1//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that expands pseudo instructions into target
10// instructions to allow proper scheduling, if-conversion, other late
11// optimizations, or simply the encoding of the instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86FrameLowering.h"
17#include "X86InstrBuilder.h"
18#include "X86InstrInfo.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "llvm/Analysis/EHPersonalities.h"
22#include "llvm/CodeGen/LivePhysRegs.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
26#include "llvm/IR/GlobalValue.h"
27#include "llvm/Target/TargetMachine.h"
28using namespace llvm;
29
30#define DEBUG_TYPE "x86-pseudo"
31#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
32
33namespace {
34class X86ExpandPseudo : public MachineFunctionPass {
35public:
36  static char ID;
37  X86ExpandPseudo() : MachineFunctionPass(ID) {}
38
39  void getAnalysisUsage(AnalysisUsage &AU) const override {
40    AU.setPreservesCFG();
41    AU.addPreservedID(MachineLoopInfoID);
42    AU.addPreservedID(MachineDominatorsID);
43    MachineFunctionPass::getAnalysisUsage(AU);
44  }
45
46  const X86Subtarget *STI = nullptr;
47  const X86InstrInfo *TII = nullptr;
48  const X86RegisterInfo *TRI = nullptr;
49  const X86MachineFunctionInfo *X86FI = nullptr;
50  const X86FrameLowering *X86FL = nullptr;
51
52  bool runOnMachineFunction(MachineFunction &Fn) override;
53
54  MachineFunctionProperties getRequiredProperties() const override {
55    return MachineFunctionProperties().set(
56        MachineFunctionProperties::Property::NoVRegs);
57  }
58
59  StringRef getPassName() const override {
60    return "X86 pseudo instruction expansion pass";
61  }
62
63private:
64  void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
65                               MachineBasicBlock::iterator MBBI);
66  void expandCALL_RVMARKER(MachineBasicBlock &MBB,
67                           MachineBasicBlock::iterator MBBI);
68  bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
69  bool ExpandMBB(MachineBasicBlock &MBB);
70
71  /// This function expands pseudos which affects control flow.
72  /// It is done in separate pass to simplify blocks navigation in main
73  /// pass(calling ExpandMBB).
74  bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF);
75
76  /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
77  /// placed into separate block guarded by check for al register(for SystemV
78  /// abi).
79  void ExpandVastartSaveXmmRegs(
80      MachineBasicBlock *MBB,
81      MachineBasicBlock::iterator VAStartPseudoInstr) const;
82};
83char X86ExpandPseudo::ID = 0;
84
85} // End anonymous namespace.
86
87INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
88                false)
89
90void X86ExpandPseudo::ExpandICallBranchFunnel(
91    MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
92  MachineBasicBlock *JTMBB = MBB;
93  MachineInstr *JTInst = &*MBBI;
94  MachineFunction *MF = MBB->getParent();
95  const BasicBlock *BB = MBB->getBasicBlock();
96  auto InsPt = MachineFunction::iterator(MBB);
97  ++InsPt;
98
99  std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
100  const DebugLoc &DL = JTInst->getDebugLoc();
101  MachineOperand Selector = JTInst->getOperand(0);
102  const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
103
104  auto CmpTarget = [&](unsigned Target) {
105    if (Selector.isReg())
106      MBB->addLiveIn(Selector.getReg());
107    BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
108        .addReg(X86::RIP)
109        .addImm(1)
110        .addReg(0)
111        .addGlobalAddress(CombinedGlobal,
112                          JTInst->getOperand(2 + 2 * Target).getImm())
113        .addReg(0);
114    BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
115        .add(Selector)
116        .addReg(X86::R11);
117  };
118
119  auto CreateMBB = [&]() {
120    auto *NewMBB = MF->CreateMachineBasicBlock(BB);
121    MBB->addSuccessor(NewMBB);
122    if (!MBB->isLiveIn(X86::EFLAGS))
123      MBB->addLiveIn(X86::EFLAGS);
124    return NewMBB;
125  };
126
127  auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
128    BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
129
130    auto *ElseMBB = CreateMBB();
131    MF->insert(InsPt, ElseMBB);
132    MBB = ElseMBB;
133    MBBI = MBB->end();
134  };
135
136  auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
137    auto *ThenMBB = CreateMBB();
138    TargetMBBs.push_back({ThenMBB, Target});
139    EmitCondJump(CC, ThenMBB);
140  };
141
142  auto EmitTailCall = [&](unsigned Target) {
143    BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
144        .add(JTInst->getOperand(3 + 2 * Target));
145  };
146
147  std::function<void(unsigned, unsigned)> EmitBranchFunnel =
148      [&](unsigned FirstTarget, unsigned NumTargets) {
149    if (NumTargets == 1) {
150      EmitTailCall(FirstTarget);
151      return;
152    }
153
154    if (NumTargets == 2) {
155      CmpTarget(FirstTarget + 1);
156      EmitCondJumpTarget(X86::COND_B, FirstTarget);
157      EmitTailCall(FirstTarget + 1);
158      return;
159    }
160
161    if (NumTargets < 6) {
162      CmpTarget(FirstTarget + 1);
163      EmitCondJumpTarget(X86::COND_B, FirstTarget);
164      EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
165      EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
166      return;
167    }
168
169    auto *ThenMBB = CreateMBB();
170    CmpTarget(FirstTarget + (NumTargets / 2));
171    EmitCondJump(X86::COND_B, ThenMBB);
172    EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
173    EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
174                  NumTargets - (NumTargets / 2) - 1);
175
176    MF->insert(InsPt, ThenMBB);
177    MBB = ThenMBB;
178    MBBI = MBB->end();
179    EmitBranchFunnel(FirstTarget, NumTargets / 2);
180  };
181
182  EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
183  for (auto P : TargetMBBs) {
184    MF->insert(InsPt, P.first);
185    BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
186        .add(JTInst->getOperand(3 + 2 * P.second));
187  }
188  JTMBB->erase(JTInst);
189}
190
191void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
192                                          MachineBasicBlock::iterator MBBI) {
193  // Expand CALL_RVMARKER pseudo to call instruction, followed by the special
194  //"movq %rax, %rdi" marker.
195  MachineInstr &MI = *MBBI;
196
197  MachineInstr *OriginalCall;
198  assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
199         "invalid operand for regular call");
200  unsigned Opc = -1;
201  if (MI.getOpcode() == X86::CALL64m_RVMARKER)
202    Opc = X86::CALL64m;
203  else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
204    Opc = X86::CALL64r;
205  else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
206    Opc = X86::CALL64pcrel32;
207  else
208    llvm_unreachable("unexpected opcode");
209
210  OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
211  bool RAXImplicitDead = false;
212  for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
213    // RAX may be 'implicit dead', if there are no other users of the return
214    // value. We introduce a new use, so change it to 'implicit def'.
215    if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
216        TRI->regsOverlap(Op.getReg(), X86::RAX)) {
217      Op.setIsDead(false);
218      Op.setIsDef(true);
219      RAXImplicitDead = true;
220    }
221    OriginalCall->addOperand(Op);
222  }
223
224  // Emit marker "movq %rax, %rdi".  %rdi is not callee-saved, so it cannot be
225  // live across the earlier call. The call to the ObjC runtime function returns
226  // the first argument, so the value of %rax is unchanged after the ObjC
227  // runtime call. On Windows targets, the runtime call follows the regular
228  // x64 calling convention and expects the first argument in %rcx.
229  auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI;
230  auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
231                     .addReg(TargetReg, RegState::Define)
232                     .addReg(X86::RAX)
233                     .getInstr();
234  if (MI.shouldUpdateCallSiteInfo())
235    MBB.getParent()->moveCallSiteInfo(&MI, Marker);
236
237  // Emit call to ObjC runtime.
238  const uint32_t *RegMask =
239      TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
240  MachineInstr *RtCall =
241      BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
242          .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
243          .addRegMask(RegMask)
244          .addReg(X86::RAX,
245                  RegState::Implicit |
246                      (RAXImplicitDead ? (RegState::Dead | RegState::Define)
247                                       : RegState::Define))
248          .getInstr();
249  MI.eraseFromParent();
250
251  auto &TM = MBB.getParent()->getTarget();
252  // On Darwin platforms, wrap the expanded sequence in a bundle to prevent
253  // later optimizations from breaking up the sequence.
254  if (TM.getTargetTriple().isOSDarwin())
255    finalizeBundle(MBB, OriginalCall->getIterator(),
256                   std::next(RtCall->getIterator()));
257}
258
259/// If \p MBBI is a pseudo instruction, this method expands
260/// it to the corresponding (sequence of) actual instruction(s).
261/// \returns true if \p MBBI has been expanded.
262bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
263                               MachineBasicBlock::iterator MBBI) {
264  MachineInstr &MI = *MBBI;
265  unsigned Opcode = MI.getOpcode();
266  const DebugLoc &DL = MBBI->getDebugLoc();
267  switch (Opcode) {
268  default:
269    return false;
270  case X86::TCRETURNdi:
271  case X86::TCRETURNdicc:
272  case X86::TCRETURNri:
273  case X86::TCRETURNmi:
274  case X86::TCRETURNdi64:
275  case X86::TCRETURNdi64cc:
276  case X86::TCRETURNri64:
277  case X86::TCRETURNmi64: {
278    bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
279    MachineOperand &JumpTarget = MBBI->getOperand(0);
280    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
281                                                         : 1);
282    assert(StackAdjust.isImm() && "Expecting immediate value.");
283
284    // Adjust stack pointer.
285    int StackAdj = StackAdjust.getImm();
286    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
287    int Offset = 0;
288    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
289
290    // Incoporate the retaddr area.
291    Offset = StackAdj - MaxTCDelta;
292    assert(Offset >= 0 && "Offset should never be negative");
293
294    if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
295      assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
296    }
297
298    if (Offset) {
299      // Check for possible merge with preceding ADD instruction.
300      Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
301      X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
302    }
303
304    // Jump to label or value in register.
305    bool IsWin64 = STI->isTargetWin64();
306    if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
307        Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
308      unsigned Op;
309      switch (Opcode) {
310      case X86::TCRETURNdi:
311        Op = X86::TAILJMPd;
312        break;
313      case X86::TCRETURNdicc:
314        Op = X86::TAILJMPd_CC;
315        break;
316      case X86::TCRETURNdi64cc:
317        assert(!MBB.getParent()->hasWinCFI() &&
318               "Conditional tail calls confuse "
319               "the Win64 unwinder.");
320        Op = X86::TAILJMPd64_CC;
321        break;
322      default:
323        // Note: Win64 uses REX prefixes indirect jumps out of functions, but
324        // not direct ones.
325        Op = X86::TAILJMPd64;
326        break;
327      }
328      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
329      if (JumpTarget.isGlobal()) {
330        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
331                             JumpTarget.getTargetFlags());
332      } else {
333        assert(JumpTarget.isSymbol());
334        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
335                              JumpTarget.getTargetFlags());
336      }
337      if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
338        MIB.addImm(MBBI->getOperand(2).getImm());
339      }
340
341    } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
342      unsigned Op = (Opcode == X86::TCRETURNmi)
343                        ? X86::TAILJMPm
344                        : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
345      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
346      for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
347        MIB.add(MBBI->getOperand(i));
348    } else if (Opcode == X86::TCRETURNri64) {
349      JumpTarget.setIsKill();
350      BuildMI(MBB, MBBI, DL,
351              TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
352          .add(JumpTarget);
353    } else {
354      JumpTarget.setIsKill();
355      BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
356          .add(JumpTarget);
357    }
358
359    MachineInstr &NewMI = *std::prev(MBBI);
360    NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
361    NewMI.setCFIType(*MBB.getParent(), MI.getCFIType());
362
363    // Update the call site info.
364    if (MBBI->isCandidateForCallSiteEntry())
365      MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
366
367    // Delete the pseudo instruction TCRETURN.
368    MBB.erase(MBBI);
369
370    return true;
371  }
372  case X86::EH_RETURN:
373  case X86::EH_RETURN64: {
374    MachineOperand &DestAddr = MBBI->getOperand(0);
375    assert(DestAddr.isReg() && "Offset should be in register!");
376    const bool Uses64BitFramePtr =
377        STI->isTarget64BitLP64() || STI->isTargetNaCl64();
378    Register StackPtr = TRI->getStackRegister();
379    BuildMI(MBB, MBBI, DL,
380            TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
381        .addReg(DestAddr.getReg());
382    // The EH_RETURN pseudo is really removed during the MC Lowering.
383    return true;
384  }
385  case X86::IRET: {
386    // Adjust stack to erase error code
387    int64_t StackAdj = MBBI->getOperand(0).getImm();
388    X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
389    // Replace pseudo with machine iret
390    unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
391    // Use UIRET if UINTR is present (except for building kernel)
392    if (STI->is64Bit() && STI->hasUINTR() &&
393        MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
394      RetOp = X86::UIRET;
395    BuildMI(MBB, MBBI, DL, TII->get(RetOp));
396    MBB.erase(MBBI);
397    return true;
398  }
399  case X86::RET: {
400    // Adjust stack to erase error code
401    int64_t StackAdj = MBBI->getOperand(0).getImm();
402    MachineInstrBuilder MIB;
403    if (StackAdj == 0) {
404      MIB = BuildMI(MBB, MBBI, DL,
405                    TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
406    } else if (isUInt<16>(StackAdj)) {
407      MIB = BuildMI(MBB, MBBI, DL,
408                    TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
409                .addImm(StackAdj);
410    } else {
411      assert(!STI->is64Bit() &&
412             "shouldn't need to do this for x86_64 targets!");
413      // A ret can only handle immediates as big as 2**16-1.  If we need to pop
414      // off bytes before the return address, we must do it manually.
415      BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
416      X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
417      BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
418      MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
419    }
420    for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
421      MIB.add(MBBI->getOperand(I));
422    MBB.erase(MBBI);
423    return true;
424  }
425  case X86::LCMPXCHG16B_SAVE_RBX: {
426    // Perform the following transformation.
427    // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
428    // =>
429    // RBX = InArg
430    // actualcmpxchg Addr
431    // RBX = SaveRbx
432    const MachineOperand &InArg = MBBI->getOperand(6);
433    Register SaveRbx = MBBI->getOperand(7).getReg();
434
435    // Copy the input argument of the pseudo into the argument of the
436    // actual instruction.
437    // NOTE: We don't copy the kill flag since the input might be the same reg
438    // as one of the other operands of LCMPXCHG16B.
439    TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
440    // Create the actual instruction.
441    MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
442    // Copy the operands related to the address.
443    for (unsigned Idx = 1; Idx < 6; ++Idx)
444      NewInstr->addOperand(MBBI->getOperand(Idx));
445    // Finally, restore the value of RBX.
446    TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
447                     /*SrcIsKill*/ true);
448
449    // Delete the pseudo.
450    MBBI->eraseFromParent();
451    return true;
452  }
453  // Loading/storing mask pairs requires two kmov operations. The second one of
454  // these needs a 2 byte displacement relative to the specified address (with
455  // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
456  // same spill size, they all are stored using MASKPAIR16STORE, loaded using
457  // MASKPAIR16LOAD.
458  //
459  // The displacement value might wrap around in theory, thus the asserts in
460  // both cases.
461  case X86::MASKPAIR16LOAD: {
462    int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
463    assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
464    Register Reg = MBBI->getOperand(0).getReg();
465    bool DstIsDead = MBBI->getOperand(0).isDead();
466    Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
467    Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
468
469    auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
470      .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
471    auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
472      .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
473
474    for (int i = 0; i < X86::AddrNumOperands; ++i) {
475      MIBLo.add(MBBI->getOperand(1 + i));
476      if (i == X86::AddrDisp)
477        MIBHi.addImm(Disp + 2);
478      else
479        MIBHi.add(MBBI->getOperand(1 + i));
480    }
481
482    // Split the memory operand, adjusting the offset and size for the halves.
483    MachineMemOperand *OldMMO = MBBI->memoperands().front();
484    MachineFunction *MF = MBB.getParent();
485    MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
486    MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
487
488    MIBLo.setMemRefs(MMOLo);
489    MIBHi.setMemRefs(MMOHi);
490
491    // Delete the pseudo.
492    MBB.erase(MBBI);
493    return true;
494  }
495  case X86::MASKPAIR16STORE: {
496    int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
497    assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
498    Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
499    bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
500    Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
501    Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
502
503    auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
504    auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
505
506    for (int i = 0; i < X86::AddrNumOperands; ++i) {
507      MIBLo.add(MBBI->getOperand(i));
508      if (i == X86::AddrDisp)
509        MIBHi.addImm(Disp + 2);
510      else
511        MIBHi.add(MBBI->getOperand(i));
512    }
513    MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
514    MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
515
516    // Split the memory operand, adjusting the offset and size for the halves.
517    MachineMemOperand *OldMMO = MBBI->memoperands().front();
518    MachineFunction *MF = MBB.getParent();
519    MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
520    MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
521
522    MIBLo.setMemRefs(MMOLo);
523    MIBHi.setMemRefs(MMOHi);
524
525    // Delete the pseudo.
526    MBB.erase(MBBI);
527    return true;
528  }
529  case X86::MWAITX_SAVE_RBX: {
530    // Perform the following transformation.
531    // SaveRbx = pseudomwaitx InArg, SaveRbx
532    // =>
533    // [E|R]BX = InArg
534    // actualmwaitx
535    // [E|R]BX = SaveRbx
536    const MachineOperand &InArg = MBBI->getOperand(1);
537    // Copy the input argument of the pseudo into the argument of the
538    // actual instruction.
539    TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
540    // Create the actual instruction.
541    BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
542    // Finally, restore the value of RBX.
543    Register SaveRbx = MBBI->getOperand(2).getReg();
544    TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
545    // Delete the pseudo.
546    MBBI->eraseFromParent();
547    return true;
548  }
549  case TargetOpcode::ICALL_BRANCH_FUNNEL:
550    ExpandICallBranchFunnel(&MBB, MBBI);
551    return true;
552  case X86::PLDTILECFGV: {
553    MI.setDesc(TII->get(X86::LDTILECFG));
554    return true;
555  }
556  case X86::PTILELOADDV:
557  case X86::PTILELOADDT1V: {
558    for (unsigned i = 2; i > 0; --i)
559      MI.removeOperand(i);
560    unsigned Opc =
561        Opcode == X86::PTILELOADDV ? X86::TILELOADD : X86::TILELOADDT1;
562    MI.setDesc(TII->get(Opc));
563    return true;
564  }
565  case X86::PTDPBSSDV:
566  case X86::PTDPBSUDV:
567  case X86::PTDPBUSDV:
568  case X86::PTDPBUUDV:
569  case X86::PTDPBF16PSV:
570  case X86::PTDPFP16PSV: {
571    MI.untieRegOperand(4);
572    for (unsigned i = 3; i > 0; --i)
573      MI.removeOperand(i);
574    unsigned Opc;
575    switch (Opcode) {
576    case X86::PTDPBSSDV:   Opc = X86::TDPBSSD; break;
577    case X86::PTDPBSUDV:   Opc = X86::TDPBSUD; break;
578    case X86::PTDPBUSDV:   Opc = X86::TDPBUSD; break;
579    case X86::PTDPBUUDV:   Opc = X86::TDPBUUD; break;
580    case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
581    case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break;
582    default: llvm_unreachable("Impossible Opcode!");
583    }
584    MI.setDesc(TII->get(Opc));
585    MI.tieOperands(0, 1);
586    return true;
587  }
588  case X86::PTILESTOREDV: {
589    for (int i = 1; i >= 0; --i)
590      MI.removeOperand(i);
591    MI.setDesc(TII->get(X86::TILESTORED));
592    return true;
593  }
594  case X86::PTILEZEROV: {
595    for (int i = 2; i > 0; --i) // Remove row, col
596      MI.removeOperand(i);
597    MI.setDesc(TII->get(X86::TILEZERO));
598    return true;
599  }
600  case X86::CALL64pcrel32_RVMARKER:
601  case X86::CALL64r_RVMARKER:
602  case X86::CALL64m_RVMARKER:
603    expandCALL_RVMARKER(MBB, MBBI);
604    return true;
605  }
606  llvm_unreachable("Previous switch has a fallthrough?");
607}
608
609// This function creates additional block for storing varargs guarded
610// registers. It adds check for %al into entry block, to skip
611// GuardedRegsBlk if xmm registers should not be stored.
612//
613//     EntryBlk[VAStartPseudoInstr]     EntryBlk
614//        |                              |     .
615//        |                              |        .
616//        |                              |   GuardedRegsBlk
617//        |                      =>      |        .
618//        |                              |     .
619//        |                             TailBlk
620//        |                              |
621//        |                              |
622//
623void X86ExpandPseudo::ExpandVastartSaveXmmRegs(
624    MachineBasicBlock *EntryBlk,
625    MachineBasicBlock::iterator VAStartPseudoInstr) const {
626  assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
627
628  MachineFunction *Func = EntryBlk->getParent();
629  const TargetInstrInfo *TII = STI->getInstrInfo();
630  const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
631  Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
632
633  // Calculate liveins for newly created blocks.
634  LivePhysRegs LiveRegs(*STI->getRegisterInfo());
635  SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
636
637  LiveRegs.addLiveIns(*EntryBlk);
638  for (MachineInstr &MI : EntryBlk->instrs()) {
639    if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
640      break;
641
642    LiveRegs.stepForward(MI, Clobbers);
643  }
644
645  // Create the new basic blocks. One block contains all the XMM stores,
646  // and another block is the final destination regardless of whether any
647  // stores were performed.
648  const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
649  MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
650  MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
651  MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
652  Func->insert(EntryBlkIter, GuardedRegsBlk);
653  Func->insert(EntryBlkIter, TailBlk);
654
655  // Transfer the remainder of EntryBlk and its successor edges to TailBlk.
656  TailBlk->splice(TailBlk->begin(), EntryBlk,
657                  std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
658                  EntryBlk->end());
659  TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
660
661  uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
662  uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
663
664  // TODO: add support for YMM and ZMM here.
665  unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
666
667  // In the XMM save block, save all the XMM argument registers.
668  for (int64_t OpndIdx = 7, RegIdx = 0;
669       OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
670       OpndIdx++, RegIdx++) {
671    auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
672    for (int i = 0; i < X86::AddrNumOperands; ++i) {
673      if (i == X86::AddrDisp)
674        NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
675      else
676        NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
677    }
678    NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
679    assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical());
680  }
681
682  // The original block will now fall through to the GuardedRegsBlk.
683  EntryBlk->addSuccessor(GuardedRegsBlk);
684  // The GuardedRegsBlk will fall through to the TailBlk.
685  GuardedRegsBlk->addSuccessor(TailBlk);
686
687  if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
688    // If %al is 0, branch around the XMM save block.
689    BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
690        .addReg(CountReg)
691        .addReg(CountReg);
692    BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
693        .addMBB(TailBlk)
694        .addImm(X86::COND_E);
695    EntryBlk->addSuccessor(TailBlk);
696  }
697
698  // Add liveins to the created block.
699  addLiveIns(*GuardedRegsBlk, LiveRegs);
700  addLiveIns(*TailBlk, LiveRegs);
701
702  // Delete the pseudo.
703  VAStartPseudoInstr->eraseFromParent();
704}
705
706/// Expand all pseudo instructions contained in \p MBB.
707/// \returns true if any expansion occurred for \p MBB.
708bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
709  bool Modified = false;
710
711  // MBBI may be invalidated by the expansion.
712  MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
713  while (MBBI != E) {
714    MachineBasicBlock::iterator NMBBI = std::next(MBBI);
715    Modified |= ExpandMI(MBB, MBBI);
716    MBBI = NMBBI;
717  }
718
719  return Modified;
720}
721
722bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) {
723  // Currently pseudo which affects control flow is only
724  // X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
725  // So we do not need to evaluate other blocks.
726  for (MachineInstr &Instr : MF.front().instrs()) {
727    if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
728      ExpandVastartSaveXmmRegs(&(MF.front()), Instr);
729      return true;
730    }
731  }
732
733  return false;
734}
735
736bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
737  STI = &MF.getSubtarget<X86Subtarget>();
738  TII = STI->getInstrInfo();
739  TRI = STI->getRegisterInfo();
740  X86FI = MF.getInfo<X86MachineFunctionInfo>();
741  X86FL = STI->getFrameLowering();
742
743  bool Modified = ExpandPseudosWhichAffectControlFlow(MF);
744
745  for (MachineBasicBlock &MBB : MF)
746    Modified |= ExpandMBB(MBB);
747  return Modified;
748}
749
750/// Returns an instance of the pseudo instruction expansion pass.
751FunctionPass *llvm::createX86ExpandPseudoPass() {
752  return new X86ExpandPseudo();
753}
754