1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for cast operations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/SetVector.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/IR/DebugInfo.h"
18#include "llvm/IR/PatternMatch.h"
19#include "llvm/Support/KnownBits.h"
20#include "llvm/Transforms/InstCombine/InstCombiner.h"
21#include <optional>
22
23using namespace llvm;
24using namespace PatternMatch;
25
26#define DEBUG_TYPE "instcombine"
27
28/// Analyze 'Val', seeing if it is a simple linear expression.
29/// If so, decompose it, returning some value X, such that Val is
30/// X*Scale+Offset.
31///
32static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
33                                        uint64_t &Offset) {
34  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
35    Offset = CI->getZExtValue();
36    Scale  = 0;
37    return ConstantInt::get(Val->getType(), 0);
38  }
39
40  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
41    // Cannot look past anything that might overflow.
42    // We specifically require nuw because we store the Scale in an unsigned
43    // and perform an unsigned divide on it.
44    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
45    if (OBI && !OBI->hasNoUnsignedWrap()) {
46      Scale = 1;
47      Offset = 0;
48      return Val;
49    }
50
51    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
52      if (I->getOpcode() == Instruction::Shl) {
53        // This is a value scaled by '1 << the shift amt'.
54        Scale = UINT64_C(1) << RHS->getZExtValue();
55        Offset = 0;
56        return I->getOperand(0);
57      }
58
59      if (I->getOpcode() == Instruction::Mul) {
60        // This value is scaled by 'RHS'.
61        Scale = RHS->getZExtValue();
62        Offset = 0;
63        return I->getOperand(0);
64      }
65
66      if (I->getOpcode() == Instruction::Add) {
67        // We have X+C.  Check to see if we really have (X*C2)+C1,
68        // where C1 is divisible by C2.
69        unsigned SubScale;
70        Value *SubVal =
71          decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
72        Offset += RHS->getZExtValue();
73        Scale = SubScale;
74        return SubVal;
75      }
76    }
77  }
78
79  // Otherwise, we can't look past this.
80  Scale = 1;
81  Offset = 0;
82  return Val;
83}
84
85/// If we find a cast of an allocation instruction, try to eliminate the cast by
86/// moving the type information into the alloc.
87Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
88                                                       AllocaInst &AI) {
89  PointerType *PTy = cast<PointerType>(CI.getType());
90  // Opaque pointers don't have an element type we could replace with.
91  if (PTy->isOpaque())
92    return nullptr;
93
94  IRBuilderBase::InsertPointGuard Guard(Builder);
95  Builder.SetInsertPoint(&AI);
96
97  // Get the type really allocated and the type casted to.
98  Type *AllocElTy = AI.getAllocatedType();
99  Type *CastElTy = PTy->getNonOpaquePointerElementType();
100  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
101
102  // This optimisation does not work for cases where the cast type
103  // is scalable and the allocated type is not. This because we need to
104  // know how many times the casted type fits into the allocated type.
105  // For the opposite case where the allocated type is scalable and the
106  // cast type is not this leads to poor code quality due to the
107  // introduction of 'vscale' into the calculations. It seems better to
108  // bail out for this case too until we've done a proper cost-benefit
109  // analysis.
110  bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
111  bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
112  if (AllocIsScalable != CastIsScalable) return nullptr;
113
114  Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
115  Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
116  if (CastElTyAlign < AllocElTyAlign) return nullptr;
117
118  // If the allocation has multiple uses, only promote it if we are strictly
119  // increasing the alignment of the resultant allocation.  If we keep it the
120  // same, we open the door to infinite loops of various kinds.
121  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
122
123  // The alloc and cast types should be either both fixed or both scalable.
124  uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinValue();
125  uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinValue();
126  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
127
128  // If the allocation has multiple uses, only promote it if we're not
129  // shrinking the amount of memory being allocated.
130  uint64_t AllocElTyStoreSize =
131      DL.getTypeStoreSize(AllocElTy).getKnownMinValue();
132  uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinValue();
133  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
134
135  // See if we can satisfy the modulus by pulling a scale out of the array
136  // size argument.
137  unsigned ArraySizeScale;
138  uint64_t ArrayOffset;
139  Value *NumElements = // See if the array size is a decomposable linear expr.
140    decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
141
142  // If we can now satisfy the modulus, by using a non-1 scale, we really can
143  // do the xform.
144  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
145      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
146
147  // We don't currently support arrays of scalable types.
148  assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
149
150  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
151  Value *Amt = nullptr;
152  if (Scale == 1) {
153    Amt = NumElements;
154  } else {
155    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
156    // Insert before the alloca, not before the cast.
157    Amt = Builder.CreateMul(Amt, NumElements);
158  }
159
160  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
161    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
162                                  Offset, true);
163    Amt = Builder.CreateAdd(Amt, Off);
164  }
165
166  AllocaInst *New = Builder.CreateAlloca(CastElTy, AI.getAddressSpace(), Amt);
167  New->setAlignment(AI.getAlign());
168  New->takeName(&AI);
169  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
170  New->setMetadata(LLVMContext::MD_DIAssignID,
171                   AI.getMetadata(LLVMContext::MD_DIAssignID));
172
173  replaceAllDbgUsesWith(AI, *New, *New, DT);
174
175  // If the allocation has multiple real uses, insert a cast and change all
176  // things that used it to use the new cast.  This will also hack on CI, but it
177  // will die soon.
178  if (!AI.hasOneUse()) {
179    // New is the allocation instruction, pointer typed. AI is the original
180    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
181    Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
182    replaceInstUsesWith(AI, NewCast);
183    eraseInstFromFunction(AI);
184  }
185  return replaceInstUsesWith(CI, New);
186}
187
188/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
189/// true for, actually insert the code to evaluate the expression.
190Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
191                                                 bool isSigned) {
192  if (Constant *C = dyn_cast<Constant>(V)) {
193    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
194    // If we got a constantexpr back, try to simplify it with DL info.
195    return ConstantFoldConstant(C, DL, &TLI);
196  }
197
198  // Otherwise, it must be an instruction.
199  Instruction *I = cast<Instruction>(V);
200  Instruction *Res = nullptr;
201  unsigned Opc = I->getOpcode();
202  switch (Opc) {
203  case Instruction::Add:
204  case Instruction::Sub:
205  case Instruction::Mul:
206  case Instruction::And:
207  case Instruction::Or:
208  case Instruction::Xor:
209  case Instruction::AShr:
210  case Instruction::LShr:
211  case Instruction::Shl:
212  case Instruction::UDiv:
213  case Instruction::URem: {
214    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
215    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
216    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
217    break;
218  }
219  case Instruction::Trunc:
220  case Instruction::ZExt:
221  case Instruction::SExt:
222    // If the source type of the cast is the type we're trying for then we can
223    // just return the source.  There's no need to insert it because it is not
224    // new.
225    if (I->getOperand(0)->getType() == Ty)
226      return I->getOperand(0);
227
228    // Otherwise, must be the same type of cast, so just reinsert a new one.
229    // This also handles the case of zext(trunc(x)) -> zext(x).
230    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
231                                      Opc == Instruction::SExt);
232    break;
233  case Instruction::Select: {
234    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
235    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
236    Res = SelectInst::Create(I->getOperand(0), True, False);
237    break;
238  }
239  case Instruction::PHI: {
240    PHINode *OPN = cast<PHINode>(I);
241    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
242    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
243      Value *V =
244          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
245      NPN->addIncoming(V, OPN->getIncomingBlock(i));
246    }
247    Res = NPN;
248    break;
249  }
250  case Instruction::FPToUI:
251  case Instruction::FPToSI:
252    Res = CastInst::Create(
253      static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
254    break;
255  default:
256    // TODO: Can handle more cases here.
257    llvm_unreachable("Unreachable!");
258  }
259
260  Res->takeName(I);
261  return InsertNewInstWith(Res, *I);
262}
263
264Instruction::CastOps
265InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
266                                       const CastInst *CI2) {
267  Type *SrcTy = CI1->getSrcTy();
268  Type *MidTy = CI1->getDestTy();
269  Type *DstTy = CI2->getDestTy();
270
271  Instruction::CastOps firstOp = CI1->getOpcode();
272  Instruction::CastOps secondOp = CI2->getOpcode();
273  Type *SrcIntPtrTy =
274      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
275  Type *MidIntPtrTy =
276      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
277  Type *DstIntPtrTy =
278      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
279  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
280                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
281                                                DstIntPtrTy);
282
283  // We don't want to form an inttoptr or ptrtoint that converts to an integer
284  // type that differs from the pointer size.
285  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
286      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
287    Res = 0;
288
289  return Instruction::CastOps(Res);
290}
291
292/// Implement the transforms common to all CastInst visitors.
293Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
294  Value *Src = CI.getOperand(0);
295  Type *Ty = CI.getType();
296
297  // Try to eliminate a cast of a cast.
298  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
299    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
300      // The first cast (CSrc) is eliminable so we need to fix up or replace
301      // the second cast (CI). CSrc will then have a good chance of being dead.
302      auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
303      // Point debug users of the dying cast to the new one.
304      if (CSrc->hasOneUse())
305        replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
306      return Res;
307    }
308  }
309
310  if (auto *Sel = dyn_cast<SelectInst>(Src)) {
311    // We are casting a select. Try to fold the cast into the select if the
312    // select does not have a compare instruction with matching operand types
313    // or the select is likely better done in a narrow type.
314    // Creating a select with operands that are different sizes than its
315    // condition may inhibit other folds and lead to worse codegen.
316    auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
317    if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
318        (CI.getOpcode() == Instruction::Trunc &&
319         shouldChangeType(CI.getSrcTy(), CI.getType()))) {
320      if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
321        replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
322        return NV;
323      }
324    }
325  }
326
327  // If we are casting a PHI, then fold the cast into the PHI.
328  if (auto *PN = dyn_cast<PHINode>(Src)) {
329    // Don't do this if it would create a PHI node with an illegal type from a
330    // legal type.
331    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
332        shouldChangeType(CI.getSrcTy(), CI.getType()))
333      if (Instruction *NV = foldOpIntoPhi(CI, PN))
334        return NV;
335  }
336
337  // Canonicalize a unary shuffle after the cast if neither operation changes
338  // the size or element size of the input vector.
339  // TODO: We could allow size-changing ops if that doesn't harm codegen.
340  // cast (shuffle X, Mask) --> shuffle (cast X), Mask
341  Value *X;
342  ArrayRef<int> Mask;
343  if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
344    // TODO: Allow scalable vectors?
345    auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
346    auto *DestTy = dyn_cast<FixedVectorType>(Ty);
347    if (SrcTy && DestTy &&
348        SrcTy->getNumElements() == DestTy->getNumElements() &&
349        SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
350      Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
351      return new ShuffleVectorInst(CastX, Mask);
352    }
353  }
354
355  return nullptr;
356}
357
358/// Constants and extensions/truncates from the destination type are always
359/// free to be evaluated in that type. This is a helper for canEvaluate*.
360static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
361  if (isa<Constant>(V))
362    return true;
363  Value *X;
364  if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
365      X->getType() == Ty)
366    return true;
367
368  return false;
369}
370
371/// Filter out values that we can not evaluate in the destination type for free.
372/// This is a helper for canEvaluate*.
373static bool canNotEvaluateInType(Value *V, Type *Ty) {
374  assert(!isa<Constant>(V) && "Constant should already be handled.");
375  if (!isa<Instruction>(V))
376    return true;
377  // We don't extend or shrink something that has multiple uses --  doing so
378  // would require duplicating the instruction which isn't profitable.
379  if (!V->hasOneUse())
380    return true;
381
382  return false;
383}
384
385/// Return true if we can evaluate the specified expression tree as type Ty
386/// instead of its larger type, and arrive with the same value.
387/// This is used by code that tries to eliminate truncates.
388///
389/// Ty will always be a type smaller than V.  We should return true if trunc(V)
390/// can be computed by computing V in the smaller type.  If V is an instruction,
391/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
392/// makes sense if x and y can be efficiently truncated.
393///
394/// This function works on both vectors and scalars.
395///
396static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
397                                 Instruction *CxtI) {
398  if (canAlwaysEvaluateInType(V, Ty))
399    return true;
400  if (canNotEvaluateInType(V, Ty))
401    return false;
402
403  auto *I = cast<Instruction>(V);
404  Type *OrigTy = V->getType();
405  switch (I->getOpcode()) {
406  case Instruction::Add:
407  case Instruction::Sub:
408  case Instruction::Mul:
409  case Instruction::And:
410  case Instruction::Or:
411  case Instruction::Xor:
412    // These operators can all arbitrarily be extended or truncated.
413    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
414           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
415
416  case Instruction::UDiv:
417  case Instruction::URem: {
418    // UDiv and URem can be truncated if all the truncated bits are zero.
419    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
420    uint32_t BitWidth = Ty->getScalarSizeInBits();
421    assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
422    APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
423    if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
424        IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
425      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
426             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
427    }
428    break;
429  }
430  case Instruction::Shl: {
431    // If we are truncating the result of this SHL, and if it's a shift of an
432    // inrange amount, we can always perform a SHL in a smaller type.
433    uint32_t BitWidth = Ty->getScalarSizeInBits();
434    KnownBits AmtKnownBits =
435        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
436    if (AmtKnownBits.getMaxValue().ult(BitWidth))
437      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
438             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
439    break;
440  }
441  case Instruction::LShr: {
442    // If this is a truncate of a logical shr, we can truncate it to a smaller
443    // lshr iff we know that the bits we would otherwise be shifting in are
444    // already zeros.
445    // TODO: It is enough to check that the bits we would be shifting in are
446    //       zero - use AmtKnownBits.getMaxValue().
447    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
448    uint32_t BitWidth = Ty->getScalarSizeInBits();
449    KnownBits AmtKnownBits =
450        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
451    APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
452    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
453        IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
454      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
455             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
456    }
457    break;
458  }
459  case Instruction::AShr: {
460    // If this is a truncate of an arithmetic shr, we can truncate it to a
461    // smaller ashr iff we know that all the bits from the sign bit of the
462    // original type and the sign bit of the truncate type are similar.
463    // TODO: It is enough to check that the bits we would be shifting in are
464    //       similar to sign bit of the truncate type.
465    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
466    uint32_t BitWidth = Ty->getScalarSizeInBits();
467    KnownBits AmtKnownBits =
468        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
469    unsigned ShiftedBits = OrigBitWidth - BitWidth;
470    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
471        ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
472      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
473             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
474    break;
475  }
476  case Instruction::Trunc:
477    // trunc(trunc(x)) -> trunc(x)
478    return true;
479  case Instruction::ZExt:
480  case Instruction::SExt:
481    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
482    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
483    return true;
484  case Instruction::Select: {
485    SelectInst *SI = cast<SelectInst>(I);
486    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
487           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
488  }
489  case Instruction::PHI: {
490    // We can change a phi if we can change all operands.  Note that we never
491    // get into trouble with cyclic PHIs here because we only consider
492    // instructions with a single use.
493    PHINode *PN = cast<PHINode>(I);
494    for (Value *IncValue : PN->incoming_values())
495      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
496        return false;
497    return true;
498  }
499  case Instruction::FPToUI:
500  case Instruction::FPToSI: {
501    // If the integer type can hold the max FP value, it is safe to cast
502    // directly to that type. Otherwise, we may create poison via overflow
503    // that did not exist in the original code.
504    //
505    // The max FP value is pow(2, MaxExponent) * (1 + MaxFraction), so we need
506    // at least one more bit than the MaxExponent to hold the max FP value.
507    Type *InputTy = I->getOperand(0)->getType()->getScalarType();
508    const fltSemantics &Semantics = InputTy->getFltSemantics();
509    uint32_t MinBitWidth = APFloatBase::semanticsMaxExponent(Semantics);
510    // Extra sign bit needed.
511    if (I->getOpcode() == Instruction::FPToSI)
512      ++MinBitWidth;
513    return Ty->getScalarSizeInBits() > MinBitWidth;
514  }
515  default:
516    // TODO: Can handle more cases here.
517    break;
518  }
519
520  return false;
521}
522
523/// Given a vector that is bitcast to an integer, optionally logically
524/// right-shifted, and truncated, convert it to an extractelement.
525/// Example (big endian):
526///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
527///   --->
528///   extractelement <4 x i32> %X, 1
529static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
530                                         InstCombinerImpl &IC) {
531  Value *TruncOp = Trunc.getOperand(0);
532  Type *DestType = Trunc.getType();
533  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
534    return nullptr;
535
536  Value *VecInput = nullptr;
537  ConstantInt *ShiftVal = nullptr;
538  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
539                                  m_LShr(m_BitCast(m_Value(VecInput)),
540                                         m_ConstantInt(ShiftVal)))) ||
541      !isa<VectorType>(VecInput->getType()))
542    return nullptr;
543
544  VectorType *VecType = cast<VectorType>(VecInput->getType());
545  unsigned VecWidth = VecType->getPrimitiveSizeInBits();
546  unsigned DestWidth = DestType->getPrimitiveSizeInBits();
547  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
548
549  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
550    return nullptr;
551
552  // If the element type of the vector doesn't match the result type,
553  // bitcast it to a vector type that we can extract from.
554  unsigned NumVecElts = VecWidth / DestWidth;
555  if (VecType->getElementType() != DestType) {
556    VecType = FixedVectorType::get(DestType, NumVecElts);
557    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
558  }
559
560  unsigned Elt = ShiftAmount / DestWidth;
561  if (IC.getDataLayout().isBigEndian())
562    Elt = NumVecElts - 1 - Elt;
563
564  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
565}
566
567/// Funnel/Rotate left/right may occur in a wider type than necessary because of
568/// type promotion rules. Try to narrow the inputs and convert to funnel shift.
569Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
570  assert((isa<VectorType>(Trunc.getSrcTy()) ||
571          shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
572         "Don't narrow to an illegal scalar type");
573
574  // Bail out on strange types. It is possible to handle some of these patterns
575  // even with non-power-of-2 sizes, but it is not a likely scenario.
576  Type *DestTy = Trunc.getType();
577  unsigned NarrowWidth = DestTy->getScalarSizeInBits();
578  unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
579  if (!isPowerOf2_32(NarrowWidth))
580    return nullptr;
581
582  // First, find an or'd pair of opposite shifts:
583  // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
584  BinaryOperator *Or0, *Or1;
585  if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
586    return nullptr;
587
588  Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
589  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
590      !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
591      Or0->getOpcode() == Or1->getOpcode())
592    return nullptr;
593
594  // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
595  if (Or0->getOpcode() == BinaryOperator::LShr) {
596    std::swap(Or0, Or1);
597    std::swap(ShVal0, ShVal1);
598    std::swap(ShAmt0, ShAmt1);
599  }
600  assert(Or0->getOpcode() == BinaryOperator::Shl &&
601         Or1->getOpcode() == BinaryOperator::LShr &&
602         "Illegal or(shift,shift) pair");
603
604  // Match the shift amount operands for a funnel/rotate pattern. This always
605  // matches a subtraction on the R operand.
606  auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
607    // The shift amounts may add up to the narrow bit width:
608    // (shl ShVal0, L) | (lshr ShVal1, Width - L)
609    // If this is a funnel shift (different operands are shifted), then the
610    // shift amount can not over-shift (create poison) in the narrow type.
611    unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
612    APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
613    if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
614      if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
615        return L;
616
617    // The following patterns currently only work for rotation patterns.
618    // TODO: Add more general funnel-shift compatible patterns.
619    if (ShVal0 != ShVal1)
620      return nullptr;
621
622    // The shift amount may be masked with negation:
623    // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
624    Value *X;
625    unsigned Mask = Width - 1;
626    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
627        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
628      return X;
629
630    // Same as above, but the shift amount may be extended after masking:
631    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
632        match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
633      return X;
634
635    return nullptr;
636  };
637
638  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
639  bool IsFshl = true; // Sub on LSHR.
640  if (!ShAmt) {
641    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
642    IsFshl = false; // Sub on SHL.
643  }
644  if (!ShAmt)
645    return nullptr;
646
647  // The right-shifted value must have high zeros in the wide type (for example
648  // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
649  // truncated, so those do not matter.
650  APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
651  if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
652    return nullptr;
653
654  // We have an unnecessarily wide rotate!
655  // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt))
656  // Narrow the inputs and convert to funnel shift intrinsic:
657  // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
658  Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
659  Value *X, *Y;
660  X = Y = Builder.CreateTrunc(ShVal0, DestTy);
661  if (ShVal0 != ShVal1)
662    Y = Builder.CreateTrunc(ShVal1, DestTy);
663  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
664  Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
665  return CallInst::Create(F, {X, Y, NarrowShAmt});
666}
667
668/// Try to narrow the width of math or bitwise logic instructions by pulling a
669/// truncate ahead of binary operators.
670Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
671  Type *SrcTy = Trunc.getSrcTy();
672  Type *DestTy = Trunc.getType();
673  unsigned SrcWidth = SrcTy->getScalarSizeInBits();
674  unsigned DestWidth = DestTy->getScalarSizeInBits();
675
676  if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
677    return nullptr;
678
679  BinaryOperator *BinOp;
680  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
681    return nullptr;
682
683  Value *BinOp0 = BinOp->getOperand(0);
684  Value *BinOp1 = BinOp->getOperand(1);
685  switch (BinOp->getOpcode()) {
686  case Instruction::And:
687  case Instruction::Or:
688  case Instruction::Xor:
689  case Instruction::Add:
690  case Instruction::Sub:
691  case Instruction::Mul: {
692    Constant *C;
693    if (match(BinOp0, m_Constant(C))) {
694      // trunc (binop C, X) --> binop (trunc C', X)
695      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
696      Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
697      return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
698    }
699    if (match(BinOp1, m_Constant(C))) {
700      // trunc (binop X, C) --> binop (trunc X, C')
701      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
702      Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
703      return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
704    }
705    Value *X;
706    if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
707      // trunc (binop (ext X), Y) --> binop X, (trunc Y)
708      Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
709      return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
710    }
711    if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
712      // trunc (binop Y, (ext X)) --> binop (trunc Y), X
713      Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
714      return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
715    }
716    break;
717  }
718  case Instruction::LShr:
719  case Instruction::AShr: {
720    // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
721    Value *A;
722    Constant *C;
723    if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
724      unsigned MaxShiftAmt = SrcWidth - DestWidth;
725      // If the shift is small enough, all zero/sign bits created by the shift
726      // are removed by the trunc.
727      if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
728                                      APInt(SrcWidth, MaxShiftAmt)))) {
729        auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
730        bool IsExact = OldShift->isExact();
731        auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
732        ShAmt = Constant::mergeUndefsWith(ShAmt, C);
733        Value *Shift =
734            OldShift->getOpcode() == Instruction::AShr
735                ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
736                : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
737        return CastInst::CreateTruncOrBitCast(Shift, DestTy);
738      }
739    }
740    break;
741  }
742  default: break;
743  }
744
745  if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
746    return NarrowOr;
747
748  return nullptr;
749}
750
751/// Try to narrow the width of a splat shuffle. This could be generalized to any
752/// shuffle with a constant operand, but we limit the transform to avoid
753/// creating a shuffle type that targets may not be able to lower effectively.
754static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
755                                       InstCombiner::BuilderTy &Builder) {
756  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
757  if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
758      all_equal(Shuf->getShuffleMask()) &&
759      Shuf->getType() == Shuf->getOperand(0)->getType()) {
760    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
761    // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
762    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
763    return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
764  }
765
766  return nullptr;
767}
768
769/// Try to narrow the width of an insert element. This could be generalized for
770/// any vector constant, but we limit the transform to insertion into undef to
771/// avoid potential backend problems from unsupported insertion widths. This
772/// could also be extended to handle the case of inserting a scalar constant
773/// into a vector variable.
774static Instruction *shrinkInsertElt(CastInst &Trunc,
775                                    InstCombiner::BuilderTy &Builder) {
776  Instruction::CastOps Opcode = Trunc.getOpcode();
777  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
778         "Unexpected instruction for shrinking");
779
780  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
781  if (!InsElt || !InsElt->hasOneUse())
782    return nullptr;
783
784  Type *DestTy = Trunc.getType();
785  Type *DestScalarTy = DestTy->getScalarType();
786  Value *VecOp = InsElt->getOperand(0);
787  Value *ScalarOp = InsElt->getOperand(1);
788  Value *Index = InsElt->getOperand(2);
789
790  if (match(VecOp, m_Undef())) {
791    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
792    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
793    UndefValue *NarrowUndef = UndefValue::get(DestTy);
794    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
795    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
796  }
797
798  return nullptr;
799}
800
801Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
802  if (Instruction *Result = commonCastTransforms(Trunc))
803    return Result;
804
805  Value *Src = Trunc.getOperand(0);
806  Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
807  unsigned DestWidth = DestTy->getScalarSizeInBits();
808  unsigned SrcWidth = SrcTy->getScalarSizeInBits();
809
810  // Attempt to truncate the entire input expression tree to the destination
811  // type.   Only do this if the dest type is a simple type, don't convert the
812  // expression tree to something weird like i93 unless the source is also
813  // strange.
814  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
815      canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
816
817    // If this cast is a truncate, evaluting in a different type always
818    // eliminates the cast, so it is always a win.
819    LLVM_DEBUG(
820        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
821                  " to avoid cast: "
822               << Trunc << '\n');
823    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
824    assert(Res->getType() == DestTy);
825    return replaceInstUsesWith(Trunc, Res);
826  }
827
828  // For integer types, check if we can shorten the entire input expression to
829  // DestWidth * 2, which won't allow removing the truncate, but reducing the
830  // width may enable further optimizations, e.g. allowing for larger
831  // vectorization factors.
832  if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
833    if (DestWidth * 2 < SrcWidth) {
834      auto *NewDestTy = DestITy->getExtendedType();
835      if (shouldChangeType(SrcTy, NewDestTy) &&
836          canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
837        LLVM_DEBUG(
838            dbgs() << "ICE: EvaluateInDifferentType converting expression type"
839                      " to reduce the width of operand of"
840                   << Trunc << '\n');
841        Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
842        return new TruncInst(Res, DestTy);
843      }
844    }
845  }
846
847  // Test if the trunc is the user of a select which is part of a
848  // minimum or maximum operation. If so, don't do any more simplification.
849  // Even simplifying demanded bits can break the canonical form of a
850  // min/max.
851  Value *LHS, *RHS;
852  if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
853    if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
854      return nullptr;
855
856  // See if we can simplify any instructions used by the input whose sole
857  // purpose is to compute bits we don't care about.
858  if (SimplifyDemandedInstructionBits(Trunc))
859    return &Trunc;
860
861  if (DestWidth == 1) {
862    Value *Zero = Constant::getNullValue(SrcTy);
863    if (DestTy->isIntegerTy()) {
864      // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
865      // TODO: We canonicalize to more instructions here because we are probably
866      // lacking equivalent analysis for trunc relative to icmp. There may also
867      // be codegen concerns. If those trunc limitations were removed, we could
868      // remove this transform.
869      Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
870      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
871    }
872
873    // For vectors, we do not canonicalize all truncs to icmp, so optimize
874    // patterns that would be covered within visitICmpInst.
875    Value *X;
876    Constant *C;
877    if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
878      // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
879      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
880      Constant *MaskC = ConstantExpr::getShl(One, C);
881      Value *And = Builder.CreateAnd(X, MaskC);
882      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
883    }
884    if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
885                                   m_Deferred(X))))) {
886      // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
887      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
888      Constant *MaskC = ConstantExpr::getShl(One, C);
889      MaskC = ConstantExpr::getOr(MaskC, One);
890      Value *And = Builder.CreateAnd(X, MaskC);
891      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
892    }
893  }
894
895  Value *A, *B;
896  Constant *C;
897  if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
898    unsigned AWidth = A->getType()->getScalarSizeInBits();
899    unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
900    auto *OldSh = cast<Instruction>(Src);
901    bool IsExact = OldSh->isExact();
902
903    // If the shift is small enough, all zero bits created by the shift are
904    // removed by the trunc.
905    if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
906                                    APInt(SrcWidth, MaxShiftAmt)))) {
907      // trunc (lshr (sext A), C) --> ashr A, C
908      if (A->getType() == DestTy) {
909        Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
910        Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
911        ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
912        ShAmt = Constant::mergeUndefsWith(ShAmt, C);
913        return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
914                       : BinaryOperator::CreateAShr(A, ShAmt);
915      }
916      // The types are mismatched, so create a cast after shifting:
917      // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
918      if (Src->hasOneUse()) {
919        Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
920        Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
921        ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
922        Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
923        return CastInst::CreateIntegerCast(Shift, DestTy, true);
924      }
925    }
926    // TODO: Mask high bits with 'and'.
927  }
928
929  if (Instruction *I = narrowBinOp(Trunc))
930    return I;
931
932  if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
933    return I;
934
935  if (Instruction *I = shrinkInsertElt(Trunc, Builder))
936    return I;
937
938  if (Src->hasOneUse() &&
939      (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
940    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
941    // dest type is native and cst < dest size.
942    if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
943        !match(A, m_Shr(m_Value(), m_Constant()))) {
944      // Skip shifts of shift by constants. It undoes a combine in
945      // FoldShiftByConstant and is the extend in reg pattern.
946      APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
947      if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
948        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
949        return BinaryOperator::Create(Instruction::Shl, NewTrunc,
950                                      ConstantExpr::getTrunc(C, DestTy));
951      }
952    }
953  }
954
955  if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
956    return I;
957
958  // Whenever an element is extracted from a vector, and then truncated,
959  // canonicalize by converting it to a bitcast followed by an
960  // extractelement.
961  //
962  // Example (little endian):
963  //   trunc (extractelement <4 x i64> %X, 0) to i32
964  //   --->
965  //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
966  Value *VecOp;
967  ConstantInt *Cst;
968  if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
969    auto *VecOpTy = cast<VectorType>(VecOp->getType());
970    auto VecElts = VecOpTy->getElementCount();
971
972    // A badly fit destination size would result in an invalid cast.
973    if (SrcWidth % DestWidth == 0) {
974      uint64_t TruncRatio = SrcWidth / DestWidth;
975      uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
976      uint64_t VecOpIdx = Cst->getZExtValue();
977      uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
978                                         : VecOpIdx * TruncRatio;
979      assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
980             "overflow 32-bits");
981
982      auto *BitCastTo =
983          VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
984      Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
985      return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
986    }
987  }
988
989  // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
990  if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
991                                                       m_Value(B))))) {
992    unsigned AWidth = A->getType()->getScalarSizeInBits();
993    if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
994      Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
995      Value *NarrowCtlz =
996          Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
997      return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
998    }
999  }
1000
1001  if (match(Src, m_VScale(DL))) {
1002    if (Trunc.getFunction() &&
1003        Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1004      Attribute Attr =
1005          Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
1006      if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1007        if (Log2_32(*MaxVScale) < DestWidth) {
1008          Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1009          return replaceInstUsesWith(Trunc, VScale);
1010        }
1011      }
1012    }
1013  }
1014
1015  return nullptr;
1016}
1017
1018Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
1019                                                 ZExtInst &Zext) {
1020  // If we are just checking for a icmp eq of a single bit and zext'ing it
1021  // to an integer, then shift the bit to the appropriate place and then
1022  // cast to integer to avoid the comparison.
1023
1024  // FIXME: This set of transforms does not check for extra uses and/or creates
1025  //        an extra instruction (an optional final cast is not included
1026  //        in the transform comments). We may also want to favor icmp over
1027  //        shifts in cases of equal instructions because icmp has better
1028  //        analysis in general (invert the transform).
1029
1030  const APInt *Op1CV;
1031  if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
1032
1033    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
1034    if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
1035      Value *In = Cmp->getOperand(0);
1036      Value *Sh = ConstantInt::get(In->getType(),
1037                                   In->getType()->getScalarSizeInBits() - 1);
1038      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
1039      if (In->getType() != Zext.getType())
1040        In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
1041
1042      return replaceInstUsesWith(Zext, In);
1043    }
1044
1045    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
1046    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
1047    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
1048    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
1049    if (Op1CV->isZero() && Cmp->isEquality() &&
1050        (Cmp->getOperand(0)->getType() == Zext.getType() ||
1051         Cmp->getPredicate() == ICmpInst::ICMP_NE)) {
1052      // If Op1C some other power of two, convert:
1053      KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
1054
1055      // Exactly 1 possible 1? But not the high-bit because that is
1056      // canonicalized to this form.
1057      APInt KnownZeroMask(~Known.Zero);
1058      if (KnownZeroMask.isPowerOf2() &&
1059          (Zext.getType()->getScalarSizeInBits() !=
1060           KnownZeroMask.logBase2() + 1)) {
1061        uint32_t ShAmt = KnownZeroMask.logBase2();
1062        Value *In = Cmp->getOperand(0);
1063        if (ShAmt) {
1064          // Perform a logical shr by shiftamt.
1065          // Insert the shift to put the result in the low bit.
1066          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
1067                                  In->getName() + ".lobit");
1068        }
1069
1070        // Toggle the low bit for "X == 0".
1071        if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1072          In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
1073
1074        if (Zext.getType() == In->getType())
1075          return replaceInstUsesWith(Zext, In);
1076
1077        Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
1078        return replaceInstUsesWith(Zext, IntCast);
1079      }
1080    }
1081  }
1082
1083  if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
1084    // Test if a bit is clear/set using a shifted-one mask:
1085    // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
1086    // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
1087    Value *X, *ShAmt;
1088    if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
1089        match(Cmp->getOperand(0),
1090              m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
1091      if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1092        X = Builder.CreateNot(X);
1093      Value *Lshr = Builder.CreateLShr(X, ShAmt);
1094      Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
1095      return replaceInstUsesWith(Zext, And1);
1096    }
1097  }
1098
1099  return nullptr;
1100}
1101
1102/// Determine if the specified value can be computed in the specified wider type
1103/// and produce the same low bits. If not, return false.
1104///
1105/// If this function returns true, it can also return a non-zero number of bits
1106/// (in BitsToClear) which indicates that the value it computes is correct for
1107/// the zero extend, but that the additional BitsToClear bits need to be zero'd
1108/// out.  For example, to promote something like:
1109///
1110///   %B = trunc i64 %A to i32
1111///   %C = lshr i32 %B, 8
1112///   %E = zext i32 %C to i64
1113///
1114/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1115/// set to 8 to indicate that the promoted value needs to have bits 24-31
1116/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1117/// clear the top bits anyway, doing this has no extra cost.
1118///
1119/// This function works on both vectors and scalars.
1120static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1121                             InstCombinerImpl &IC, Instruction *CxtI) {
1122  BitsToClear = 0;
1123  if (canAlwaysEvaluateInType(V, Ty))
1124    return true;
1125  if (canNotEvaluateInType(V, Ty))
1126    return false;
1127
1128  auto *I = cast<Instruction>(V);
1129  unsigned Tmp;
1130  switch (I->getOpcode()) {
1131  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1132  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1133  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1134    return true;
1135  case Instruction::And:
1136  case Instruction::Or:
1137  case Instruction::Xor:
1138  case Instruction::Add:
1139  case Instruction::Sub:
1140  case Instruction::Mul:
1141    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1142        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1143      return false;
1144    // These can all be promoted if neither operand has 'bits to clear'.
1145    if (BitsToClear == 0 && Tmp == 0)
1146      return true;
1147
1148    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1149    // other side, BitsToClear is ok.
1150    if (Tmp == 0 && I->isBitwiseLogicOp()) {
1151      // We use MaskedValueIsZero here for generality, but the case we care
1152      // about the most is constant RHS.
1153      unsigned VSize = V->getType()->getScalarSizeInBits();
1154      if (IC.MaskedValueIsZero(I->getOperand(1),
1155                               APInt::getHighBitsSet(VSize, BitsToClear),
1156                               0, CxtI)) {
1157        // If this is an And instruction and all of the BitsToClear are
1158        // known to be zero we can reset BitsToClear.
1159        if (I->getOpcode() == Instruction::And)
1160          BitsToClear = 0;
1161        return true;
1162      }
1163    }
1164
1165    // Otherwise, we don't know how to analyze this BitsToClear case yet.
1166    return false;
1167
1168  case Instruction::Shl: {
1169    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1170    // upper bits we can reduce BitsToClear by the shift amount.
1171    const APInt *Amt;
1172    if (match(I->getOperand(1), m_APInt(Amt))) {
1173      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1174        return false;
1175      uint64_t ShiftAmt = Amt->getZExtValue();
1176      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1177      return true;
1178    }
1179    return false;
1180  }
1181  case Instruction::LShr: {
1182    // We can promote lshr(x, cst) if we can promote x.  This requires the
1183    // ultimate 'and' to clear out the high zero bits we're clearing out though.
1184    const APInt *Amt;
1185    if (match(I->getOperand(1), m_APInt(Amt))) {
1186      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1187        return false;
1188      BitsToClear += Amt->getZExtValue();
1189      if (BitsToClear > V->getType()->getScalarSizeInBits())
1190        BitsToClear = V->getType()->getScalarSizeInBits();
1191      return true;
1192    }
1193    // Cannot promote variable LSHR.
1194    return false;
1195  }
1196  case Instruction::Select:
1197    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1198        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1199        // TODO: If important, we could handle the case when the BitsToClear are
1200        // known zero in the disagreeing side.
1201        Tmp != BitsToClear)
1202      return false;
1203    return true;
1204
1205  case Instruction::PHI: {
1206    // We can change a phi if we can change all operands.  Note that we never
1207    // get into trouble with cyclic PHIs here because we only consider
1208    // instructions with a single use.
1209    PHINode *PN = cast<PHINode>(I);
1210    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1211      return false;
1212    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1213      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1214          // TODO: If important, we could handle the case when the BitsToClear
1215          // are known zero in the disagreeing input.
1216          Tmp != BitsToClear)
1217        return false;
1218    return true;
1219  }
1220  default:
1221    // TODO: Can handle more cases here.
1222    return false;
1223  }
1224}
1225
1226Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) {
1227  // If this zero extend is only used by a truncate, let the truncate be
1228  // eliminated before we try to optimize this zext.
1229  if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()))
1230    return nullptr;
1231
1232  // If one of the common conversion will work, do it.
1233  if (Instruction *Result = commonCastTransforms(Zext))
1234    return Result;
1235
1236  Value *Src = Zext.getOperand(0);
1237  Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
1238
1239  // Try to extend the entire expression tree to the wide destination type.
1240  unsigned BitsToClear;
1241  if (shouldChangeType(SrcTy, DestTy) &&
1242      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
1243    assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1244           "Can't clear more bits than in SrcTy");
1245
1246    // Okay, we can transform this!  Insert the new expression now.
1247    LLVM_DEBUG(
1248        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1249                  " to avoid zero extend: "
1250               << Zext << '\n');
1251    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1252    assert(Res->getType() == DestTy);
1253
1254    // Preserve debug values referring to Src if the zext is its last use.
1255    if (auto *SrcOp = dyn_cast<Instruction>(Src))
1256      if (SrcOp->hasOneUse())
1257        replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
1258
1259    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1260    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1261
1262    // If the high bits are already filled with zeros, just replace this
1263    // cast with the result.
1264    if (MaskedValueIsZero(Res,
1265                          APInt::getHighBitsSet(DestBitSize,
1266                                                DestBitSize - SrcBitsKept),
1267                             0, &Zext))
1268      return replaceInstUsesWith(Zext, Res);
1269
1270    // We need to emit an AND to clear the high bits.
1271    Constant *C = ConstantInt::get(Res->getType(),
1272                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1273    return BinaryOperator::CreateAnd(Res, C);
1274  }
1275
1276  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1277  // types and if the sizes are just right we can convert this into a logical
1278  // 'and' which will be much cheaper than the pair of casts.
1279  if (auto *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1280    // TODO: Subsume this into EvaluateInDifferentType.
1281
1282    // Get the sizes of the types involved.  We know that the intermediate type
1283    // will be smaller than A or C, but don't know the relation between A and C.
1284    Value *A = CSrc->getOperand(0);
1285    unsigned SrcSize = A->getType()->getScalarSizeInBits();
1286    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1287    unsigned DstSize = DestTy->getScalarSizeInBits();
1288    // If we're actually extending zero bits, then if
1289    // SrcSize <  DstSize: zext(a & mask)
1290    // SrcSize == DstSize: a & mask
1291    // SrcSize  > DstSize: trunc(a) & mask
1292    if (SrcSize < DstSize) {
1293      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1294      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1295      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1296      return new ZExtInst(And, DestTy);
1297    }
1298
1299    if (SrcSize == DstSize) {
1300      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1301      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1302                                                           AndValue));
1303    }
1304    if (SrcSize > DstSize) {
1305      Value *Trunc = Builder.CreateTrunc(A, DestTy);
1306      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1307      return BinaryOperator::CreateAnd(Trunc,
1308                                       ConstantInt::get(Trunc->getType(),
1309                                                        AndValue));
1310    }
1311  }
1312
1313  if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1314    return transformZExtICmp(Cmp, Zext);
1315
1316  // zext(trunc(X) & C) -> (X & zext(C)).
1317  Constant *C;
1318  Value *X;
1319  if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1320      X->getType() == DestTy)
1321    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, DestTy));
1322
1323  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1324  Value *And;
1325  if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1326      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1327      X->getType() == DestTy) {
1328    Constant *ZC = ConstantExpr::getZExt(C, DestTy);
1329    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1330  }
1331
1332  // If we are truncating, masking, and then zexting back to the original type,
1333  // that's just a mask. This is not handled by canEvaluateZextd if the
1334  // intermediate values have extra uses. This could be generalized further for
1335  // a non-constant mask operand.
1336  // zext (and (trunc X), C) --> and X, (zext C)
1337  if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
1338      X->getType() == DestTy) {
1339    Constant *ZextC = ConstantExpr::getZExt(C, DestTy);
1340    return BinaryOperator::CreateAnd(X, ZextC);
1341  }
1342
1343  if (match(Src, m_VScale(DL))) {
1344    if (Zext.getFunction() &&
1345        Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1346      Attribute Attr =
1347          Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1348      if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1349        unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1350        if (Log2_32(*MaxVScale) < TypeWidth) {
1351          Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1352          return replaceInstUsesWith(Zext, VScale);
1353        }
1354      }
1355    }
1356  }
1357
1358  return nullptr;
1359}
1360
1361/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1362Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
1363                                                 SExtInst &Sext) {
1364  Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1365  ICmpInst::Predicate Pred = Cmp->getPredicate();
1366
1367  // Don't bother if Op1 isn't of vector or integer type.
1368  if (!Op1->getType()->isIntOrIntVectorTy())
1369    return nullptr;
1370
1371  if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
1372    // sext (x <s 0) --> ashr x, 31 (all ones if negative)
1373    Value *Sh = ConstantInt::get(Op0->getType(),
1374                                 Op0->getType()->getScalarSizeInBits() - 1);
1375    Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1376    if (In->getType() != Sext.getType())
1377      In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
1378
1379    return replaceInstUsesWith(Sext, In);
1380  }
1381
1382  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1383    // If we know that only one bit of the LHS of the icmp can be set and we
1384    // have an equality comparison with zero or a power of 2, we can transform
1385    // the icmp and sext into bitwise/integer operations.
1386    if (Cmp->hasOneUse() &&
1387        Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1388      KnownBits Known = computeKnownBits(Op0, 0, &Sext);
1389
1390      APInt KnownZeroMask(~Known.Zero);
1391      if (KnownZeroMask.isPowerOf2()) {
1392        Value *In = Cmp->getOperand(0);
1393
1394        // If the icmp tests for a known zero bit we can constant fold it.
1395        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1396          Value *V = Pred == ICmpInst::ICMP_NE ?
1397                       ConstantInt::getAllOnesValue(Sext.getType()) :
1398                       ConstantInt::getNullValue(Sext.getType());
1399          return replaceInstUsesWith(Sext, V);
1400        }
1401
1402        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1403          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1404          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1405          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1406          // Perform a right shift to place the desired bit in the LSB.
1407          if (ShiftAmt)
1408            In = Builder.CreateLShr(In,
1409                                    ConstantInt::get(In->getType(), ShiftAmt));
1410
1411          // At this point "In" is either 1 or 0. Subtract 1 to turn
1412          // {1, 0} -> {0, -1}.
1413          In = Builder.CreateAdd(In,
1414                                 ConstantInt::getAllOnesValue(In->getType()),
1415                                 "sext");
1416        } else {
1417          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1418          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1419          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1420          // Perform a left shift to place the desired bit in the MSB.
1421          if (ShiftAmt)
1422            In = Builder.CreateShl(In,
1423                                   ConstantInt::get(In->getType(), ShiftAmt));
1424
1425          // Distribute the bit over the whole bit width.
1426          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1427                                  KnownZeroMask.getBitWidth() - 1), "sext");
1428        }
1429
1430        if (Sext.getType() == In->getType())
1431          return replaceInstUsesWith(Sext, In);
1432        return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
1433      }
1434    }
1435  }
1436
1437  return nullptr;
1438}
1439
1440/// Return true if we can take the specified value and return it as type Ty
1441/// without inserting any new casts and without changing the value of the common
1442/// low bits.  This is used by code that tries to promote integer operations to
1443/// a wider types will allow us to eliminate the extension.
1444///
1445/// This function works on both vectors and scalars.
1446///
1447static bool canEvaluateSExtd(Value *V, Type *Ty) {
1448  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1449         "Can't sign extend type to a smaller type");
1450  if (canAlwaysEvaluateInType(V, Ty))
1451    return true;
1452  if (canNotEvaluateInType(V, Ty))
1453    return false;
1454
1455  auto *I = cast<Instruction>(V);
1456  switch (I->getOpcode()) {
1457  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1458  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1459  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1460    return true;
1461  case Instruction::And:
1462  case Instruction::Or:
1463  case Instruction::Xor:
1464  case Instruction::Add:
1465  case Instruction::Sub:
1466  case Instruction::Mul:
1467    // These operators can all arbitrarily be extended if their inputs can.
1468    return canEvaluateSExtd(I->getOperand(0), Ty) &&
1469           canEvaluateSExtd(I->getOperand(1), Ty);
1470
1471  //case Instruction::Shl:   TODO
1472  //case Instruction::LShr:  TODO
1473
1474  case Instruction::Select:
1475    return canEvaluateSExtd(I->getOperand(1), Ty) &&
1476           canEvaluateSExtd(I->getOperand(2), Ty);
1477
1478  case Instruction::PHI: {
1479    // We can change a phi if we can change all operands.  Note that we never
1480    // get into trouble with cyclic PHIs here because we only consider
1481    // instructions with a single use.
1482    PHINode *PN = cast<PHINode>(I);
1483    for (Value *IncValue : PN->incoming_values())
1484      if (!canEvaluateSExtd(IncValue, Ty)) return false;
1485    return true;
1486  }
1487  default:
1488    // TODO: Can handle more cases here.
1489    break;
1490  }
1491
1492  return false;
1493}
1494
1495Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) {
1496  // If this sign extend is only used by a truncate, let the truncate be
1497  // eliminated before we try to optimize this sext.
1498  if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
1499    return nullptr;
1500
1501  if (Instruction *I = commonCastTransforms(Sext))
1502    return I;
1503
1504  Value *Src = Sext.getOperand(0);
1505  Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
1506  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1507  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1508
1509  // If the value being extended is zero or positive, use a zext instead.
1510  if (isKnownNonNegative(Src, DL, 0, &AC, &Sext, &DT))
1511    return CastInst::Create(Instruction::ZExt, Src, DestTy);
1512
1513  // Try to extend the entire expression tree to the wide destination type.
1514  if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1515    // Okay, we can transform this!  Insert the new expression now.
1516    LLVM_DEBUG(
1517        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1518                  " to avoid sign extend: "
1519               << Sext << '\n');
1520    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1521    assert(Res->getType() == DestTy);
1522
1523    // If the high bits are already filled with sign bit, just replace this
1524    // cast with the result.
1525    if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
1526      return replaceInstUsesWith(Sext, Res);
1527
1528    // We need to emit a shl + ashr to do the sign extend.
1529    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1530    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1531                                      ShAmt);
1532  }
1533
1534  Value *X;
1535  if (match(Src, m_Trunc(m_Value(X)))) {
1536    // If the input has more sign bits than bits truncated, then convert
1537    // directly to final type.
1538    unsigned XBitSize = X->getType()->getScalarSizeInBits();
1539    if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
1540      return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1541
1542    // If input is a trunc from the destination type, then convert into shifts.
1543    if (Src->hasOneUse() && X->getType() == DestTy) {
1544      // sext (trunc X) --> ashr (shl X, C), C
1545      Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1546      return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1547    }
1548
1549    // If we are replacing shifted-in high zero bits with sign bits, convert
1550    // the logic shift to arithmetic shift and eliminate the cast to
1551    // intermediate type:
1552    // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1553    Value *Y;
1554    if (Src->hasOneUse() &&
1555        match(X, m_LShr(m_Value(Y),
1556                        m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) {
1557      Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1558      return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1559    }
1560  }
1561
1562  if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1563    return transformSExtICmp(Cmp, Sext);
1564
1565  // If the input is a shl/ashr pair of a same constant, then this is a sign
1566  // extension from a smaller value.  If we could trust arbitrary bitwidth
1567  // integers, we could turn this into a truncate to the smaller bit and then
1568  // use a sext for the whole extension.  Since we don't, look deeper and check
1569  // for a truncate.  If the source and dest are the same type, eliminate the
1570  // trunc and extend and just do shifts.  For example, turn:
1571  //   %a = trunc i32 %i to i8
1572  //   %b = shl i8 %a, C
1573  //   %c = ashr i8 %b, C
1574  //   %d = sext i8 %c to i32
1575  // into:
1576  //   %a = shl i32 %i, 32-(8-C)
1577  //   %d = ashr i32 %a, 32-(8-C)
1578  Value *A = nullptr;
1579  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1580  Constant *BA = nullptr, *CA = nullptr;
1581  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1582                        m_Constant(CA))) &&
1583      BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1584    Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
1585    Constant *NumLowbitsLeft = ConstantExpr::getSub(
1586        ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1587    Constant *NewShAmt = ConstantExpr::getSub(
1588        ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1589        NumLowbitsLeft);
1590    NewShAmt =
1591        Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1592    A = Builder.CreateShl(A, NewShAmt, Sext.getName());
1593    return BinaryOperator::CreateAShr(A, NewShAmt);
1594  }
1595
1596  // Splatting a bit of constant-index across a value:
1597  // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1598  // If the dest type is different, use a cast (adjust use check).
1599  if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1600                                 m_SpecificInt(SrcBitSize - 1))))) {
1601    Type *XTy = X->getType();
1602    unsigned XBitSize = XTy->getScalarSizeInBits();
1603    Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1604    Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1605    if (XTy == DestTy)
1606      return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1607                                        AshrAmtC);
1608    if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1609      Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1610      return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1611    }
1612  }
1613
1614  if (match(Src, m_VScale(DL))) {
1615    if (Sext.getFunction() &&
1616        Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1617      Attribute Attr =
1618          Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1619      if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1620        if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
1621          Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1622          return replaceInstUsesWith(Sext, VScale);
1623        }
1624      }
1625    }
1626  }
1627
1628  return nullptr;
1629}
1630
1631/// Return a Constant* for the specified floating-point constant if it fits
1632/// in the specified FP type without changing its value.
1633static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1634  bool losesInfo;
1635  APFloat F = CFP->getValueAPF();
1636  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1637  return !losesInfo;
1638}
1639
1640static Type *shrinkFPConstant(ConstantFP *CFP) {
1641  if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1642    return nullptr;  // No constant folding of this.
1643  // See if the value can be truncated to half and then reextended.
1644  if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1645    return Type::getHalfTy(CFP->getContext());
1646  // See if the value can be truncated to float and then reextended.
1647  if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1648    return Type::getFloatTy(CFP->getContext());
1649  if (CFP->getType()->isDoubleTy())
1650    return nullptr;  // Won't shrink.
1651  if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1652    return Type::getDoubleTy(CFP->getContext());
1653  // Don't try to shrink to various long double types.
1654  return nullptr;
1655}
1656
1657// Determine if this is a vector of ConstantFPs and if so, return the minimal
1658// type we can safely truncate all elements to.
1659static Type *shrinkFPConstantVector(Value *V) {
1660  auto *CV = dyn_cast<Constant>(V);
1661  auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1662  if (!CV || !CVVTy)
1663    return nullptr;
1664
1665  Type *MinType = nullptr;
1666
1667  unsigned NumElts = CVVTy->getNumElements();
1668
1669  // For fixed-width vectors we find the minimal type by looking
1670  // through the constant values of the vector.
1671  for (unsigned i = 0; i != NumElts; ++i) {
1672    if (isa<UndefValue>(CV->getAggregateElement(i)))
1673      continue;
1674
1675    auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1676    if (!CFP)
1677      return nullptr;
1678
1679    Type *T = shrinkFPConstant(CFP);
1680    if (!T)
1681      return nullptr;
1682
1683    // If we haven't found a type yet or this type has a larger mantissa than
1684    // our previous type, this is our new minimal type.
1685    if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1686      MinType = T;
1687  }
1688
1689  // Make a vector type from the minimal type.
1690  return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
1691}
1692
1693/// Find the minimum FP type we can safely truncate to.
1694static Type *getMinimumFPType(Value *V) {
1695  if (auto *FPExt = dyn_cast<FPExtInst>(V))
1696    return FPExt->getOperand(0)->getType();
1697
1698  // If this value is a constant, return the constant in the smallest FP type
1699  // that can accurately represent it.  This allows us to turn
1700  // (float)((double)X+2.0) into x+2.0f.
1701  if (auto *CFP = dyn_cast<ConstantFP>(V))
1702    if (Type *T = shrinkFPConstant(CFP))
1703      return T;
1704
1705  // We can only correctly find a minimum type for a scalable vector when it is
1706  // a splat. For splats of constant values the fpext is wrapped up as a
1707  // ConstantExpr.
1708  if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1709    if (FPCExt->getOpcode() == Instruction::FPExt)
1710      return FPCExt->getOperand(0)->getType();
1711
1712  // Try to shrink a vector of FP constants. This returns nullptr on scalable
1713  // vectors
1714  if (Type *T = shrinkFPConstantVector(V))
1715    return T;
1716
1717  return V->getType();
1718}
1719
1720/// Return true if the cast from integer to FP can be proven to be exact for all
1721/// possible inputs (the conversion does not lose any precision).
1722static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) {
1723  CastInst::CastOps Opcode = I.getOpcode();
1724  assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1725         "Unexpected cast");
1726  Value *Src = I.getOperand(0);
1727  Type *SrcTy = Src->getType();
1728  Type *FPTy = I.getType();
1729  bool IsSigned = Opcode == Instruction::SIToFP;
1730  int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1731
1732  // Easy case - if the source integer type has less bits than the FP mantissa,
1733  // then the cast must be exact.
1734  int DestNumSigBits = FPTy->getFPMantissaWidth();
1735  if (SrcSize <= DestNumSigBits)
1736    return true;
1737
1738  // Cast from FP to integer and back to FP is independent of the intermediate
1739  // integer width because of poison on overflow.
1740  Value *F;
1741  if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1742    // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1743    // potential rounding of negative FP input values.
1744    int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1745    if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1746      SrcNumSigBits++;
1747
1748    // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1749    // significant bits than the destination (and make sure neither type is
1750    // weird -- ppc_fp128).
1751    if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1752        SrcNumSigBits <= DestNumSigBits)
1753      return true;
1754  }
1755
1756  // TODO:
1757  // Try harder to find if the source integer type has less significant bits.
1758  // For example, compute number of sign bits.
1759  KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
1760  int SigBits = (int)SrcTy->getScalarSizeInBits() -
1761                SrcKnown.countMinLeadingZeros() -
1762                SrcKnown.countMinTrailingZeros();
1763  if (SigBits <= DestNumSigBits)
1764    return true;
1765
1766  return false;
1767}
1768
1769Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1770  if (Instruction *I = commonCastTransforms(FPT))
1771    return I;
1772
1773  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1774  // simplify this expression to avoid one or more of the trunc/extend
1775  // operations if we can do so without changing the numerical results.
1776  //
1777  // The exact manner in which the widths of the operands interact to limit
1778  // what we can and cannot do safely varies from operation to operation, and
1779  // is explained below in the various case statements.
1780  Type *Ty = FPT.getType();
1781  auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1782  if (BO && BO->hasOneUse()) {
1783    Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1784    Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1785    unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1786    unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1787    unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1788    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1789    unsigned DstWidth = Ty->getFPMantissaWidth();
1790    switch (BO->getOpcode()) {
1791      default: break;
1792      case Instruction::FAdd:
1793      case Instruction::FSub:
1794        // For addition and subtraction, the infinitely precise result can
1795        // essentially be arbitrarily wide; proving that double rounding
1796        // will not occur because the result of OpI is exact (as we will for
1797        // FMul, for example) is hopeless.  However, we *can* nonetheless
1798        // frequently know that double rounding cannot occur (or that it is
1799        // innocuous) by taking advantage of the specific structure of
1800        // infinitely-precise results that admit double rounding.
1801        //
1802        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1803        // to represent both sources, we can guarantee that the double
1804        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1805        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1806        // for proof of this fact).
1807        //
1808        // Note: Figueroa does not consider the case where DstFormat !=
1809        // SrcFormat.  It's possible (likely even!) that this analysis
1810        // could be tightened for those cases, but they are rare (the main
1811        // case of interest here is (float)((double)float + float)).
1812        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1813          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1814          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1815          Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1816          RI->copyFastMathFlags(BO);
1817          return RI;
1818        }
1819        break;
1820      case Instruction::FMul:
1821        // For multiplication, the infinitely precise result has at most
1822        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1823        // that such a value can be exactly represented, then no double
1824        // rounding can possibly occur; we can safely perform the operation
1825        // in the destination format if it can represent both sources.
1826        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1827          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1828          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1829          return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1830        }
1831        break;
1832      case Instruction::FDiv:
1833        // For division, we use again use the bound from Figueroa's
1834        // dissertation.  I am entirely certain that this bound can be
1835        // tightened in the unbalanced operand case by an analysis based on
1836        // the diophantine rational approximation bound, but the well-known
1837        // condition used here is a good conservative first pass.
1838        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1839        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1840          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1841          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1842          return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1843        }
1844        break;
1845      case Instruction::FRem: {
1846        // Remainder is straightforward.  Remainder is always exact, so the
1847        // type of OpI doesn't enter into things at all.  We simply evaluate
1848        // in whichever source type is larger, then convert to the
1849        // destination type.
1850        if (SrcWidth == OpWidth)
1851          break;
1852        Value *LHS, *RHS;
1853        if (LHSWidth == SrcWidth) {
1854           LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1855           RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1856        } else {
1857           LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1858           RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1859        }
1860
1861        Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1862        return CastInst::CreateFPCast(ExactResult, Ty);
1863      }
1864    }
1865  }
1866
1867  // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1868  Value *X;
1869  Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1870  if (Op && Op->hasOneUse()) {
1871    // FIXME: The FMF should propagate from the fptrunc, not the source op.
1872    IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1873    if (isa<FPMathOperator>(Op))
1874      Builder.setFastMathFlags(Op->getFastMathFlags());
1875
1876    if (match(Op, m_FNeg(m_Value(X)))) {
1877      Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1878
1879      return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1880    }
1881
1882    // If we are truncating a select that has an extended operand, we can
1883    // narrow the other operand and do the select as a narrow op.
1884    Value *Cond, *X, *Y;
1885    if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1886        X->getType() == Ty) {
1887      // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1888      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1889      Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1890      return replaceInstUsesWith(FPT, Sel);
1891    }
1892    if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1893        X->getType() == Ty) {
1894      // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1895      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1896      Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1897      return replaceInstUsesWith(FPT, Sel);
1898    }
1899  }
1900
1901  if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1902    switch (II->getIntrinsicID()) {
1903    default: break;
1904    case Intrinsic::ceil:
1905    case Intrinsic::fabs:
1906    case Intrinsic::floor:
1907    case Intrinsic::nearbyint:
1908    case Intrinsic::rint:
1909    case Intrinsic::round:
1910    case Intrinsic::roundeven:
1911    case Intrinsic::trunc: {
1912      Value *Src = II->getArgOperand(0);
1913      if (!Src->hasOneUse())
1914        break;
1915
1916      // Except for fabs, this transformation requires the input of the unary FP
1917      // operation to be itself an fpext from the type to which we're
1918      // truncating.
1919      if (II->getIntrinsicID() != Intrinsic::fabs) {
1920        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1921        if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1922          break;
1923      }
1924
1925      // Do unary FP operation on smaller type.
1926      // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1927      Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1928      Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1929                                                     II->getIntrinsicID(), Ty);
1930      SmallVector<OperandBundleDef, 1> OpBundles;
1931      II->getOperandBundlesAsDefs(OpBundles);
1932      CallInst *NewCI =
1933          CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1934      NewCI->copyFastMathFlags(II);
1935      return NewCI;
1936    }
1937    }
1938  }
1939
1940  if (Instruction *I = shrinkInsertElt(FPT, Builder))
1941    return I;
1942
1943  Value *Src = FPT.getOperand(0);
1944  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1945    auto *FPCast = cast<CastInst>(Src);
1946    if (isKnownExactCastIntToFP(*FPCast, *this))
1947      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1948  }
1949
1950  return nullptr;
1951}
1952
1953Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1954  // If the source operand is a cast from integer to FP and known exact, then
1955  // cast the integer operand directly to the destination type.
1956  Type *Ty = FPExt.getType();
1957  Value *Src = FPExt.getOperand(0);
1958  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1959    auto *FPCast = cast<CastInst>(Src);
1960    if (isKnownExactCastIntToFP(*FPCast, *this))
1961      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1962  }
1963
1964  return commonCastTransforms(FPExt);
1965}
1966
1967/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1968/// This is safe if the intermediate type has enough bits in its mantissa to
1969/// accurately represent all values of X.  For example, this won't work with
1970/// i64 -> float -> i64.
1971Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1972  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1973    return nullptr;
1974
1975  auto *OpI = cast<CastInst>(FI.getOperand(0));
1976  Value *X = OpI->getOperand(0);
1977  Type *XType = X->getType();
1978  Type *DestType = FI.getType();
1979  bool IsOutputSigned = isa<FPToSIInst>(FI);
1980
1981  // Since we can assume the conversion won't overflow, our decision as to
1982  // whether the input will fit in the float should depend on the minimum
1983  // of the input range and output range.
1984
1985  // This means this is also safe for a signed input and unsigned output, since
1986  // a negative input would lead to undefined behavior.
1987  if (!isKnownExactCastIntToFP(*OpI, *this)) {
1988    // The first cast may not round exactly based on the source integer width
1989    // and FP width, but the overflow UB rules can still allow this to fold.
1990    // If the destination type is narrow, that means the intermediate FP value
1991    // must be large enough to hold the source value exactly.
1992    // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1993    int OutputSize = (int)DestType->getScalarSizeInBits();
1994    if (OutputSize > OpI->getType()->getFPMantissaWidth())
1995      return nullptr;
1996  }
1997
1998  if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1999    bool IsInputSigned = isa<SIToFPInst>(OpI);
2000    if (IsInputSigned && IsOutputSigned)
2001      return new SExtInst(X, DestType);
2002    return new ZExtInst(X, DestType);
2003  }
2004  if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
2005    return new TruncInst(X, DestType);
2006
2007  assert(XType == DestType && "Unexpected types for int to FP to int casts");
2008  return replaceInstUsesWith(FI, X);
2009}
2010
2011Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
2012  if (Instruction *I = foldItoFPtoI(FI))
2013    return I;
2014
2015  return commonCastTransforms(FI);
2016}
2017
2018Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
2019  if (Instruction *I = foldItoFPtoI(FI))
2020    return I;
2021
2022  return commonCastTransforms(FI);
2023}
2024
2025Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
2026  return commonCastTransforms(CI);
2027}
2028
2029Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
2030  return commonCastTransforms(CI);
2031}
2032
2033Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
2034  // If the source integer type is not the intptr_t type for this target, do a
2035  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
2036  // cast to be exposed to other transforms.
2037  unsigned AS = CI.getAddressSpace();
2038  if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
2039      DL.getPointerSizeInBits(AS)) {
2040    Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
2041        DL.getIntPtrType(CI.getContext(), AS));
2042    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
2043    return new IntToPtrInst(P, CI.getType());
2044  }
2045
2046  if (Instruction *I = commonCastTransforms(CI))
2047    return I;
2048
2049  return nullptr;
2050}
2051
2052/// Implement the transforms for cast of pointer (bitcast/ptrtoint)
2053Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
2054  Value *Src = CI.getOperand(0);
2055
2056  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
2057    // If casting the result of a getelementptr instruction with no offset, turn
2058    // this into a cast of the original pointer!
2059    if (GEP->hasAllZeroIndices() &&
2060        // If CI is an addrspacecast and GEP changes the poiner type, merging
2061        // GEP into CI would undo canonicalizing addrspacecast with different
2062        // pointer types, causing infinite loops.
2063        (!isa<AddrSpaceCastInst>(CI) ||
2064         GEP->getType() == GEP->getPointerOperandType())) {
2065      // Changing the cast operand is usually not a good idea but it is safe
2066      // here because the pointer operand is being replaced with another
2067      // pointer operand so the opcode doesn't need to change.
2068      return replaceOperand(CI, 0, GEP->getOperand(0));
2069    }
2070  }
2071
2072  return commonCastTransforms(CI);
2073}
2074
2075Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
2076  // If the destination integer type is not the intptr_t type for this target,
2077  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
2078  // to be exposed to other transforms.
2079  Value *SrcOp = CI.getPointerOperand();
2080  Type *SrcTy = SrcOp->getType();
2081  Type *Ty = CI.getType();
2082  unsigned AS = CI.getPointerAddressSpace();
2083  unsigned TySize = Ty->getScalarSizeInBits();
2084  unsigned PtrSize = DL.getPointerSizeInBits(AS);
2085  if (TySize != PtrSize) {
2086    Type *IntPtrTy =
2087        SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
2088    Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
2089    return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
2090  }
2091
2092  if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) {
2093    // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
2094    // While this can increase the number of instructions it doesn't actually
2095    // increase the overall complexity since the arithmetic is just part of
2096    // the GEP otherwise.
2097    if (GEP->hasOneUse() &&
2098        isa<ConstantPointerNull>(GEP->getPointerOperand())) {
2099      return replaceInstUsesWith(CI,
2100                                 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
2101                                                       /*isSigned=*/false));
2102    }
2103  }
2104
2105  Value *Vec, *Scalar, *Index;
2106  if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2107                                        m_Value(Scalar), m_Value(Index)))) &&
2108      Vec->getType() == Ty) {
2109    assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2110    // Convert the scalar to int followed by insert to eliminate one cast:
2111    // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2112    Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2113    return InsertElementInst::Create(Vec, NewCast, Index);
2114  }
2115
2116  return commonPointerCastTransforms(CI);
2117}
2118
2119/// This input value (which is known to have vector type) is being zero extended
2120/// or truncated to the specified vector type. Since the zext/trunc is done
2121/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2122/// endianness will impact which end of the vector that is extended or
2123/// truncated.
2124///
2125/// A vector is always stored with index 0 at the lowest address, which
2126/// corresponds to the most significant bits for a big endian stored integer and
2127/// the least significant bits for little endian. A trunc/zext of an integer
2128/// impacts the big end of the integer. Thus, we need to add/remove elements at
2129/// the front of the vector for big endian targets, and the back of the vector
2130/// for little endian targets.
2131///
2132/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2133///
2134/// The source and destination vector types may have different element types.
2135static Instruction *
2136optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2137                                        InstCombinerImpl &IC) {
2138  // We can only do this optimization if the output is a multiple of the input
2139  // element size, or the input is a multiple of the output element size.
2140  // Convert the input type to have the same element type as the output.
2141  VectorType *SrcTy = cast<VectorType>(InVal->getType());
2142
2143  if (SrcTy->getElementType() != DestTy->getElementType()) {
2144    // The input types don't need to be identical, but for now they must be the
2145    // same size.  There is no specific reason we couldn't handle things like
2146    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2147    // there yet.
2148    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2149        DestTy->getElementType()->getPrimitiveSizeInBits())
2150      return nullptr;
2151
2152    SrcTy =
2153        FixedVectorType::get(DestTy->getElementType(),
2154                             cast<FixedVectorType>(SrcTy)->getNumElements());
2155    InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2156  }
2157
2158  bool IsBigEndian = IC.getDataLayout().isBigEndian();
2159  unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2160  unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2161
2162  assert(SrcElts != DestElts && "Element counts should be different.");
2163
2164  // Now that the element types match, get the shuffle mask and RHS of the
2165  // shuffle to use, which depends on whether we're increasing or decreasing the
2166  // size of the input.
2167  auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2168  ArrayRef<int> ShuffleMask;
2169  Value *V2;
2170
2171  if (SrcElts > DestElts) {
2172    // If we're shrinking the number of elements (rewriting an integer
2173    // truncate), just shuffle in the elements corresponding to the least
2174    // significant bits from the input and use poison as the second shuffle
2175    // input.
2176    V2 = PoisonValue::get(SrcTy);
2177    // Make sure the shuffle mask selects the "least significant bits" by
2178    // keeping elements from back of the src vector for big endian, and from the
2179    // front for little endian.
2180    ShuffleMask = ShuffleMaskStorage;
2181    if (IsBigEndian)
2182      ShuffleMask = ShuffleMask.take_back(DestElts);
2183    else
2184      ShuffleMask = ShuffleMask.take_front(DestElts);
2185  } else {
2186    // If we're increasing the number of elements (rewriting an integer zext),
2187    // shuffle in all of the elements from InVal. Fill the rest of the result
2188    // elements with zeros from a constant zero.
2189    V2 = Constant::getNullValue(SrcTy);
2190    // Use first elt from V2 when indicating zero in the shuffle mask.
2191    uint32_t NullElt = SrcElts;
2192    // Extend with null values in the "most significant bits" by adding elements
2193    // in front of the src vector for big endian, and at the back for little
2194    // endian.
2195    unsigned DeltaElts = DestElts - SrcElts;
2196    if (IsBigEndian)
2197      ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2198    else
2199      ShuffleMaskStorage.append(DeltaElts, NullElt);
2200    ShuffleMask = ShuffleMaskStorage;
2201  }
2202
2203  return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2204}
2205
2206static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2207  return Value % Ty->getPrimitiveSizeInBits() == 0;
2208}
2209
2210static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2211  return Value / Ty->getPrimitiveSizeInBits();
2212}
2213
2214/// V is a value which is inserted into a vector of VecEltTy.
2215/// Look through the value to see if we can decompose it into
2216/// insertions into the vector.  See the example in the comment for
2217/// OptimizeIntegerToVectorInsertions for the pattern this handles.
2218/// The type of V is always a non-zero multiple of VecEltTy's size.
2219/// Shift is the number of bits between the lsb of V and the lsb of
2220/// the vector.
2221///
2222/// This returns false if the pattern can't be matched or true if it can,
2223/// filling in Elements with the elements found here.
2224static bool collectInsertionElements(Value *V, unsigned Shift,
2225                                     SmallVectorImpl<Value *> &Elements,
2226                                     Type *VecEltTy, bool isBigEndian) {
2227  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2228         "Shift should be a multiple of the element type size");
2229
2230  // Undef values never contribute useful bits to the result.
2231  if (isa<UndefValue>(V)) return true;
2232
2233  // If we got down to a value of the right type, we win, try inserting into the
2234  // right element.
2235  if (V->getType() == VecEltTy) {
2236    // Inserting null doesn't actually insert any elements.
2237    if (Constant *C = dyn_cast<Constant>(V))
2238      if (C->isNullValue())
2239        return true;
2240
2241    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2242    if (isBigEndian)
2243      ElementIndex = Elements.size() - ElementIndex - 1;
2244
2245    // Fail if multiple elements are inserted into this slot.
2246    if (Elements[ElementIndex])
2247      return false;
2248
2249    Elements[ElementIndex] = V;
2250    return true;
2251  }
2252
2253  if (Constant *C = dyn_cast<Constant>(V)) {
2254    // Figure out the # elements this provides, and bitcast it or slice it up
2255    // as required.
2256    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2257                                        VecEltTy);
2258    // If the constant is the size of a vector element, we just need to bitcast
2259    // it to the right type so it gets properly inserted.
2260    if (NumElts == 1)
2261      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2262                                      Shift, Elements, VecEltTy, isBigEndian);
2263
2264    // Okay, this is a constant that covers multiple elements.  Slice it up into
2265    // pieces and insert each element-sized piece into the vector.
2266    if (!isa<IntegerType>(C->getType()))
2267      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2268                                       C->getType()->getPrimitiveSizeInBits()));
2269    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2270    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2271
2272    for (unsigned i = 0; i != NumElts; ++i) {
2273      unsigned ShiftI = Shift+i*ElementSize;
2274      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2275                                                                  ShiftI));
2276      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2277      if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2278                                    isBigEndian))
2279        return false;
2280    }
2281    return true;
2282  }
2283
2284  if (!V->hasOneUse()) return false;
2285
2286  Instruction *I = dyn_cast<Instruction>(V);
2287  if (!I) return false;
2288  switch (I->getOpcode()) {
2289  default: return false; // Unhandled case.
2290  case Instruction::BitCast:
2291    if (I->getOperand(0)->getType()->isVectorTy())
2292      return false;
2293    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2294                                    isBigEndian);
2295  case Instruction::ZExt:
2296    if (!isMultipleOfTypeSize(
2297                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2298                              VecEltTy))
2299      return false;
2300    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2301                                    isBigEndian);
2302  case Instruction::Or:
2303    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2304                                    isBigEndian) &&
2305           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2306                                    isBigEndian);
2307  case Instruction::Shl: {
2308    // Must be shifting by a constant that is a multiple of the element size.
2309    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2310    if (!CI) return false;
2311    Shift += CI->getZExtValue();
2312    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2313    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2314                                    isBigEndian);
2315  }
2316
2317  }
2318}
2319
2320
2321/// If the input is an 'or' instruction, we may be doing shifts and ors to
2322/// assemble the elements of the vector manually.
2323/// Try to rip the code out and replace it with insertelements.  This is to
2324/// optimize code like this:
2325///
2326///    %tmp37 = bitcast float %inc to i32
2327///    %tmp38 = zext i32 %tmp37 to i64
2328///    %tmp31 = bitcast float %inc5 to i32
2329///    %tmp32 = zext i32 %tmp31 to i64
2330///    %tmp33 = shl i64 %tmp32, 32
2331///    %ins35 = or i64 %tmp33, %tmp38
2332///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2333///
2334/// Into two insertelements that do "buildvector{%inc, %inc5}".
2335static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2336                                                InstCombinerImpl &IC) {
2337  auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2338  Value *IntInput = CI.getOperand(0);
2339
2340  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2341  if (!collectInsertionElements(IntInput, 0, Elements,
2342                                DestVecTy->getElementType(),
2343                                IC.getDataLayout().isBigEndian()))
2344    return nullptr;
2345
2346  // If we succeeded, we know that all of the element are specified by Elements
2347  // or are zero if Elements has a null entry.  Recast this as a set of
2348  // insertions.
2349  Value *Result = Constant::getNullValue(CI.getType());
2350  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2351    if (!Elements[i]) continue;  // Unset element.
2352
2353    Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2354                                            IC.Builder.getInt32(i));
2355  }
2356
2357  return Result;
2358}
2359
2360/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2361/// vector followed by extract element. The backend tends to handle bitcasts of
2362/// vectors better than bitcasts of scalars because vector registers are
2363/// usually not type-specific like scalar integer or scalar floating-point.
2364static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2365                                              InstCombinerImpl &IC) {
2366  Value *VecOp, *Index;
2367  if (!match(BitCast.getOperand(0),
2368             m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index)))))
2369    return nullptr;
2370
2371  // The bitcast must be to a vectorizable type, otherwise we can't make a new
2372  // type to extract from.
2373  Type *DestType = BitCast.getType();
2374  VectorType *VecType = cast<VectorType>(VecOp->getType());
2375  if (VectorType::isValidElementType(DestType)) {
2376    auto *NewVecType = VectorType::get(DestType, VecType);
2377    auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
2378    return ExtractElementInst::Create(NewBC, Index);
2379  }
2380
2381  // Only solve DestType is vector to avoid inverse transform in visitBitCast.
2382  // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
2383  auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
2384  if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
2385    return CastInst::Create(Instruction::BitCast, VecOp, DestType);
2386
2387  return nullptr;
2388}
2389
2390/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2391static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2392                                            InstCombiner::BuilderTy &Builder) {
2393  Type *DestTy = BitCast.getType();
2394  BinaryOperator *BO;
2395
2396  if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2397      !BO->isBitwiseLogicOp())
2398    return nullptr;
2399
2400  // FIXME: This transform is restricted to vector types to avoid backend
2401  // problems caused by creating potentially illegal operations. If a fix-up is
2402  // added to handle that situation, we can remove this check.
2403  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2404    return nullptr;
2405
2406  if (DestTy->isFPOrFPVectorTy()) {
2407    Value *X, *Y;
2408    // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
2409    if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2410        match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) {
2411      if (X->getType()->isFPOrFPVectorTy() &&
2412          Y->getType()->isIntOrIntVectorTy()) {
2413        Value *CastedOp =
2414            Builder.CreateBitCast(BO->getOperand(0), Y->getType());
2415        Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
2416        return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2417      }
2418      if (X->getType()->isIntOrIntVectorTy() &&
2419          Y->getType()->isFPOrFPVectorTy()) {
2420        Value *CastedOp =
2421            Builder.CreateBitCast(BO->getOperand(1), X->getType());
2422        Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
2423        return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2424      }
2425    }
2426    return nullptr;
2427  }
2428
2429  if (!DestTy->isIntOrIntVectorTy())
2430    return nullptr;
2431
2432  Value *X;
2433  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2434      X->getType() == DestTy && !isa<Constant>(X)) {
2435    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2436    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2437    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2438  }
2439
2440  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2441      X->getType() == DestTy && !isa<Constant>(X)) {
2442    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2443    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2444    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2445  }
2446
2447  // Canonicalize vector bitcasts to come before vector bitwise logic with a
2448  // constant. This eases recognition of special constants for later ops.
2449  // Example:
2450  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2451  Constant *C;
2452  if (match(BO->getOperand(1), m_Constant(C))) {
2453    // bitcast (logic X, C) --> logic (bitcast X, C')
2454    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2455    Value *CastedC = Builder.CreateBitCast(C, DestTy);
2456    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2457  }
2458
2459  return nullptr;
2460}
2461
2462/// Change the type of a select if we can eliminate a bitcast.
2463static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2464                                      InstCombiner::BuilderTy &Builder) {
2465  Value *Cond, *TVal, *FVal;
2466  if (!match(BitCast.getOperand(0),
2467             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2468    return nullptr;
2469
2470  // A vector select must maintain the same number of elements in its operands.
2471  Type *CondTy = Cond->getType();
2472  Type *DestTy = BitCast.getType();
2473  if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2474    if (!DestTy->isVectorTy() ||
2475        CondVTy->getElementCount() !=
2476            cast<VectorType>(DestTy)->getElementCount())
2477      return nullptr;
2478
2479  // FIXME: This transform is restricted from changing the select between
2480  // scalars and vectors to avoid backend problems caused by creating
2481  // potentially illegal operations. If a fix-up is added to handle that
2482  // situation, we can remove this check.
2483  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2484    return nullptr;
2485
2486  auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2487  Value *X;
2488  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2489      !isa<Constant>(X)) {
2490    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2491    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2492    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2493  }
2494
2495  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2496      !isa<Constant>(X)) {
2497    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2498    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2499    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2500  }
2501
2502  return nullptr;
2503}
2504
2505/// Check if all users of CI are StoreInsts.
2506static bool hasStoreUsersOnly(CastInst &CI) {
2507  for (User *U : CI.users()) {
2508    if (!isa<StoreInst>(U))
2509      return false;
2510  }
2511  return true;
2512}
2513
2514/// This function handles following case
2515///
2516///     A  ->  B    cast
2517///     PHI
2518///     B  ->  A    cast
2519///
2520/// All the related PHI nodes can be replaced by new PHI nodes with type A.
2521/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2522Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2523                                                      PHINode *PN) {
2524  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2525  if (hasStoreUsersOnly(CI))
2526    return nullptr;
2527
2528  Value *Src = CI.getOperand(0);
2529  Type *SrcTy = Src->getType();         // Type B
2530  Type *DestTy = CI.getType();          // Type A
2531
2532  SmallVector<PHINode *, 4> PhiWorklist;
2533  SmallSetVector<PHINode *, 4> OldPhiNodes;
2534
2535  // Find all of the A->B casts and PHI nodes.
2536  // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2537  // OldPhiNodes is used to track all known PHI nodes, before adding a new
2538  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2539  PhiWorklist.push_back(PN);
2540  OldPhiNodes.insert(PN);
2541  while (!PhiWorklist.empty()) {
2542    auto *OldPN = PhiWorklist.pop_back_val();
2543    for (Value *IncValue : OldPN->incoming_values()) {
2544      if (isa<Constant>(IncValue))
2545        continue;
2546
2547      if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2548        // If there is a sequence of one or more load instructions, each loaded
2549        // value is used as address of later load instruction, bitcast is
2550        // necessary to change the value type, don't optimize it. For
2551        // simplicity we give up if the load address comes from another load.
2552        Value *Addr = LI->getOperand(0);
2553        if (Addr == &CI || isa<LoadInst>(Addr))
2554          return nullptr;
2555        // Don't tranform "load <256 x i32>, <256 x i32>*" to
2556        // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2557        // TODO: Remove this check when bitcast between vector and x86_amx
2558        // is replaced with a specific intrinsic.
2559        if (DestTy->isX86_AMXTy())
2560          return nullptr;
2561        if (LI->hasOneUse() && LI->isSimple())
2562          continue;
2563        // If a LoadInst has more than one use, changing the type of loaded
2564        // value may create another bitcast.
2565        return nullptr;
2566      }
2567
2568      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2569        if (OldPhiNodes.insert(PNode))
2570          PhiWorklist.push_back(PNode);
2571        continue;
2572      }
2573
2574      auto *BCI = dyn_cast<BitCastInst>(IncValue);
2575      // We can't handle other instructions.
2576      if (!BCI)
2577        return nullptr;
2578
2579      // Verify it's a A->B cast.
2580      Type *TyA = BCI->getOperand(0)->getType();
2581      Type *TyB = BCI->getType();
2582      if (TyA != DestTy || TyB != SrcTy)
2583        return nullptr;
2584    }
2585  }
2586
2587  // Check that each user of each old PHI node is something that we can
2588  // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2589  for (auto *OldPN : OldPhiNodes) {
2590    for (User *V : OldPN->users()) {
2591      if (auto *SI = dyn_cast<StoreInst>(V)) {
2592        if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2593          return nullptr;
2594      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2595        // Verify it's a B->A cast.
2596        Type *TyB = BCI->getOperand(0)->getType();
2597        Type *TyA = BCI->getType();
2598        if (TyA != DestTy || TyB != SrcTy)
2599          return nullptr;
2600      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2601        // As long as the user is another old PHI node, then even if we don't
2602        // rewrite it, the PHI web we're considering won't have any users
2603        // outside itself, so it'll be dead.
2604        if (!OldPhiNodes.contains(PHI))
2605          return nullptr;
2606      } else {
2607        return nullptr;
2608      }
2609    }
2610  }
2611
2612  // For each old PHI node, create a corresponding new PHI node with a type A.
2613  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2614  for (auto *OldPN : OldPhiNodes) {
2615    Builder.SetInsertPoint(OldPN);
2616    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2617    NewPNodes[OldPN] = NewPN;
2618  }
2619
2620  // Fill in the operands of new PHI nodes.
2621  for (auto *OldPN : OldPhiNodes) {
2622    PHINode *NewPN = NewPNodes[OldPN];
2623    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2624      Value *V = OldPN->getOperand(j);
2625      Value *NewV = nullptr;
2626      if (auto *C = dyn_cast<Constant>(V)) {
2627        NewV = ConstantExpr::getBitCast(C, DestTy);
2628      } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2629        // Explicitly perform load combine to make sure no opposing transform
2630        // can remove the bitcast in the meantime and trigger an infinite loop.
2631        Builder.SetInsertPoint(LI);
2632        NewV = combineLoadToNewType(*LI, DestTy);
2633        // Remove the old load and its use in the old phi, which itself becomes
2634        // dead once the whole transform finishes.
2635        replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2636        eraseInstFromFunction(*LI);
2637      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2638        NewV = BCI->getOperand(0);
2639      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2640        NewV = NewPNodes[PrevPN];
2641      }
2642      assert(NewV);
2643      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2644    }
2645  }
2646
2647  // Traverse all accumulated PHI nodes and process its users,
2648  // which are Stores and BitcCasts. Without this processing
2649  // NewPHI nodes could be replicated and could lead to extra
2650  // moves generated after DeSSA.
2651  // If there is a store with type B, change it to type A.
2652
2653
2654  // Replace users of BitCast B->A with NewPHI. These will help
2655  // later to get rid off a closure formed by OldPHI nodes.
2656  Instruction *RetVal = nullptr;
2657  for (auto *OldPN : OldPhiNodes) {
2658    PHINode *NewPN = NewPNodes[OldPN];
2659    for (User *V : make_early_inc_range(OldPN->users())) {
2660      if (auto *SI = dyn_cast<StoreInst>(V)) {
2661        assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2662        Builder.SetInsertPoint(SI);
2663        auto *NewBC =
2664          cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2665        SI->setOperand(0, NewBC);
2666        Worklist.push(SI);
2667        assert(hasStoreUsersOnly(*NewBC));
2668      }
2669      else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2670        Type *TyB = BCI->getOperand(0)->getType();
2671        Type *TyA = BCI->getType();
2672        assert(TyA == DestTy && TyB == SrcTy);
2673        (void) TyA;
2674        (void) TyB;
2675        Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2676        if (BCI == &CI)
2677          RetVal = I;
2678      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2679        assert(OldPhiNodes.contains(PHI));
2680        (void) PHI;
2681      } else {
2682        llvm_unreachable("all uses should be handled");
2683      }
2684    }
2685  }
2686
2687  return RetVal;
2688}
2689
2690static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder,
2691                                        const DataLayout &DL) {
2692  Value *Src = CI.getOperand(0);
2693  PointerType *SrcPTy = cast<PointerType>(Src->getType());
2694  PointerType *DstPTy = cast<PointerType>(CI.getType());
2695
2696  // Bitcasts involving opaque pointers cannot be converted into a GEP.
2697  if (SrcPTy->isOpaque() || DstPTy->isOpaque())
2698    return nullptr;
2699
2700  Type *DstElTy = DstPTy->getNonOpaquePointerElementType();
2701  Type *SrcElTy = SrcPTy->getNonOpaquePointerElementType();
2702
2703  // When the type pointed to is not sized the cast cannot be
2704  // turned into a gep.
2705  if (!SrcElTy->isSized())
2706    return nullptr;
2707
2708  // If the source and destination are pointers, and this cast is equivalent
2709  // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2710  // This can enhance SROA and other transforms that want type-safe pointers.
2711  unsigned NumZeros = 0;
2712  while (SrcElTy && SrcElTy != DstElTy) {
2713    SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2714    ++NumZeros;
2715  }
2716
2717  // If we found a path from the src to dest, create the getelementptr now.
2718  if (SrcElTy == DstElTy) {
2719    SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2720    GetElementPtrInst *GEP = GetElementPtrInst::Create(
2721        SrcPTy->getNonOpaquePointerElementType(), Src, Idxs);
2722
2723    // If the source pointer is dereferenceable, then assume it points to an
2724    // allocated object and apply "inbounds" to the GEP.
2725    bool CanBeNull, CanBeFreed;
2726    if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) {
2727      // In a non-default address space (not 0), a null pointer can not be
2728      // assumed inbounds, so ignore that case (dereferenceable_or_null).
2729      // The reason is that 'null' is not treated differently in these address
2730      // spaces, and we consequently ignore the 'gep inbounds' special case
2731      // for 'null' which allows 'inbounds' on 'null' if the indices are
2732      // zeros.
2733      if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2734        GEP->setIsInBounds();
2735    }
2736    return GEP;
2737  }
2738  return nullptr;
2739}
2740
2741Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2742  // If the operands are integer typed then apply the integer transforms,
2743  // otherwise just apply the common ones.
2744  Value *Src = CI.getOperand(0);
2745  Type *SrcTy = Src->getType();
2746  Type *DestTy = CI.getType();
2747
2748  // Get rid of casts from one type to the same type. These are useless and can
2749  // be replaced by the operand.
2750  if (DestTy == Src->getType())
2751    return replaceInstUsesWith(CI, Src);
2752
2753  if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
2754    // If we are casting a alloca to a pointer to a type of the same
2755    // size, rewrite the allocation instruction to allocate the "right" type.
2756    // There is no need to modify malloc calls because it is their bitcast that
2757    // needs to be cleaned up.
2758    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2759      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2760        return V;
2761
2762    if (Instruction *I = convertBitCastToGEP(CI, Builder, DL))
2763      return I;
2764  }
2765
2766  if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2767    // Beware: messing with this target-specific oddity may cause trouble.
2768    if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2769      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2770      return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2771                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2772    }
2773
2774    if (isa<IntegerType>(SrcTy)) {
2775      // If this is a cast from an integer to vector, check to see if the input
2776      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2777      // the casts with a shuffle and (potentially) a bitcast.
2778      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2779        CastInst *SrcCast = cast<CastInst>(Src);
2780        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2781          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2782            if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2783                    BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2784              return I;
2785      }
2786
2787      // If the input is an 'or' instruction, we may be doing shifts and ors to
2788      // assemble the elements of the vector manually.  Try to rip the code out
2789      // and replace it with insertelements.
2790      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2791        return replaceInstUsesWith(CI, V);
2792    }
2793  }
2794
2795  if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2796    if (SrcVTy->getNumElements() == 1) {
2797      // If our destination is not a vector, then make this a straight
2798      // scalar-scalar cast.
2799      if (!DestTy->isVectorTy()) {
2800        Value *Elem =
2801          Builder.CreateExtractElement(Src,
2802                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2803        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2804      }
2805
2806      // Otherwise, see if our source is an insert. If so, then use the scalar
2807      // component directly:
2808      // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2809      if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2810        return new BitCastInst(InsElt->getOperand(1), DestTy);
2811    }
2812
2813    // Convert an artificial vector insert into more analyzable bitwise logic.
2814    unsigned BitWidth = DestTy->getScalarSizeInBits();
2815    Value *X, *Y;
2816    uint64_t IndexC;
2817    if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
2818                                        m_Value(Y), m_ConstantInt(IndexC)))) &&
2819        DestTy->isIntegerTy() && X->getType() == DestTy &&
2820        Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2821      // Adjust for big endian - the LSBs are at the high index.
2822      if (DL.isBigEndian())
2823        IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2824
2825      // We only handle (endian-normalized) insert to index 0. Any other insert
2826      // would require a left-shift, so that is an extra instruction.
2827      if (IndexC == 0) {
2828        // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2829        unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2830        APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2831        Value *AndX = Builder.CreateAnd(X, MaskC);
2832        Value *ZextY = Builder.CreateZExt(Y, DestTy);
2833        return BinaryOperator::CreateOr(AndX, ZextY);
2834      }
2835    }
2836  }
2837
2838  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2839    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2840    // a bitcast to a vector with the same # elts.
2841    Value *ShufOp0 = Shuf->getOperand(0);
2842    Value *ShufOp1 = Shuf->getOperand(1);
2843    auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2844    auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2845    if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2846        cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2847        ShufElts == SrcVecElts) {
2848      BitCastInst *Tmp;
2849      // If either of the operands is a cast from CI.getType(), then
2850      // evaluating the shuffle in the casted destination's type will allow
2851      // us to eliminate at least one cast.
2852      if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2853           Tmp->getOperand(0)->getType() == DestTy) ||
2854          ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2855           Tmp->getOperand(0)->getType() == DestTy)) {
2856        Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2857        Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2858        // Return a new shuffle vector.  Use the same element ID's, as we
2859        // know the vector types match #elts.
2860        return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2861      }
2862    }
2863
2864    // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
2865    // as a byte/bit swap:
2866    // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
2867    // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
2868    if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
2869        Shuf->hasOneUse() && Shuf->isReverse()) {
2870      unsigned IntrinsicNum = 0;
2871      if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2872          SrcTy->getScalarSizeInBits() == 8) {
2873        IntrinsicNum = Intrinsic::bswap;
2874      } else if (SrcTy->getScalarSizeInBits() == 1) {
2875        IntrinsicNum = Intrinsic::bitreverse;
2876      }
2877      if (IntrinsicNum != 0) {
2878        assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2879        assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2880        Function *BswapOrBitreverse =
2881            Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
2882        Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2883        return CallInst::Create(BswapOrBitreverse, {ScalarX});
2884      }
2885    }
2886  }
2887
2888  // Handle the A->B->A cast, and there is an intervening PHI node.
2889  if (PHINode *PN = dyn_cast<PHINode>(Src))
2890    if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2891      return I;
2892
2893  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2894    return I;
2895
2896  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2897    return I;
2898
2899  if (Instruction *I = foldBitCastSelect(CI, Builder))
2900    return I;
2901
2902  if (SrcTy->isPointerTy())
2903    return commonPointerCastTransforms(CI);
2904  return commonCastTransforms(CI);
2905}
2906
2907Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2908  // If the destination pointer element type is not the same as the source's
2909  // first do a bitcast to the destination type, and then the addrspacecast.
2910  // This allows the cast to be exposed to other transforms.
2911  Value *Src = CI.getOperand(0);
2912  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2913  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2914
2915  if (!SrcTy->hasSameElementTypeAs(DestTy)) {
2916    Type *MidTy =
2917        PointerType::getWithSamePointeeType(DestTy, SrcTy->getAddressSpace());
2918    // Handle vectors of pointers.
2919    if (VectorType *VT = dyn_cast<VectorType>(CI.getType()))
2920      MidTy = VectorType::get(MidTy, VT->getElementCount());
2921
2922    Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2923    return new AddrSpaceCastInst(NewBitCast, CI.getType());
2924  }
2925
2926  return commonPointerCastTransforms(CI);
2927}
2928