1//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a transformation that attaches !callees metadata to
10// indirect call sites. For a given call site, the metadata, if present,
11// indicates the set of functions the call site could possibly target at
12// run-time. This metadata is added to indirect call sites when the set of
13// possible targets can be determined by analysis and is known to be small. The
14// analysis driving the transformation is similar to constant propagation and
15// makes uses of the generic sparse propagation solver.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/IPO/CalledValuePropagation.h"
20#include "llvm/Analysis/SparsePropagation.h"
21#include "llvm/Analysis/ValueLatticeUtils.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/MDBuilder.h"
24#include "llvm/InitializePasses.h"
25#include "llvm/Pass.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Transforms/IPO.h"
28
29using namespace llvm;
30
31#define DEBUG_TYPE "called-value-propagation"
32
33/// The maximum number of functions to track per lattice value. Once the number
34/// of functions a call site can possibly target exceeds this threshold, it's
35/// lattice value becomes overdefined. The number of possible lattice values is
36/// bounded by Ch(F, M), where F is the number of functions in the module and M
37/// is MaxFunctionsPerValue. As such, this value should be kept very small. We
38/// likely can't do anything useful for call sites with a large number of
39/// possible targets, anyway.
40static cl::opt<unsigned> MaxFunctionsPerValue(
41    "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
42    cl::desc("The maximum number of functions to track per lattice value"));
43
44namespace {
45/// To enable interprocedural analysis, we assign LLVM values to the following
46/// groups. The register group represents SSA registers, the return group
47/// represents the return values of functions, and the memory group represents
48/// in-memory values. An LLVM Value can technically be in more than one group.
49/// It's necessary to distinguish these groups so we can, for example, track a
50/// global variable separately from the value stored at its location.
51enum class IPOGrouping { Register, Return, Memory };
52
53/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
54using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
55
56/// The lattice value type used by our custom lattice function. It holds the
57/// lattice state, and a set of functions.
58class CVPLatticeVal {
59public:
60  /// The states of the lattice values. Only the FunctionSet state is
61  /// interesting. It indicates the set of functions to which an LLVM value may
62  /// refer.
63  enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
64
65  /// Comparator for sorting the functions set. We want to keep the order
66  /// deterministic for testing, etc.
67  struct Compare {
68    bool operator()(const Function *LHS, const Function *RHS) const {
69      return LHS->getName() < RHS->getName();
70    }
71  };
72
73  CVPLatticeVal() = default;
74  CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
75  CVPLatticeVal(std::vector<Function *> &&Functions)
76      : LatticeState(FunctionSet), Functions(std::move(Functions)) {
77    assert(llvm::is_sorted(this->Functions, Compare()));
78  }
79
80  /// Get a reference to the functions held by this lattice value. The number
81  /// of functions will be zero for states other than FunctionSet.
82  const std::vector<Function *> &getFunctions() const {
83    return Functions;
84  }
85
86  /// Returns true if the lattice value is in the FunctionSet state.
87  bool isFunctionSet() const { return LatticeState == FunctionSet; }
88
89  bool operator==(const CVPLatticeVal &RHS) const {
90    return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
91  }
92
93  bool operator!=(const CVPLatticeVal &RHS) const {
94    return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
95  }
96
97private:
98  /// Holds the state this lattice value is in.
99  CVPLatticeStateTy LatticeState = Undefined;
100
101  /// Holds functions indicating the possible targets of call sites. This set
102  /// is empty for lattice values in the undefined, overdefined, and untracked
103  /// states. The maximum size of the set is controlled by
104  /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
105  /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
106  /// small and efficiently copyable.
107  // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
108  std::vector<Function *> Functions;
109};
110
111/// The custom lattice function used by the generic sparse propagation solver.
112/// It handles merging lattice values and computing new lattice values for
113/// constants, arguments, values returned from trackable functions, and values
114/// located in trackable global variables. It also computes the lattice values
115/// that change as a result of executing instructions.
116class CVPLatticeFunc
117    : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
118public:
119  CVPLatticeFunc()
120      : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
121                                CVPLatticeVal(CVPLatticeVal::Overdefined),
122                                CVPLatticeVal(CVPLatticeVal::Untracked)) {}
123
124  /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
125  CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
126    switch (Key.getInt()) {
127    case IPOGrouping::Register:
128      if (isa<Instruction>(Key.getPointer())) {
129        return getUndefVal();
130      } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
131        if (canTrackArgumentsInterprocedurally(A->getParent()))
132          return getUndefVal();
133      } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
134        return computeConstant(C);
135      }
136      return getOverdefinedVal();
137    case IPOGrouping::Memory:
138    case IPOGrouping::Return:
139      if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
140        if (canTrackGlobalVariableInterprocedurally(GV))
141          return computeConstant(GV->getInitializer());
142      } else if (auto *F = cast<Function>(Key.getPointer()))
143        if (canTrackReturnsInterprocedurally(F))
144          return getUndefVal();
145    }
146    return getOverdefinedVal();
147  }
148
149  /// Merge the two given lattice values. The interesting cases are merging two
150  /// FunctionSet values and a FunctionSet value with an Undefined value. For
151  /// these cases, we simply union the function sets. If the size of the union
152  /// is greater than the maximum functions we track, the merged value is
153  /// overdefined.
154  CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
155    if (X == getOverdefinedVal() || Y == getOverdefinedVal())
156      return getOverdefinedVal();
157    if (X == getUndefVal() && Y == getUndefVal())
158      return getUndefVal();
159    std::vector<Function *> Union;
160    std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
161                   Y.getFunctions().begin(), Y.getFunctions().end(),
162                   std::back_inserter(Union), CVPLatticeVal::Compare{});
163    if (Union.size() > MaxFunctionsPerValue)
164      return getOverdefinedVal();
165    return CVPLatticeVal(std::move(Union));
166  }
167
168  /// Compute the lattice values that change as a result of executing the given
169  /// instruction. The changed values are stored in \p ChangedValues. We handle
170  /// just a few kinds of instructions since we're only propagating values that
171  /// can be called.
172  void ComputeInstructionState(
173      Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
174      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
175    switch (I.getOpcode()) {
176    case Instruction::Call:
177    case Instruction::Invoke:
178      return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
179    case Instruction::Load:
180      return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
181    case Instruction::Ret:
182      return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
183    case Instruction::Select:
184      return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
185    case Instruction::Store:
186      return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
187    default:
188      return visitInst(I, ChangedValues, SS);
189    }
190  }
191
192  /// Print the given CVPLatticeVal to the specified stream.
193  void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
194    if (LV == getUndefVal())
195      OS << "Undefined  ";
196    else if (LV == getOverdefinedVal())
197      OS << "Overdefined";
198    else if (LV == getUntrackedVal())
199      OS << "Untracked  ";
200    else
201      OS << "FunctionSet";
202  }
203
204  /// Print the given CVPLatticeKey to the specified stream.
205  void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
206    if (Key.getInt() == IPOGrouping::Register)
207      OS << "<reg> ";
208    else if (Key.getInt() == IPOGrouping::Memory)
209      OS << "<mem> ";
210    else if (Key.getInt() == IPOGrouping::Return)
211      OS << "<ret> ";
212    if (isa<Function>(Key.getPointer()))
213      OS << Key.getPointer()->getName();
214    else
215      OS << *Key.getPointer();
216  }
217
218  /// We collect a set of indirect calls when visiting call sites. This method
219  /// returns a reference to that set.
220  SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
221
222private:
223  /// Holds the indirect calls we encounter during the analysis. We will attach
224  /// metadata to these calls after the analysis indicating the functions the
225  /// calls can possibly target.
226  SmallPtrSet<CallBase *, 32> IndirectCalls;
227
228  /// Compute a new lattice value for the given constant. The constant, after
229  /// stripping any pointer casts, should be a Function. We ignore null
230  /// pointers as an optimization, since calling these values is undefined
231  /// behavior.
232  CVPLatticeVal computeConstant(Constant *C) {
233    if (isa<ConstantPointerNull>(C))
234      return CVPLatticeVal(CVPLatticeVal::FunctionSet);
235    if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
236      return CVPLatticeVal({F});
237    return getOverdefinedVal();
238  }
239
240  /// Handle return instructions. The function's return state is the merge of
241  /// the returned value state and the function's return state.
242  void visitReturn(ReturnInst &I,
243                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
244                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
245    Function *F = I.getParent()->getParent();
246    if (F->getReturnType()->isVoidTy())
247      return;
248    auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
249    auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
250    ChangedValues[RetF] =
251        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
252  }
253
254  /// Handle call sites. The state of a called function's formal arguments is
255  /// the merge of the argument state with the call sites corresponding actual
256  /// argument state. The call site state is the merge of the call site state
257  /// with the returned value state of the called function.
258  void visitCallBase(CallBase &CB,
259                     DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
260                     SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
261    Function *F = CB.getCalledFunction();
262    auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
263
264    // If this is an indirect call, save it so we can quickly revisit it when
265    // attaching metadata.
266    if (!F)
267      IndirectCalls.insert(&CB);
268
269    // If we can't track the function's return values, there's nothing to do.
270    if (!F || !canTrackReturnsInterprocedurally(F)) {
271      // Void return, No need to create and update CVPLattice state as no one
272      // can use it.
273      if (CB.getType()->isVoidTy())
274        return;
275      ChangedValues[RegI] = getOverdefinedVal();
276      return;
277    }
278
279    // Inform the solver that the called function is executable, and perform
280    // the merges for the arguments and return value.
281    SS.MarkBlockExecutable(&F->front());
282    auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
283    for (Argument &A : F->args()) {
284      auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
285      auto RegActual =
286          CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
287      ChangedValues[RegFormal] =
288          MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
289    }
290
291    // Void return, No need to create and update CVPLattice state as no one can
292    // use it.
293    if (CB.getType()->isVoidTy())
294      return;
295
296    ChangedValues[RegI] =
297        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
298  }
299
300  /// Handle select instructions. The select instruction state is the merge the
301  /// true and false value states.
302  void visitSelect(SelectInst &I,
303                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
304                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
305    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
306    auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
307    auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
308    ChangedValues[RegI] =
309        MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
310  }
311
312  /// Handle load instructions. If the pointer operand of the load is a global
313  /// variable, we attempt to track the value. The loaded value state is the
314  /// merge of the loaded value state with the global variable state.
315  void visitLoad(LoadInst &I,
316                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
317                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
318    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
319    if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
320      auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
321      ChangedValues[RegI] =
322          MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
323    } else {
324      ChangedValues[RegI] = getOverdefinedVal();
325    }
326  }
327
328  /// Handle store instructions. If the pointer operand of the store is a
329  /// global variable, we attempt to track the value. The global variable state
330  /// is the merge of the stored value state with the global variable state.
331  void visitStore(StoreInst &I,
332                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
333                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
334    auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
335    if (!GV)
336      return;
337    auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
338    auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
339    ChangedValues[MemGV] =
340        MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
341  }
342
343  /// Handle all other instructions. All other instructions are marked
344  /// overdefined.
345  void visitInst(Instruction &I,
346                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
347                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
348    // Simply bail if this instruction has no user.
349    if (I.use_empty())
350      return;
351    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
352    ChangedValues[RegI] = getOverdefinedVal();
353  }
354};
355} // namespace
356
357namespace llvm {
358/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
359/// must translate between LatticeKeys and LLVM Values when adding Values to
360/// its work list and inspecting the state of control-flow related values.
361template <> struct LatticeKeyInfo<CVPLatticeKey> {
362  static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
363    return Key.getPointer();
364  }
365  static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
366    return CVPLatticeKey(V, IPOGrouping::Register);
367  }
368};
369} // namespace llvm
370
371static bool runCVP(Module &M) {
372  // Our custom lattice function and generic sparse propagation solver.
373  CVPLatticeFunc Lattice;
374  SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
375
376  // For each function in the module, if we can't track its arguments, let the
377  // generic solver assume it is executable.
378  for (Function &F : M)
379    if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
380      Solver.MarkBlockExecutable(&F.front());
381
382  // Solver our custom lattice. In doing so, we will also build a set of
383  // indirect call sites.
384  Solver.Solve();
385
386  // Attach metadata to the indirect call sites that were collected indicating
387  // the set of functions they can possibly target.
388  bool Changed = false;
389  MDBuilder MDB(M.getContext());
390  for (CallBase *C : Lattice.getIndirectCalls()) {
391    auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
392    CVPLatticeVal LV = Solver.getExistingValueState(RegI);
393    if (!LV.isFunctionSet() || LV.getFunctions().empty())
394      continue;
395    MDNode *Callees = MDB.createCallees(LV.getFunctions());
396    C->setMetadata(LLVMContext::MD_callees, Callees);
397    Changed = true;
398  }
399
400  return Changed;
401}
402
403PreservedAnalyses CalledValuePropagationPass::run(Module &M,
404                                                  ModuleAnalysisManager &) {
405  runCVP(M);
406  return PreservedAnalyses::all();
407}
408
409namespace {
410class CalledValuePropagationLegacyPass : public ModulePass {
411public:
412  static char ID;
413
414  void getAnalysisUsage(AnalysisUsage &AU) const override {
415    AU.setPreservesAll();
416  }
417
418  CalledValuePropagationLegacyPass() : ModulePass(ID) {
419    initializeCalledValuePropagationLegacyPassPass(
420        *PassRegistry::getPassRegistry());
421  }
422
423  bool runOnModule(Module &M) override {
424    if (skipModule(M))
425      return false;
426    return runCVP(M);
427  }
428};
429} // namespace
430
431char CalledValuePropagationLegacyPass::ID = 0;
432INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
433                "Called Value Propagation", false, false)
434
435ModulePass *llvm::createCalledValuePropagationPass() {
436  return new CalledValuePropagationLegacyPass();
437}
438