROAPass(bool PreserveCFG) {
5244  return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG
5245                                        : SROAOptions::ModifyCFG);
5246}
5247
5248INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
5249                      "Scalar Replacement Of Aggregates", false, false)
5250INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5251INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5252INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
5253                    false, false)
5254