1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitSelect function.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/Analysis/AssumptionCache.h"
18#include "llvm/Analysis/CmpInstAnalysis.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/OverflowInstAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/Analysis/VectorUtils.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/Constant.h"
25#include "llvm/IR/ConstantRange.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/InstrTypes.h"
30#include "llvm/IR/Instruction.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/IR/PatternMatch.h"
36#include "llvm/IR/Type.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/Casting.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/KnownBits.h"
42#include "llvm/Transforms/InstCombine/InstCombiner.h"
43#include <cassert>
44#include <utility>
45
46#define DEBUG_TYPE "instcombine"
47#include "llvm/Transforms/Utils/InstructionWorklist.h"
48
49using namespace llvm;
50using namespace PatternMatch;
51
52
53/// Replace a select operand based on an equality comparison with the identity
54/// constant of a binop.
55static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
56                                            const TargetLibraryInfo &TLI,
57                                            InstCombinerImpl &IC) {
58  // The select condition must be an equality compare with a constant operand.
59  Value *X;
60  Constant *C;
61  CmpInst::Predicate Pred;
62  if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
63    return nullptr;
64
65  bool IsEq;
66  if (ICmpInst::isEquality(Pred))
67    IsEq = Pred == ICmpInst::ICMP_EQ;
68  else if (Pred == FCmpInst::FCMP_OEQ)
69    IsEq = true;
70  else if (Pred == FCmpInst::FCMP_UNE)
71    IsEq = false;
72  else
73    return nullptr;
74
75  // A select operand must be a binop.
76  BinaryOperator *BO;
77  if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
78    return nullptr;
79
80  // The compare constant must be the identity constant for that binop.
81  // If this a floating-point compare with 0.0, any zero constant will do.
82  Type *Ty = BO->getType();
83  Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
84  if (IdC != C) {
85    if (!IdC || !CmpInst::isFPPredicate(Pred))
86      return nullptr;
87    if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
88      return nullptr;
89  }
90
91  // Last, match the compare variable operand with a binop operand.
92  Value *Y;
93  if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
94    return nullptr;
95  if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
96    return nullptr;
97
98  // +0.0 compares equal to -0.0, and so it does not behave as required for this
99  // transform. Bail out if we can not exclude that possibility.
100  if (isa<FPMathOperator>(BO))
101    if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
102      return nullptr;
103
104  // BO = binop Y, X
105  // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
106  // =>
107  // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
108  return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
109}
110
111/// This folds:
112///  select (icmp eq (and X, C1)), TC, FC
113///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
114/// To something like:
115///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
116/// Or:
117///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
118/// With some variations depending if FC is larger than TC, or the shift
119/// isn't needed, or the bit widths don't match.
120static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
121                                InstCombiner::BuilderTy &Builder) {
122  const APInt *SelTC, *SelFC;
123  if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
124      !match(Sel.getFalseValue(), m_APInt(SelFC)))
125    return nullptr;
126
127  // If this is a vector select, we need a vector compare.
128  Type *SelType = Sel.getType();
129  if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
130    return nullptr;
131
132  Value *V;
133  APInt AndMask;
134  bool CreateAnd = false;
135  ICmpInst::Predicate Pred = Cmp->getPredicate();
136  if (ICmpInst::isEquality(Pred)) {
137    if (!match(Cmp->getOperand(1), m_Zero()))
138      return nullptr;
139
140    V = Cmp->getOperand(0);
141    const APInt *AndRHS;
142    if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
143      return nullptr;
144
145    AndMask = *AndRHS;
146  } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
147                                  Pred, V, AndMask)) {
148    assert(ICmpInst::isEquality(Pred) && "Not equality test?");
149    if (!AndMask.isPowerOf2())
150      return nullptr;
151
152    CreateAnd = true;
153  } else {
154    return nullptr;
155  }
156
157  // In general, when both constants are non-zero, we would need an offset to
158  // replace the select. This would require more instructions than we started
159  // with. But there's one special-case that we handle here because it can
160  // simplify/reduce the instructions.
161  APInt TC = *SelTC;
162  APInt FC = *SelFC;
163  if (!TC.isZero() && !FC.isZero()) {
164    // If the select constants differ by exactly one bit and that's the same
165    // bit that is masked and checked by the select condition, the select can
166    // be replaced by bitwise logic to set/clear one bit of the constant result.
167    if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
168      return nullptr;
169    if (CreateAnd) {
170      // If we have to create an 'and', then we must kill the cmp to not
171      // increase the instruction count.
172      if (!Cmp->hasOneUse())
173        return nullptr;
174      V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
175    }
176    bool ExtraBitInTC = TC.ugt(FC);
177    if (Pred == ICmpInst::ICMP_EQ) {
178      // If the masked bit in V is clear, clear or set the bit in the result:
179      // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
180      // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
181      Constant *C = ConstantInt::get(SelType, TC);
182      return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
183    }
184    if (Pred == ICmpInst::ICMP_NE) {
185      // If the masked bit in V is set, set or clear the bit in the result:
186      // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
187      // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
188      Constant *C = ConstantInt::get(SelType, FC);
189      return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
190    }
191    llvm_unreachable("Only expecting equality predicates");
192  }
193
194  // Make sure one of the select arms is a power-of-2.
195  if (!TC.isPowerOf2() && !FC.isPowerOf2())
196    return nullptr;
197
198  // Determine which shift is needed to transform result of the 'and' into the
199  // desired result.
200  const APInt &ValC = !TC.isZero() ? TC : FC;
201  unsigned ValZeros = ValC.logBase2();
202  unsigned AndZeros = AndMask.logBase2();
203
204  // Insert the 'and' instruction on the input to the truncate.
205  if (CreateAnd)
206    V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
207
208  // If types don't match, we can still convert the select by introducing a zext
209  // or a trunc of the 'and'.
210  if (ValZeros > AndZeros) {
211    V = Builder.CreateZExtOrTrunc(V, SelType);
212    V = Builder.CreateShl(V, ValZeros - AndZeros);
213  } else if (ValZeros < AndZeros) {
214    V = Builder.CreateLShr(V, AndZeros - ValZeros);
215    V = Builder.CreateZExtOrTrunc(V, SelType);
216  } else {
217    V = Builder.CreateZExtOrTrunc(V, SelType);
218  }
219
220  // Okay, now we know that everything is set up, we just don't know whether we
221  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
222  bool ShouldNotVal = !TC.isZero();
223  ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
224  if (ShouldNotVal)
225    V = Builder.CreateXor(V, ValC);
226
227  return V;
228}
229
230/// We want to turn code that looks like this:
231///   %C = or %A, %B
232///   %D = select %cond, %C, %A
233/// into:
234///   %C = select %cond, %B, 0
235///   %D = or %A, %C
236///
237/// Assuming that the specified instruction is an operand to the select, return
238/// a bitmask indicating which operands of this instruction are foldable if they
239/// equal the other incoming value of the select.
240static unsigned getSelectFoldableOperands(BinaryOperator *I) {
241  switch (I->getOpcode()) {
242  case Instruction::Add:
243  case Instruction::FAdd:
244  case Instruction::Mul:
245  case Instruction::FMul:
246  case Instruction::And:
247  case Instruction::Or:
248  case Instruction::Xor:
249    return 3;              // Can fold through either operand.
250  case Instruction::Sub:   // Can only fold on the amount subtracted.
251  case Instruction::FSub:
252  case Instruction::FDiv:  // Can only fold on the divisor amount.
253  case Instruction::Shl:   // Can only fold on the shift amount.
254  case Instruction::LShr:
255  case Instruction::AShr:
256    return 1;
257  default:
258    return 0;              // Cannot fold
259  }
260}
261
262/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
263Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
264                                              Instruction *FI) {
265  // Don't break up min/max patterns. The hasOneUse checks below prevent that
266  // for most cases, but vector min/max with bitcasts can be transformed. If the
267  // one-use restrictions are eased for other patterns, we still don't want to
268  // obfuscate min/max.
269  if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
270       match(&SI, m_SMax(m_Value(), m_Value())) ||
271       match(&SI, m_UMin(m_Value(), m_Value())) ||
272       match(&SI, m_UMax(m_Value(), m_Value()))))
273    return nullptr;
274
275  // If this is a cast from the same type, merge.
276  Value *Cond = SI.getCondition();
277  Type *CondTy = Cond->getType();
278  if (TI->getNumOperands() == 1 && TI->isCast()) {
279    Type *FIOpndTy = FI->getOperand(0)->getType();
280    if (TI->getOperand(0)->getType() != FIOpndTy)
281      return nullptr;
282
283    // The select condition may be a vector. We may only change the operand
284    // type if the vector width remains the same (and matches the condition).
285    if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
286      if (!FIOpndTy->isVectorTy() ||
287          CondVTy->getElementCount() !=
288              cast<VectorType>(FIOpndTy)->getElementCount())
289        return nullptr;
290
291      // TODO: If the backend knew how to deal with casts better, we could
292      // remove this limitation. For now, there's too much potential to create
293      // worse codegen by promoting the select ahead of size-altering casts
294      // (PR28160).
295      //
296      // Note that ValueTracking's matchSelectPattern() looks through casts
297      // without checking 'hasOneUse' when it matches min/max patterns, so this
298      // transform may end up happening anyway.
299      if (TI->getOpcode() != Instruction::BitCast &&
300          (!TI->hasOneUse() || !FI->hasOneUse()))
301        return nullptr;
302    } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
303      // TODO: The one-use restrictions for a scalar select could be eased if
304      // the fold of a select in visitLoadInst() was enhanced to match a pattern
305      // that includes a cast.
306      return nullptr;
307    }
308
309    // Fold this by inserting a select from the input values.
310    Value *NewSI =
311        Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
312                             SI.getName() + ".v", &SI);
313    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
314                            TI->getType());
315  }
316
317  Value *OtherOpT, *OtherOpF;
318  bool MatchIsOpZero;
319  auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
320                         bool Swapped = false) -> Value * {
321    assert(!(Commute && Swapped) &&
322           "Commute and Swapped can't set at the same time");
323    if (!Swapped) {
324      if (TI->getOperand(0) == FI->getOperand(0)) {
325        OtherOpT = TI->getOperand(1);
326        OtherOpF = FI->getOperand(1);
327        MatchIsOpZero = true;
328        return TI->getOperand(0);
329      } else if (TI->getOperand(1) == FI->getOperand(1)) {
330        OtherOpT = TI->getOperand(0);
331        OtherOpF = FI->getOperand(0);
332        MatchIsOpZero = false;
333        return TI->getOperand(1);
334      }
335    }
336
337    if (!Commute && !Swapped)
338      return nullptr;
339
340    // If we are allowing commute or swap of operands, then
341    // allow a cross-operand match. In that case, MatchIsOpZero
342    // means that TI's operand 0 (FI's operand 1) is the common op.
343    if (TI->getOperand(0) == FI->getOperand(1)) {
344      OtherOpT = TI->getOperand(1);
345      OtherOpF = FI->getOperand(0);
346      MatchIsOpZero = true;
347      return TI->getOperand(0);
348    } else if (TI->getOperand(1) == FI->getOperand(0)) {
349      OtherOpT = TI->getOperand(0);
350      OtherOpF = FI->getOperand(1);
351      MatchIsOpZero = false;
352      return TI->getOperand(1);
353    }
354    return nullptr;
355  };
356
357  if (TI->hasOneUse() || FI->hasOneUse()) {
358    // Cond ? -X : -Y --> -(Cond ? X : Y)
359    Value *X, *Y;
360    if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
361      // Intersect FMF from the fneg instructions and union those with the
362      // select.
363      FastMathFlags FMF = TI->getFastMathFlags();
364      FMF &= FI->getFastMathFlags();
365      FMF |= SI.getFastMathFlags();
366      Value *NewSel =
367          Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
368      if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
369        NewSelI->setFastMathFlags(FMF);
370      Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
371      NewFNeg->setFastMathFlags(FMF);
372      return NewFNeg;
373    }
374
375    // Min/max intrinsic with a common operand can have the common operand
376    // pulled after the select. This is the same transform as below for binops,
377    // but specialized for intrinsic matching and without the restrictive uses
378    // clause.
379    auto *TII = dyn_cast<IntrinsicInst>(TI);
380    auto *FII = dyn_cast<IntrinsicInst>(FI);
381    if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
382      if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
383        if (Value *MatchOp = getCommonOp(TI, FI, true)) {
384          Value *NewSel =
385              Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
386          return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
387        }
388      }
389    }
390
391    // icmp with a common operand also can have the common operand
392    // pulled after the select.
393    ICmpInst::Predicate TPred, FPred;
394    if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
395        match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
396      if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) {
397        bool Swapped = TPred != FPred;
398        if (Value *MatchOp =
399                getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) {
400          Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
401                                               SI.getName() + ".v", &SI);
402          return new ICmpInst(
403              MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred),
404              MatchOp, NewSel);
405        }
406      }
407    }
408  }
409
410  // Only handle binary operators (including two-operand getelementptr) with
411  // one-use here. As with the cast case above, it may be possible to relax the
412  // one-use constraint, but that needs be examined carefully since it may not
413  // reduce the total number of instructions.
414  if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
415      !TI->isSameOperationAs(FI) ||
416      (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
417      !TI->hasOneUse() || !FI->hasOneUse())
418    return nullptr;
419
420  // Figure out if the operations have any operands in common.
421  Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
422  if (!MatchOp)
423    return nullptr;
424
425  // If the select condition is a vector, the operands of the original select's
426  // operands also must be vectors. This may not be the case for getelementptr
427  // for example.
428  if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
429                               !OtherOpF->getType()->isVectorTy()))
430    return nullptr;
431
432  // If we reach here, they do have operations in common.
433  Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
434                                      SI.getName() + ".v", &SI);
435  Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
436  Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
437  if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
438    BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
439    NewBO->copyIRFlags(TI);
440    NewBO->andIRFlags(FI);
441    return NewBO;
442  }
443  if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
444    auto *FGEP = cast<GetElementPtrInst>(FI);
445    Type *ElementType = TGEP->getResultElementType();
446    return TGEP->isInBounds() && FGEP->isInBounds()
447               ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
448               : GetElementPtrInst::Create(ElementType, Op0, {Op1});
449  }
450  llvm_unreachable("Expected BinaryOperator or GEP");
451  return nullptr;
452}
453
454static bool isSelect01(const APInt &C1I, const APInt &C2I) {
455  if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
456    return false;
457  return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
458}
459
460/// Try to fold the select into one of the operands to allow further
461/// optimization.
462Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
463                                                Value *FalseVal) {
464  // See the comment above GetSelectFoldableOperands for a description of the
465  // transformation we are doing here.
466  auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
467                                 Value *FalseVal,
468                                 bool Swapped) -> Instruction * {
469    auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
470    if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
471      return nullptr;
472
473    unsigned SFO = getSelectFoldableOperands(TVI);
474    unsigned OpToFold = 0;
475    if ((SFO & 1) && FalseVal == TVI->getOperand(0))
476      OpToFold = 1;
477    else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
478      OpToFold = 2;
479
480    if (!OpToFold)
481      return nullptr;
482
483    // TODO: We probably ought to revisit cases where the select and FP
484    // instructions have different flags and add tests to ensure the
485    // behaviour is correct.
486    FastMathFlags FMF;
487    if (isa<FPMathOperator>(&SI))
488      FMF = SI.getFastMathFlags();
489    Constant *C = ConstantExpr::getBinOpIdentity(
490        TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
491    Value *OOp = TVI->getOperand(2 - OpToFold);
492    // Avoid creating select between 2 constants unless it's selecting
493    // between 0, 1 and -1.
494    const APInt *OOpC;
495    bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
496    if (!isa<Constant>(OOp) ||
497        (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
498      Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
499                                           Swapped ? OOp : C);
500      if (isa<FPMathOperator>(&SI))
501        cast<Instruction>(NewSel)->setFastMathFlags(FMF);
502      NewSel->takeName(TVI);
503      BinaryOperator *BO =
504          BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
505      BO->copyIRFlags(TVI);
506      return BO;
507    }
508    return nullptr;
509  };
510
511  if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
512    return R;
513
514  if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
515    return R;
516
517  return nullptr;
518}
519
520/// We want to turn:
521///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
522/// into:
523///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
524/// Note:
525///   Z may be 0 if lshr is missing.
526/// Worst-case scenario is that we will replace 5 instructions with 5 different
527/// instructions, but we got rid of select.
528static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
529                                         Value *TVal, Value *FVal,
530                                         InstCombiner::BuilderTy &Builder) {
531  if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
532        Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
533        match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
534    return nullptr;
535
536  // The TrueVal has general form of:  and %B, 1
537  Value *B;
538  if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
539    return nullptr;
540
541  // Where %B may be optionally shifted:  lshr %X, %Z.
542  Value *X, *Z;
543  const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
544
545  // The shift must be valid.
546  // TODO: This restricts the fold to constant shift amounts. Is there a way to
547  //       handle variable shifts safely? PR47012
548  if (HasShift &&
549      !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
550                                   APInt(SelType->getScalarSizeInBits(),
551                                         SelType->getScalarSizeInBits()))))
552    return nullptr;
553
554  if (!HasShift)
555    X = B;
556
557  Value *Y;
558  if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
559    return nullptr;
560
561  // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
562  // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
563  Constant *One = ConstantInt::get(SelType, 1);
564  Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
565  Value *FullMask = Builder.CreateOr(Y, MaskB);
566  Value *MaskedX = Builder.CreateAnd(X, FullMask);
567  Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
568  return new ZExtInst(ICmpNeZero, SelType);
569}
570
571/// We want to turn:
572///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
573///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
574/// into:
575///   ashr (X, Y)
576static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
577                                     Value *FalseVal,
578                                     InstCombiner::BuilderTy &Builder) {
579  ICmpInst::Predicate Pred = IC->getPredicate();
580  Value *CmpLHS = IC->getOperand(0);
581  Value *CmpRHS = IC->getOperand(1);
582  if (!CmpRHS->getType()->isIntOrIntVectorTy())
583    return nullptr;
584
585  Value *X, *Y;
586  unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
587  if ((Pred != ICmpInst::ICMP_SGT ||
588       !match(CmpRHS,
589              m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
590      (Pred != ICmpInst::ICMP_SLT ||
591       !match(CmpRHS,
592              m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
593    return nullptr;
594
595  // Canonicalize so that ashr is in FalseVal.
596  if (Pred == ICmpInst::ICMP_SLT)
597    std::swap(TrueVal, FalseVal);
598
599  if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
600      match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
601      match(CmpLHS, m_Specific(X))) {
602    const auto *Ashr = cast<Instruction>(FalseVal);
603    // if lshr is not exact and ashr is, this new ashr must not be exact.
604    bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
605    return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
606  }
607
608  return nullptr;
609}
610
611/// We want to turn:
612///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
613/// into:
614///   (or (shl (and X, C1), C3), Y)
615/// iff:
616///   C1 and C2 are both powers of 2
617/// where:
618///   C3 = Log(C2) - Log(C1)
619///
620/// This transform handles cases where:
621/// 1. The icmp predicate is inverted
622/// 2. The select operands are reversed
623/// 3. The magnitude of C2 and C1 are flipped
624static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
625                                  Value *FalseVal,
626                                  InstCombiner::BuilderTy &Builder) {
627  // Only handle integer compares. Also, if this is a vector select, we need a
628  // vector compare.
629  if (!TrueVal->getType()->isIntOrIntVectorTy() ||
630      TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
631    return nullptr;
632
633  Value *CmpLHS = IC->getOperand(0);
634  Value *CmpRHS = IC->getOperand(1);
635
636  Value *V;
637  unsigned C1Log;
638  bool IsEqualZero;
639  bool NeedAnd = false;
640  if (IC->isEquality()) {
641    if (!match(CmpRHS, m_Zero()))
642      return nullptr;
643
644    const APInt *C1;
645    if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
646      return nullptr;
647
648    V = CmpLHS;
649    C1Log = C1->logBase2();
650    IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
651  } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
652             IC->getPredicate() == ICmpInst::ICMP_SGT) {
653    // We also need to recognize (icmp slt (trunc (X)), 0) and
654    // (icmp sgt (trunc (X)), -1).
655    IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
656    if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
657        (!IsEqualZero && !match(CmpRHS, m_Zero())))
658      return nullptr;
659
660    if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
661      return nullptr;
662
663    C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
664    NeedAnd = true;
665  } else {
666    return nullptr;
667  }
668
669  const APInt *C2;
670  bool OrOnTrueVal = false;
671  bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
672  if (!OrOnFalseVal)
673    OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
674
675  if (!OrOnFalseVal && !OrOnTrueVal)
676    return nullptr;
677
678  Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
679
680  unsigned C2Log = C2->logBase2();
681
682  bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
683  bool NeedShift = C1Log != C2Log;
684  bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
685                       V->getType()->getScalarSizeInBits();
686
687  // Make sure we don't create more instructions than we save.
688  Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
689  if ((NeedShift + NeedXor + NeedZExtTrunc) >
690      (IC->hasOneUse() + Or->hasOneUse()))
691    return nullptr;
692
693  if (NeedAnd) {
694    // Insert the AND instruction on the input to the truncate.
695    APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
696    V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
697  }
698
699  if (C2Log > C1Log) {
700    V = Builder.CreateZExtOrTrunc(V, Y->getType());
701    V = Builder.CreateShl(V, C2Log - C1Log);
702  } else if (C1Log > C2Log) {
703    V = Builder.CreateLShr(V, C1Log - C2Log);
704    V = Builder.CreateZExtOrTrunc(V, Y->getType());
705  } else
706    V = Builder.CreateZExtOrTrunc(V, Y->getType());
707
708  if (NeedXor)
709    V = Builder.CreateXor(V, *C2);
710
711  return Builder.CreateOr(V, Y);
712}
713
714/// Canonicalize a set or clear of a masked set of constant bits to
715/// select-of-constants form.
716static Instruction *foldSetClearBits(SelectInst &Sel,
717                                     InstCombiner::BuilderTy &Builder) {
718  Value *Cond = Sel.getCondition();
719  Value *T = Sel.getTrueValue();
720  Value *F = Sel.getFalseValue();
721  Type *Ty = Sel.getType();
722  Value *X;
723  const APInt *NotC, *C;
724
725  // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
726  if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
727      match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
728    Constant *Zero = ConstantInt::getNullValue(Ty);
729    Constant *OrC = ConstantInt::get(Ty, *C);
730    Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
731    return BinaryOperator::CreateOr(T, NewSel);
732  }
733
734  // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
735  if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
736      match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
737    Constant *Zero = ConstantInt::getNullValue(Ty);
738    Constant *OrC = ConstantInt::get(Ty, *C);
739    Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
740    return BinaryOperator::CreateOr(F, NewSel);
741  }
742
743  return nullptr;
744}
745
746//   select (x == 0), 0, x * y --> freeze(y) * x
747//   select (y == 0), 0, x * y --> freeze(x) * y
748//   select (x == 0), undef, x * y --> freeze(y) * x
749//   select (x == undef), 0, x * y --> freeze(y) * x
750// Usage of mul instead of 0 will make the result more poisonous,
751// so the operand that was not checked in the condition should be frozen.
752// The latter folding is applied only when a constant compared with x is
753// is a vector consisting of 0 and undefs. If a constant compared with x
754// is a scalar undefined value or undefined vector then an expression
755// should be already folded into a constant.
756static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
757  auto *CondVal = SI.getCondition();
758  auto *TrueVal = SI.getTrueValue();
759  auto *FalseVal = SI.getFalseValue();
760  Value *X, *Y;
761  ICmpInst::Predicate Predicate;
762
763  // Assuming that constant compared with zero is not undef (but it may be
764  // a vector with some undef elements). Otherwise (when a constant is undef)
765  // the select expression should be already simplified.
766  if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
767      !ICmpInst::isEquality(Predicate))
768    return nullptr;
769
770  if (Predicate == ICmpInst::ICMP_NE)
771    std::swap(TrueVal, FalseVal);
772
773  // Check that TrueVal is a constant instead of matching it with m_Zero()
774  // to handle the case when it is a scalar undef value or a vector containing
775  // non-zero elements that are masked by undef elements in the compare
776  // constant.
777  auto *TrueValC = dyn_cast<Constant>(TrueVal);
778  if (TrueValC == nullptr ||
779      !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
780      !isa<Instruction>(FalseVal))
781    return nullptr;
782
783  auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
784  auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
785  // If X is compared with 0 then TrueVal could be either zero or undef.
786  // m_Zero match vectors containing some undef elements, but for scalars
787  // m_Undef should be used explicitly.
788  if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
789    return nullptr;
790
791  auto *FalseValI = cast<Instruction>(FalseVal);
792  auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
793                                     *FalseValI);
794  IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
795  return IC.replaceInstUsesWith(SI, FalseValI);
796}
797
798/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
799/// There are 8 commuted/swapped variants of this pattern.
800/// TODO: Also support a - UMIN(a,b) patterns.
801static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
802                                            const Value *TrueVal,
803                                            const Value *FalseVal,
804                                            InstCombiner::BuilderTy &Builder) {
805  ICmpInst::Predicate Pred = ICI->getPredicate();
806  Value *A = ICI->getOperand(0);
807  Value *B = ICI->getOperand(1);
808
809  // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
810  // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
811  if (match(TrueVal, m_Zero())) {
812    Pred = ICmpInst::getInversePredicate(Pred);
813    std::swap(TrueVal, FalseVal);
814  }
815
816  if (!match(FalseVal, m_Zero()))
817    return nullptr;
818
819  // ugt 0 is canonicalized to ne 0 and requires special handling
820  // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
821  if (Pred == ICmpInst::ICMP_NE) {
822    if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
823      return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
824                                           ConstantInt::get(A->getType(), 1));
825    return nullptr;
826  }
827
828  if (!ICmpInst::isUnsigned(Pred))
829    return nullptr;
830
831  if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
832    // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
833    std::swap(A, B);
834    Pred = ICmpInst::getSwappedPredicate(Pred);
835  }
836
837  assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
838         "Unexpected isUnsigned predicate!");
839
840  // Ensure the sub is of the form:
841  //  (a > b) ? a - b : 0 -> usub.sat(a, b)
842  //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
843  // Checking for both a-b and a+(-b) as a constant.
844  bool IsNegative = false;
845  const APInt *C;
846  if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
847      (match(A, m_APInt(C)) &&
848       match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
849    IsNegative = true;
850  else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
851           !(match(B, m_APInt(C)) &&
852             match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
853    return nullptr;
854
855  // If we are adding a negate and the sub and icmp are used anywhere else, we
856  // would end up with more instructions.
857  if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
858    return nullptr;
859
860  // (a > b) ? a - b : 0 -> usub.sat(a, b)
861  // (a > b) ? b - a : 0 -> -usub.sat(a, b)
862  Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
863  if (IsNegative)
864    Result = Builder.CreateNeg(Result);
865  return Result;
866}
867
868static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
869                                       InstCombiner::BuilderTy &Builder) {
870  if (!Cmp->hasOneUse())
871    return nullptr;
872
873  // Match unsigned saturated add with constant.
874  Value *Cmp0 = Cmp->getOperand(0);
875  Value *Cmp1 = Cmp->getOperand(1);
876  ICmpInst::Predicate Pred = Cmp->getPredicate();
877  Value *X;
878  const APInt *C, *CmpC;
879  if (Pred == ICmpInst::ICMP_ULT &&
880      match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
881      match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
882    // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
883    return Builder.CreateBinaryIntrinsic(
884        Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
885  }
886
887  // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
888  // There are 8 commuted variants.
889  // Canonicalize -1 (saturated result) to true value of the select.
890  if (match(FVal, m_AllOnes())) {
891    std::swap(TVal, FVal);
892    Pred = CmpInst::getInversePredicate(Pred);
893  }
894  if (!match(TVal, m_AllOnes()))
895    return nullptr;
896
897  // Canonicalize predicate to less-than or less-or-equal-than.
898  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
899    std::swap(Cmp0, Cmp1);
900    Pred = CmpInst::getSwappedPredicate(Pred);
901  }
902  if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
903    return nullptr;
904
905  // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
906  // Strictness of the comparison is irrelevant.
907  Value *Y;
908  if (match(Cmp0, m_Not(m_Value(X))) &&
909      match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
910    // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
911    // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
912    return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
913  }
914  // The 'not' op may be included in the sum but not the compare.
915  // Strictness of the comparison is irrelevant.
916  X = Cmp0;
917  Y = Cmp1;
918  if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
919    // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
920    // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
921    BinaryOperator *BO = cast<BinaryOperator>(FVal);
922    return Builder.CreateBinaryIntrinsic(
923        Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
924  }
925  // The overflow may be detected via the add wrapping round.
926  // This is only valid for strict comparison!
927  if (Pred == ICmpInst::ICMP_ULT &&
928      match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
929      match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
930    // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
931    // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
932    return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
933  }
934
935  return nullptr;
936}
937
938/// Fold the following code sequence:
939/// \code
940///   int a = ctlz(x & -x);
941//    x ? 31 - a : a;
942/// \code
943///
944/// into:
945///   cttz(x)
946static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
947                                         Value *FalseVal,
948                                         InstCombiner::BuilderTy &Builder) {
949  unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
950  if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
951    return nullptr;
952
953  if (ICI->getPredicate() == ICmpInst::ICMP_NE)
954    std::swap(TrueVal, FalseVal);
955
956  if (!match(FalseVal,
957             m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
958    return nullptr;
959
960  if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
961    return nullptr;
962
963  Value *X = ICI->getOperand(0);
964  auto *II = cast<IntrinsicInst>(TrueVal);
965  if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
966    return nullptr;
967
968  Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
969                                          II->getType());
970  return CallInst::Create(F, {X, II->getArgOperand(1)});
971}
972
973/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
974/// call to cttz/ctlz with flag 'is_zero_poison' cleared.
975///
976/// For example, we can fold the following code sequence:
977/// \code
978///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
979///   %1 = icmp ne i32 %x, 0
980///   %2 = select i1 %1, i32 %0, i32 32
981/// \code
982///
983/// into:
984///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
985static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
986                                 InstCombiner::BuilderTy &Builder) {
987  ICmpInst::Predicate Pred = ICI->getPredicate();
988  Value *CmpLHS = ICI->getOperand(0);
989  Value *CmpRHS = ICI->getOperand(1);
990
991  // Check if the select condition compares a value for equality.
992  if (!ICI->isEquality())
993    return nullptr;
994
995  Value *SelectArg = FalseVal;
996  Value *ValueOnZero = TrueVal;
997  if (Pred == ICmpInst::ICMP_NE)
998    std::swap(SelectArg, ValueOnZero);
999
1000  // Skip zero extend/truncate.
1001  Value *Count = nullptr;
1002  if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
1003      !match(SelectArg, m_Trunc(m_Value(Count))))
1004    Count = SelectArg;
1005
1006  // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
1007  // input to the cttz/ctlz is used as LHS for the compare instruction.
1008  Value *X;
1009  if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
1010      !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
1011    return nullptr;
1012
1013  // (X == 0) ? BitWidth : ctz(X)
1014  // (X == -1) ? BitWidth : ctz(~X)
1015  if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
1016      (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())))
1017    return nullptr;
1018
1019  IntrinsicInst *II = cast<IntrinsicInst>(Count);
1020
1021  // Check if the value propagated on zero is a constant number equal to the
1022  // sizeof in bits of 'Count'.
1023  unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
1024  if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
1025    // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
1026    // true to false on this flag, so we can replace it for all users.
1027    II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
1028    return SelectArg;
1029  }
1030
1031  // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
1032  // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
1033  // not be used if the input is zero. Relax to 'zero is poison' for that case.
1034  if (II->hasOneUse() && SelectArg->hasOneUse() &&
1035      !match(II->getArgOperand(1), m_One()))
1036    II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1037
1038  return nullptr;
1039}
1040
1041/// Return true if we find and adjust an icmp+select pattern where the compare
1042/// is with a constant that can be incremented or decremented to match the
1043/// minimum or maximum idiom.
1044static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1045  ICmpInst::Predicate Pred = Cmp.getPredicate();
1046  Value *CmpLHS = Cmp.getOperand(0);
1047  Value *CmpRHS = Cmp.getOperand(1);
1048  Value *TrueVal = Sel.getTrueValue();
1049  Value *FalseVal = Sel.getFalseValue();
1050
1051  // We may move or edit the compare, so make sure the select is the only user.
1052  const APInt *CmpC;
1053  if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1054    return false;
1055
1056  // These transforms only work for selects of integers or vector selects of
1057  // integer vectors.
1058  Type *SelTy = Sel.getType();
1059  auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1060  if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1061    return false;
1062
1063  Constant *AdjustedRHS;
1064  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1065    AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1066  else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1067    AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1068  else
1069    return false;
1070
1071  // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1072  // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1073  if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1074      (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1075    ; // Nothing to do here. Values match without any sign/zero extension.
1076  }
1077  // Types do not match. Instead of calculating this with mixed types, promote
1078  // all to the larger type. This enables scalar evolution to analyze this
1079  // expression.
1080  else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1081    Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1082
1083    // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1084    // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1085    // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1086    // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1087    if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1088      CmpLHS = TrueVal;
1089      AdjustedRHS = SextRHS;
1090    } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1091               SextRHS == TrueVal) {
1092      CmpLHS = FalseVal;
1093      AdjustedRHS = SextRHS;
1094    } else if (Cmp.isUnsigned()) {
1095      Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1096      // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1097      // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1098      // zext + signed compare cannot be changed:
1099      //    0xff <s 0x00, but 0x00ff >s 0x0000
1100      if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1101        CmpLHS = TrueVal;
1102        AdjustedRHS = ZextRHS;
1103      } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1104                 ZextRHS == TrueVal) {
1105        CmpLHS = FalseVal;
1106        AdjustedRHS = ZextRHS;
1107      } else {
1108        return false;
1109      }
1110    } else {
1111      return false;
1112    }
1113  } else {
1114    return false;
1115  }
1116
1117  Pred = ICmpInst::getSwappedPredicate(Pred);
1118  CmpRHS = AdjustedRHS;
1119  std::swap(FalseVal, TrueVal);
1120  Cmp.setPredicate(Pred);
1121  Cmp.setOperand(0, CmpLHS);
1122  Cmp.setOperand(1, CmpRHS);
1123  Sel.setOperand(1, TrueVal);
1124  Sel.setOperand(2, FalseVal);
1125  Sel.swapProfMetadata();
1126
1127  // Move the compare instruction right before the select instruction. Otherwise
1128  // the sext/zext value may be defined after the compare instruction uses it.
1129  Cmp.moveBefore(&Sel);
1130
1131  return true;
1132}
1133
1134static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
1135                                    InstCombinerImpl &IC) {
1136  Value *LHS, *RHS;
1137  // TODO: What to do with pointer min/max patterns?
1138  if (!Sel.getType()->isIntOrIntVectorTy())
1139    return nullptr;
1140
1141  SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1142  if (SPF == SelectPatternFlavor::SPF_ABS ||
1143      SPF == SelectPatternFlavor::SPF_NABS) {
1144    if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1145      return nullptr; // TODO: Relax this restriction.
1146
1147    // Note that NSW flag can only be propagated for normal, non-negated abs!
1148    bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1149                          match(RHS, m_NSWNeg(m_Specific(LHS)));
1150    Constant *IntMinIsPoisonC =
1151        ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1152    Instruction *Abs =
1153        IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1154
1155    if (SPF == SelectPatternFlavor::SPF_NABS)
1156      return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1157    return IC.replaceInstUsesWith(Sel, Abs);
1158  }
1159
1160  if (SelectPatternResult::isMinOrMax(SPF)) {
1161    Intrinsic::ID IntrinsicID;
1162    switch (SPF) {
1163    case SelectPatternFlavor::SPF_UMIN:
1164      IntrinsicID = Intrinsic::umin;
1165      break;
1166    case SelectPatternFlavor::SPF_UMAX:
1167      IntrinsicID = Intrinsic::umax;
1168      break;
1169    case SelectPatternFlavor::SPF_SMIN:
1170      IntrinsicID = Intrinsic::smin;
1171      break;
1172    case SelectPatternFlavor::SPF_SMAX:
1173      IntrinsicID = Intrinsic::smax;
1174      break;
1175    default:
1176      llvm_unreachable("Unexpected SPF");
1177    }
1178    return IC.replaceInstUsesWith(
1179        Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
1180  }
1181
1182  return nullptr;
1183}
1184
1185static bool replaceInInstruction(Value *V, Value *Old, Value *New,
1186                                 InstCombiner &IC, unsigned Depth = 0) {
1187  // Conservatively limit replacement to two instructions upwards.
1188  if (Depth == 2)
1189    return false;
1190
1191  auto *I = dyn_cast<Instruction>(V);
1192  if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
1193    return false;
1194
1195  bool Changed = false;
1196  for (Use &U : I->operands()) {
1197    if (U == Old) {
1198      IC.replaceUse(U, New);
1199      Changed = true;
1200    } else {
1201      Changed |= replaceInInstruction(U, Old, New, IC, Depth + 1);
1202    }
1203  }
1204  return Changed;
1205}
1206
1207/// If we have a select with an equality comparison, then we know the value in
1208/// one of the arms of the select. See if substituting this value into an arm
1209/// and simplifying the result yields the same value as the other arm.
1210///
1211/// To make this transform safe, we must drop poison-generating flags
1212/// (nsw, etc) if we simplified to a binop because the select may be guarding
1213/// that poison from propagating. If the existing binop already had no
1214/// poison-generating flags, then this transform can be done by instsimplify.
1215///
1216/// Consider:
1217///   %cmp = icmp eq i32 %x, 2147483647
1218///   %add = add nsw i32 %x, 1
1219///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1220///
1221/// We can't replace %sel with %add unless we strip away the flags.
1222/// TODO: Wrapping flags could be preserved in some cases with better analysis.
1223Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1224                                                          ICmpInst &Cmp) {
1225  if (!Cmp.isEquality())
1226    return nullptr;
1227
1228  // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1229  Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1230  bool Swapped = false;
1231  if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1232    std::swap(TrueVal, FalseVal);
1233    Swapped = true;
1234  }
1235
1236  // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1237  // Make sure Y cannot be undef though, as we might pick different values for
1238  // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1239  // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1240  // replacement cycle.
1241  Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1242  if (TrueVal != CmpLHS &&
1243      isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1244    if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1245                                          /* AllowRefinement */ true))
1246      return replaceOperand(Sel, Swapped ? 2 : 1, V);
1247
1248    // Even if TrueVal does not simplify, we can directly replace a use of
1249    // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1250    // else and is safe to speculatively execute (we may end up executing it
1251    // with different operands, which should not cause side-effects or trigger
1252    // undefined behavior). Only do this if CmpRHS is a constant, as
1253    // profitability is not clear for other cases.
1254    // FIXME: Support vectors.
1255    if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()) &&
1256        !Cmp.getType()->isVectorTy())
1257      if (replaceInInstruction(TrueVal, CmpLHS, CmpRHS, *this))
1258        return &Sel;
1259  }
1260  if (TrueVal != CmpRHS &&
1261      isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1262    if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1263                                          /* AllowRefinement */ true))
1264      return replaceOperand(Sel, Swapped ? 2 : 1, V);
1265
1266  auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1267  if (!FalseInst)
1268    return nullptr;
1269
1270  // InstSimplify already performed this fold if it was possible subject to
1271  // current poison-generating flags. Try the transform again with
1272  // poison-generating flags temporarily dropped.
1273  bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1274  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1275    WasNUW = OBO->hasNoUnsignedWrap();
1276    WasNSW = OBO->hasNoSignedWrap();
1277    FalseInst->setHasNoUnsignedWrap(false);
1278    FalseInst->setHasNoSignedWrap(false);
1279  }
1280  if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1281    WasExact = PEO->isExact();
1282    FalseInst->setIsExact(false);
1283  }
1284  if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1285    WasInBounds = GEP->isInBounds();
1286    GEP->setIsInBounds(false);
1287  }
1288
1289  // Try each equivalence substitution possibility.
1290  // We have an 'EQ' comparison, so the select's false value will propagate.
1291  // Example:
1292  // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1293  if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1294                             /* AllowRefinement */ false) == TrueVal ||
1295      simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1296                             /* AllowRefinement */ false) == TrueVal) {
1297    return replaceInstUsesWith(Sel, FalseVal);
1298  }
1299
1300  // Restore poison-generating flags if the transform did not apply.
1301  if (WasNUW)
1302    FalseInst->setHasNoUnsignedWrap();
1303  if (WasNSW)
1304    FalseInst->setHasNoSignedWrap();
1305  if (WasExact)
1306    FalseInst->setIsExact();
1307  if (WasInBounds)
1308    cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1309
1310  return nullptr;
1311}
1312
1313// See if this is a pattern like:
1314//   %old_cmp1 = icmp slt i32 %x, C2
1315//   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1316//   %old_x_offseted = add i32 %x, C1
1317//   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1318//   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1319// This can be rewritten as more canonical pattern:
1320//   %new_cmp1 = icmp slt i32 %x, -C1
1321//   %new_cmp2 = icmp sge i32 %x, C0-C1
1322//   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1323//   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1324// Iff -C1 s<= C2 s<= C0-C1
1325// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1326//      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1327static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1328                                    InstCombiner::BuilderTy &Builder) {
1329  Value *X = Sel0.getTrueValue();
1330  Value *Sel1 = Sel0.getFalseValue();
1331
1332  // First match the condition of the outermost select.
1333  // Said condition must be one-use.
1334  if (!Cmp0.hasOneUse())
1335    return nullptr;
1336  ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1337  Value *Cmp00 = Cmp0.getOperand(0);
1338  Constant *C0;
1339  if (!match(Cmp0.getOperand(1),
1340             m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1341    return nullptr;
1342
1343  if (!isa<SelectInst>(Sel1)) {
1344    Pred0 = ICmpInst::getInversePredicate(Pred0);
1345    std::swap(X, Sel1);
1346  }
1347
1348  // Canonicalize Cmp0 into ult or uge.
1349  // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1350  switch (Pred0) {
1351  case ICmpInst::Predicate::ICMP_ULT:
1352  case ICmpInst::Predicate::ICMP_UGE:
1353    // Although icmp ult %x, 0 is an unusual thing to try and should generally
1354    // have been simplified, it does not verify with undef inputs so ensure we
1355    // are not in a strange state.
1356    if (!match(C0, m_SpecificInt_ICMP(
1357                       ICmpInst::Predicate::ICMP_NE,
1358                       APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1359      return nullptr;
1360    break; // Great!
1361  case ICmpInst::Predicate::ICMP_ULE:
1362  case ICmpInst::Predicate::ICMP_UGT:
1363    // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1364    // C0, which again means it must not have any all-ones elements.
1365    if (!match(C0,
1366               m_SpecificInt_ICMP(
1367                   ICmpInst::Predicate::ICMP_NE,
1368                   APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1369      return nullptr; // Can't do, have all-ones element[s].
1370    Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
1371    C0 = InstCombiner::AddOne(C0);
1372    break;
1373  default:
1374    return nullptr; // Unknown predicate.
1375  }
1376
1377  // Now that we've canonicalized the ICmp, we know the X we expect;
1378  // the select in other hand should be one-use.
1379  if (!Sel1->hasOneUse())
1380    return nullptr;
1381
1382  // If the types do not match, look through any truncs to the underlying
1383  // instruction.
1384  if (Cmp00->getType() != X->getType() && X->hasOneUse())
1385    match(X, m_TruncOrSelf(m_Value(X)));
1386
1387  // We now can finish matching the condition of the outermost select:
1388  // it should either be the X itself, or an addition of some constant to X.
1389  Constant *C1;
1390  if (Cmp00 == X)
1391    C1 = ConstantInt::getNullValue(X->getType());
1392  else if (!match(Cmp00,
1393                  m_Add(m_Specific(X),
1394                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1395    return nullptr;
1396
1397  Value *Cmp1;
1398  ICmpInst::Predicate Pred1;
1399  Constant *C2;
1400  Value *ReplacementLow, *ReplacementHigh;
1401  if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1402                            m_Value(ReplacementHigh))) ||
1403      !match(Cmp1,
1404             m_ICmp(Pred1, m_Specific(X),
1405                    m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1406    return nullptr;
1407
1408  if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1409    return nullptr; // Not enough one-use instructions for the fold.
1410  // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1411  //        two comparisons we'll need to build.
1412
1413  // Canonicalize Cmp1 into the form we expect.
1414  // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1415  switch (Pred1) {
1416  case ICmpInst::Predicate::ICMP_SLT:
1417    break;
1418  case ICmpInst::Predicate::ICMP_SLE:
1419    // We'd have to increment C2 by one, and for that it must not have signed
1420    // max element, but then it would have been canonicalized to 'slt' before
1421    // we get here. So we can't do anything useful with 'sle'.
1422    return nullptr;
1423  case ICmpInst::Predicate::ICMP_SGT:
1424    // We want to canonicalize it to 'slt', so we'll need to increment C2,
1425    // which again means it must not have any signed max elements.
1426    if (!match(C2,
1427               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1428                                  APInt::getSignedMaxValue(
1429                                      C2->getType()->getScalarSizeInBits()))))
1430      return nullptr; // Can't do, have signed max element[s].
1431    C2 = InstCombiner::AddOne(C2);
1432    [[fallthrough]];
1433  case ICmpInst::Predicate::ICMP_SGE:
1434    // Also non-canonical, but here we don't need to change C2,
1435    // so we don't have any restrictions on C2, so we can just handle it.
1436    Pred1 = ICmpInst::Predicate::ICMP_SLT;
1437    std::swap(ReplacementLow, ReplacementHigh);
1438    break;
1439  default:
1440    return nullptr; // Unknown predicate.
1441  }
1442  assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
1443         "Unexpected predicate type.");
1444
1445  // The thresholds of this clamp-like pattern.
1446  auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1447  auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1448
1449  assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
1450          Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
1451         "Unexpected predicate type.");
1452  if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1453    std::swap(ThresholdLowIncl, ThresholdHighExcl);
1454
1455  // The fold has a precondition 1: C2 s>= ThresholdLow
1456  auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1457                                         ThresholdLowIncl);
1458  if (!match(Precond1, m_One()))
1459    return nullptr;
1460  // The fold has a precondition 2: C2 s<= ThresholdHigh
1461  auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1462                                         ThresholdHighExcl);
1463  if (!match(Precond2, m_One()))
1464    return nullptr;
1465
1466  // If we are matching from a truncated input, we need to sext the
1467  // ReplacementLow and ReplacementHigh values. Only do the transform if they
1468  // are free to extend due to being constants.
1469  if (X->getType() != Sel0.getType()) {
1470    Constant *LowC, *HighC;
1471    if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1472        !match(ReplacementHigh, m_ImmConstant(HighC)))
1473      return nullptr;
1474    ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1475    ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1476  }
1477
1478  // All good, finally emit the new pattern.
1479  Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1480  Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1481  Value *MaybeReplacedLow =
1482      Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1483
1484  // Create the final select. If we looked through a truncate above, we will
1485  // need to retruncate the result.
1486  Value *MaybeReplacedHigh = Builder.CreateSelect(
1487      ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1488  return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1489}
1490
1491// If we have
1492//  %cmp = icmp [canonical predicate] i32 %x, C0
1493//  %r = select i1 %cmp, i32 %y, i32 C1
1494// Where C0 != C1 and %x may be different from %y, see if the constant that we
1495// will have if we flip the strictness of the predicate (i.e. without changing
1496// the result) is identical to the C1 in select. If it matches we can change
1497// original comparison to one with swapped predicate, reuse the constant,
1498// and swap the hands of select.
1499static Instruction *
1500tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1501                                         InstCombinerImpl &IC) {
1502  ICmpInst::Predicate Pred;
1503  Value *X;
1504  Constant *C0;
1505  if (!match(&Cmp, m_OneUse(m_ICmp(
1506                       Pred, m_Value(X),
1507                       m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1508    return nullptr;
1509
1510  // If comparison predicate is non-relational, we won't be able to do anything.
1511  if (ICmpInst::isEquality(Pred))
1512    return nullptr;
1513
1514  // If comparison predicate is non-canonical, then we certainly won't be able
1515  // to make it canonical; canonicalizeCmpWithConstant() already tried.
1516  if (!InstCombiner::isCanonicalPredicate(Pred))
1517    return nullptr;
1518
1519  // If the [input] type of comparison and select type are different, lets abort
1520  // for now. We could try to compare constants with trunc/[zs]ext though.
1521  if (C0->getType() != Sel.getType())
1522    return nullptr;
1523
1524  // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1525  // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1526  //        Or should we just abandon this transform entirely?
1527  if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1528    return nullptr;
1529
1530
1531  Value *SelVal0, *SelVal1; // We do not care which one is from where.
1532  match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1533  // At least one of these values we are selecting between must be a constant
1534  // else we'll never succeed.
1535  if (!match(SelVal0, m_AnyIntegralConstant()) &&
1536      !match(SelVal1, m_AnyIntegralConstant()))
1537    return nullptr;
1538
1539  // Does this constant C match any of the `select` values?
1540  auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1541    return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1542  };
1543
1544  // If C0 *already* matches true/false value of select, we are done.
1545  if (MatchesSelectValue(C0))
1546    return nullptr;
1547
1548  // Check the constant we'd have with flipped-strictness predicate.
1549  auto FlippedStrictness =
1550      InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1551  if (!FlippedStrictness)
1552    return nullptr;
1553
1554  // If said constant doesn't match either, then there is no hope,
1555  if (!MatchesSelectValue(FlippedStrictness->second))
1556    return nullptr;
1557
1558  // It matched! Lets insert the new comparison just before select.
1559  InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1560  IC.Builder.SetInsertPoint(&Sel);
1561
1562  Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1563  Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1564                                        Cmp.getName() + ".inv");
1565  IC.replaceOperand(Sel, 0, NewCmp);
1566  Sel.swapValues();
1567  Sel.swapProfMetadata();
1568
1569  return &Sel;
1570}
1571
1572static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1573                                         Value *FVal,
1574                                         InstCombiner::BuilderTy &Builder) {
1575  if (!Cmp->hasOneUse())
1576    return nullptr;
1577
1578  const APInt *CmpC;
1579  if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1580    return nullptr;
1581
1582  // (X u< 2) ? -X : -1 --> sext (X != 0)
1583  Value *X = Cmp->getOperand(0);
1584  if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1585      match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1586    return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1587
1588  // (X u> 1) ? -1 : -X --> sext (X != 0)
1589  if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1590      match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1591    return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1592
1593  return nullptr;
1594}
1595
1596static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI) {
1597  const APInt *CmpC;
1598  Value *V;
1599  CmpInst::Predicate Pred;
1600  if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1601    return nullptr;
1602
1603  BinaryOperator *BO;
1604  const APInt *C;
1605  CmpInst::Predicate CPred;
1606  if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
1607    CPred = ICI->getPredicate();
1608  else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
1609    CPred = ICI->getInversePredicate();
1610  else
1611    return nullptr;
1612
1613  const APInt *BinOpC;
1614  if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
1615    return nullptr;
1616
1617  ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
1618                        .binaryOp(BO->getOpcode(), *BinOpC);
1619  if (R == *C) {
1620    BO->dropPoisonGeneratingFlags();
1621    return BO;
1622  }
1623  return nullptr;
1624}
1625
1626/// Visit a SelectInst that has an ICmpInst as its first operand.
1627Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1628                                                      ICmpInst *ICI) {
1629  if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1630    return NewSel;
1631
1632  if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
1633    return NewSPF;
1634
1635  if (Value *V = foldSelectInstWithICmpConst(SI, ICI))
1636    return replaceInstUsesWith(SI, V);
1637
1638  if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1639    return replaceInstUsesWith(SI, V);
1640
1641  if (Instruction *NewSel =
1642          tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1643    return NewSel;
1644
1645  bool Changed = adjustMinMax(SI, *ICI);
1646
1647  if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1648    return replaceInstUsesWith(SI, V);
1649
1650  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1651  Value *TrueVal = SI.getTrueValue();
1652  Value *FalseVal = SI.getFalseValue();
1653  ICmpInst::Predicate Pred = ICI->getPredicate();
1654  Value *CmpLHS = ICI->getOperand(0);
1655  Value *CmpRHS = ICI->getOperand(1);
1656  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1657    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1658      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1659      SI.setOperand(1, CmpRHS);
1660      Changed = true;
1661    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1662      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1663      SI.setOperand(2, CmpRHS);
1664      Changed = true;
1665    }
1666  }
1667
1668  // Canonicalize a signbit condition to use zero constant by swapping:
1669  // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
1670  // To avoid conflicts (infinite loops) with other canonicalizations, this is
1671  // not applied with any constant select arm.
1672  if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
1673      !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
1674      ICI->hasOneUse()) {
1675    InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1676    Builder.SetInsertPoint(&SI);
1677    Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
1678    replaceOperand(SI, 0, IsNeg);
1679    SI.swapValues();
1680    SI.swapProfMetadata();
1681    return &SI;
1682  }
1683
1684  // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1685  // decomposeBitTestICmp() might help.
1686  {
1687    unsigned BitWidth =
1688        DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1689    APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1690    Value *X;
1691    const APInt *Y, *C;
1692    bool TrueWhenUnset;
1693    bool IsBitTest = false;
1694    if (ICmpInst::isEquality(Pred) &&
1695        match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1696        match(CmpRHS, m_Zero())) {
1697      IsBitTest = true;
1698      TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1699    } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1700      X = CmpLHS;
1701      Y = &MinSignedValue;
1702      IsBitTest = true;
1703      TrueWhenUnset = false;
1704    } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1705      X = CmpLHS;
1706      Y = &MinSignedValue;
1707      IsBitTest = true;
1708      TrueWhenUnset = true;
1709    }
1710    if (IsBitTest) {
1711      Value *V = nullptr;
1712      // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1713      if (TrueWhenUnset && TrueVal == X &&
1714          match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1715        V = Builder.CreateAnd(X, ~(*Y));
1716      // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1717      else if (!TrueWhenUnset && FalseVal == X &&
1718               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1719        V = Builder.CreateAnd(X, ~(*Y));
1720      // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1721      else if (TrueWhenUnset && FalseVal == X &&
1722               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1723        V = Builder.CreateOr(X, *Y);
1724      // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1725      else if (!TrueWhenUnset && TrueVal == X &&
1726               match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1727        V = Builder.CreateOr(X, *Y);
1728
1729      if (V)
1730        return replaceInstUsesWith(SI, V);
1731    }
1732  }
1733
1734  if (Instruction *V =
1735          foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1736    return V;
1737
1738  if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1739    return V;
1740
1741  if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1742    return V;
1743
1744  if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1745    return replaceInstUsesWith(SI, V);
1746
1747  if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1748    return replaceInstUsesWith(SI, V);
1749
1750  if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1751    return replaceInstUsesWith(SI, V);
1752
1753  if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1754    return replaceInstUsesWith(SI, V);
1755
1756  if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1757    return replaceInstUsesWith(SI, V);
1758
1759  return Changed ? &SI : nullptr;
1760}
1761
1762/// SI is a select whose condition is a PHI node (but the two may be in
1763/// different blocks). See if the true/false values (V) are live in all of the
1764/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1765///
1766///   X = phi [ C1, BB1], [C2, BB2]
1767///   Y = add
1768///   Z = select X, Y, 0
1769///
1770/// because Y is not live in BB1/BB2.
1771static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1772                                                   const SelectInst &SI) {
1773  // If the value is a non-instruction value like a constant or argument, it
1774  // can always be mapped.
1775  const Instruction *I = dyn_cast<Instruction>(V);
1776  if (!I) return true;
1777
1778  // If V is a PHI node defined in the same block as the condition PHI, we can
1779  // map the arguments.
1780  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1781
1782  if (const PHINode *VP = dyn_cast<PHINode>(I))
1783    if (VP->getParent() == CondPHI->getParent())
1784      return true;
1785
1786  // Otherwise, if the PHI and select are defined in the same block and if V is
1787  // defined in a different block, then we can transform it.
1788  if (SI.getParent() == CondPHI->getParent() &&
1789      I->getParent() != CondPHI->getParent())
1790    return true;
1791
1792  // Otherwise we have a 'hard' case and we can't tell without doing more
1793  // detailed dominator based analysis, punt.
1794  return false;
1795}
1796
1797/// We have an SPF (e.g. a min or max) of an SPF of the form:
1798///   SPF2(SPF1(A, B), C)
1799Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1800                                            SelectPatternFlavor SPF1, Value *A,
1801                                            Value *B, Instruction &Outer,
1802                                            SelectPatternFlavor SPF2,
1803                                            Value *C) {
1804  if (Outer.getType() != Inner->getType())
1805    return nullptr;
1806
1807  if (C == A || C == B) {
1808    // MAX(MAX(A, B), B) -> MAX(A, B)
1809    // MIN(MIN(a, b), a) -> MIN(a, b)
1810    // TODO: This could be done in instsimplify.
1811    if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1812      return replaceInstUsesWith(Outer, Inner);
1813  }
1814
1815  return nullptr;
1816}
1817
1818/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1819/// This is even legal for FP.
1820static Instruction *foldAddSubSelect(SelectInst &SI,
1821                                     InstCombiner::BuilderTy &Builder) {
1822  Value *CondVal = SI.getCondition();
1823  Value *TrueVal = SI.getTrueValue();
1824  Value *FalseVal = SI.getFalseValue();
1825  auto *TI = dyn_cast<Instruction>(TrueVal);
1826  auto *FI = dyn_cast<Instruction>(FalseVal);
1827  if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1828    return nullptr;
1829
1830  Instruction *AddOp = nullptr, *SubOp = nullptr;
1831  if ((TI->getOpcode() == Instruction::Sub &&
1832       FI->getOpcode() == Instruction::Add) ||
1833      (TI->getOpcode() == Instruction::FSub &&
1834       FI->getOpcode() == Instruction::FAdd)) {
1835    AddOp = FI;
1836    SubOp = TI;
1837  } else if ((FI->getOpcode() == Instruction::Sub &&
1838              TI->getOpcode() == Instruction::Add) ||
1839             (FI->getOpcode() == Instruction::FSub &&
1840              TI->getOpcode() == Instruction::FAdd)) {
1841    AddOp = TI;
1842    SubOp = FI;
1843  }
1844
1845  if (AddOp) {
1846    Value *OtherAddOp = nullptr;
1847    if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1848      OtherAddOp = AddOp->getOperand(1);
1849    } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1850      OtherAddOp = AddOp->getOperand(0);
1851    }
1852
1853    if (OtherAddOp) {
1854      // So at this point we know we have (Y -> OtherAddOp):
1855      //        select C, (add X, Y), (sub X, Z)
1856      Value *NegVal; // Compute -Z
1857      if (SI.getType()->isFPOrFPVectorTy()) {
1858        NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1859        if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1860          FastMathFlags Flags = AddOp->getFastMathFlags();
1861          Flags &= SubOp->getFastMathFlags();
1862          NegInst->setFastMathFlags(Flags);
1863        }
1864      } else {
1865        NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1866      }
1867
1868      Value *NewTrueOp = OtherAddOp;
1869      Value *NewFalseOp = NegVal;
1870      if (AddOp != TI)
1871        std::swap(NewTrueOp, NewFalseOp);
1872      Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1873                                           SI.getName() + ".p", &SI);
1874
1875      if (SI.getType()->isFPOrFPVectorTy()) {
1876        Instruction *RI =
1877            BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1878
1879        FastMathFlags Flags = AddOp->getFastMathFlags();
1880        Flags &= SubOp->getFastMathFlags();
1881        RI->setFastMathFlags(Flags);
1882        return RI;
1883      } else
1884        return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1885    }
1886  }
1887  return nullptr;
1888}
1889
1890/// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1891/// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1892/// Along with a number of patterns similar to:
1893/// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1894/// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1895static Instruction *
1896foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1897  Value *CondVal = SI.getCondition();
1898  Value *TrueVal = SI.getTrueValue();
1899  Value *FalseVal = SI.getFalseValue();
1900
1901  WithOverflowInst *II;
1902  if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1903      !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1904    return nullptr;
1905
1906  Value *X = II->getLHS();
1907  Value *Y = II->getRHS();
1908
1909  auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1910    Type *Ty = Limit->getType();
1911
1912    ICmpInst::Predicate Pred;
1913    Value *TrueVal, *FalseVal, *Op;
1914    const APInt *C;
1915    if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1916                               m_Value(TrueVal), m_Value(FalseVal))))
1917      return false;
1918
1919    auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1920    auto IsMinMax = [&](Value *Min, Value *Max) {
1921      APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1922      APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1923      return match(Min, m_SpecificInt(MinVal)) &&
1924             match(Max, m_SpecificInt(MaxVal));
1925    };
1926
1927    if (Op != X && Op != Y)
1928      return false;
1929
1930    if (IsAdd) {
1931      // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1932      // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1933      // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1934      // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1935      if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1936          IsMinMax(TrueVal, FalseVal))
1937        return true;
1938      // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1939      // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1940      // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1941      // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1942      if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1943          IsMinMax(FalseVal, TrueVal))
1944        return true;
1945    } else {
1946      // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1947      // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1948      if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1949          IsMinMax(TrueVal, FalseVal))
1950        return true;
1951      // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1952      // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1953      if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1954          IsMinMax(FalseVal, TrueVal))
1955        return true;
1956      // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1957      // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1958      if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1959          IsMinMax(FalseVal, TrueVal))
1960        return true;
1961      // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1962      // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1963      if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1964          IsMinMax(TrueVal, FalseVal))
1965        return true;
1966    }
1967
1968    return false;
1969  };
1970
1971  Intrinsic::ID NewIntrinsicID;
1972  if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1973      match(TrueVal, m_AllOnes()))
1974    // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1975    NewIntrinsicID = Intrinsic::uadd_sat;
1976  else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1977           match(TrueVal, m_Zero()))
1978    // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1979    NewIntrinsicID = Intrinsic::usub_sat;
1980  else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1981           IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1982    // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1983    // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1984    // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1985    // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1986    // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1987    // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1988    // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1989    // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1990    NewIntrinsicID = Intrinsic::sadd_sat;
1991  else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1992           IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1993    // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1994    // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1995    // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1996    // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1997    // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1998    // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1999    // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2000    // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2001    NewIntrinsicID = Intrinsic::ssub_sat;
2002  else
2003    return nullptr;
2004
2005  Function *F =
2006      Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2007  return CallInst::Create(F, {X, Y});
2008}
2009
2010Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2011  Constant *C;
2012  if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2013      !match(Sel.getFalseValue(), m_Constant(C)))
2014    return nullptr;
2015
2016  Instruction *ExtInst;
2017  if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2018      !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2019    return nullptr;
2020
2021  auto ExtOpcode = ExtInst->getOpcode();
2022  if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2023    return nullptr;
2024
2025  // If we are extending from a boolean type or if we can create a select that
2026  // has the same size operands as its condition, try to narrow the select.
2027  Value *X = ExtInst->getOperand(0);
2028  Type *SmallType = X->getType();
2029  Value *Cond = Sel.getCondition();
2030  auto *Cmp = dyn_cast<CmpInst>(Cond);
2031  if (!SmallType->isIntOrIntVectorTy(1) &&
2032      (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2033    return nullptr;
2034
2035  // If the constant is the same after truncation to the smaller type and
2036  // extension to the original type, we can narrow the select.
2037  Type *SelType = Sel.getType();
2038  Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2039  Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2040  if (ExtC == C && ExtInst->hasOneUse()) {
2041    Value *TruncCVal = cast<Value>(TruncC);
2042    if (ExtInst == Sel.getFalseValue())
2043      std::swap(X, TruncCVal);
2044
2045    // select Cond, (ext X), C --> ext(select Cond, X, C')
2046    // select Cond, C, (ext X) --> ext(select Cond, C', X)
2047    Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2048    return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2049  }
2050
2051  // If one arm of the select is the extend of the condition, replace that arm
2052  // with the extension of the appropriate known bool value.
2053  if (Cond == X) {
2054    if (ExtInst == Sel.getTrueValue()) {
2055      // select X, (sext X), C --> select X, -1, C
2056      // select X, (zext X), C --> select X,  1, C
2057      Constant *One = ConstantInt::getTrue(SmallType);
2058      Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2059      return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2060    } else {
2061      // select X, C, (sext X) --> select X, C, 0
2062      // select X, C, (zext X) --> select X, C, 0
2063      Constant *Zero = ConstantInt::getNullValue(SelType);
2064      return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2065    }
2066  }
2067
2068  return nullptr;
2069}
2070
2071/// Try to transform a vector select with a constant condition vector into a
2072/// shuffle for easier combining with other shuffles and insert/extract.
2073static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2074  Value *CondVal = SI.getCondition();
2075  Constant *CondC;
2076  auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2077  if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2078    return nullptr;
2079
2080  unsigned NumElts = CondValTy->getNumElements();
2081  SmallVector<int, 16> Mask;
2082  Mask.reserve(NumElts);
2083  for (unsigned i = 0; i != NumElts; ++i) {
2084    Constant *Elt = CondC->getAggregateElement(i);
2085    if (!Elt)
2086      return nullptr;
2087
2088    if (Elt->isOneValue()) {
2089      // If the select condition element is true, choose from the 1st vector.
2090      Mask.push_back(i);
2091    } else if (Elt->isNullValue()) {
2092      // If the select condition element is false, choose from the 2nd vector.
2093      Mask.push_back(i + NumElts);
2094    } else if (isa<UndefValue>(Elt)) {
2095      // Undef in a select condition (choose one of the operands) does not mean
2096      // the same thing as undef in a shuffle mask (any value is acceptable), so
2097      // give up.
2098      return nullptr;
2099    } else {
2100      // Bail out on a constant expression.
2101      return nullptr;
2102    }
2103  }
2104
2105  return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2106}
2107
2108/// If we have a select of vectors with a scalar condition, try to convert that
2109/// to a vector select by splatting the condition. A splat may get folded with
2110/// other operations in IR and having all operands of a select be vector types
2111/// is likely better for vector codegen.
2112static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2113                                                   InstCombinerImpl &IC) {
2114  auto *Ty = dyn_cast<VectorType>(Sel.getType());
2115  if (!Ty)
2116    return nullptr;
2117
2118  // We can replace a single-use extract with constant index.
2119  Value *Cond = Sel.getCondition();
2120  if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2121    return nullptr;
2122
2123  // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2124  // Splatting the extracted condition reduces code (we could directly create a
2125  // splat shuffle of the source vector to eliminate the intermediate step).
2126  return IC.replaceOperand(
2127      Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2128}
2129
2130/// Reuse bitcasted operands between a compare and select:
2131/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2132/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2133static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2134                                          InstCombiner::BuilderTy &Builder) {
2135  Value *Cond = Sel.getCondition();
2136  Value *TVal = Sel.getTrueValue();
2137  Value *FVal = Sel.getFalseValue();
2138
2139  CmpInst::Predicate Pred;
2140  Value *A, *B;
2141  if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2142    return nullptr;
2143
2144  // The select condition is a compare instruction. If the select's true/false
2145  // values are already the same as the compare operands, there's nothing to do.
2146  if (TVal == A || TVal == B || FVal == A || FVal == B)
2147    return nullptr;
2148
2149  Value *C, *D;
2150  if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2151    return nullptr;
2152
2153  // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2154  Value *TSrc, *FSrc;
2155  if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2156      !match(FVal, m_BitCast(m_Value(FSrc))))
2157    return nullptr;
2158
2159  // If the select true/false values are *different bitcasts* of the same source
2160  // operands, make the select operands the same as the compare operands and
2161  // cast the result. This is the canonical select form for min/max.
2162  Value *NewSel;
2163  if (TSrc == C && FSrc == D) {
2164    // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2165    // bitcast (select (cmp A, B), A, B)
2166    NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2167  } else if (TSrc == D && FSrc == C) {
2168    // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2169    // bitcast (select (cmp A, B), B, A)
2170    NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2171  } else {
2172    return nullptr;
2173  }
2174  return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2175}
2176
2177/// Try to eliminate select instructions that test the returned flag of cmpxchg
2178/// instructions.
2179///
2180/// If a select instruction tests the returned flag of a cmpxchg instruction and
2181/// selects between the returned value of the cmpxchg instruction its compare
2182/// operand, the result of the select will always be equal to its false value.
2183/// For example:
2184///
2185///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2186///   %1 = extractvalue { i64, i1 } %0, 1
2187///   %2 = extractvalue { i64, i1 } %0, 0
2188///   %3 = select i1 %1, i64 %compare, i64 %2
2189///   ret i64 %3
2190///
2191/// The returned value of the cmpxchg instruction (%2) is the original value
2192/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2193/// must have been equal to %compare. Thus, the result of the select is always
2194/// equal to %2, and the code can be simplified to:
2195///
2196///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2197///   %1 = extractvalue { i64, i1 } %0, 0
2198///   ret i64 %1
2199///
2200static Value *foldSelectCmpXchg(SelectInst &SI) {
2201  // A helper that determines if V is an extractvalue instruction whose
2202  // aggregate operand is a cmpxchg instruction and whose single index is equal
2203  // to I. If such conditions are true, the helper returns the cmpxchg
2204  // instruction; otherwise, a nullptr is returned.
2205  auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2206    auto *Extract = dyn_cast<ExtractValueInst>(V);
2207    if (!Extract)
2208      return nullptr;
2209    if (Extract->getIndices()[0] != I)
2210      return nullptr;
2211    return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2212  };
2213
2214  // If the select has a single user, and this user is a select instruction that
2215  // we can simplify, skip the cmpxchg simplification for now.
2216  if (SI.hasOneUse())
2217    if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2218      if (Select->getCondition() == SI.getCondition())
2219        if (Select->getFalseValue() == SI.getTrueValue() ||
2220            Select->getTrueValue() == SI.getFalseValue())
2221          return nullptr;
2222
2223  // Ensure the select condition is the returned flag of a cmpxchg instruction.
2224  auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2225  if (!CmpXchg)
2226    return nullptr;
2227
2228  // Check the true value case: The true value of the select is the returned
2229  // value of the same cmpxchg used by the condition, and the false value is the
2230  // cmpxchg instruction's compare operand.
2231  if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2232    if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2233      return SI.getFalseValue();
2234
2235  // Check the false value case: The false value of the select is the returned
2236  // value of the same cmpxchg used by the condition, and the true value is the
2237  // cmpxchg instruction's compare operand.
2238  if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2239    if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2240      return SI.getFalseValue();
2241
2242  return nullptr;
2243}
2244
2245/// Try to reduce a funnel/rotate pattern that includes a compare and select
2246/// into a funnel shift intrinsic. Example:
2247/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2248///              --> call llvm.fshl.i32(a, a, b)
2249/// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2250///                 --> call llvm.fshl.i32(a, b, c)
2251/// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2252///                 --> call llvm.fshr.i32(a, b, c)
2253static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2254                                          InstCombiner::BuilderTy &Builder) {
2255  // This must be a power-of-2 type for a bitmasking transform to be valid.
2256  unsigned Width = Sel.getType()->getScalarSizeInBits();
2257  if (!isPowerOf2_32(Width))
2258    return nullptr;
2259
2260  BinaryOperator *Or0, *Or1;
2261  if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2262    return nullptr;
2263
2264  Value *SV0, *SV1, *SA0, *SA1;
2265  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2266                                          m_ZExtOrSelf(m_Value(SA0))))) ||
2267      !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2268                                          m_ZExtOrSelf(m_Value(SA1))))) ||
2269      Or0->getOpcode() == Or1->getOpcode())
2270    return nullptr;
2271
2272  // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2273  if (Or0->getOpcode() == BinaryOperator::LShr) {
2274    std::swap(Or0, Or1);
2275    std::swap(SV0, SV1);
2276    std::swap(SA0, SA1);
2277  }
2278  assert(Or0->getOpcode() == BinaryOperator::Shl &&
2279         Or1->getOpcode() == BinaryOperator::LShr &&
2280         "Illegal or(shift,shift) pair");
2281
2282  // Check the shift amounts to see if they are an opposite pair.
2283  Value *ShAmt;
2284  if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2285    ShAmt = SA0;
2286  else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2287    ShAmt = SA1;
2288  else
2289    return nullptr;
2290
2291  // We should now have this pattern:
2292  // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2293  // The false value of the select must be a funnel-shift of the true value:
2294  // IsFShl -> TVal must be SV0 else TVal must be SV1.
2295  bool IsFshl = (ShAmt == SA0);
2296  Value *TVal = Sel.getTrueValue();
2297  if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2298    return nullptr;
2299
2300  // Finally, see if the select is filtering out a shift-by-zero.
2301  Value *Cond = Sel.getCondition();
2302  ICmpInst::Predicate Pred;
2303  if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2304      Pred != ICmpInst::ICMP_EQ)
2305    return nullptr;
2306
2307  // If this is not a rotate then the select was blocking poison from the
2308  // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2309  if (SV0 != SV1) {
2310    if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2311      SV1 = Builder.CreateFreeze(SV1);
2312    else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2313      SV0 = Builder.CreateFreeze(SV0);
2314  }
2315
2316  // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2317  // Convert to funnel shift intrinsic.
2318  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2319  Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2320  ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2321  return CallInst::Create(F, { SV0, SV1, ShAmt });
2322}
2323
2324static Instruction *foldSelectToCopysign(SelectInst &Sel,
2325                                         InstCombiner::BuilderTy &Builder) {
2326  Value *Cond = Sel.getCondition();
2327  Value *TVal = Sel.getTrueValue();
2328  Value *FVal = Sel.getFalseValue();
2329  Type *SelType = Sel.getType();
2330
2331  // Match select ?, TC, FC where the constants are equal but negated.
2332  // TODO: Generalize to handle a negated variable operand?
2333  const APFloat *TC, *FC;
2334  if (!match(TVal, m_APFloatAllowUndef(TC)) ||
2335      !match(FVal, m_APFloatAllowUndef(FC)) ||
2336      !abs(*TC).bitwiseIsEqual(abs(*FC)))
2337    return nullptr;
2338
2339  assert(TC != FC && "Expected equal select arms to simplify");
2340
2341  Value *X;
2342  const APInt *C;
2343  bool IsTrueIfSignSet;
2344  ICmpInst::Predicate Pred;
2345  if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2346      !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2347      X->getType() != SelType)
2348    return nullptr;
2349
2350  // If needed, negate the value that will be the sign argument of the copysign:
2351  // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2352  // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2353  // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2354  // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2355  // Note: FMF from the select can not be propagated to the new instructions.
2356  if (IsTrueIfSignSet ^ TC->isNegative())
2357    X = Builder.CreateFNeg(X);
2358
2359  // Canonicalize the magnitude argument as the positive constant since we do
2360  // not care about its sign.
2361  Value *MagArg = ConstantFP::get(SelType, abs(*TC));
2362  Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2363                                          Sel.getType());
2364  return CallInst::Create(F, { MagArg, X });
2365}
2366
2367Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2368  if (!isa<VectorType>(Sel.getType()))
2369    return nullptr;
2370
2371  Value *Cond = Sel.getCondition();
2372  Value *TVal = Sel.getTrueValue();
2373  Value *FVal = Sel.getFalseValue();
2374  Value *C, *X, *Y;
2375
2376  if (match(Cond, m_VecReverse(m_Value(C)))) {
2377    auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
2378      Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
2379      if (auto *I = dyn_cast<Instruction>(V))
2380        I->copyIRFlags(&Sel);
2381      Module *M = Sel.getModule();
2382      Function *F = Intrinsic::getDeclaration(
2383          M, Intrinsic::experimental_vector_reverse, V->getType());
2384      return CallInst::Create(F, V);
2385    };
2386
2387    if (match(TVal, m_VecReverse(m_Value(X)))) {
2388      // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
2389      if (match(FVal, m_VecReverse(m_Value(Y))) &&
2390          (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
2391        return createSelReverse(C, X, Y);
2392
2393      // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
2394      if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
2395        return createSelReverse(C, X, FVal);
2396    }
2397    // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
2398    else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
2399             (Cond->hasOneUse() || FVal->hasOneUse()))
2400      return createSelReverse(C, TVal, Y);
2401  }
2402
2403  auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2404  if (!VecTy)
2405    return nullptr;
2406
2407  unsigned NumElts = VecTy->getNumElements();
2408  APInt UndefElts(NumElts, 0);
2409  APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2410  if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2411    if (V != &Sel)
2412      return replaceInstUsesWith(Sel, V);
2413    return &Sel;
2414  }
2415
2416  // A select of a "select shuffle" with a common operand can be rearranged
2417  // to select followed by "select shuffle". Because of poison, this only works
2418  // in the case of a shuffle with no undefined mask elements.
2419  ArrayRef<int> Mask;
2420  if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2421      !is_contained(Mask, UndefMaskElem) &&
2422      cast<ShuffleVectorInst>(TVal)->isSelect()) {
2423    if (X == FVal) {
2424      // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2425      Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2426      return new ShuffleVectorInst(X, NewSel, Mask);
2427    }
2428    if (Y == FVal) {
2429      // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2430      Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2431      return new ShuffleVectorInst(NewSel, Y, Mask);
2432    }
2433  }
2434  if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2435      !is_contained(Mask, UndefMaskElem) &&
2436      cast<ShuffleVectorInst>(FVal)->isSelect()) {
2437    if (X == TVal) {
2438      // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2439      Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2440      return new ShuffleVectorInst(X, NewSel, Mask);
2441    }
2442    if (Y == TVal) {
2443      // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2444      Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2445      return new ShuffleVectorInst(NewSel, Y, Mask);
2446    }
2447  }
2448
2449  return nullptr;
2450}
2451
2452static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2453                                        const DominatorTree &DT,
2454                                        InstCombiner::BuilderTy &Builder) {
2455  // Find the block's immediate dominator that ends with a conditional branch
2456  // that matches select's condition (maybe inverted).
2457  auto *IDomNode = DT[BB]->getIDom();
2458  if (!IDomNode)
2459    return nullptr;
2460  BasicBlock *IDom = IDomNode->getBlock();
2461
2462  Value *Cond = Sel.getCondition();
2463  Value *IfTrue, *IfFalse;
2464  BasicBlock *TrueSucc, *FalseSucc;
2465  if (match(IDom->getTerminator(),
2466            m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2467                 m_BasicBlock(FalseSucc)))) {
2468    IfTrue = Sel.getTrueValue();
2469    IfFalse = Sel.getFalseValue();
2470  } else if (match(IDom->getTerminator(),
2471                   m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2472                        m_BasicBlock(FalseSucc)))) {
2473    IfTrue = Sel.getFalseValue();
2474    IfFalse = Sel.getTrueValue();
2475  } else
2476    return nullptr;
2477
2478  // Make sure the branches are actually different.
2479  if (TrueSucc == FalseSucc)
2480    return nullptr;
2481
2482  // We want to replace select %cond, %a, %b with a phi that takes value %a
2483  // for all incoming edges that are dominated by condition `%cond == true`,
2484  // and value %b for edges dominated by condition `%cond == false`. If %a
2485  // or %b are also phis from the same basic block, we can go further and take
2486  // their incoming values from the corresponding blocks.
2487  BasicBlockEdge TrueEdge(IDom, TrueSucc);
2488  BasicBlockEdge FalseEdge(IDom, FalseSucc);
2489  DenseMap<BasicBlock *, Value *> Inputs;
2490  for (auto *Pred : predecessors(BB)) {
2491    // Check implication.
2492    BasicBlockEdge Incoming(Pred, BB);
2493    if (DT.dominates(TrueEdge, Incoming))
2494      Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2495    else if (DT.dominates(FalseEdge, Incoming))
2496      Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2497    else
2498      return nullptr;
2499    // Check availability.
2500    if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2501      if (!DT.dominates(Insn, Pred->getTerminator()))
2502        return nullptr;
2503  }
2504
2505  Builder.SetInsertPoint(&*BB->begin());
2506  auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2507  for (auto *Pred : predecessors(BB))
2508    PN->addIncoming(Inputs[Pred], Pred);
2509  PN->takeName(&Sel);
2510  return PN;
2511}
2512
2513static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2514                                    InstCombiner::BuilderTy &Builder) {
2515  // Try to replace this select with Phi in one of these blocks.
2516  SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2517  CandidateBlocks.insert(Sel.getParent());
2518  for (Value *V : Sel.operands())
2519    if (auto *I = dyn_cast<Instruction>(V))
2520      CandidateBlocks.insert(I->getParent());
2521
2522  for (BasicBlock *BB : CandidateBlocks)
2523    if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2524      return PN;
2525  return nullptr;
2526}
2527
2528static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2529  FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2530  if (!FI)
2531    return nullptr;
2532
2533  Value *Cond = FI->getOperand(0);
2534  Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2535
2536  //   select (freeze(x == y)), x, y --> y
2537  //   select (freeze(x != y)), x, y --> x
2538  // The freeze should be only used by this select. Otherwise, remaining uses of
2539  // the freeze can observe a contradictory value.
2540  //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2541  //   a = select c, x, y   ;
2542  //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2543  //                        ; to y, this can happen.
2544  CmpInst::Predicate Pred;
2545  if (FI->hasOneUse() &&
2546      match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2547      (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2548    return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2549  }
2550
2551  return nullptr;
2552}
2553
2554Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2555                                                                 SelectInst &SI,
2556                                                                 bool IsAnd) {
2557  Value *CondVal = SI.getCondition();
2558  Value *A = SI.getTrueValue();
2559  Value *B = SI.getFalseValue();
2560
2561  assert(Op->getType()->isIntOrIntVectorTy(1) &&
2562         "Op must be either i1 or vector of i1.");
2563
2564  std::optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2565  if (!Res)
2566    return nullptr;
2567
2568  Value *Zero = Constant::getNullValue(A->getType());
2569  Value *One = Constant::getAllOnesValue(A->getType());
2570
2571  if (*Res == true) {
2572    if (IsAnd)
2573      // select op, (select cond, A, B), false => select op, A, false
2574      // and    op, (select cond, A, B)        => select op, A, false
2575      //   if op = true implies condval = true.
2576      return SelectInst::Create(Op, A, Zero);
2577    else
2578      // select op, true, (select cond, A, B) => select op, true, A
2579      // or     op, (select cond, A, B)       => select op, true, A
2580      //   if op = false implies condval = true.
2581      return SelectInst::Create(Op, One, A);
2582  } else {
2583    if (IsAnd)
2584      // select op, (select cond, A, B), false => select op, B, false
2585      // and    op, (select cond, A, B)        => select op, B, false
2586      //   if op = true implies condval = false.
2587      return SelectInst::Create(Op, B, Zero);
2588    else
2589      // select op, true, (select cond, A, B) => select op, true, B
2590      // or     op, (select cond, A, B)       => select op, true, B
2591      //   if op = false implies condval = false.
2592      return SelectInst::Create(Op, One, B);
2593  }
2594}
2595
2596// Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2597// fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2598static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
2599                                             InstCombinerImpl &IC) {
2600  Value *CondVal = SI.getCondition();
2601
2602  bool ChangedFMF = false;
2603  for (bool Swap : {false, true}) {
2604    Value *TrueVal = SI.getTrueValue();
2605    Value *X = SI.getFalseValue();
2606    CmpInst::Predicate Pred;
2607
2608    if (Swap)
2609      std::swap(TrueVal, X);
2610
2611    if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
2612      continue;
2613
2614    // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
2615    // fold (X >  +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
2616    if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) {
2617      if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2618        Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2619        return IC.replaceInstUsesWith(SI, Fabs);
2620      }
2621      if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2622        Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2623        return IC.replaceInstUsesWith(SI, Fabs);
2624      }
2625    }
2626
2627    if (!match(TrueVal, m_FNeg(m_Specific(X))))
2628      return nullptr;
2629
2630    // Forward-propagate nnan and ninf from the fneg to the select.
2631    // If all inputs are not those values, then the select is not either.
2632    // Note: nsz is defined differently, so it may not be correct to propagate.
2633    FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
2634    if (FMF.noNaNs() && !SI.hasNoNaNs()) {
2635      SI.setHasNoNaNs(true);
2636      ChangedFMF = true;
2637    }
2638    if (FMF.noInfs() && !SI.hasNoInfs()) {
2639      SI.setHasNoInfs(true);
2640      ChangedFMF = true;
2641    }
2642
2643    // With nsz, when 'Swap' is false:
2644    // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
2645    // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
2646    // when 'Swap' is true:
2647    // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
2648    // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
2649    //
2650    // Note: We require "nnan" for this fold because fcmp ignores the signbit
2651    //       of NAN, but IEEE-754 specifies the signbit of NAN values with
2652    //       fneg/fabs operations.
2653    if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs())
2654      return nullptr;
2655
2656    if (Swap)
2657      Pred = FCmpInst::getSwappedPredicate(Pred);
2658
2659    bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2660                    Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
2661    bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2662                    Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
2663
2664    if (IsLTOrLE) {
2665      Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2666      return IC.replaceInstUsesWith(SI, Fabs);
2667    }
2668    if (IsGTOrGE) {
2669      Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2670      Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
2671      NewFNeg->setFastMathFlags(SI.getFastMathFlags());
2672      return NewFNeg;
2673    }
2674  }
2675
2676  return ChangedFMF ? &SI : nullptr;
2677}
2678
2679// Match the following IR pattern:
2680//   %x.lowbits = and i8 %x, %lowbitmask
2681//   %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
2682//   %x.biased = add i8 %x, %bias
2683//   %x.biased.highbits = and i8 %x.biased, %highbitmask
2684//   %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
2685// Define:
2686//   %alignment = add i8 %lowbitmask, 1
2687// Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
2688// and 2. %bias is equal to either %lowbitmask or %alignment,
2689// and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
2690// then this pattern can be transformed into:
2691//   %x.offset = add i8 %x, %lowbitmask
2692//   %x.roundedup = and i8 %x.offset, %highbitmask
2693static Value *
2694foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
2695                                    InstCombiner::BuilderTy &Builder) {
2696  Value *Cond = SI.getCondition();
2697  Value *X = SI.getTrueValue();
2698  Value *XBiasedHighBits = SI.getFalseValue();
2699
2700  ICmpInst::Predicate Pred;
2701  Value *XLowBits;
2702  if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
2703      !ICmpInst::isEquality(Pred))
2704    return nullptr;
2705
2706  if (Pred == ICmpInst::Predicate::ICMP_NE)
2707    std::swap(X, XBiasedHighBits);
2708
2709  // FIXME: we could support non non-splats here.
2710
2711  const APInt *LowBitMaskCst;
2712  if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst))))
2713    return nullptr;
2714
2715  // Match even if the AND and ADD are swapped.
2716  const APInt *BiasCst, *HighBitMaskCst;
2717  if (!match(XBiasedHighBits,
2718             m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)),
2719                   m_APIntAllowUndef(HighBitMaskCst))) &&
2720      !match(XBiasedHighBits,
2721             m_Add(m_And(m_Specific(X), m_APIntAllowUndef(HighBitMaskCst)),
2722                   m_APIntAllowUndef(BiasCst))))
2723    return nullptr;
2724
2725  if (!LowBitMaskCst->isMask())
2726    return nullptr;
2727
2728  APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
2729  if (InvertedLowBitMaskCst != *HighBitMaskCst)
2730    return nullptr;
2731
2732  APInt AlignmentCst = *LowBitMaskCst + 1;
2733
2734  if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
2735    return nullptr;
2736
2737  if (!XBiasedHighBits->hasOneUse()) {
2738    if (*BiasCst == *LowBitMaskCst)
2739      return XBiasedHighBits;
2740    return nullptr;
2741  }
2742
2743  // FIXME: could we preserve undef's here?
2744  Type *Ty = X->getType();
2745  Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
2746                                     X->getName() + ".biased");
2747  Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
2748  R->takeName(&SI);
2749  return R;
2750}
2751
2752namespace {
2753struct DecomposedSelect {
2754  Value *Cond = nullptr;
2755  Value *TrueVal = nullptr;
2756  Value *FalseVal = nullptr;
2757};
2758} // namespace
2759
2760/// Look for patterns like
2761///   %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
2762///   %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
2763///   %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
2764/// and rewrite it as
2765///   %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
2766///   %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
2767static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
2768                                      InstCombiner::BuilderTy &Builder) {
2769  // We must start with a `select`.
2770  DecomposedSelect OuterSel;
2771  match(&OuterSelVal,
2772        m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
2773                 m_Value(OuterSel.FalseVal)));
2774
2775  // Canonicalize inversion of the outermost `select`'s condition.
2776  if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
2777    std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
2778
2779  // The condition of the outermost select must be an `and`/`or`.
2780  if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
2781    return nullptr;
2782
2783  // Depending on the logical op, inner select might be in different hand.
2784  bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
2785  Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
2786
2787  // Profitability check - avoid increasing instruction count.
2788  if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
2789              [](Value *V) { return V->hasOneUse(); }))
2790    return nullptr;
2791
2792  // The appropriate hand of the outermost `select` must be a select itself.
2793  DecomposedSelect InnerSel;
2794  if (!match(InnerSelVal,
2795             m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
2796                      m_Value(InnerSel.FalseVal))))
2797    return nullptr;
2798
2799  // Canonicalize inversion of the innermost `select`'s condition.
2800  if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
2801    std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2802
2803  Value *AltCond = nullptr;
2804  auto matchOuterCond = [OuterSel, &AltCond](auto m_InnerCond) {
2805    return match(OuterSel.Cond, m_c_LogicalOp(m_InnerCond, m_Value(AltCond)));
2806  };
2807
2808  // Finally, match the condition that was driving the outermost `select`,
2809  // it should be a logical operation between the condition that was driving
2810  // the innermost `select` (after accounting for the possible inversions
2811  // of the condition), and some other condition.
2812  if (matchOuterCond(m_Specific(InnerSel.Cond))) {
2813    // Done!
2814  } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
2815                 m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
2816    // Done!
2817    std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2818    InnerSel.Cond = NotInnerCond;
2819  } else // Not the pattern we were looking for.
2820    return nullptr;
2821
2822  Value *SelInner = Builder.CreateSelect(
2823      AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
2824      IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
2825  SelInner->takeName(InnerSelVal);
2826  return SelectInst::Create(InnerSel.Cond,
2827                            IsAndVariant ? SelInner : InnerSel.TrueVal,
2828                            !IsAndVariant ? SelInner : InnerSel.FalseVal);
2829}
2830
2831Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) {
2832  Value *CondVal = SI.getCondition();
2833  Value *TrueVal = SI.getTrueValue();
2834  Value *FalseVal = SI.getFalseValue();
2835  Type *SelType = SI.getType();
2836
2837  // Avoid potential infinite loops by checking for non-constant condition.
2838  // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2839  //       Scalar select must have simplified?
2840  if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
2841      TrueVal->getType() != CondVal->getType())
2842    return nullptr;
2843
2844  auto *One = ConstantInt::getTrue(SelType);
2845  auto *Zero = ConstantInt::getFalse(SelType);
2846  Value *A, *B, *C, *D;
2847
2848  // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2849  // checks whether folding it does not convert a well-defined value into
2850  // poison.
2851  if (match(TrueVal, m_One())) {
2852    if (impliesPoison(FalseVal, CondVal)) {
2853      // Change: A = select B, true, C --> A = or B, C
2854      return BinaryOperator::CreateOr(CondVal, FalseVal);
2855    }
2856
2857    if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2858      if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
2859        if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
2860                                        /*IsSelectLogical*/ true))
2861          return replaceInstUsesWith(SI, V);
2862
2863    // (A && B) || (C && B) --> (A || C) && B
2864    if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
2865        match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
2866        (CondVal->hasOneUse() || FalseVal->hasOneUse())) {
2867      bool CondLogicAnd = isa<SelectInst>(CondVal);
2868      bool FalseLogicAnd = isa<SelectInst>(FalseVal);
2869      auto AndFactorization = [&](Value *Common, Value *InnerCond,
2870                                  Value *InnerVal,
2871                                  bool SelFirst = false) -> Instruction * {
2872        Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
2873        if (SelFirst)
2874          std::swap(Common, InnerSel);
2875        if (FalseLogicAnd || (CondLogicAnd && Common == A))
2876          return SelectInst::Create(Common, InnerSel, Zero);
2877        else
2878          return BinaryOperator::CreateAnd(Common, InnerSel);
2879      };
2880
2881      if (A == C)
2882        return AndFactorization(A, B, D);
2883      if (A == D)
2884        return AndFactorization(A, B, C);
2885      if (B == C)
2886        return AndFactorization(B, A, D);
2887      if (B == D)
2888        return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
2889    }
2890  }
2891
2892  if (match(FalseVal, m_Zero())) {
2893    if (impliesPoison(TrueVal, CondVal)) {
2894      // Change: A = select B, C, false --> A = and B, C
2895      return BinaryOperator::CreateAnd(CondVal, TrueVal);
2896    }
2897
2898    if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2899      if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
2900        if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
2901                                        /*IsSelectLogical*/ true))
2902          return replaceInstUsesWith(SI, V);
2903
2904    // (A || B) && (C || B) --> (A && C) || B
2905    if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
2906        match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
2907        (CondVal->hasOneUse() || TrueVal->hasOneUse())) {
2908      bool CondLogicOr = isa<SelectInst>(CondVal);
2909      bool TrueLogicOr = isa<SelectInst>(TrueVal);
2910      auto OrFactorization = [&](Value *Common, Value *InnerCond,
2911                                 Value *InnerVal,
2912                                 bool SelFirst = false) -> Instruction * {
2913        Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
2914        if (SelFirst)
2915          std::swap(Common, InnerSel);
2916        if (TrueLogicOr || (CondLogicOr && Common == A))
2917          return SelectInst::Create(Common, One, InnerSel);
2918        else
2919          return BinaryOperator::CreateOr(Common, InnerSel);
2920      };
2921
2922      if (A == C)
2923        return OrFactorization(A, B, D);
2924      if (A == D)
2925        return OrFactorization(A, B, C);
2926      if (B == C)
2927        return OrFactorization(B, A, D);
2928      if (B == D)
2929        return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
2930    }
2931  }
2932
2933  // We match the "full" 0 or 1 constant here to avoid a potential infinite
2934  // loop with vectors that may have undefined/poison elements.
2935  // select a, false, b -> select !a, b, false
2936  if (match(TrueVal, m_Specific(Zero))) {
2937    Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2938    return SelectInst::Create(NotCond, FalseVal, Zero);
2939  }
2940  // select a, b, true -> select !a, true, b
2941  if (match(FalseVal, m_Specific(One))) {
2942    Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2943    return SelectInst::Create(NotCond, One, TrueVal);
2944  }
2945
2946  // DeMorgan in select form: !a && !b --> !(a || b)
2947  // select !a, !b, false --> not (select a, true, b)
2948  if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2949      (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2950      !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2951    return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2952
2953  // DeMorgan in select form: !a || !b --> !(a && b)
2954  // select !a, true, !b --> not (select a, b, false)
2955  if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2956      (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2957      !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2958    return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2959
2960  // select (select a, true, b), true, b -> select a, true, b
2961  if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2962      match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2963    return replaceOperand(SI, 0, A);
2964  // select (select a, b, false), b, false -> select a, b, false
2965  if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2966      match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2967    return replaceOperand(SI, 0, A);
2968
2969  // ~(A & B) & (A | B) --> A ^ B
2970  if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))),
2971                                m_c_LogicalOr(m_Deferred(A), m_Deferred(B)))))
2972    return BinaryOperator::CreateXor(A, B);
2973
2974  // select (~a | c), a, b -> and a, (or c, freeze(b))
2975  if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) &&
2976      CondVal->hasOneUse()) {
2977    FalseVal = Builder.CreateFreeze(FalseVal);
2978    return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal));
2979  }
2980  // select (~c & b), a, b -> and b, (or freeze(a), c)
2981  if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) &&
2982      CondVal->hasOneUse()) {
2983    TrueVal = Builder.CreateFreeze(TrueVal);
2984    return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal));
2985  }
2986
2987  if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2988    Use *Y = nullptr;
2989    bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2990    Value *Op1 = IsAnd ? TrueVal : FalseVal;
2991    if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2992      auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2993      InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2994      replaceUse(*Y, FI);
2995      return replaceInstUsesWith(SI, Op1);
2996    }
2997
2998    if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2999      if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
3000                                                      /* IsAnd */ IsAnd))
3001        return I;
3002
3003    if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal))
3004      if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1))
3005        if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd,
3006                                       /* IsLogical */ true))
3007          return replaceInstUsesWith(SI, V);
3008  }
3009
3010  // select (a || b), c, false -> select a, c, false
3011  // select c, (a || b), false -> select c, a, false
3012  //   if c implies that b is false.
3013  if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3014      match(FalseVal, m_Zero())) {
3015    std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
3016    if (Res && *Res == false)
3017      return replaceOperand(SI, 0, A);
3018  }
3019  if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3020      match(FalseVal, m_Zero())) {
3021    std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
3022    if (Res && *Res == false)
3023      return replaceOperand(SI, 1, A);
3024  }
3025  // select c, true, (a && b)  -> select c, true, a
3026  // select (a && b), true, c  -> select a, true, c
3027  //   if c = false implies that b = true
3028  if (match(TrueVal, m_One()) &&
3029      match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3030    std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
3031    if (Res && *Res == true)
3032      return replaceOperand(SI, 2, A);
3033  }
3034  if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3035      match(TrueVal, m_One())) {
3036    std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
3037    if (Res && *Res == true)
3038      return replaceOperand(SI, 0, A);
3039  }
3040
3041  if (match(TrueVal, m_One())) {
3042    Value *C;
3043
3044    // (C && A) || (!C && B) --> sel C, A, B
3045    // (A && C) || (!C && B) --> sel C, A, B
3046    // (C && A) || (B && !C) --> sel C, A, B
3047    // (A && C) || (B && !C) --> sel C, A, B (may require freeze)
3048    if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
3049        match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
3050      auto *SelCond = dyn_cast<SelectInst>(CondVal);
3051      auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3052      bool MayNeedFreeze = SelCond && SelFVal &&
3053                           match(SelFVal->getTrueValue(),
3054                                 m_Not(m_Specific(SelCond->getTrueValue())));
3055      if (MayNeedFreeze)
3056        C = Builder.CreateFreeze(C);
3057      return SelectInst::Create(C, A, B);
3058    }
3059
3060    // (!C && A) || (C && B) --> sel C, B, A
3061    // (A && !C) || (C && B) --> sel C, B, A
3062    // (!C && A) || (B && C) --> sel C, B, A
3063    // (A && !C) || (B && C) --> sel C, B, A (may require freeze)
3064    if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
3065        match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
3066      auto *SelCond = dyn_cast<SelectInst>(CondVal);
3067      auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3068      bool MayNeedFreeze = SelCond && SelFVal &&
3069                           match(SelCond->getTrueValue(),
3070                                 m_Not(m_Specific(SelFVal->getTrueValue())));
3071      if (MayNeedFreeze)
3072        C = Builder.CreateFreeze(C);
3073      return SelectInst::Create(C, B, A);
3074    }
3075  }
3076
3077  return nullptr;
3078}
3079
3080Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
3081  Value *CondVal = SI.getCondition();
3082  Value *TrueVal = SI.getTrueValue();
3083  Value *FalseVal = SI.getFalseValue();
3084  Type *SelType = SI.getType();
3085
3086  if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
3087                                    SQ.getWithInstruction(&SI)))
3088    return replaceInstUsesWith(SI, V);
3089
3090  if (Instruction *I = canonicalizeSelectToShuffle(SI))
3091    return I;
3092
3093  if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
3094    return I;
3095
3096  // If the type of select is not an integer type or if the condition and
3097  // the selection type are not both scalar nor both vector types, there is no
3098  // point in attempting to match these patterns.
3099  Type *CondType = CondVal->getType();
3100  if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
3101      CondType->isVectorTy() == SelType->isVectorTy()) {
3102    if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
3103                                          ConstantInt::getTrue(CondType), SQ,
3104                                          /* AllowRefinement */ true))
3105      return replaceOperand(SI, 1, S);
3106
3107    if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
3108                                          ConstantInt::getFalse(CondType), SQ,
3109                                          /* AllowRefinement */ true))
3110      return replaceOperand(SI, 2, S);
3111
3112    // Handle patterns involving sext/zext + not explicitly,
3113    // as simplifyWithOpReplaced() only looks past one instruction.
3114    Value *NotCond;
3115
3116    // select a, sext(!a), b -> select !a, b, 0
3117    // select a, zext(!a), b -> select !a, b, 0
3118    if (match(TrueVal, m_ZExtOrSExt(m_CombineAnd(m_Value(NotCond),
3119                                                 m_Not(m_Specific(CondVal))))))
3120      return SelectInst::Create(NotCond, FalseVal,
3121                                Constant::getNullValue(SelType));
3122
3123    // select a, b, zext(!a) -> select !a, 1, b
3124    if (match(FalseVal, m_ZExt(m_CombineAnd(m_Value(NotCond),
3125                                            m_Not(m_Specific(CondVal))))))
3126      return SelectInst::Create(NotCond, ConstantInt::get(SelType, 1), TrueVal);
3127
3128    // select a, b, sext(!a) -> select !a, -1, b
3129    if (match(FalseVal, m_SExt(m_CombineAnd(m_Value(NotCond),
3130                                            m_Not(m_Specific(CondVal))))))
3131      return SelectInst::Create(NotCond, Constant::getAllOnesValue(SelType),
3132                                TrueVal);
3133  }
3134
3135  if (Instruction *R = foldSelectOfBools(SI))
3136    return R;
3137
3138  // Selecting between two integer or vector splat integer constants?
3139  //
3140  // Note that we don't handle a scalar select of vectors:
3141  // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
3142  // because that may need 3 instructions to splat the condition value:
3143  // extend, insertelement, shufflevector.
3144  //
3145  // Do not handle i1 TrueVal and FalseVal otherwise would result in
3146  // zext/sext i1 to i1.
3147  if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
3148      CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
3149    // select C, 1, 0 -> zext C to int
3150    if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
3151      return new ZExtInst(CondVal, SelType);
3152
3153    // select C, -1, 0 -> sext C to int
3154    if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
3155      return new SExtInst(CondVal, SelType);
3156
3157    // select C, 0, 1 -> zext !C to int
3158    if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
3159      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3160      return new ZExtInst(NotCond, SelType);
3161    }
3162
3163    // select C, 0, -1 -> sext !C to int
3164    if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
3165      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3166      return new SExtInst(NotCond, SelType);
3167    }
3168  }
3169
3170  if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
3171    Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
3172    // Are we selecting a value based on a comparison of the two values?
3173    if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
3174        (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
3175      // Canonicalize to use ordered comparisons by swapping the select
3176      // operands.
3177      //
3178      // e.g.
3179      // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
3180      if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
3181        FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
3182        IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3183        // FIXME: The FMF should propagate from the select, not the fcmp.
3184        Builder.setFastMathFlags(FCmp->getFastMathFlags());
3185        Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
3186                                            FCmp->getName() + ".inv");
3187        Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
3188        return replaceInstUsesWith(SI, NewSel);
3189      }
3190    }
3191  }
3192
3193  if (isa<FPMathOperator>(SI)) {
3194    // TODO: Try to forward-propagate FMF from select arms to the select.
3195
3196    // Canonicalize select of FP values where NaN and -0.0 are not valid as
3197    // minnum/maxnum intrinsics.
3198    if (SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
3199      Value *X, *Y;
3200      if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3201        return replaceInstUsesWith(
3202            SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3203
3204      if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3205        return replaceInstUsesWith(
3206            SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3207    }
3208  }
3209
3210  // Fold selecting to fabs.
3211  if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
3212    return Fabs;
3213
3214  // See if we are selecting two values based on a comparison of the two values.
3215  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
3216    if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
3217      return Result;
3218
3219  if (Instruction *Add = foldAddSubSelect(SI, Builder))
3220    return Add;
3221  if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3222    return Add;
3223  if (Instruction *Or = foldSetClearBits(SI, Builder))
3224    return Or;
3225  if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3226    return Mul;
3227
3228  // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3229  auto *TI = dyn_cast<Instruction>(TrueVal);
3230  auto *FI = dyn_cast<Instruction>(FalseVal);
3231  if (TI && FI && TI->getOpcode() == FI->getOpcode())
3232    if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3233      return IV;
3234
3235  if (Instruction *I = foldSelectExtConst(SI))
3236    return I;
3237
3238  // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3239  // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3240  auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3241                               bool Swap) -> GetElementPtrInst * {
3242    Value *Ptr = Gep->getPointerOperand();
3243    if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3244        !Gep->hasOneUse())
3245      return nullptr;
3246    Value *Idx = Gep->getOperand(1);
3247    if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3248      return nullptr;
3249    Type *ElementType = Gep->getResultElementType();
3250    Value *NewT = Idx;
3251    Value *NewF = Constant::getNullValue(Idx->getType());
3252    if (Swap)
3253      std::swap(NewT, NewF);
3254    Value *NewSI =
3255        Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3256    return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3257  };
3258  if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3259    if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3260      return NewGep;
3261  if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3262    if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3263      return NewGep;
3264
3265  // See if we can fold the select into one of our operands.
3266  if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3267    if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3268      return FoldI;
3269
3270    Value *LHS, *RHS;
3271    Instruction::CastOps CastOp;
3272    SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3273    auto SPF = SPR.Flavor;
3274    if (SPF) {
3275      Value *LHS2, *RHS2;
3276      if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3277        if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3278                                          RHS2, SI, SPF, RHS))
3279          return R;
3280      if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3281        if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3282                                          RHS2, SI, SPF, LHS))
3283          return R;
3284    }
3285
3286    if (SelectPatternResult::isMinOrMax(SPF)) {
3287      // Canonicalize so that
3288      // - type casts are outside select patterns.
3289      // - float clamp is transformed to min/max pattern
3290
3291      bool IsCastNeeded = LHS->getType() != SelType;
3292      Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3293      Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3294      if (IsCastNeeded ||
3295          (LHS->getType()->isFPOrFPVectorTy() &&
3296           ((CmpLHS != LHS && CmpLHS != RHS) ||
3297            (CmpRHS != LHS && CmpRHS != RHS)))) {
3298        CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3299
3300        Value *Cmp;
3301        if (CmpInst::isIntPredicate(MinMaxPred)) {
3302          Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3303        } else {
3304          IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3305          auto FMF =
3306              cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3307          Builder.setFastMathFlags(FMF);
3308          Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3309        }
3310
3311        Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3312        if (!IsCastNeeded)
3313          return replaceInstUsesWith(SI, NewSI);
3314
3315        Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3316        return replaceInstUsesWith(SI, NewCast);
3317      }
3318    }
3319  }
3320
3321  // See if we can fold the select into a phi node if the condition is a select.
3322  if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3323    // The true/false values have to be live in the PHI predecessor's blocks.
3324    if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3325        canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3326      if (Instruction *NV = foldOpIntoPhi(SI, PN))
3327        return NV;
3328
3329  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3330    if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3331      // select(C, select(C, a, b), c) -> select(C, a, c)
3332      if (TrueSI->getCondition() == CondVal) {
3333        if (SI.getTrueValue() == TrueSI->getTrueValue())
3334          return nullptr;
3335        return replaceOperand(SI, 1, TrueSI->getTrueValue());
3336      }
3337      // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3338      // We choose this as normal form to enable folding on the And and
3339      // shortening paths for the values (this helps getUnderlyingObjects() for
3340      // example).
3341      if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3342        Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3343        replaceOperand(SI, 0, And);
3344        replaceOperand(SI, 1, TrueSI->getTrueValue());
3345        return &SI;
3346      }
3347    }
3348  }
3349  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3350    if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3351      // select(C, a, select(C, b, c)) -> select(C, a, c)
3352      if (FalseSI->getCondition() == CondVal) {
3353        if (SI.getFalseValue() == FalseSI->getFalseValue())
3354          return nullptr;
3355        return replaceOperand(SI, 2, FalseSI->getFalseValue());
3356      }
3357      // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3358      if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3359        Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3360        replaceOperand(SI, 0, Or);
3361        replaceOperand(SI, 2, FalseSI->getFalseValue());
3362        return &SI;
3363      }
3364    }
3365  }
3366
3367  auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3368    // The select might be preventing a division by 0.
3369    switch (BO->getOpcode()) {
3370    default:
3371      return true;
3372    case Instruction::SRem:
3373    case Instruction::URem:
3374    case Instruction::SDiv:
3375    case Instruction::UDiv:
3376      return false;
3377    }
3378  };
3379
3380  // Try to simplify a binop sandwiched between 2 selects with the same
3381  // condition.
3382  // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3383  BinaryOperator *TrueBO;
3384  if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3385      canMergeSelectThroughBinop(TrueBO)) {
3386    if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3387      if (TrueBOSI->getCondition() == CondVal) {
3388        replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3389        Worklist.push(TrueBO);
3390        return &SI;
3391      }
3392    }
3393    if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3394      if (TrueBOSI->getCondition() == CondVal) {
3395        replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3396        Worklist.push(TrueBO);
3397        return &SI;
3398      }
3399    }
3400  }
3401
3402  // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3403  BinaryOperator *FalseBO;
3404  if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3405      canMergeSelectThroughBinop(FalseBO)) {
3406    if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3407      if (FalseBOSI->getCondition() == CondVal) {
3408        replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3409        Worklist.push(FalseBO);
3410        return &SI;
3411      }
3412    }
3413    if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3414      if (FalseBOSI->getCondition() == CondVal) {
3415        replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3416        Worklist.push(FalseBO);
3417        return &SI;
3418      }
3419    }
3420  }
3421
3422  Value *NotCond;
3423  if (match(CondVal, m_Not(m_Value(NotCond))) &&
3424      !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3425    replaceOperand(SI, 0, NotCond);
3426    SI.swapValues();
3427    SI.swapProfMetadata();
3428    return &SI;
3429  }
3430
3431  if (Instruction *I = foldVectorSelect(SI))
3432    return I;
3433
3434  // If we can compute the condition, there's no need for a select.
3435  // Like the above fold, we are attempting to reduce compile-time cost by
3436  // putting this fold here with limitations rather than in InstSimplify.
3437  // The motivation for this call into value tracking is to take advantage of
3438  // the assumption cache, so make sure that is populated.
3439  if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3440    KnownBits Known(1);
3441    computeKnownBits(CondVal, Known, 0, &SI);
3442    if (Known.One.isOne())
3443      return replaceInstUsesWith(SI, TrueVal);
3444    if (Known.Zero.isOne())
3445      return replaceInstUsesWith(SI, FalseVal);
3446  }
3447
3448  if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3449    return BitCastSel;
3450
3451  // Simplify selects that test the returned flag of cmpxchg instructions.
3452  if (Value *V = foldSelectCmpXchg(SI))
3453    return replaceInstUsesWith(SI, V);
3454
3455  if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3456    return Select;
3457
3458  if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3459    return Funnel;
3460
3461  if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3462    return Copysign;
3463
3464  if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3465    return replaceInstUsesWith(SI, PN);
3466
3467  if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3468    return replaceInstUsesWith(SI, Fr);
3469
3470  if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
3471    return replaceInstUsesWith(SI, V);
3472
3473  // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3474  // Load inst is intentionally not checked for hasOneUse()
3475  if (match(FalseVal, m_Zero()) &&
3476      (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3477                                   m_CombineOr(m_Undef(), m_Zero()))) ||
3478       match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3479                                     m_CombineOr(m_Undef(), m_Zero()))))) {
3480    auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3481    if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3482      MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3483    return replaceInstUsesWith(SI, MaskedInst);
3484  }
3485
3486  Value *Mask;
3487  if (match(TrueVal, m_Zero()) &&
3488      (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3489                                    m_CombineOr(m_Undef(), m_Zero()))) ||
3490       match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
3491                                      m_CombineOr(m_Undef(), m_Zero())))) &&
3492      (CondVal->getType() == Mask->getType())) {
3493    // We can remove the select by ensuring the load zeros all lanes the
3494    // select would have.  We determine this by proving there is no overlap
3495    // between the load and select masks.
3496    // (i.e (load_mask & select_mask) == 0 == no overlap)
3497    bool CanMergeSelectIntoLoad = false;
3498    if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3499      CanMergeSelectIntoLoad = match(V, m_Zero());
3500
3501    if (CanMergeSelectIntoLoad) {
3502      auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
3503      if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3504        MaskedInst->setArgOperand(3, TrueVal /* Zero */);
3505      return replaceInstUsesWith(SI, MaskedInst);
3506    }
3507  }
3508
3509  if (Instruction *I = foldNestedSelects(SI, Builder))
3510    return I;
3511
3512  // Match logical variants of the pattern,
3513  // and transform them iff that gets rid of inversions.
3514  //   (~x) | y  -->  ~(x & (~y))
3515  //   (~x) & y  -->  ~(x | (~y))
3516  if (sinkNotIntoOtherHandOfLogicalOp(SI))
3517    return &SI;
3518
3519  return nullptr;
3520}
3521