1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the PPCISelLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "PPCISelLowering.h"
14#include "MCTargetDesc/PPCPredicates.h"
15#include "PPC.h"
16#include "PPCCCState.h"
17#include "PPCCallingConv.h"
18#include "PPCFrameLowering.h"
19#include "PPCInstrInfo.h"
20#include "PPCMachineFunctionInfo.h"
21#include "PPCPerfectShuffle.h"
22#include "PPCRegisterInfo.h"
23#include "PPCSubtarget.h"
24#include "PPCTargetMachine.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/ADT/StringSwitch.h"
36#include "llvm/CodeGen/CallingConvLower.h"
37#include "llvm/CodeGen/ISDOpcodes.h"
38#include "llvm/CodeGen/MachineBasicBlock.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineFunction.h"
41#include "llvm/CodeGen/MachineInstr.h"
42#include "llvm/CodeGen/MachineInstrBuilder.h"
43#include "llvm/CodeGen/MachineJumpTableInfo.h"
44#include "llvm/CodeGen/MachineLoopInfo.h"
45#include "llvm/CodeGen/MachineMemOperand.h"
46#include "llvm/CodeGen/MachineModuleInfo.h"
47#include "llvm/CodeGen/MachineOperand.h"
48#include "llvm/CodeGen/MachineRegisterInfo.h"
49#include "llvm/CodeGen/RuntimeLibcalls.h"
50#include "llvm/CodeGen/SelectionDAG.h"
51#include "llvm/CodeGen/SelectionDAGNodes.h"
52#include "llvm/CodeGen/TargetInstrInfo.h"
53#include "llvm/CodeGen/TargetLowering.h"
54#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
55#include "llvm/CodeGen/TargetRegisterInfo.h"
56#include "llvm/CodeGen/ValueTypes.h"
57#include "llvm/IR/CallingConv.h"
58#include "llvm/IR/Constant.h"
59#include "llvm/IR/Constants.h"
60#include "llvm/IR/DataLayout.h"
61#include "llvm/IR/DebugLoc.h"
62#include "llvm/IR/DerivedTypes.h"
63#include "llvm/IR/Function.h"
64#include "llvm/IR/GlobalValue.h"
65#include "llvm/IR/IRBuilder.h"
66#include "llvm/IR/Instructions.h"
67#include "llvm/IR/Intrinsics.h"
68#include "llvm/IR/IntrinsicsPowerPC.h"
69#include "llvm/IR/Module.h"
70#include "llvm/IR/Type.h"
71#include "llvm/IR/Use.h"
72#include "llvm/IR/Value.h"
73#include "llvm/MC/MCContext.h"
74#include "llvm/MC/MCExpr.h"
75#include "llvm/MC/MCRegisterInfo.h"
76#include "llvm/MC/MCSectionXCOFF.h"
77#include "llvm/MC/MCSymbolXCOFF.h"
78#include "llvm/Support/AtomicOrdering.h"
79#include "llvm/Support/BranchProbability.h"
80#include "llvm/Support/Casting.h"
81#include "llvm/Support/CodeGen.h"
82#include "llvm/Support/CommandLine.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/Debug.h"
85#include "llvm/Support/ErrorHandling.h"
86#include "llvm/Support/Format.h"
87#include "llvm/Support/KnownBits.h"
88#include "llvm/Support/MachineValueType.h"
89#include "llvm/Support/MathExtras.h"
90#include "llvm/Support/raw_ostream.h"
91#include "llvm/Target/TargetMachine.h"
92#include "llvm/Target/TargetOptions.h"
93#include <algorithm>
94#include <cassert>
95#include <cstdint>
96#include <iterator>
97#include <list>
98#include <optional>
99#include <utility>
100#include <vector>
101
102using namespace llvm;
103
104#define DEBUG_TYPE "ppc-lowering"
105
106static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108
109static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111
112static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114
115static cl::opt<bool> DisableSCO("disable-ppc-sco",
116cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117
118static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120
121static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123
124static cl::opt<bool> EnableQuadwordAtomics(
125    "ppc-quadword-atomics",
126    cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127    cl::Hidden);
128
129static cl::opt<bool>
130    DisablePerfectShuffle("ppc-disable-perfect-shuffle",
131                          cl::desc("disable vector permute decomposition"),
132                          cl::init(true), cl::Hidden);
133
134cl::opt<bool> DisableAutoPairedVecSt(
135    "disable-auto-paired-vec-st",
136    cl::desc("disable automatically generated 32byte paired vector stores"),
137    cl::init(true), cl::Hidden);
138
139STATISTIC(NumTailCalls, "Number of tail calls");
140STATISTIC(NumSiblingCalls, "Number of sibling calls");
141STATISTIC(ShufflesHandledWithVPERM,
142          "Number of shuffles lowered to a VPERM or XXPERM");
143STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
144
145static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
146
147static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
148
149static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
150
151// FIXME: Remove this once the bug has been fixed!
152extern cl::opt<bool> ANDIGlueBug;
153
154PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
155                                     const PPCSubtarget &STI)
156    : TargetLowering(TM), Subtarget(STI) {
157  // Initialize map that relates the PPC addressing modes to the computed flags
158  // of a load/store instruction. The map is used to determine the optimal
159  // addressing mode when selecting load and stores.
160  initializeAddrModeMap();
161  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
162  // arguments are at least 4/8 bytes aligned.
163  bool isPPC64 = Subtarget.isPPC64();
164  setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
165
166  // Set up the register classes.
167  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
168  if (!useSoftFloat()) {
169    if (hasSPE()) {
170      addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
171      // EFPU2 APU only supports f32
172      if (!Subtarget.hasEFPU2())
173        addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
174    } else {
175      addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
176      addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
177    }
178  }
179
180  // Match BITREVERSE to customized fast code sequence in the td file.
181  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
182  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
183
184  // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
185  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
186
187  // Custom lower inline assembly to check for special registers.
188  setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
189  setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
190
191  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
192  for (MVT VT : MVT::integer_valuetypes()) {
193    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
194    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
195  }
196
197  if (Subtarget.isISA3_0()) {
198    setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
199    setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
200    setTruncStoreAction(MVT::f64, MVT::f16, Legal);
201    setTruncStoreAction(MVT::f32, MVT::f16, Legal);
202  } else {
203    // No extending loads from f16 or HW conversions back and forth.
204    setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
205    setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
206    setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
207    setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
208    setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
209    setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
210    setTruncStoreAction(MVT::f64, MVT::f16, Expand);
211    setTruncStoreAction(MVT::f32, MVT::f16, Expand);
212  }
213
214  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
215
216  // PowerPC has pre-inc load and store's.
217  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
218  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
219  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
220  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
221  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
222  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
223  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
224  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
225  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
226  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
227  if (!Subtarget.hasSPE()) {
228    setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
229    setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
230    setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
231    setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
232  }
233
234  // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
235  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
236  for (MVT VT : ScalarIntVTs) {
237    setOperationAction(ISD::ADDC, VT, Legal);
238    setOperationAction(ISD::ADDE, VT, Legal);
239    setOperationAction(ISD::SUBC, VT, Legal);
240    setOperationAction(ISD::SUBE, VT, Legal);
241  }
242
243  if (Subtarget.useCRBits()) {
244    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
245
246    if (isPPC64 || Subtarget.hasFPCVT()) {
247      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
248      AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
249                        isPPC64 ? MVT::i64 : MVT::i32);
250      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
251      AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
252                        isPPC64 ? MVT::i64 : MVT::i32);
253
254      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
255      AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
256                         isPPC64 ? MVT::i64 : MVT::i32);
257      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
258      AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
259                        isPPC64 ? MVT::i64 : MVT::i32);
260
261      setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
262      AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
263                        isPPC64 ? MVT::i64 : MVT::i32);
264      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
265      AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
266                        isPPC64 ? MVT::i64 : MVT::i32);
267
268      setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
269      AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
270                        isPPC64 ? MVT::i64 : MVT::i32);
271      setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
272      AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
273                        isPPC64 ? MVT::i64 : MVT::i32);
274    } else {
275      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
276      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
277      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
278      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
279    }
280
281    // PowerPC does not support direct load/store of condition registers.
282    setOperationAction(ISD::LOAD, MVT::i1, Custom);
283    setOperationAction(ISD::STORE, MVT::i1, Custom);
284
285    // FIXME: Remove this once the ANDI glue bug is fixed:
286    if (ANDIGlueBug)
287      setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
288
289    for (MVT VT : MVT::integer_valuetypes()) {
290      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
291      setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
292      setTruncStoreAction(VT, MVT::i1, Expand);
293    }
294
295    addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
296  }
297
298  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
299  // PPC (the libcall is not available).
300  setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
301  setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
302  setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
303  setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
304
305  // We do not currently implement these libm ops for PowerPC.
306  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
307  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
308  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
309  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
310  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
311  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
312
313  // PowerPC has no SREM/UREM instructions unless we are on P9
314  // On P9 we may use a hardware instruction to compute the remainder.
315  // When the result of both the remainder and the division is required it is
316  // more efficient to compute the remainder from the result of the division
317  // rather than use the remainder instruction. The instructions are legalized
318  // directly because the DivRemPairsPass performs the transformation at the IR
319  // level.
320  if (Subtarget.isISA3_0()) {
321    setOperationAction(ISD::SREM, MVT::i32, Legal);
322    setOperationAction(ISD::UREM, MVT::i32, Legal);
323    setOperationAction(ISD::SREM, MVT::i64, Legal);
324    setOperationAction(ISD::UREM, MVT::i64, Legal);
325  } else {
326    setOperationAction(ISD::SREM, MVT::i32, Expand);
327    setOperationAction(ISD::UREM, MVT::i32, Expand);
328    setOperationAction(ISD::SREM, MVT::i64, Expand);
329    setOperationAction(ISD::UREM, MVT::i64, Expand);
330  }
331
332  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
333  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
334  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
335  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
336  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
337  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
338  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
339  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
340  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
341
342  // Handle constrained floating-point operations of scalar.
343  // TODO: Handle SPE specific operation.
344  setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
345  setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
346  setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
347  setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
348  setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
349
350  setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
351  setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
352  setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
353  setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
354
355  if (!Subtarget.hasSPE()) {
356    setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
357    setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
358  }
359
360  if (Subtarget.hasVSX()) {
361    setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
362    setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
363  }
364
365  if (Subtarget.hasFSQRT()) {
366    setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
367    setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
368  }
369
370  if (Subtarget.hasFPRND()) {
371    setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
372    setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
373    setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
374    setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
375
376    setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
377    setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
378    setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
379    setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
380  }
381
382  // We don't support sin/cos/sqrt/fmod/pow
383  setOperationAction(ISD::FSIN , MVT::f64, Expand);
384  setOperationAction(ISD::FCOS , MVT::f64, Expand);
385  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
386  setOperationAction(ISD::FREM , MVT::f64, Expand);
387  setOperationAction(ISD::FPOW , MVT::f64, Expand);
388  setOperationAction(ISD::FSIN , MVT::f32, Expand);
389  setOperationAction(ISD::FCOS , MVT::f32, Expand);
390  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
391  setOperationAction(ISD::FREM , MVT::f32, Expand);
392  setOperationAction(ISD::FPOW , MVT::f32, Expand);
393
394  // MASS transformation for LLVM intrinsics with replicating fast-math flag
395  // to be consistent to PPCGenScalarMASSEntries pass
396  if (TM.getOptLevel() == CodeGenOpt::Aggressive) {
397    setOperationAction(ISD::FSIN , MVT::f64, Custom);
398    setOperationAction(ISD::FCOS , MVT::f64, Custom);
399    setOperationAction(ISD::FPOW , MVT::f64, Custom);
400    setOperationAction(ISD::FLOG, MVT::f64, Custom);
401    setOperationAction(ISD::FLOG10, MVT::f64, Custom);
402    setOperationAction(ISD::FEXP, MVT::f64, Custom);
403    setOperationAction(ISD::FSIN , MVT::f32, Custom);
404    setOperationAction(ISD::FCOS , MVT::f32, Custom);
405    setOperationAction(ISD::FPOW , MVT::f32, Custom);
406    setOperationAction(ISD::FLOG, MVT::f32, Custom);
407    setOperationAction(ISD::FLOG10, MVT::f32, Custom);
408    setOperationAction(ISD::FEXP, MVT::f32, Custom);
409  }
410
411  if (Subtarget.hasSPE()) {
412    setOperationAction(ISD::FMA  , MVT::f64, Expand);
413    setOperationAction(ISD::FMA  , MVT::f32, Expand);
414  } else {
415    setOperationAction(ISD::FMA  , MVT::f64, Legal);
416    setOperationAction(ISD::FMA  , MVT::f32, Legal);
417  }
418
419  if (Subtarget.hasSPE())
420    setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
421
422  setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
423
424  // If we're enabling GP optimizations, use hardware square root
425  if (!Subtarget.hasFSQRT() &&
426      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
427        Subtarget.hasFRE()))
428    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
429
430  if (!Subtarget.hasFSQRT() &&
431      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
432        Subtarget.hasFRES()))
433    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
434
435  if (Subtarget.hasFCPSGN()) {
436    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
437    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
438  } else {
439    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
440    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
441  }
442
443  if (Subtarget.hasFPRND()) {
444    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
445    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
446    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
447    setOperationAction(ISD::FROUND, MVT::f64, Legal);
448
449    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
450    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
451    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
452    setOperationAction(ISD::FROUND, MVT::f32, Legal);
453  }
454
455  // Prior to P10, PowerPC does not have BSWAP, but we can use vector BSWAP
456  // instruction xxbrd to speed up scalar BSWAP64.
457  if (Subtarget.isISA3_1()) {
458    setOperationAction(ISD::BSWAP, MVT::i32, Legal);
459    setOperationAction(ISD::BSWAP, MVT::i64, Legal);
460  } else {
461    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
462    setOperationAction(
463        ISD::BSWAP, MVT::i64,
464        (Subtarget.hasP9Vector() && Subtarget.isPPC64()) ? Custom : Expand);
465  }
466
467  // CTPOP or CTTZ were introduced in P8/P9 respectively
468  if (Subtarget.isISA3_0()) {
469    setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
470    setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
471  } else {
472    setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
473    setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
474  }
475
476  if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
477    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
478    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
479  } else {
480    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
481    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
482  }
483
484  // PowerPC does not have ROTR
485  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
486  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
487
488  if (!Subtarget.useCRBits()) {
489    // PowerPC does not have Select
490    setOperationAction(ISD::SELECT, MVT::i32, Expand);
491    setOperationAction(ISD::SELECT, MVT::i64, Expand);
492    setOperationAction(ISD::SELECT, MVT::f32, Expand);
493    setOperationAction(ISD::SELECT, MVT::f64, Expand);
494  }
495
496  // PowerPC wants to turn select_cc of FP into fsel when possible.
497  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
498  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
499
500  // PowerPC wants to optimize integer setcc a bit
501  if (!Subtarget.useCRBits())
502    setOperationAction(ISD::SETCC, MVT::i32, Custom);
503
504  if (Subtarget.hasFPU()) {
505    setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
506    setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
507    setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
508
509    setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
510    setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
511    setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
512  }
513
514  // PowerPC does not have BRCOND which requires SetCC
515  if (!Subtarget.useCRBits())
516    setOperationAction(ISD::BRCOND, MVT::Other, Expand);
517
518  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
519
520  if (Subtarget.hasSPE()) {
521    // SPE has built-in conversions
522    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
523    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
524    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
525    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
526    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
527    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
528
529    // SPE supports signaling compare of f32/f64.
530    setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
531    setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
532  } else {
533    // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
534    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
535    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
536
537    // PowerPC does not have [U|S]INT_TO_FP
538    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
539    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
540    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
541    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
542  }
543
544  if (Subtarget.hasDirectMove() && isPPC64) {
545    setOperationAction(ISD::BITCAST, MVT::f32, Legal);
546    setOperationAction(ISD::BITCAST, MVT::i32, Legal);
547    setOperationAction(ISD::BITCAST, MVT::i64, Legal);
548    setOperationAction(ISD::BITCAST, MVT::f64, Legal);
549    if (TM.Options.UnsafeFPMath) {
550      setOperationAction(ISD::LRINT, MVT::f64, Legal);
551      setOperationAction(ISD::LRINT, MVT::f32, Legal);
552      setOperationAction(ISD::LLRINT, MVT::f64, Legal);
553      setOperationAction(ISD::LLRINT, MVT::f32, Legal);
554      setOperationAction(ISD::LROUND, MVT::f64, Legal);
555      setOperationAction(ISD::LROUND, MVT::f32, Legal);
556      setOperationAction(ISD::LLROUND, MVT::f64, Legal);
557      setOperationAction(ISD::LLROUND, MVT::f32, Legal);
558    }
559  } else {
560    setOperationAction(ISD::BITCAST, MVT::f32, Expand);
561    setOperationAction(ISD::BITCAST, MVT::i32, Expand);
562    setOperationAction(ISD::BITCAST, MVT::i64, Expand);
563    setOperationAction(ISD::BITCAST, MVT::f64, Expand);
564  }
565
566  // We cannot sextinreg(i1).  Expand to shifts.
567  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
568
569  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
570  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
571  // support continuation, user-level threading, and etc.. As a result, no
572  // other SjLj exception interfaces are implemented and please don't build
573  // your own exception handling based on them.
574  // LLVM/Clang supports zero-cost DWARF exception handling.
575  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
576  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
577
578  // We want to legalize GlobalAddress and ConstantPool nodes into the
579  // appropriate instructions to materialize the address.
580  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
581  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
582  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
583  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
584  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
585  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
586  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
587  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
588  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
589  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
590
591  // TRAP is legal.
592  setOperationAction(ISD::TRAP, MVT::Other, Legal);
593
594  // TRAMPOLINE is custom lowered.
595  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
596  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
597
598  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
599  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
600
601  if (Subtarget.is64BitELFABI()) {
602    // VAARG always uses double-word chunks, so promote anything smaller.
603    setOperationAction(ISD::VAARG, MVT::i1, Promote);
604    AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
605    setOperationAction(ISD::VAARG, MVT::i8, Promote);
606    AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
607    setOperationAction(ISD::VAARG, MVT::i16, Promote);
608    AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
609    setOperationAction(ISD::VAARG, MVT::i32, Promote);
610    AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
611    setOperationAction(ISD::VAARG, MVT::Other, Expand);
612  } else if (Subtarget.is32BitELFABI()) {
613    // VAARG is custom lowered with the 32-bit SVR4 ABI.
614    setOperationAction(ISD::VAARG, MVT::Other, Custom);
615    setOperationAction(ISD::VAARG, MVT::i64, Custom);
616  } else
617    setOperationAction(ISD::VAARG, MVT::Other, Expand);
618
619  // VACOPY is custom lowered with the 32-bit SVR4 ABI.
620  if (Subtarget.is32BitELFABI())
621    setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
622  else
623    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
624
625  // Use the default implementation.
626  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
627  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
628  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
629  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
630  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
631  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
632  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
633  setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
634  setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
635
636  // We want to custom lower some of our intrinsics.
637  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
638  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
639  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
640  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
641  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom);
642
643  // To handle counter-based loop conditions.
644  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
645
646  setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
647  setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
648  setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
649  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
650
651  // Comparisons that require checking two conditions.
652  if (Subtarget.hasSPE()) {
653    setCondCodeAction(ISD::SETO, MVT::f32, Expand);
654    setCondCodeAction(ISD::SETO, MVT::f64, Expand);
655    setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
656    setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
657  }
658  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
659  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
660  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
661  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
662  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
663  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
664  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
665  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
666  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
667  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
668  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
669  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
670
671  setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
672  setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
673
674  if (Subtarget.has64BitSupport()) {
675    // They also have instructions for converting between i64 and fp.
676    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
677    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
678    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
679    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
680    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
681    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
682    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
683    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
684    // This is just the low 32 bits of a (signed) fp->i64 conversion.
685    // We cannot do this with Promote because i64 is not a legal type.
686    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
687    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
688
689    if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
690      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
691      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
692    }
693  } else {
694    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
695    if (Subtarget.hasSPE()) {
696      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
697      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
698    } else {
699      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
700      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
701    }
702  }
703
704  // With the instructions enabled under FPCVT, we can do everything.
705  if (Subtarget.hasFPCVT()) {
706    if (Subtarget.has64BitSupport()) {
707      setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
708      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
709      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
710      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
711      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
712      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
713      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
714      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
715    }
716
717    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
718    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
719    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
720    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
721    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
722    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
723    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
724    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
725  }
726
727  if (Subtarget.use64BitRegs()) {
728    // 64-bit PowerPC implementations can support i64 types directly
729    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
730    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
731    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
732    // 64-bit PowerPC wants to expand i128 shifts itself.
733    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
734    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
735    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
736  } else {
737    // 32-bit PowerPC wants to expand i64 shifts itself.
738    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
739    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
740    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
741  }
742
743  // PowerPC has better expansions for funnel shifts than the generic
744  // TargetLowering::expandFunnelShift.
745  if (Subtarget.has64BitSupport()) {
746    setOperationAction(ISD::FSHL, MVT::i64, Custom);
747    setOperationAction(ISD::FSHR, MVT::i64, Custom);
748  }
749  setOperationAction(ISD::FSHL, MVT::i32, Custom);
750  setOperationAction(ISD::FSHR, MVT::i32, Custom);
751
752  if (Subtarget.hasVSX()) {
753    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
754    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
755    setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
756    setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
757  }
758
759  if (Subtarget.hasAltivec()) {
760    for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
761      setOperationAction(ISD::SADDSAT, VT, Legal);
762      setOperationAction(ISD::SSUBSAT, VT, Legal);
763      setOperationAction(ISD::UADDSAT, VT, Legal);
764      setOperationAction(ISD::USUBSAT, VT, Legal);
765    }
766    // First set operation action for all vector types to expand. Then we
767    // will selectively turn on ones that can be effectively codegen'd.
768    for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
769      // add/sub are legal for all supported vector VT's.
770      setOperationAction(ISD::ADD, VT, Legal);
771      setOperationAction(ISD::SUB, VT, Legal);
772
773      // For v2i64, these are only valid with P8Vector. This is corrected after
774      // the loop.
775      if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
776        setOperationAction(ISD::SMAX, VT, Legal);
777        setOperationAction(ISD::SMIN, VT, Legal);
778        setOperationAction(ISD::UMAX, VT, Legal);
779        setOperationAction(ISD::UMIN, VT, Legal);
780      }
781      else {
782        setOperationAction(ISD::SMAX, VT, Expand);
783        setOperationAction(ISD::SMIN, VT, Expand);
784        setOperationAction(ISD::UMAX, VT, Expand);
785        setOperationAction(ISD::UMIN, VT, Expand);
786      }
787
788      if (Subtarget.hasVSX()) {
789        setOperationAction(ISD::FMAXNUM, VT, Legal);
790        setOperationAction(ISD::FMINNUM, VT, Legal);
791      }
792
793      // Vector instructions introduced in P8
794      if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
795        setOperationAction(ISD::CTPOP, VT, Legal);
796        setOperationAction(ISD::CTLZ, VT, Legal);
797      }
798      else {
799        setOperationAction(ISD::CTPOP, VT, Expand);
800        setOperationAction(ISD::CTLZ, VT, Expand);
801      }
802
803      // Vector instructions introduced in P9
804      if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
805        setOperationAction(ISD::CTTZ, VT, Legal);
806      else
807        setOperationAction(ISD::CTTZ, VT, Expand);
808
809      // We promote all shuffles to v16i8.
810      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
811      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
812
813      // We promote all non-typed operations to v4i32.
814      setOperationAction(ISD::AND   , VT, Promote);
815      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
816      setOperationAction(ISD::OR    , VT, Promote);
817      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
818      setOperationAction(ISD::XOR   , VT, Promote);
819      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
820      setOperationAction(ISD::LOAD  , VT, Promote);
821      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
822      setOperationAction(ISD::SELECT, VT, Promote);
823      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
824      setOperationAction(ISD::VSELECT, VT, Legal);
825      setOperationAction(ISD::SELECT_CC, VT, Promote);
826      AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
827      setOperationAction(ISD::STORE, VT, Promote);
828      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
829
830      // No other operations are legal.
831      setOperationAction(ISD::MUL , VT, Expand);
832      setOperationAction(ISD::SDIV, VT, Expand);
833      setOperationAction(ISD::SREM, VT, Expand);
834      setOperationAction(ISD::UDIV, VT, Expand);
835      setOperationAction(ISD::UREM, VT, Expand);
836      setOperationAction(ISD::FDIV, VT, Expand);
837      setOperationAction(ISD::FREM, VT, Expand);
838      setOperationAction(ISD::FNEG, VT, Expand);
839      setOperationAction(ISD::FSQRT, VT, Expand);
840      setOperationAction(ISD::FLOG, VT, Expand);
841      setOperationAction(ISD::FLOG10, VT, Expand);
842      setOperationAction(ISD::FLOG2, VT, Expand);
843      setOperationAction(ISD::FEXP, VT, Expand);
844      setOperationAction(ISD::FEXP2, VT, Expand);
845      setOperationAction(ISD::FSIN, VT, Expand);
846      setOperationAction(ISD::FCOS, VT, Expand);
847      setOperationAction(ISD::FABS, VT, Expand);
848      setOperationAction(ISD::FFLOOR, VT, Expand);
849      setOperationAction(ISD::FCEIL,  VT, Expand);
850      setOperationAction(ISD::FTRUNC, VT, Expand);
851      setOperationAction(ISD::FRINT,  VT, Expand);
852      setOperationAction(ISD::FNEARBYINT, VT, Expand);
853      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
854      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
855      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
856      setOperationAction(ISD::MULHU, VT, Expand);
857      setOperationAction(ISD::MULHS, VT, Expand);
858      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
859      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
860      setOperationAction(ISD::UDIVREM, VT, Expand);
861      setOperationAction(ISD::SDIVREM, VT, Expand);
862      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
863      setOperationAction(ISD::FPOW, VT, Expand);
864      setOperationAction(ISD::BSWAP, VT, Expand);
865      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
866      setOperationAction(ISD::ROTL, VT, Expand);
867      setOperationAction(ISD::ROTR, VT, Expand);
868
869      for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
870        setTruncStoreAction(VT, InnerVT, Expand);
871        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
872        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
873        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
874      }
875    }
876    setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
877    if (!Subtarget.hasP8Vector()) {
878      setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
879      setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
880      setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
881      setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
882    }
883
884    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
885    // with merges, splats, etc.
886    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
887
888    // Vector truncates to sub-word integer that fit in an Altivec/VSX register
889    // are cheap, so handle them before they get expanded to scalar.
890    setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
891    setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
892    setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
893    setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
894    setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
895
896    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
897    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
898    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
899    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
900    setOperationAction(ISD::SELECT, MVT::v4i32,
901                       Subtarget.useCRBits() ? Legal : Expand);
902    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
903    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
904    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
905    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
906    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
907    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
908    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
909    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
910    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
911    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
912    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
913    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
914    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
915
916    // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
917    setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
918    // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
919    if (Subtarget.hasAltivec())
920      for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
921        setOperationAction(ISD::ROTL, VT, Legal);
922    // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
923    if (Subtarget.hasP8Altivec())
924      setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
925
926    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
927    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
928    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
929    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
930
931    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
932    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
933
934    if (Subtarget.hasVSX()) {
935      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
936      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
937      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
938    }
939
940    if (Subtarget.hasP8Altivec())
941      setOperationAction(ISD::MUL, MVT::v4i32, Legal);
942    else
943      setOperationAction(ISD::MUL, MVT::v4i32, Custom);
944
945    if (Subtarget.isISA3_1()) {
946      setOperationAction(ISD::MUL, MVT::v2i64, Legal);
947      setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
948      setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
949      setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
950      setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
951      setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
952      setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
953      setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
954      setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
955      setOperationAction(ISD::UREM, MVT::v2i64, Legal);
956      setOperationAction(ISD::SREM, MVT::v2i64, Legal);
957      setOperationAction(ISD::UREM, MVT::v4i32, Legal);
958      setOperationAction(ISD::SREM, MVT::v4i32, Legal);
959      setOperationAction(ISD::UREM, MVT::v1i128, Legal);
960      setOperationAction(ISD::SREM, MVT::v1i128, Legal);
961      setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
962      setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
963      setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
964    }
965
966    setOperationAction(ISD::MUL, MVT::v8i16, Legal);
967    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
968
969    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
970    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
971
972    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
973    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
974    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
975    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
976
977    // Altivec does not contain unordered floating-point compare instructions
978    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
979    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
980    setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
981    setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
982
983    if (Subtarget.hasVSX()) {
984      setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
985      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
986      if (Subtarget.hasP8Vector()) {
987        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
988        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
989      }
990      if (Subtarget.hasDirectMove() && isPPC64) {
991        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
992        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
993        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
994        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
995        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
996        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
997        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
998        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
999      }
1000      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
1001
1002      // The nearbyint variants are not allowed to raise the inexact exception
1003      // so we can only code-gen them with unsafe math.
1004      if (TM.Options.UnsafeFPMath) {
1005        setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1006        setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1007      }
1008
1009      setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
1010      setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
1011      setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
1012      setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
1013      setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
1014      setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
1015      setOperationAction(ISD::FROUND, MVT::f64, Legal);
1016      setOperationAction(ISD::FRINT, MVT::f64, Legal);
1017
1018      setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
1019      setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
1020      setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1021      setOperationAction(ISD::FROUND, MVT::f32, Legal);
1022      setOperationAction(ISD::FRINT, MVT::f32, Legal);
1023
1024      setOperationAction(ISD::MUL, MVT::v2f64, Legal);
1025      setOperationAction(ISD::FMA, MVT::v2f64, Legal);
1026
1027      setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
1028      setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
1029
1030      // Share the Altivec comparison restrictions.
1031      setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
1032      setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
1033      setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
1034      setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
1035
1036      setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1037      setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1038
1039      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
1040
1041      if (Subtarget.hasP8Vector())
1042        addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1043
1044      addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1045
1046      addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1047      addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1048      addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1049
1050      if (Subtarget.hasP8Altivec()) {
1051        setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1052        setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1053        setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1054
1055        // 128 bit shifts can be accomplished via 3 instructions for SHL and
1056        // SRL, but not for SRA because of the instructions available:
1057        // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1058        // doing
1059        setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1060        setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1061        setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1062
1063        setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1064      }
1065      else {
1066        setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1067        setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1068        setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1069
1070        setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1071
1072        // VSX v2i64 only supports non-arithmetic operations.
1073        setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1074        setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1075      }
1076
1077      if (Subtarget.isISA3_1())
1078        setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1079      else
1080        setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1081
1082      setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1083      AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1084      setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1085      AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1086
1087      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
1088
1089      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1090      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1091      setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1092      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1093      setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1094      setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1095      setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1096      setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1097
1098      // Custom handling for partial vectors of integers converted to
1099      // floating point. We already have optimal handling for v2i32 through
1100      // the DAG combine, so those aren't necessary.
1101      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1102      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1103      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1104      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1105      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1106      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1107      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1108      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1109      setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1110      setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1111      setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1112      setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1113      setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1114      setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1115      setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1116      setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1117
1118      setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1119      setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1120      setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1121      setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1122      setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1123      setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1124
1125      setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1126      setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1127
1128      // Handle constrained floating-point operations of vector.
1129      // The predictor is `hasVSX` because altivec instruction has
1130      // no exception but VSX vector instruction has.
1131      setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1132      setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1133      setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1134      setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1135      setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1136      setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1137      setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1138      setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1139      setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1140      setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1141      setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1142      setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1143      setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1144
1145      setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1146      setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1147      setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1148      setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1149      setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1150      setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1151      setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1152      setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1153      setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1154      setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1155      setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1156      setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1157      setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1158
1159      addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1160      addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1161
1162      for (MVT FPT : MVT::fp_valuetypes())
1163        setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1164
1165      // Expand the SELECT to SELECT_CC
1166      setOperationAction(ISD::SELECT, MVT::f128, Expand);
1167
1168      setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1169      setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1170
1171      // No implementation for these ops for PowerPC.
1172      setOperationAction(ISD::FSIN, MVT::f128, Expand);
1173      setOperationAction(ISD::FCOS, MVT::f128, Expand);
1174      setOperationAction(ISD::FPOW, MVT::f128, Expand);
1175      setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1176      setOperationAction(ISD::FREM, MVT::f128, Expand);
1177    }
1178
1179    if (Subtarget.hasP8Altivec()) {
1180      addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1181      addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1182    }
1183
1184    if (Subtarget.hasP9Vector()) {
1185      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1186      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1187
1188      // 128 bit shifts can be accomplished via 3 instructions for SHL and
1189      // SRL, but not for SRA because of the instructions available:
1190      // VS{RL} and VS{RL}O.
1191      setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1192      setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1193      setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1194
1195      setOperationAction(ISD::FADD, MVT::f128, Legal);
1196      setOperationAction(ISD::FSUB, MVT::f128, Legal);
1197      setOperationAction(ISD::FDIV, MVT::f128, Legal);
1198      setOperationAction(ISD::FMUL, MVT::f128, Legal);
1199      setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1200
1201      setOperationAction(ISD::FMA, MVT::f128, Legal);
1202      setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1203      setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1204      setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1205      setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1206      setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1207      setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1208
1209      setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1210      setOperationAction(ISD::FRINT, MVT::f128, Legal);
1211      setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1212      setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1213      setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1214      setOperationAction(ISD::FROUND, MVT::f128, Legal);
1215
1216      setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1217      setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1218      setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1219
1220      // Handle constrained floating-point operations of fp128
1221      setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1222      setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1223      setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1224      setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1225      setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1226      setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1227      setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1228      setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1229      setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1230      setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1231      setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1232      setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1233      setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1234      setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1235      setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1236      setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1237      setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1238      setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1239      setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1240      setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1241    } else if (Subtarget.hasVSX()) {
1242      setOperationAction(ISD::LOAD, MVT::f128, Promote);
1243      setOperationAction(ISD::STORE, MVT::f128, Promote);
1244
1245      AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1246      AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1247
1248      // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1249      // fp_to_uint and int_to_fp.
1250      setOperationAction(ISD::FADD, MVT::f128, LibCall);
1251      setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1252
1253      setOperationAction(ISD::FMUL, MVT::f128, Expand);
1254      setOperationAction(ISD::FDIV, MVT::f128, Expand);
1255      setOperationAction(ISD::FNEG, MVT::f128, Expand);
1256      setOperationAction(ISD::FABS, MVT::f128, Expand);
1257      setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1258      setOperationAction(ISD::FMA, MVT::f128, Expand);
1259      setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1260
1261      // Expand the fp_extend if the target type is fp128.
1262      setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1263      setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1264
1265      // Expand the fp_round if the source type is fp128.
1266      for (MVT VT : {MVT::f32, MVT::f64}) {
1267        setOperationAction(ISD::FP_ROUND, VT, Custom);
1268        setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1269      }
1270
1271      setOperationAction(ISD::SETCC, MVT::f128, Custom);
1272      setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1273      setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1274      setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1275
1276      // Lower following f128 select_cc pattern:
1277      // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1278      setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1279
1280      // We need to handle f128 SELECT_CC with integer result type.
1281      setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1282      setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1283    }
1284
1285    if (Subtarget.hasP9Altivec()) {
1286      if (Subtarget.isISA3_1()) {
1287        setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1288        setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1289        setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1290        setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1291      } else {
1292        setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1293        setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1294      }
1295      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1296      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1297      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1298      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1299      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1300      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1301      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1302    }
1303
1304    if (Subtarget.hasP10Vector()) {
1305      setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1306    }
1307  }
1308
1309  if (Subtarget.pairedVectorMemops()) {
1310    addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1311    setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1312    setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1313  }
1314  if (Subtarget.hasMMA()) {
1315    if (Subtarget.isISAFuture())
1316      addRegisterClass(MVT::v512i1, &PPC::WACCRCRegClass);
1317    else
1318      addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1319    setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1320    setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1321    setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1322  }
1323
1324  if (Subtarget.has64BitSupport())
1325    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1326
1327  if (Subtarget.isISA3_1())
1328    setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1329
1330  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1331
1332  if (!isPPC64) {
1333    setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1334    setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1335  }
1336
1337  if (shouldInlineQuadwordAtomics()) {
1338    setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1339    setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1340    setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1341  }
1342
1343  setBooleanContents(ZeroOrOneBooleanContent);
1344
1345  if (Subtarget.hasAltivec()) {
1346    // Altivec instructions set fields to all zeros or all ones.
1347    setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1348  }
1349
1350  setLibcallName(RTLIB::MULO_I128, nullptr);
1351  if (!isPPC64) {
1352    // These libcalls are not available in 32-bit.
1353    setLibcallName(RTLIB::SHL_I128, nullptr);
1354    setLibcallName(RTLIB::SRL_I128, nullptr);
1355    setLibcallName(RTLIB::SRA_I128, nullptr);
1356    setLibcallName(RTLIB::MUL_I128, nullptr);
1357    setLibcallName(RTLIB::MULO_I64, nullptr);
1358  }
1359
1360  if (!isPPC64)
1361    setMaxAtomicSizeInBitsSupported(32);
1362  else if (shouldInlineQuadwordAtomics())
1363    setMaxAtomicSizeInBitsSupported(128);
1364  else
1365    setMaxAtomicSizeInBitsSupported(64);
1366
1367  setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1368
1369  // We have target-specific dag combine patterns for the following nodes:
1370  setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL,
1371                       ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR});
1372  if (Subtarget.hasFPCVT())
1373    setTargetDAGCombine(ISD::UINT_TO_FP);
1374  setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC});
1375  if (Subtarget.useCRBits())
1376    setTargetDAGCombine(ISD::BRCOND);
1377  setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN,
1378                       ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID});
1379
1380  setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND});
1381
1382  setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE});
1383
1384  if (Subtarget.useCRBits()) {
1385    setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC});
1386  }
1387
1388  if (Subtarget.hasP9Altivec()) {
1389    setTargetDAGCombine({ISD::ABS, ISD::VSELECT});
1390  }
1391
1392  setLibcallName(RTLIB::LOG_F128, "logf128");
1393  setLibcallName(RTLIB::LOG2_F128, "log2f128");
1394  setLibcallName(RTLIB::LOG10_F128, "log10f128");
1395  setLibcallName(RTLIB::EXP_F128, "expf128");
1396  setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1397  setLibcallName(RTLIB::SIN_F128, "sinf128");
1398  setLibcallName(RTLIB::COS_F128, "cosf128");
1399  setLibcallName(RTLIB::POW_F128, "powf128");
1400  setLibcallName(RTLIB::FMIN_F128, "fminf128");
1401  setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1402  setLibcallName(RTLIB::REM_F128, "fmodf128");
1403  setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1404  setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1405  setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1406  setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1407  setLibcallName(RTLIB::ROUND_F128, "roundf128");
1408  setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1409  setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1410  setLibcallName(RTLIB::RINT_F128, "rintf128");
1411  setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1412  setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1413  setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1414  setLibcallName(RTLIB::FMA_F128, "fmaf128");
1415
1416  // With 32 condition bits, we don't need to sink (and duplicate) compares
1417  // aggressively in CodeGenPrep.
1418  if (Subtarget.useCRBits()) {
1419    setHasMultipleConditionRegisters();
1420    setJumpIsExpensive();
1421  }
1422
1423  setMinFunctionAlignment(Align(4));
1424
1425  switch (Subtarget.getCPUDirective()) {
1426  default: break;
1427  case PPC::DIR_970:
1428  case PPC::DIR_A2:
1429  case PPC::DIR_E500:
1430  case PPC::DIR_E500mc:
1431  case PPC::DIR_E5500:
1432  case PPC::DIR_PWR4:
1433  case PPC::DIR_PWR5:
1434  case PPC::DIR_PWR5X:
1435  case PPC::DIR_PWR6:
1436  case PPC::DIR_PWR6X:
1437  case PPC::DIR_PWR7:
1438  case PPC::DIR_PWR8:
1439  case PPC::DIR_PWR9:
1440  case PPC::DIR_PWR10:
1441  case PPC::DIR_PWR_FUTURE:
1442    setPrefLoopAlignment(Align(16));
1443    setPrefFunctionAlignment(Align(16));
1444    break;
1445  }
1446
1447  if (Subtarget.enableMachineScheduler())
1448    setSchedulingPreference(Sched::Source);
1449  else
1450    setSchedulingPreference(Sched::Hybrid);
1451
1452  computeRegisterProperties(STI.getRegisterInfo());
1453
1454  // The Freescale cores do better with aggressive inlining of memcpy and
1455  // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1456  if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1457      Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1458    MaxStoresPerMemset = 32;
1459    MaxStoresPerMemsetOptSize = 16;
1460    MaxStoresPerMemcpy = 32;
1461    MaxStoresPerMemcpyOptSize = 8;
1462    MaxStoresPerMemmove = 32;
1463    MaxStoresPerMemmoveOptSize = 8;
1464  } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1465    // The A2 also benefits from (very) aggressive inlining of memcpy and
1466    // friends. The overhead of a the function call, even when warm, can be
1467    // over one hundred cycles.
1468    MaxStoresPerMemset = 128;
1469    MaxStoresPerMemcpy = 128;
1470    MaxStoresPerMemmove = 128;
1471    MaxLoadsPerMemcmp = 128;
1472  } else {
1473    MaxLoadsPerMemcmp = 8;
1474    MaxLoadsPerMemcmpOptSize = 4;
1475  }
1476
1477  IsStrictFPEnabled = true;
1478
1479  // Let the subtarget (CPU) decide if a predictable select is more expensive
1480  // than the corresponding branch. This information is used in CGP to decide
1481  // when to convert selects into branches.
1482  PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1483}
1484
1485// *********************************** NOTE ************************************
1486// For selecting load and store instructions, the addressing modes are defined
1487// as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1488// patterns to match the load the store instructions.
1489//
1490// The TD definitions for the addressing modes correspond to their respective
1491// Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1492// on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1493// address mode flags of a particular node. Afterwards, the computed address
1494// flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1495// addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1496// accordingly, based on the preferred addressing mode.
1497//
1498// Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1499// MemOpFlags contains all the possible flags that can be used to compute the
1500// optimal addressing mode for load and store instructions.
1501// AddrMode contains all the possible load and store addressing modes available
1502// on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1503//
1504// When adding new load and store instructions, it is possible that new address
1505// flags may need to be added into MemOpFlags, and a new addressing mode will
1506// need to be added to AddrMode. An entry of the new addressing mode (consisting
1507// of the minimal and main distinguishing address flags for the new load/store
1508// instructions) will need to be added into initializeAddrModeMap() below.
1509// Finally, when adding new addressing modes, the getAddrModeForFlags() will
1510// need to be updated to account for selecting the optimal addressing mode.
1511// *****************************************************************************
1512/// Initialize the map that relates the different addressing modes of the load
1513/// and store instructions to a set of flags. This ensures the load/store
1514/// instruction is correctly matched during instruction selection.
1515void PPCTargetLowering::initializeAddrModeMap() {
1516  AddrModesMap[PPC::AM_DForm] = {
1517      // LWZ, STW
1518      PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1519      PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1520      PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1521      PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1522      // LBZ, LHZ, STB, STH
1523      PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1524      PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1525      PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1526      PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1527      // LHA
1528      PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1529      PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1530      PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1531      PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1532      // LFS, LFD, STFS, STFD
1533      PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1534      PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1535      PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1536      PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1537  };
1538  AddrModesMap[PPC::AM_DSForm] = {
1539      // LWA
1540      PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1541      PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1542      PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1543      // LD, STD
1544      PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1545      PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1546      PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1547      // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1548      PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1549      PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1550      PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1551  };
1552  AddrModesMap[PPC::AM_DQForm] = {
1553      // LXV, STXV
1554      PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1555      PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1556      PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1557  };
1558  AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1559                                       PPC::MOF_SubtargetP10};
1560  // TODO: Add mapping for quadword load/store.
1561}
1562
1563/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1564/// the desired ByVal argument alignment.
1565static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1566  if (MaxAlign == MaxMaxAlign)
1567    return;
1568  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1569    if (MaxMaxAlign >= 32 &&
1570        VTy->getPrimitiveSizeInBits().getFixedValue() >= 256)
1571      MaxAlign = Align(32);
1572    else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 &&
1573             MaxAlign < 16)
1574      MaxAlign = Align(16);
1575  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1576    Align EltAlign;
1577    getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1578    if (EltAlign > MaxAlign)
1579      MaxAlign = EltAlign;
1580  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1581    for (auto *EltTy : STy->elements()) {
1582      Align EltAlign;
1583      getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1584      if (EltAlign > MaxAlign)
1585        MaxAlign = EltAlign;
1586      if (MaxAlign == MaxMaxAlign)
1587        break;
1588    }
1589  }
1590}
1591
1592/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1593/// function arguments in the caller parameter area.
1594uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1595                                                  const DataLayout &DL) const {
1596  // 16byte and wider vectors are passed on 16byte boundary.
1597  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1598  Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1599  if (Subtarget.hasAltivec())
1600    getMaxByValAlign(Ty, Alignment, Align(16));
1601  return Alignment.value();
1602}
1603
1604bool PPCTargetLowering::useSoftFloat() const {
1605  return Subtarget.useSoftFloat();
1606}
1607
1608bool PPCTargetLowering::hasSPE() const {
1609  return Subtarget.hasSPE();
1610}
1611
1612bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1613  return VT.isScalarInteger();
1614}
1615
1616const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1617  switch ((PPCISD::NodeType)Opcode) {
1618  case PPCISD::FIRST_NUMBER:    break;
1619  case PPCISD::FSEL:            return "PPCISD::FSEL";
1620  case PPCISD::XSMAXC:          return "PPCISD::XSMAXC";
1621  case PPCISD::XSMINC:          return "PPCISD::XSMINC";
1622  case PPCISD::FCFID:           return "PPCISD::FCFID";
1623  case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1624  case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1625  case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1626  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1627  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1628  case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1629  case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1630  case PPCISD::FP_TO_UINT_IN_VSR:
1631                                return "PPCISD::FP_TO_UINT_IN_VSR,";
1632  case PPCISD::FP_TO_SINT_IN_VSR:
1633                                return "PPCISD::FP_TO_SINT_IN_VSR";
1634  case PPCISD::FRE:             return "PPCISD::FRE";
1635  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1636  case PPCISD::FTSQRT:
1637    return "PPCISD::FTSQRT";
1638  case PPCISD::FSQRT:
1639    return "PPCISD::FSQRT";
1640  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1641  case PPCISD::VPERM:           return "PPCISD::VPERM";
1642  case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1643  case PPCISD::XXSPLTI_SP_TO_DP:
1644    return "PPCISD::XXSPLTI_SP_TO_DP";
1645  case PPCISD::XXSPLTI32DX:
1646    return "PPCISD::XXSPLTI32DX";
1647  case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1648  case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1649  case PPCISD::XXPERM:
1650    return "PPCISD::XXPERM";
1651  case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1652  case PPCISD::CMPB:            return "PPCISD::CMPB";
1653  case PPCISD::Hi:              return "PPCISD::Hi";
1654  case PPCISD::Lo:              return "PPCISD::Lo";
1655  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1656  case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1657  case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1658  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1659  case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1660  case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1661  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1662  case PPCISD::SRL:             return "PPCISD::SRL";
1663  case PPCISD::SRA:             return "PPCISD::SRA";
1664  case PPCISD::SHL:             return "PPCISD::SHL";
1665  case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1666  case PPCISD::CALL:            return "PPCISD::CALL";
1667  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1668  case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1669  case PPCISD::CALL_RM:
1670    return "PPCISD::CALL_RM";
1671  case PPCISD::CALL_NOP_RM:
1672    return "PPCISD::CALL_NOP_RM";
1673  case PPCISD::CALL_NOTOC_RM:
1674    return "PPCISD::CALL_NOTOC_RM";
1675  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1676  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1677  case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1678  case PPCISD::BCTRL_RM:
1679    return "PPCISD::BCTRL_RM";
1680  case PPCISD::BCTRL_LOAD_TOC_RM:
1681    return "PPCISD::BCTRL_LOAD_TOC_RM";
1682  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1683  case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1684  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1685  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1686  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1687  case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1688  case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1689  case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1690  case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1691  case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1692  case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1693    return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1694  case PPCISD::ANDI_rec_1_EQ_BIT:
1695    return "PPCISD::ANDI_rec_1_EQ_BIT";
1696  case PPCISD::ANDI_rec_1_GT_BIT:
1697    return "PPCISD::ANDI_rec_1_GT_BIT";
1698  case PPCISD::VCMP:            return "PPCISD::VCMP";
1699  case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1700  case PPCISD::LBRX:            return "PPCISD::LBRX";
1701  case PPCISD::STBRX:           return "PPCISD::STBRX";
1702  case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1703  case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1704  case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1705  case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1706  case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1707  case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1708  case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1709  case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1710  case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1711  case PPCISD::ST_VSR_SCAL_INT:
1712                                return "PPCISD::ST_VSR_SCAL_INT";
1713  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1714  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1715  case PPCISD::BDZ:             return "PPCISD::BDZ";
1716  case PPCISD::MFFS:            return "PPCISD::MFFS";
1717  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1718  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1719  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1720  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1721  case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1722  case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1723  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1724  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1725  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1726  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1727  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1728  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1729  case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1730  case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1731  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1732  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1733  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1734  case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1735  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1736  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1737  case PPCISD::PADDI_DTPREL:
1738    return "PPCISD::PADDI_DTPREL";
1739  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1740  case PPCISD::SC:              return "PPCISD::SC";
1741  case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1742  case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1743  case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1744  case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1745  case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1746  case PPCISD::VABSD:           return "PPCISD::VABSD";
1747  case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1748  case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1749  case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1750  case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1751  case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1752  case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1753  case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1754  case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1755    return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1756  case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1757    return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1758  case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1759  case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1760  case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1761  case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1762  case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1763  case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1764  case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1765  case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1766  case PPCISD::STRICT_FADDRTZ:
1767    return "PPCISD::STRICT_FADDRTZ";
1768  case PPCISD::STRICT_FCTIDZ:
1769    return "PPCISD::STRICT_FCTIDZ";
1770  case PPCISD::STRICT_FCTIWZ:
1771    return "PPCISD::STRICT_FCTIWZ";
1772  case PPCISD::STRICT_FCTIDUZ:
1773    return "PPCISD::STRICT_FCTIDUZ";
1774  case PPCISD::STRICT_FCTIWUZ:
1775    return "PPCISD::STRICT_FCTIWUZ";
1776  case PPCISD::STRICT_FCFID:
1777    return "PPCISD::STRICT_FCFID";
1778  case PPCISD::STRICT_FCFIDU:
1779    return "PPCISD::STRICT_FCFIDU";
1780  case PPCISD::STRICT_FCFIDS:
1781    return "PPCISD::STRICT_FCFIDS";
1782  case PPCISD::STRICT_FCFIDUS:
1783    return "PPCISD::STRICT_FCFIDUS";
1784  case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1785  case PPCISD::STORE_COND:
1786    return "PPCISD::STORE_COND";
1787  }
1788  return nullptr;
1789}
1790
1791EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1792                                          EVT VT) const {
1793  if (!VT.isVector())
1794    return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1795
1796  return VT.changeVectorElementTypeToInteger();
1797}
1798
1799bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1800  assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1801  return true;
1802}
1803
1804//===----------------------------------------------------------------------===//
1805// Node matching predicates, for use by the tblgen matching code.
1806//===----------------------------------------------------------------------===//
1807
1808/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1809static bool isFloatingPointZero(SDValue Op) {
1810  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1811    return CFP->getValueAPF().isZero();
1812  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1813    // Maybe this has already been legalized into the constant pool?
1814    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1815      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1816        return CFP->getValueAPF().isZero();
1817  }
1818  return false;
1819}
1820
1821/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1822/// true if Op is undef or if it matches the specified value.
1823static bool isConstantOrUndef(int Op, int Val) {
1824  return Op < 0 || Op == Val;
1825}
1826
1827/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1828/// VPKUHUM instruction.
1829/// The ShuffleKind distinguishes between big-endian operations with
1830/// two different inputs (0), either-endian operations with two identical
1831/// inputs (1), and little-endian operations with two different inputs (2).
1832/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1833bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1834                               SelectionDAG &DAG) {
1835  bool IsLE = DAG.getDataLayout().isLittleEndian();
1836  if (ShuffleKind == 0) {
1837    if (IsLE)
1838      return false;
1839    for (unsigned i = 0; i != 16; ++i)
1840      if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1841        return false;
1842  } else if (ShuffleKind == 2) {
1843    if (!IsLE)
1844      return false;
1845    for (unsigned i = 0; i != 16; ++i)
1846      if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1847        return false;
1848  } else if (ShuffleKind == 1) {
1849    unsigned j = IsLE ? 0 : 1;
1850    for (unsigned i = 0; i != 8; ++i)
1851      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1852          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1853        return false;
1854  }
1855  return true;
1856}
1857
1858/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1859/// VPKUWUM instruction.
1860/// The ShuffleKind distinguishes between big-endian operations with
1861/// two different inputs (0), either-endian operations with two identical
1862/// inputs (1), and little-endian operations with two different inputs (2).
1863/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1864bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1865                               SelectionDAG &DAG) {
1866  bool IsLE = DAG.getDataLayout().isLittleEndian();
1867  if (ShuffleKind == 0) {
1868    if (IsLE)
1869      return false;
1870    for (unsigned i = 0; i != 16; i += 2)
1871      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1872          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1873        return false;
1874  } else if (ShuffleKind == 2) {
1875    if (!IsLE)
1876      return false;
1877    for (unsigned i = 0; i != 16; i += 2)
1878      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1879          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1880        return false;
1881  } else if (ShuffleKind == 1) {
1882    unsigned j = IsLE ? 0 : 2;
1883    for (unsigned i = 0; i != 8; i += 2)
1884      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1885          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1886          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1887          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1888        return false;
1889  }
1890  return true;
1891}
1892
1893/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1894/// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1895/// current subtarget.
1896///
1897/// The ShuffleKind distinguishes between big-endian operations with
1898/// two different inputs (0), either-endian operations with two identical
1899/// inputs (1), and little-endian operations with two different inputs (2).
1900/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1901bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1902                               SelectionDAG &DAG) {
1903  const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
1904  if (!Subtarget.hasP8Vector())
1905    return false;
1906
1907  bool IsLE = DAG.getDataLayout().isLittleEndian();
1908  if (ShuffleKind == 0) {
1909    if (IsLE)
1910      return false;
1911    for (unsigned i = 0; i != 16; i += 4)
1912      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1913          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1914          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1915          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1916        return false;
1917  } else if (ShuffleKind == 2) {
1918    if (!IsLE)
1919      return false;
1920    for (unsigned i = 0; i != 16; i += 4)
1921      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1922          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1923          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1924          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1925        return false;
1926  } else if (ShuffleKind == 1) {
1927    unsigned j = IsLE ? 0 : 4;
1928    for (unsigned i = 0; i != 8; i += 4)
1929      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1930          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1931          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1932          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1933          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1934          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1935          !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1936          !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1937        return false;
1938  }
1939  return true;
1940}
1941
1942/// isVMerge - Common function, used to match vmrg* shuffles.
1943///
1944static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1945                     unsigned LHSStart, unsigned RHSStart) {
1946  if (N->getValueType(0) != MVT::v16i8)
1947    return false;
1948  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1949         "Unsupported merge size!");
1950
1951  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1952    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1953      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1954                             LHSStart+j+i*UnitSize) ||
1955          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1956                             RHSStart+j+i*UnitSize))
1957        return false;
1958    }
1959  return true;
1960}
1961
1962/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1963/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1964/// The ShuffleKind distinguishes between big-endian merges with two
1965/// different inputs (0), either-endian merges with two identical inputs (1),
1966/// and little-endian merges with two different inputs (2).  For the latter,
1967/// the input operands are swapped (see PPCInstrAltivec.td).
1968bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1969                             unsigned ShuffleKind, SelectionDAG &DAG) {
1970  if (DAG.getDataLayout().isLittleEndian()) {
1971    if (ShuffleKind == 1) // unary
1972      return isVMerge(N, UnitSize, 0, 0);
1973    else if (ShuffleKind == 2) // swapped
1974      return isVMerge(N, UnitSize, 0, 16);
1975    else
1976      return false;
1977  } else {
1978    if (ShuffleKind == 1) // unary
1979      return isVMerge(N, UnitSize, 8, 8);
1980    else if (ShuffleKind == 0) // normal
1981      return isVMerge(N, UnitSize, 8, 24);
1982    else
1983      return false;
1984  }
1985}
1986
1987/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1988/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1989/// The ShuffleKind distinguishes between big-endian merges with two
1990/// different inputs (0), either-endian merges with two identical inputs (1),
1991/// and little-endian merges with two different inputs (2).  For the latter,
1992/// the input operands are swapped (see PPCInstrAltivec.td).
1993bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1994                             unsigned ShuffleKind, SelectionDAG &DAG) {
1995  if (DAG.getDataLayout().isLittleEndian()) {
1996    if (ShuffleKind == 1) // unary
1997      return isVMerge(N, UnitSize, 8, 8);
1998    else if (ShuffleKind == 2) // swapped
1999      return isVMerge(N, UnitSize, 8, 24);
2000    else
2001      return false;
2002  } else {
2003    if (ShuffleKind == 1) // unary
2004      return isVMerge(N, UnitSize, 0, 0);
2005    else if (ShuffleKind == 0) // normal
2006      return isVMerge(N, UnitSize, 0, 16);
2007    else
2008      return false;
2009  }
2010}
2011
2012/**
2013 * Common function used to match vmrgew and vmrgow shuffles
2014 *
2015 * The indexOffset determines whether to look for even or odd words in
2016 * the shuffle mask. This is based on the of the endianness of the target
2017 * machine.
2018 *   - Little Endian:
2019 *     - Use offset of 0 to check for odd elements
2020 *     - Use offset of 4 to check for even elements
2021 *   - Big Endian:
2022 *     - Use offset of 0 to check for even elements
2023 *     - Use offset of 4 to check for odd elements
2024 * A detailed description of the vector element ordering for little endian and
2025 * big endian can be found at
2026 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
2027 * Targeting your applications - what little endian and big endian IBM XL C/C++
2028 * compiler differences mean to you
2029 *
2030 * The mask to the shuffle vector instruction specifies the indices of the
2031 * elements from the two input vectors to place in the result. The elements are
2032 * numbered in array-access order, starting with the first vector. These vectors
2033 * are always of type v16i8, thus each vector will contain 16 elements of size
2034 * 8. More info on the shuffle vector can be found in the
2035 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2036 * Language Reference.
2037 *
2038 * The RHSStartValue indicates whether the same input vectors are used (unary)
2039 * or two different input vectors are used, based on the following:
2040 *   - If the instruction uses the same vector for both inputs, the range of the
2041 *     indices will be 0 to 15. In this case, the RHSStart value passed should
2042 *     be 0.
2043 *   - If the instruction has two different vectors then the range of the
2044 *     indices will be 0 to 31. In this case, the RHSStart value passed should
2045 *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2046 *     to 31 specify elements in the second vector).
2047 *
2048 * \param[in] N The shuffle vector SD Node to analyze
2049 * \param[in] IndexOffset Specifies whether to look for even or odd elements
2050 * \param[in] RHSStartValue Specifies the starting index for the righthand input
2051 * vector to the shuffle_vector instruction
2052 * \return true iff this shuffle vector represents an even or odd word merge
2053 */
2054static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2055                     unsigned RHSStartValue) {
2056  if (N->getValueType(0) != MVT::v16i8)
2057    return false;
2058
2059  for (unsigned i = 0; i < 2; ++i)
2060    for (unsigned j = 0; j < 4; ++j)
2061      if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2062                             i*RHSStartValue+j+IndexOffset) ||
2063          !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2064                             i*RHSStartValue+j+IndexOffset+8))
2065        return false;
2066  return true;
2067}
2068
2069/**
2070 * Determine if the specified shuffle mask is suitable for the vmrgew or
2071 * vmrgow instructions.
2072 *
2073 * \param[in] N The shuffle vector SD Node to analyze
2074 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2075 * \param[in] ShuffleKind Identify the type of merge:
2076 *   - 0 = big-endian merge with two different inputs;
2077 *   - 1 = either-endian merge with two identical inputs;
2078 *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2079 *     little-endian merges).
2080 * \param[in] DAG The current SelectionDAG
2081 * \return true iff this shuffle mask
2082 */
2083bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2084                              unsigned ShuffleKind, SelectionDAG &DAG) {
2085  if (DAG.getDataLayout().isLittleEndian()) {
2086    unsigned indexOffset = CheckEven ? 4 : 0;
2087    if (ShuffleKind == 1) // Unary
2088      return isVMerge(N, indexOffset, 0);
2089    else if (ShuffleKind == 2) // swapped
2090      return isVMerge(N, indexOffset, 16);
2091    else
2092      return false;
2093  }
2094  else {
2095    unsigned indexOffset = CheckEven ? 0 : 4;
2096    if (ShuffleKind == 1) // Unary
2097      return isVMerge(N, indexOffset, 0);
2098    else if (ShuffleKind == 0) // Normal
2099      return isVMerge(N, indexOffset, 16);
2100    else
2101      return false;
2102  }
2103  return false;
2104}
2105
2106/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2107/// amount, otherwise return -1.
2108/// The ShuffleKind distinguishes between big-endian operations with two
2109/// different inputs (0), either-endian operations with two identical inputs
2110/// (1), and little-endian operations with two different inputs (2).  For the
2111/// latter, the input operands are swapped (see PPCInstrAltivec.td).
2112int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2113                             SelectionDAG &DAG) {
2114  if (N->getValueType(0) != MVT::v16i8)
2115    return -1;
2116
2117  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2118
2119  // Find the first non-undef value in the shuffle mask.
2120  unsigned i;
2121  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2122    /*search*/;
2123
2124  if (i == 16) return -1;  // all undef.
2125
2126  // Otherwise, check to see if the rest of the elements are consecutively
2127  // numbered from this value.
2128  unsigned ShiftAmt = SVOp->getMaskElt(i);
2129  if (ShiftAmt < i) return -1;
2130
2131  ShiftAmt -= i;
2132  bool isLE = DAG.getDataLayout().isLittleEndian();
2133
2134  if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2135    // Check the rest of the elements to see if they are consecutive.
2136    for (++i; i != 16; ++i)
2137      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2138        return -1;
2139  } else if (ShuffleKind == 1) {
2140    // Check the rest of the elements to see if they are consecutive.
2141    for (++i; i != 16; ++i)
2142      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2143        return -1;
2144  } else
2145    return -1;
2146
2147  if (isLE)
2148    ShiftAmt = 16 - ShiftAmt;
2149
2150  return ShiftAmt;
2151}
2152
2153/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2154/// specifies a splat of a single element that is suitable for input to
2155/// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2156bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2157  EVT VT = N->getValueType(0);
2158  if (VT == MVT::v2i64 || VT == MVT::v2f64)
2159    return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1);
2160
2161  assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2162         EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2163
2164  // The consecutive indices need to specify an element, not part of two
2165  // different elements.  So abandon ship early if this isn't the case.
2166  if (N->getMaskElt(0) % EltSize != 0)
2167    return false;
2168
2169  // This is a splat operation if each element of the permute is the same, and
2170  // if the value doesn't reference the second vector.
2171  unsigned ElementBase = N->getMaskElt(0);
2172
2173  // FIXME: Handle UNDEF elements too!
2174  if (ElementBase >= 16)
2175    return false;
2176
2177  // Check that the indices are consecutive, in the case of a multi-byte element
2178  // splatted with a v16i8 mask.
2179  for (unsigned i = 1; i != EltSize; ++i)
2180    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2181      return false;
2182
2183  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2184    if (N->getMaskElt(i) < 0) continue;
2185    for (unsigned j = 0; j != EltSize; ++j)
2186      if (N->getMaskElt(i+j) != N->getMaskElt(j))
2187        return false;
2188  }
2189  return true;
2190}
2191
2192/// Check that the mask is shuffling N byte elements. Within each N byte
2193/// element of the mask, the indices could be either in increasing or
2194/// decreasing order as long as they are consecutive.
2195/// \param[in] N the shuffle vector SD Node to analyze
2196/// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2197/// Word/DoubleWord/QuadWord).
2198/// \param[in] StepLen the delta indices number among the N byte element, if
2199/// the mask is in increasing/decreasing order then it is 1/-1.
2200/// \return true iff the mask is shuffling N byte elements.
2201static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2202                                   int StepLen) {
2203  assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2204         "Unexpected element width.");
2205  assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2206
2207  unsigned NumOfElem = 16 / Width;
2208  unsigned MaskVal[16]; //  Width is never greater than 16
2209  for (unsigned i = 0; i < NumOfElem; ++i) {
2210    MaskVal[0] = N->getMaskElt(i * Width);
2211    if ((StepLen == 1) && (MaskVal[0] % Width)) {
2212      return false;
2213    } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2214      return false;
2215    }
2216
2217    for (unsigned int j = 1; j < Width; ++j) {
2218      MaskVal[j] = N->getMaskElt(i * Width + j);
2219      if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2220        return false;
2221      }
2222    }
2223  }
2224
2225  return true;
2226}
2227
2228bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2229                          unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2230  if (!isNByteElemShuffleMask(N, 4, 1))
2231    return false;
2232
2233  // Now we look at mask elements 0,4,8,12
2234  unsigned M0 = N->getMaskElt(0) / 4;
2235  unsigned M1 = N->getMaskElt(4) / 4;
2236  unsigned M2 = N->getMaskElt(8) / 4;
2237  unsigned M3 = N->getMaskElt(12) / 4;
2238  unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2239  unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2240
2241  // Below, let H and L be arbitrary elements of the shuffle mask
2242  // where H is in the range [4,7] and L is in the range [0,3].
2243  // H, 1, 2, 3 or L, 5, 6, 7
2244  if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2245      (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2246    ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2247    InsertAtByte = IsLE ? 12 : 0;
2248    Swap = M0 < 4;
2249    return true;
2250  }
2251  // 0, H, 2, 3 or 4, L, 6, 7
2252  if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2253      (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2254    ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2255    InsertAtByte = IsLE ? 8 : 4;
2256    Swap = M1 < 4;
2257    return true;
2258  }
2259  // 0, 1, H, 3 or 4, 5, L, 7
2260  if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2261      (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2262    ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2263    InsertAtByte = IsLE ? 4 : 8;
2264    Swap = M2 < 4;
2265    return true;
2266  }
2267  // 0, 1, 2, H or 4, 5, 6, L
2268  if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2269      (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2270    ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2271    InsertAtByte = IsLE ? 0 : 12;
2272    Swap = M3 < 4;
2273    return true;
2274  }
2275
2276  // If both vector operands for the shuffle are the same vector, the mask will
2277  // contain only elements from the first one and the second one will be undef.
2278  if (N->getOperand(1).isUndef()) {
2279    ShiftElts = 0;
2280    Swap = true;
2281    unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2282    if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2283      InsertAtByte = IsLE ? 12 : 0;
2284      return true;
2285    }
2286    if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2287      InsertAtByte = IsLE ? 8 : 4;
2288      return true;
2289    }
2290    if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2291      InsertAtByte = IsLE ? 4 : 8;
2292      return true;
2293    }
2294    if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2295      InsertAtByte = IsLE ? 0 : 12;
2296      return true;
2297    }
2298  }
2299
2300  return false;
2301}
2302
2303bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2304                               bool &Swap, bool IsLE) {
2305  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2306  // Ensure each byte index of the word is consecutive.
2307  if (!isNByteElemShuffleMask(N, 4, 1))
2308    return false;
2309
2310  // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2311  unsigned M0 = N->getMaskElt(0) / 4;
2312  unsigned M1 = N->getMaskElt(4) / 4;
2313  unsigned M2 = N->getMaskElt(8) / 4;
2314  unsigned M3 = N->getMaskElt(12) / 4;
2315
2316  // If both vector operands for the shuffle are the same vector, the mask will
2317  // contain only elements from the first one and the second one will be undef.
2318  if (N->getOperand(1).isUndef()) {
2319    assert(M0 < 4 && "Indexing into an undef vector?");
2320    if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2321      return false;
2322
2323    ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2324    Swap = false;
2325    return true;
2326  }
2327
2328  // Ensure each word index of the ShuffleVector Mask is consecutive.
2329  if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2330    return false;
2331
2332  if (IsLE) {
2333    if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2334      // Input vectors don't need to be swapped if the leading element
2335      // of the result is one of the 3 left elements of the second vector
2336      // (or if there is no shift to be done at all).
2337      Swap = false;
2338      ShiftElts = (8 - M0) % 8;
2339    } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2340      // Input vectors need to be swapped if the leading element
2341      // of the result is one of the 3 left elements of the first vector
2342      // (or if we're shifting by 4 - thereby simply swapping the vectors).
2343      Swap = true;
2344      ShiftElts = (4 - M0) % 4;
2345    }
2346
2347    return true;
2348  } else {                                          // BE
2349    if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2350      // Input vectors don't need to be swapped if the leading element
2351      // of the result is one of the 4 elements of the first vector.
2352      Swap = false;
2353      ShiftElts = M0;
2354    } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2355      // Input vectors need to be swapped if the leading element
2356      // of the result is one of the 4 elements of the right vector.
2357      Swap = true;
2358      ShiftElts = M0 - 4;
2359    }
2360
2361    return true;
2362  }
2363}
2364
2365bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2366  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2367
2368  if (!isNByteElemShuffleMask(N, Width, -1))
2369    return false;
2370
2371  for (int i = 0; i < 16; i += Width)
2372    if (N->getMaskElt(i) != i + Width - 1)
2373      return false;
2374
2375  return true;
2376}
2377
2378bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2379  return isXXBRShuffleMaskHelper(N, 2);
2380}
2381
2382bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2383  return isXXBRShuffleMaskHelper(N, 4);
2384}
2385
2386bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2387  return isXXBRShuffleMaskHelper(N, 8);
2388}
2389
2390bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2391  return isXXBRShuffleMaskHelper(N, 16);
2392}
2393
2394/// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2395/// if the inputs to the instruction should be swapped and set \p DM to the
2396/// value for the immediate.
2397/// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2398/// AND element 0 of the result comes from the first input (LE) or second input
2399/// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2400/// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2401/// mask.
2402bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2403                               bool &Swap, bool IsLE) {
2404  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2405
2406  // Ensure each byte index of the double word is consecutive.
2407  if (!isNByteElemShuffleMask(N, 8, 1))
2408    return false;
2409
2410  unsigned M0 = N->getMaskElt(0) / 8;
2411  unsigned M1 = N->getMaskElt(8) / 8;
2412  assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2413
2414  // If both vector operands for the shuffle are the same vector, the mask will
2415  // contain only elements from the first one and the second one will be undef.
2416  if (N->getOperand(1).isUndef()) {
2417    if ((M0 | M1) < 2) {
2418      DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2419      Swap = false;
2420      return true;
2421    } else
2422      return false;
2423  }
2424
2425  if (IsLE) {
2426    if (M0 > 1 && M1 < 2) {
2427      Swap = false;
2428    } else if (M0 < 2 && M1 > 1) {
2429      M0 = (M0 + 2) % 4;
2430      M1 = (M1 + 2) % 4;
2431      Swap = true;
2432    } else
2433      return false;
2434
2435    // Note: if control flow comes here that means Swap is already set above
2436    DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2437    return true;
2438  } else { // BE
2439    if (M0 < 2 && M1 > 1) {
2440      Swap = false;
2441    } else if (M0 > 1 && M1 < 2) {
2442      M0 = (M0 + 2) % 4;
2443      M1 = (M1 + 2) % 4;
2444      Swap = true;
2445    } else
2446      return false;
2447
2448    // Note: if control flow comes here that means Swap is already set above
2449    DM = (M0 << 1) + (M1 & 1);
2450    return true;
2451  }
2452}
2453
2454
2455/// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2456/// appropriate for PPC mnemonics (which have a big endian bias - namely
2457/// elements are counted from the left of the vector register).
2458unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2459                                         SelectionDAG &DAG) {
2460  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2461  assert(isSplatShuffleMask(SVOp, EltSize));
2462  EVT VT = SVOp->getValueType(0);
2463
2464  if (VT == MVT::v2i64 || VT == MVT::v2f64)
2465    return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0)
2466                                                : SVOp->getMaskElt(0);
2467
2468  if (DAG.getDataLayout().isLittleEndian())
2469    return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2470  else
2471    return SVOp->getMaskElt(0) / EltSize;
2472}
2473
2474/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2475/// by using a vspltis[bhw] instruction of the specified element size, return
2476/// the constant being splatted.  The ByteSize field indicates the number of
2477/// bytes of each element [124] -> [bhw].
2478SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2479  SDValue OpVal;
2480
2481  // If ByteSize of the splat is bigger than the element size of the
2482  // build_vector, then we have a case where we are checking for a splat where
2483  // multiple elements of the buildvector are folded together into a single
2484  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2485  unsigned EltSize = 16/N->getNumOperands();
2486  if (EltSize < ByteSize) {
2487    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2488    SDValue UniquedVals[4];
2489    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2490
2491    // See if all of the elements in the buildvector agree across.
2492    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2493      if (N->getOperand(i).isUndef()) continue;
2494      // If the element isn't a constant, bail fully out.
2495      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2496
2497      if (!UniquedVals[i&(Multiple-1)].getNode())
2498        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2499      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2500        return SDValue();  // no match.
2501    }
2502
2503    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2504    // either constant or undef values that are identical for each chunk.  See
2505    // if these chunks can form into a larger vspltis*.
2506
2507    // Check to see if all of the leading entries are either 0 or -1.  If
2508    // neither, then this won't fit into the immediate field.
2509    bool LeadingZero = true;
2510    bool LeadingOnes = true;
2511    for (unsigned i = 0; i != Multiple-1; ++i) {
2512      if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2513
2514      LeadingZero &= isNullConstant(UniquedVals[i]);
2515      LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2516    }
2517    // Finally, check the least significant entry.
2518    if (LeadingZero) {
2519      if (!UniquedVals[Multiple-1].getNode())
2520        return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2521      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2522      if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2523        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2524    }
2525    if (LeadingOnes) {
2526      if (!UniquedVals[Multiple-1].getNode())
2527        return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2528      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2529      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2530        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2531    }
2532
2533    return SDValue();
2534  }
2535
2536  // Check to see if this buildvec has a single non-undef value in its elements.
2537  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2538    if (N->getOperand(i).isUndef()) continue;
2539    if (!OpVal.getNode())
2540      OpVal = N->getOperand(i);
2541    else if (OpVal != N->getOperand(i))
2542      return SDValue();
2543  }
2544
2545  if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2546
2547  unsigned ValSizeInBytes = EltSize;
2548  uint64_t Value = 0;
2549  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2550    Value = CN->getZExtValue();
2551  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2552    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2553    Value = FloatToBits(CN->getValueAPF().convertToFloat());
2554  }
2555
2556  // If the splat value is larger than the element value, then we can never do
2557  // this splat.  The only case that we could fit the replicated bits into our
2558  // immediate field for would be zero, and we prefer to use vxor for it.
2559  if (ValSizeInBytes < ByteSize) return SDValue();
2560
2561  // If the element value is larger than the splat value, check if it consists
2562  // of a repeated bit pattern of size ByteSize.
2563  if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2564    return SDValue();
2565
2566  // Properly sign extend the value.
2567  int MaskVal = SignExtend32(Value, ByteSize * 8);
2568
2569  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2570  if (MaskVal == 0) return SDValue();
2571
2572  // Finally, if this value fits in a 5 bit sext field, return it
2573  if (SignExtend32<5>(MaskVal) == MaskVal)
2574    return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2575  return SDValue();
2576}
2577
2578//===----------------------------------------------------------------------===//
2579//  Addressing Mode Selection
2580//===----------------------------------------------------------------------===//
2581
2582/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2583/// or 64-bit immediate, and if the value can be accurately represented as a
2584/// sign extension from a 16-bit value.  If so, this returns true and the
2585/// immediate.
2586bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2587  if (!isa<ConstantSDNode>(N))
2588    return false;
2589
2590  Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2591  if (N->getValueType(0) == MVT::i32)
2592    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2593  else
2594    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2595}
2596bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2597  return isIntS16Immediate(Op.getNode(), Imm);
2598}
2599
2600/// Used when computing address flags for selecting loads and stores.
2601/// If we have an OR, check if the LHS and RHS are provably disjoint.
2602/// An OR of two provably disjoint values is equivalent to an ADD.
2603/// Most PPC load/store instructions compute the effective address as a sum,
2604/// so doing this conversion is useful.
2605static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2606  if (N.getOpcode() != ISD::OR)
2607    return false;
2608  KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2609  if (!LHSKnown.Zero.getBoolValue())
2610    return false;
2611  KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2612  return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2613}
2614
2615/// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2616/// be represented as an indexed [r+r] operation.
2617bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2618                                               SDValue &Index,
2619                                               SelectionDAG &DAG) const {
2620  for (SDNode *U : N->uses()) {
2621    if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2622      if (Memop->getMemoryVT() == MVT::f64) {
2623          Base = N.getOperand(0);
2624          Index = N.getOperand(1);
2625          return true;
2626      }
2627    }
2628  }
2629  return false;
2630}
2631
2632/// isIntS34Immediate - This method tests if value of node given can be
2633/// accurately represented as a sign extension from a 34-bit value.  If so,
2634/// this returns true and the immediate.
2635bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2636  if (!isa<ConstantSDNode>(N))
2637    return false;
2638
2639  Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2640  return isInt<34>(Imm);
2641}
2642bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2643  return isIntS34Immediate(Op.getNode(), Imm);
2644}
2645
2646/// SelectAddressRegReg - Given the specified addressed, check to see if it
2647/// can be represented as an indexed [r+r] operation.  Returns false if it
2648/// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2649/// non-zero and N can be represented by a base register plus a signed 16-bit
2650/// displacement, make a more precise judgement by checking (displacement % \p
2651/// EncodingAlignment).
2652bool PPCTargetLowering::SelectAddressRegReg(
2653    SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2654    MaybeAlign EncodingAlignment) const {
2655  // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2656  // a [pc+imm].
2657  if (SelectAddressPCRel(N, Base))
2658    return false;
2659
2660  int16_t Imm = 0;
2661  if (N.getOpcode() == ISD::ADD) {
2662    // Is there any SPE load/store (f64), which can't handle 16bit offset?
2663    // SPE load/store can only handle 8-bit offsets.
2664    if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2665        return true;
2666    if (isIntS16Immediate(N.getOperand(1), Imm) &&
2667        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2668      return false; // r+i
2669    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2670      return false;    // r+i
2671
2672    Base = N.getOperand(0);
2673    Index = N.getOperand(1);
2674    return true;
2675  } else if (N.getOpcode() == ISD::OR) {
2676    if (isIntS16Immediate(N.getOperand(1), Imm) &&
2677        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2678      return false; // r+i can fold it if we can.
2679
2680    // If this is an or of disjoint bitfields, we can codegen this as an add
2681    // (for better address arithmetic) if the LHS and RHS of the OR are provably
2682    // disjoint.
2683    KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2684
2685    if (LHSKnown.Zero.getBoolValue()) {
2686      KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2687      // If all of the bits are known zero on the LHS or RHS, the add won't
2688      // carry.
2689      if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2690        Base = N.getOperand(0);
2691        Index = N.getOperand(1);
2692        return true;
2693      }
2694    }
2695  }
2696
2697  return false;
2698}
2699
2700// If we happen to be doing an i64 load or store into a stack slot that has
2701// less than a 4-byte alignment, then the frame-index elimination may need to
2702// use an indexed load or store instruction (because the offset may not be a
2703// multiple of 4). The extra register needed to hold the offset comes from the
2704// register scavenger, and it is possible that the scavenger will need to use
2705// an emergency spill slot. As a result, we need to make sure that a spill slot
2706// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2707// stack slot.
2708static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2709  // FIXME: This does not handle the LWA case.
2710  if (VT != MVT::i64)
2711    return;
2712
2713  // NOTE: We'll exclude negative FIs here, which come from argument
2714  // lowering, because there are no known test cases triggering this problem
2715  // using packed structures (or similar). We can remove this exclusion if
2716  // we find such a test case. The reason why this is so test-case driven is
2717  // because this entire 'fixup' is only to prevent crashes (from the
2718  // register scavenger) on not-really-valid inputs. For example, if we have:
2719  //   %a = alloca i1
2720  //   %b = bitcast i1* %a to i64*
2721  //   store i64* a, i64 b
2722  // then the store should really be marked as 'align 1', but is not. If it
2723  // were marked as 'align 1' then the indexed form would have been
2724  // instruction-selected initially, and the problem this 'fixup' is preventing
2725  // won't happen regardless.
2726  if (FrameIdx < 0)
2727    return;
2728
2729  MachineFunction &MF = DAG.getMachineFunction();
2730  MachineFrameInfo &MFI = MF.getFrameInfo();
2731
2732  if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2733    return;
2734
2735  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2736  FuncInfo->setHasNonRISpills();
2737}
2738
2739/// Returns true if the address N can be represented by a base register plus
2740/// a signed 16-bit displacement [r+imm], and if it is not better
2741/// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2742/// displacements that are multiples of that value.
2743bool PPCTargetLowering::SelectAddressRegImm(
2744    SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2745    MaybeAlign EncodingAlignment) const {
2746  // FIXME dl should come from parent load or store, not from address
2747  SDLoc dl(N);
2748
2749  // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2750  // a [pc+imm].
2751  if (SelectAddressPCRel(N, Base))
2752    return false;
2753
2754  // If this can be more profitably realized as r+r, fail.
2755  if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2756    return false;
2757
2758  if (N.getOpcode() == ISD::ADD) {
2759    int16_t imm = 0;
2760    if (isIntS16Immediate(N.getOperand(1), imm) &&
2761        (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2762      Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2763      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2764        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2765        fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2766      } else {
2767        Base = N.getOperand(0);
2768      }
2769      return true; // [r+i]
2770    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2771      // Match LOAD (ADD (X, Lo(G))).
2772      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2773             && "Cannot handle constant offsets yet!");
2774      Disp = N.getOperand(1).getOperand(0);  // The global address.
2775      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2776             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2777             Disp.getOpcode() == ISD::TargetConstantPool ||
2778             Disp.getOpcode() == ISD::TargetJumpTable);
2779      Base = N.getOperand(0);
2780      return true;  // [&g+r]
2781    }
2782  } else if (N.getOpcode() == ISD::OR) {
2783    int16_t imm = 0;
2784    if (isIntS16Immediate(N.getOperand(1), imm) &&
2785        (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2786      // If this is an or of disjoint bitfields, we can codegen this as an add
2787      // (for better address arithmetic) if the LHS and RHS of the OR are
2788      // provably disjoint.
2789      KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2790
2791      if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2792        // If all of the bits are known zero on the LHS or RHS, the add won't
2793        // carry.
2794        if (FrameIndexSDNode *FI =
2795              dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2796          Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2797          fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2798        } else {
2799          Base = N.getOperand(0);
2800        }
2801        Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2802        return true;
2803      }
2804    }
2805  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2806    // Loading from a constant address.
2807
2808    // If this address fits entirely in a 16-bit sext immediate field, codegen
2809    // this as "d, 0"
2810    int16_t Imm;
2811    if (isIntS16Immediate(CN, Imm) &&
2812        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2813      Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2814      Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2815                             CN->getValueType(0));
2816      return true;
2817    }
2818
2819    // Handle 32-bit sext immediates with LIS + addr mode.
2820    if ((CN->getValueType(0) == MVT::i32 ||
2821         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2822        (!EncodingAlignment ||
2823         isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2824      int Addr = (int)CN->getZExtValue();
2825
2826      // Otherwise, break this down into an LIS + disp.
2827      Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2828
2829      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2830                                   MVT::i32);
2831      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2832      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2833      return true;
2834    }
2835  }
2836
2837  Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2838  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2839    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2840    fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2841  } else
2842    Base = N;
2843  return true;      // [r+0]
2844}
2845
2846/// Similar to the 16-bit case but for instructions that take a 34-bit
2847/// displacement field (prefixed loads/stores).
2848bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2849                                              SDValue &Base,
2850                                              SelectionDAG &DAG) const {
2851  // Only on 64-bit targets.
2852  if (N.getValueType() != MVT::i64)
2853    return false;
2854
2855  SDLoc dl(N);
2856  int64_t Imm = 0;
2857
2858  if (N.getOpcode() == ISD::ADD) {
2859    if (!isIntS34Immediate(N.getOperand(1), Imm))
2860      return false;
2861    Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2862    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2863      Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2864    else
2865      Base = N.getOperand(0);
2866    return true;
2867  }
2868
2869  if (N.getOpcode() == ISD::OR) {
2870    if (!isIntS34Immediate(N.getOperand(1), Imm))
2871      return false;
2872    // If this is an or of disjoint bitfields, we can codegen this as an add
2873    // (for better address arithmetic) if the LHS and RHS of the OR are
2874    // provably disjoint.
2875    KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2876    if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2877      return false;
2878    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2879      Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2880    else
2881      Base = N.getOperand(0);
2882    Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2883    return true;
2884  }
2885
2886  if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2887    Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2888    Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2889    return true;
2890  }
2891
2892  return false;
2893}
2894
2895/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2896/// represented as an indexed [r+r] operation.
2897bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2898                                                SDValue &Index,
2899                                                SelectionDAG &DAG) const {
2900  // Check to see if we can easily represent this as an [r+r] address.  This
2901  // will fail if it thinks that the address is more profitably represented as
2902  // reg+imm, e.g. where imm = 0.
2903  if (SelectAddressRegReg(N, Base, Index, DAG))
2904    return true;
2905
2906  // If the address is the result of an add, we will utilize the fact that the
2907  // address calculation includes an implicit add.  However, we can reduce
2908  // register pressure if we do not materialize a constant just for use as the
2909  // index register.  We only get rid of the add if it is not an add of a
2910  // value and a 16-bit signed constant and both have a single use.
2911  int16_t imm = 0;
2912  if (N.getOpcode() == ISD::ADD &&
2913      (!isIntS16Immediate(N.getOperand(1), imm) ||
2914       !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2915    Base = N.getOperand(0);
2916    Index = N.getOperand(1);
2917    return true;
2918  }
2919
2920  // Otherwise, do it the hard way, using R0 as the base register.
2921  Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2922                         N.getValueType());
2923  Index = N;
2924  return true;
2925}
2926
2927template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2928  Ty *PCRelCand = dyn_cast<Ty>(N);
2929  return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2930}
2931
2932/// Returns true if this address is a PC Relative address.
2933/// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2934/// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2935bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2936  // This is a materialize PC Relative node. Always select this as PC Relative.
2937  Base = N;
2938  if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2939    return true;
2940  if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2941      isValidPCRelNode<GlobalAddressSDNode>(N) ||
2942      isValidPCRelNode<JumpTableSDNode>(N) ||
2943      isValidPCRelNode<BlockAddressSDNode>(N))
2944    return true;
2945  return false;
2946}
2947
2948/// Returns true if we should use a direct load into vector instruction
2949/// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2950static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2951
2952  // If there are any other uses other than scalar to vector, then we should
2953  // keep it as a scalar load -> direct move pattern to prevent multiple
2954  // loads.
2955  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2956  if (!LD)
2957    return false;
2958
2959  EVT MemVT = LD->getMemoryVT();
2960  if (!MemVT.isSimple())
2961    return false;
2962  switch(MemVT.getSimpleVT().SimpleTy) {
2963  case MVT::i64:
2964    break;
2965  case MVT::i32:
2966    if (!ST.hasP8Vector())
2967      return false;
2968    break;
2969  case MVT::i16:
2970  case MVT::i8:
2971    if (!ST.hasP9Vector())
2972      return false;
2973    break;
2974  default:
2975    return false;
2976  }
2977
2978  SDValue LoadedVal(N, 0);
2979  if (!LoadedVal.hasOneUse())
2980    return false;
2981
2982  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2983       UI != UE; ++UI)
2984    if (UI.getUse().get().getResNo() == 0 &&
2985        UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2986        UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2987      return false;
2988
2989  return true;
2990}
2991
2992/// getPreIndexedAddressParts - returns true by value, base pointer and
2993/// offset pointer and addressing mode by reference if the node's address
2994/// can be legally represented as pre-indexed load / store address.
2995bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2996                                                  SDValue &Offset,
2997                                                  ISD::MemIndexedMode &AM,
2998                                                  SelectionDAG &DAG) const {
2999  if (DisablePPCPreinc) return false;
3000
3001  bool isLoad = true;
3002  SDValue Ptr;
3003  EVT VT;
3004  Align Alignment;
3005  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3006    Ptr = LD->getBasePtr();
3007    VT = LD->getMemoryVT();
3008    Alignment = LD->getAlign();
3009  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3010    Ptr = ST->getBasePtr();
3011    VT  = ST->getMemoryVT();
3012    Alignment = ST->getAlign();
3013    isLoad = false;
3014  } else
3015    return false;
3016
3017  // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
3018  // instructions because we can fold these into a more efficient instruction
3019  // instead, (such as LXSD).
3020  if (isLoad && usePartialVectorLoads(N, Subtarget)) {
3021    return false;
3022  }
3023
3024  // PowerPC doesn't have preinc load/store instructions for vectors
3025  if (VT.isVector())
3026    return false;
3027
3028  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
3029    // Common code will reject creating a pre-inc form if the base pointer
3030    // is a frame index, or if N is a store and the base pointer is either
3031    // the same as or a predecessor of the value being stored.  Check for
3032    // those situations here, and try with swapped Base/Offset instead.
3033    bool Swap = false;
3034
3035    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
3036      Swap = true;
3037    else if (!isLoad) {
3038      SDValue Val = cast<StoreSDNode>(N)->getValue();
3039      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
3040        Swap = true;
3041    }
3042
3043    if (Swap)
3044      std::swap(Base, Offset);
3045
3046    AM = ISD::PRE_INC;
3047    return true;
3048  }
3049
3050  // LDU/STU can only handle immediates that are a multiple of 4.
3051  if (VT != MVT::i64) {
3052    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, std::nullopt))
3053      return false;
3054  } else {
3055    // LDU/STU need an address with at least 4-byte alignment.
3056    if (Alignment < Align(4))
3057      return false;
3058
3059    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3060      return false;
3061  }
3062
3063  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3064    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3065    // sext i32 to i64 when addr mode is r+i.
3066    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3067        LD->getExtensionType() == ISD::SEXTLOAD &&
3068        isa<ConstantSDNode>(Offset))
3069      return false;
3070  }
3071
3072  AM = ISD::PRE_INC;
3073  return true;
3074}
3075
3076//===----------------------------------------------------------------------===//
3077//  LowerOperation implementation
3078//===----------------------------------------------------------------------===//
3079
3080/// Return true if we should reference labels using a PICBase, set the HiOpFlags
3081/// and LoOpFlags to the target MO flags.
3082static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3083                               unsigned &HiOpFlags, unsigned &LoOpFlags,
3084                               const GlobalValue *GV = nullptr) {
3085  HiOpFlags = PPCII::MO_HA;
3086  LoOpFlags = PPCII::MO_LO;
3087
3088  // Don't use the pic base if not in PIC relocation model.
3089  if (IsPIC) {
3090    HiOpFlags |= PPCII::MO_PIC_FLAG;
3091    LoOpFlags |= PPCII::MO_PIC_FLAG;
3092  }
3093}
3094
3095static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3096                             SelectionDAG &DAG) {
3097  SDLoc DL(HiPart);
3098  EVT PtrVT = HiPart.getValueType();
3099  SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3100
3101  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3102  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3103
3104  // With PIC, the first instruction is actually "GR+hi(&G)".
3105  if (isPIC)
3106    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3107                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3108
3109  // Generate non-pic code that has direct accesses to the constant pool.
3110  // The address of the global is just (hi(&g)+lo(&g)).
3111  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3112}
3113
3114static void setUsesTOCBasePtr(MachineFunction &MF) {
3115  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3116  FuncInfo->setUsesTOCBasePtr();
3117}
3118
3119static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3120  setUsesTOCBasePtr(DAG.getMachineFunction());
3121}
3122
3123SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3124                                       SDValue GA) const {
3125  const bool Is64Bit = Subtarget.isPPC64();
3126  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3127  SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3128                        : Subtarget.isAIXABI()
3129                              ? DAG.getRegister(PPC::R2, VT)
3130                              : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3131  SDValue Ops[] = { GA, Reg };
3132  return DAG.getMemIntrinsicNode(
3133      PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3134      MachinePointerInfo::getGOT(DAG.getMachineFunction()), std::nullopt,
3135      MachineMemOperand::MOLoad);
3136}
3137
3138SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3139                                             SelectionDAG &DAG) const {
3140  EVT PtrVT = Op.getValueType();
3141  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3142  const Constant *C = CP->getConstVal();
3143
3144  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3145  // The actual address of the GlobalValue is stored in the TOC.
3146  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3147    if (Subtarget.isUsingPCRelativeCalls()) {
3148      SDLoc DL(CP);
3149      EVT Ty = getPointerTy(DAG.getDataLayout());
3150      SDValue ConstPool = DAG.getTargetConstantPool(
3151          C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3152      return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3153    }
3154    setUsesTOCBasePtr(DAG);
3155    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3156    return getTOCEntry(DAG, SDLoc(CP), GA);
3157  }
3158
3159  unsigned MOHiFlag, MOLoFlag;
3160  bool IsPIC = isPositionIndependent();
3161  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3162
3163  if (IsPIC && Subtarget.isSVR4ABI()) {
3164    SDValue GA =
3165        DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3166    return getTOCEntry(DAG, SDLoc(CP), GA);
3167  }
3168
3169  SDValue CPIHi =
3170      DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3171  SDValue CPILo =
3172      DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3173  return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3174}
3175
3176// For 64-bit PowerPC, prefer the more compact relative encodings.
3177// This trades 32 bits per jump table entry for one or two instructions
3178// on the jump site.
3179unsigned PPCTargetLowering::getJumpTableEncoding() const {
3180  if (isJumpTableRelative())
3181    return MachineJumpTableInfo::EK_LabelDifference32;
3182
3183  return TargetLowering::getJumpTableEncoding();
3184}
3185
3186bool PPCTargetLowering::isJumpTableRelative() const {
3187  if (UseAbsoluteJumpTables)
3188    return false;
3189  if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3190    return true;
3191  return TargetLowering::isJumpTableRelative();
3192}
3193
3194SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3195                                                    SelectionDAG &DAG) const {
3196  if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3197    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3198
3199  switch (getTargetMachine().getCodeModel()) {
3200  case CodeModel::Small:
3201  case CodeModel::Medium:
3202    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3203  default:
3204    return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3205                       getPointerTy(DAG.getDataLayout()));
3206  }
3207}
3208
3209const MCExpr *
3210PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3211                                                unsigned JTI,
3212                                                MCContext &Ctx) const {
3213  if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3214    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3215
3216  switch (getTargetMachine().getCodeModel()) {
3217  case CodeModel::Small:
3218  case CodeModel::Medium:
3219    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3220  default:
3221    return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3222  }
3223}
3224
3225SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3226  EVT PtrVT = Op.getValueType();
3227  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3228
3229  // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3230  if (Subtarget.isUsingPCRelativeCalls()) {
3231    SDLoc DL(JT);
3232    EVT Ty = getPointerTy(DAG.getDataLayout());
3233    SDValue GA =
3234        DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3235    SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3236    return MatAddr;
3237  }
3238
3239  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3240  // The actual address of the GlobalValue is stored in the TOC.
3241  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3242    setUsesTOCBasePtr(DAG);
3243    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3244    return getTOCEntry(DAG, SDLoc(JT), GA);
3245  }
3246
3247  unsigned MOHiFlag, MOLoFlag;
3248  bool IsPIC = isPositionIndependent();
3249  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3250
3251  if (IsPIC && Subtarget.isSVR4ABI()) {
3252    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3253                                        PPCII::MO_PIC_FLAG);
3254    return getTOCEntry(DAG, SDLoc(GA), GA);
3255  }
3256
3257  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3258  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3259  return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3260}
3261
3262SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3263                                             SelectionDAG &DAG) const {
3264  EVT PtrVT = Op.getValueType();
3265  BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3266  const BlockAddress *BA = BASDN->getBlockAddress();
3267
3268  // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3269  if (Subtarget.isUsingPCRelativeCalls()) {
3270    SDLoc DL(BASDN);
3271    EVT Ty = getPointerTy(DAG.getDataLayout());
3272    SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3273                                           PPCII::MO_PCREL_FLAG);
3274    SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3275    return MatAddr;
3276  }
3277
3278  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3279  // The actual BlockAddress is stored in the TOC.
3280  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3281    setUsesTOCBasePtr(DAG);
3282    SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3283    return getTOCEntry(DAG, SDLoc(BASDN), GA);
3284  }
3285
3286  // 32-bit position-independent ELF stores the BlockAddress in the .got.
3287  if (Subtarget.is32BitELFABI() && isPositionIndependent())
3288    return getTOCEntry(
3289        DAG, SDLoc(BASDN),
3290        DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3291
3292  unsigned MOHiFlag, MOLoFlag;
3293  bool IsPIC = isPositionIndependent();
3294  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3295  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3296  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3297  return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3298}
3299
3300SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3301                                              SelectionDAG &DAG) const {
3302  if (Subtarget.isAIXABI())
3303    return LowerGlobalTLSAddressAIX(Op, DAG);
3304
3305  return LowerGlobalTLSAddressLinux(Op, DAG);
3306}
3307
3308SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3309                                                    SelectionDAG &DAG) const {
3310  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3311
3312  if (DAG.getTarget().useEmulatedTLS())
3313    report_fatal_error("Emulated TLS is not yet supported on AIX");
3314
3315  SDLoc dl(GA);
3316  const GlobalValue *GV = GA->getGlobal();
3317  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3318
3319  // The general-dynamic model is the only access model supported for now, so
3320  // all the GlobalTLSAddress nodes are lowered with this model.
3321  // We need to generate two TOC entries, one for the variable offset, one for
3322  // the region handle. The global address for the TOC entry of the region
3323  // handle is created with the MO_TLSGDM_FLAG flag and the global address
3324  // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3325  SDValue VariableOffsetTGA =
3326      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3327  SDValue RegionHandleTGA =
3328      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3329  SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3330  SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3331  return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3332                     RegionHandle);
3333}
3334
3335SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3336                                                      SelectionDAG &DAG) const {
3337  // FIXME: TLS addresses currently use medium model code sequences,
3338  // which is the most useful form.  Eventually support for small and
3339  // large models could be added if users need it, at the cost of
3340  // additional complexity.
3341  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3342  if (DAG.getTarget().useEmulatedTLS())
3343    return LowerToTLSEmulatedModel(GA, DAG);
3344
3345  SDLoc dl(GA);
3346  const GlobalValue *GV = GA->getGlobal();
3347  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3348  bool is64bit = Subtarget.isPPC64();
3349  const Module *M = DAG.getMachineFunction().getFunction().getParent();
3350  PICLevel::Level picLevel = M->getPICLevel();
3351
3352  const TargetMachine &TM = getTargetMachine();
3353  TLSModel::Model Model = TM.getTLSModel(GV);
3354
3355  if (Model == TLSModel::LocalExec) {
3356    if (Subtarget.isUsingPCRelativeCalls()) {
3357      SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3358      SDValue TGA = DAG.getTargetGlobalAddress(
3359          GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3360      SDValue MatAddr =
3361          DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3362      return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3363    }
3364
3365    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3366                                               PPCII::MO_TPREL_HA);
3367    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3368                                               PPCII::MO_TPREL_LO);
3369    SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3370                             : DAG.getRegister(PPC::R2, MVT::i32);
3371
3372    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3373    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3374  }
3375
3376  if (Model == TLSModel::InitialExec) {
3377    bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3378    SDValue TGA = DAG.getTargetGlobalAddress(
3379        GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3380    SDValue TGATLS = DAG.getTargetGlobalAddress(
3381        GV, dl, PtrVT, 0,
3382        IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3383    SDValue TPOffset;
3384    if (IsPCRel) {
3385      SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3386      TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3387                             MachinePointerInfo());
3388    } else {
3389      SDValue GOTPtr;
3390      if (is64bit) {
3391        setUsesTOCBasePtr(DAG);
3392        SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3393        GOTPtr =
3394            DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3395      } else {
3396        if (!TM.isPositionIndependent())
3397          GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3398        else if (picLevel == PICLevel::SmallPIC)
3399          GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3400        else
3401          GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3402      }
3403      TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3404    }
3405    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3406  }
3407
3408  if (Model == TLSModel::GeneralDynamic) {
3409    if (Subtarget.isUsingPCRelativeCalls()) {
3410      SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3411                                               PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3412      return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3413    }
3414
3415    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3416    SDValue GOTPtr;
3417    if (is64bit) {
3418      setUsesTOCBasePtr(DAG);
3419      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3420      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3421                                   GOTReg, TGA);
3422    } else {
3423      if (picLevel == PICLevel::SmallPIC)
3424        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3425      else
3426        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3427    }
3428    return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3429                       GOTPtr, TGA, TGA);
3430  }
3431
3432  if (Model == TLSModel::LocalDynamic) {
3433    if (Subtarget.isUsingPCRelativeCalls()) {
3434      SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3435                                               PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3436      SDValue MatPCRel =
3437          DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3438      return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3439    }
3440
3441    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3442    SDValue GOTPtr;
3443    if (is64bit) {
3444      setUsesTOCBasePtr(DAG);
3445      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3446      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3447                           GOTReg, TGA);
3448    } else {
3449      if (picLevel == PICLevel::SmallPIC)
3450        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3451      else
3452        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3453    }
3454    SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3455                                  PtrVT, GOTPtr, TGA, TGA);
3456    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3457                                      PtrVT, TLSAddr, TGA);
3458    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3459  }
3460
3461  llvm_unreachable("Unknown TLS model!");
3462}
3463
3464SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3465                                              SelectionDAG &DAG) const {
3466  EVT PtrVT = Op.getValueType();
3467  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3468  SDLoc DL(GSDN);
3469  const GlobalValue *GV = GSDN->getGlobal();
3470
3471  // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3472  // The actual address of the GlobalValue is stored in the TOC.
3473  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3474    if (Subtarget.isUsingPCRelativeCalls()) {
3475      EVT Ty = getPointerTy(DAG.getDataLayout());
3476      if (isAccessedAsGotIndirect(Op)) {
3477        SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3478                                                PPCII::MO_PCREL_FLAG |
3479                                                    PPCII::MO_GOT_FLAG);
3480        SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3481        SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3482                                   MachinePointerInfo());
3483        return Load;
3484      } else {
3485        SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3486                                                PPCII::MO_PCREL_FLAG);
3487        return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3488      }
3489    }
3490    setUsesTOCBasePtr(DAG);
3491    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3492    return getTOCEntry(DAG, DL, GA);
3493  }
3494
3495  unsigned MOHiFlag, MOLoFlag;
3496  bool IsPIC = isPositionIndependent();
3497  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3498
3499  if (IsPIC && Subtarget.isSVR4ABI()) {
3500    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3501                                            GSDN->getOffset(),
3502                                            PPCII::MO_PIC_FLAG);
3503    return getTOCEntry(DAG, DL, GA);
3504  }
3505
3506  SDValue GAHi =
3507    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3508  SDValue GALo =
3509    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3510
3511  return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3512}
3513
3514SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3515  bool IsStrict = Op->isStrictFPOpcode();
3516  ISD::CondCode CC =
3517      cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3518  SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3519  SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3520  SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3521  EVT LHSVT = LHS.getValueType();
3522  SDLoc dl(Op);
3523
3524  // Soften the setcc with libcall if it is fp128.
3525  if (LHSVT == MVT::f128) {
3526    assert(!Subtarget.hasP9Vector() &&
3527           "SETCC for f128 is already legal under Power9!");
3528    softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3529                        Op->getOpcode() == ISD::STRICT_FSETCCS);
3530    if (RHS.getNode())
3531      LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3532                        DAG.getCondCode(CC));
3533    if (IsStrict)
3534      return DAG.getMergeValues({LHS, Chain}, dl);
3535    return LHS;
3536  }
3537
3538  assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3539
3540  if (Op.getValueType() == MVT::v2i64) {
3541    // When the operands themselves are v2i64 values, we need to do something
3542    // special because VSX has no underlying comparison operations for these.
3543    if (LHS.getValueType() == MVT::v2i64) {
3544      // Equality can be handled by casting to the legal type for Altivec
3545      // comparisons, everything else needs to be expanded.
3546      if (CC != ISD::SETEQ && CC != ISD::SETNE)
3547        return SDValue();
3548      SDValue SetCC32 = DAG.getSetCC(
3549          dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3550          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC);
3551      int ShuffV[] = {1, 0, 3, 2};
3552      SDValue Shuff =
3553          DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV);
3554      return DAG.getBitcast(MVT::v2i64,
3555                            DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR,
3556                                        dl, MVT::v4i32, Shuff, SetCC32));
3557    }
3558
3559    // We handle most of these in the usual way.
3560    return Op;
3561  }
3562
3563  // If we're comparing for equality to zero, expose the fact that this is
3564  // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3565  // fold the new nodes.
3566  if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3567    return V;
3568
3569  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3570    // Leave comparisons against 0 and -1 alone for now, since they're usually
3571    // optimized.  FIXME: revisit this when we can custom lower all setcc
3572    // optimizations.
3573    if (C->isAllOnes() || C->isZero())
3574      return SDValue();
3575  }
3576
3577  // If we have an integer seteq/setne, turn it into a compare against zero
3578  // by xor'ing the rhs with the lhs, which is faster than setting a
3579  // condition register, reading it back out, and masking the correct bit.  The
3580  // normal approach here uses sub to do this instead of xor.  Using xor exposes
3581  // the result to other bit-twiddling opportunities.
3582  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3583    EVT VT = Op.getValueType();
3584    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3585    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3586  }
3587  return SDValue();
3588}
3589
3590SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3591  SDNode *Node = Op.getNode();
3592  EVT VT = Node->getValueType(0);
3593  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3594  SDValue InChain = Node->getOperand(0);
3595  SDValue VAListPtr = Node->getOperand(1);
3596  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3597  SDLoc dl(Node);
3598
3599  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3600
3601  // gpr_index
3602  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3603                                    VAListPtr, MachinePointerInfo(SV), MVT::i8);
3604  InChain = GprIndex.getValue(1);
3605
3606  if (VT == MVT::i64) {
3607    // Check if GprIndex is even
3608    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3609                                 DAG.getConstant(1, dl, MVT::i32));
3610    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3611                                DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3612    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3613                                          DAG.getConstant(1, dl, MVT::i32));
3614    // Align GprIndex to be even if it isn't
3615    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3616                           GprIndex);
3617  }
3618
3619  // fpr index is 1 byte after gpr
3620  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3621                               DAG.getConstant(1, dl, MVT::i32));
3622
3623  // fpr
3624  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3625                                    FprPtr, MachinePointerInfo(SV), MVT::i8);
3626  InChain = FprIndex.getValue(1);
3627
3628  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3629                                       DAG.getConstant(8, dl, MVT::i32));
3630
3631  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3632                                        DAG.getConstant(4, dl, MVT::i32));
3633
3634  // areas
3635  SDValue OverflowArea =
3636      DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3637  InChain = OverflowArea.getValue(1);
3638
3639  SDValue RegSaveArea =
3640      DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3641  InChain = RegSaveArea.getValue(1);
3642
3643  // select overflow_area if index > 8
3644  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3645                            DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3646
3647  // adjustment constant gpr_index * 4/8
3648  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3649                                    VT.isInteger() ? GprIndex : FprIndex,
3650                                    DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3651                                                    MVT::i32));
3652
3653  // OurReg = RegSaveArea + RegConstant
3654  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3655                               RegConstant);
3656
3657  // Floating types are 32 bytes into RegSaveArea
3658  if (VT.isFloatingPoint())
3659    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3660                         DAG.getConstant(32, dl, MVT::i32));
3661
3662  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3663  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3664                                   VT.isInteger() ? GprIndex : FprIndex,
3665                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3666                                                   MVT::i32));
3667
3668  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3669                              VT.isInteger() ? VAListPtr : FprPtr,
3670                              MachinePointerInfo(SV), MVT::i8);
3671
3672  // determine if we should load from reg_save_area or overflow_area
3673  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3674
3675  // increase overflow_area by 4/8 if gpr/fpr > 8
3676  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3677                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
3678                                          dl, MVT::i32));
3679
3680  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3681                             OverflowAreaPlusN);
3682
3683  InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3684                              MachinePointerInfo(), MVT::i32);
3685
3686  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3687}
3688
3689SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3690  assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3691
3692  // We have to copy the entire va_list struct:
3693  // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3694  return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3695                       DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3696                       false, true, false, MachinePointerInfo(),
3697                       MachinePointerInfo());
3698}
3699
3700SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3701                                                  SelectionDAG &DAG) const {
3702  if (Subtarget.isAIXABI())
3703    report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3704
3705  return Op.getOperand(0);
3706}
3707
3708SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3709  MachineFunction &MF = DAG.getMachineFunction();
3710  PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3711
3712  assert((Op.getOpcode() == ISD::INLINEASM ||
3713          Op.getOpcode() == ISD::INLINEASM_BR) &&
3714         "Expecting Inline ASM node.");
3715
3716  // If an LR store is already known to be required then there is not point in
3717  // checking this ASM as well.
3718  if (MFI.isLRStoreRequired())
3719    return Op;
3720
3721  // Inline ASM nodes have an optional last operand that is an incoming Flag of
3722  // type MVT::Glue. We want to ignore this last operand if that is the case.
3723  unsigned NumOps = Op.getNumOperands();
3724  if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3725    --NumOps;
3726
3727  // Check all operands that may contain the LR.
3728  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3729    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3730    unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3731    ++i; // Skip the ID value.
3732
3733    switch (InlineAsm::getKind(Flags)) {
3734    default:
3735      llvm_unreachable("Bad flags!");
3736    case InlineAsm::Kind_RegUse:
3737    case InlineAsm::Kind_Imm:
3738    case InlineAsm::Kind_Mem:
3739      i += NumVals;
3740      break;
3741    case InlineAsm::Kind_Clobber:
3742    case InlineAsm::Kind_RegDef:
3743    case InlineAsm::Kind_RegDefEarlyClobber: {
3744      for (; NumVals; --NumVals, ++i) {
3745        Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3746        if (Reg != PPC::LR && Reg != PPC::LR8)
3747          continue;
3748        MFI.setLRStoreRequired();
3749        return Op;
3750      }
3751      break;
3752    }
3753    }
3754  }
3755
3756  return Op;
3757}
3758
3759SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3760                                                SelectionDAG &DAG) const {
3761  if (Subtarget.isAIXABI())
3762    report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3763
3764  SDValue Chain = Op.getOperand(0);
3765  SDValue Trmp = Op.getOperand(1); // trampoline
3766  SDValue FPtr = Op.getOperand(2); // nested function
3767  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3768  SDLoc dl(Op);
3769
3770  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3771  bool isPPC64 = (PtrVT == MVT::i64);
3772  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3773
3774  TargetLowering::ArgListTy Args;
3775  TargetLowering::ArgListEntry Entry;
3776
3777  Entry.Ty = IntPtrTy;
3778  Entry.Node = Trmp; Args.push_back(Entry);
3779
3780  // TrampSize == (isPPC64 ? 48 : 40);
3781  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3782                               isPPC64 ? MVT::i64 : MVT::i32);
3783  Args.push_back(Entry);
3784
3785  Entry.Node = FPtr; Args.push_back(Entry);
3786  Entry.Node = Nest; Args.push_back(Entry);
3787
3788  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3789  TargetLowering::CallLoweringInfo CLI(DAG);
3790  CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3791      CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3792      DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3793
3794  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3795  return CallResult.second;
3796}
3797
3798SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3799  MachineFunction &MF = DAG.getMachineFunction();
3800  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3801  EVT PtrVT = getPointerTy(MF.getDataLayout());
3802
3803  SDLoc dl(Op);
3804
3805  if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3806    // vastart just stores the address of the VarArgsFrameIndex slot into the
3807    // memory location argument.
3808    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3809    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3810    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3811                        MachinePointerInfo(SV));
3812  }
3813
3814  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3815  // We suppose the given va_list is already allocated.
3816  //
3817  // typedef struct {
3818  //  char gpr;     /* index into the array of 8 GPRs
3819  //                 * stored in the register save area
3820  //                 * gpr=0 corresponds to r3,
3821  //                 * gpr=1 to r4, etc.
3822  //                 */
3823  //  char fpr;     /* index into the array of 8 FPRs
3824  //                 * stored in the register save area
3825  //                 * fpr=0 corresponds to f1,
3826  //                 * fpr=1 to f2, etc.
3827  //                 */
3828  //  char *overflow_arg_area;
3829  //                /* location on stack that holds
3830  //                 * the next overflow argument
3831  //                 */
3832  //  char *reg_save_area;
3833  //               /* where r3:r10 and f1:f8 (if saved)
3834  //                * are stored
3835  //                */
3836  // } va_list[1];
3837
3838  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3839  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3840  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3841                                            PtrVT);
3842  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3843                                 PtrVT);
3844
3845  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3846  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3847
3848  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3849  SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3850
3851  uint64_t FPROffset = 1;
3852  SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3853
3854  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3855
3856  // Store first byte : number of int regs
3857  SDValue firstStore =
3858      DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3859                        MachinePointerInfo(SV), MVT::i8);
3860  uint64_t nextOffset = FPROffset;
3861  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3862                                  ConstFPROffset);
3863
3864  // Store second byte : number of float regs
3865  SDValue secondStore =
3866      DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3867                        MachinePointerInfo(SV, nextOffset), MVT::i8);
3868  nextOffset += StackOffset;
3869  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3870
3871  // Store second word : arguments given on stack
3872  SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3873                                    MachinePointerInfo(SV, nextOffset));
3874  nextOffset += FrameOffset;
3875  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3876
3877  // Store third word : arguments given in registers
3878  return DAG.getStore(thirdStore, dl, FR, nextPtr,
3879                      MachinePointerInfo(SV, nextOffset));
3880}
3881
3882/// FPR - The set of FP registers that should be allocated for arguments
3883/// on Darwin and AIX.
3884static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3885                                PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3886                                PPC::F11, PPC::F12, PPC::F13};
3887
3888/// CalculateStackSlotSize - Calculates the size reserved for this argument on
3889/// the stack.
3890static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3891                                       unsigned PtrByteSize) {
3892  unsigned ArgSize = ArgVT.getStoreSize();
3893  if (Flags.isByVal())
3894    ArgSize = Flags.getByValSize();
3895
3896  // Round up to multiples of the pointer size, except for array members,
3897  // which are always packed.
3898  if (!Flags.isInConsecutiveRegs())
3899    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3900
3901  return ArgSize;
3902}
3903
3904/// CalculateStackSlotAlignment - Calculates the alignment of this argument
3905/// on the stack.
3906static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3907                                         ISD::ArgFlagsTy Flags,
3908                                         unsigned PtrByteSize) {
3909  Align Alignment(PtrByteSize);
3910
3911  // Altivec parameters are padded to a 16 byte boundary.
3912  if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3913      ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3914      ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3915      ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3916    Alignment = Align(16);
3917
3918  // ByVal parameters are aligned as requested.
3919  if (Flags.isByVal()) {
3920    auto BVAlign = Flags.getNonZeroByValAlign();
3921    if (BVAlign > PtrByteSize) {
3922      if (BVAlign.value() % PtrByteSize != 0)
3923        llvm_unreachable(
3924            "ByVal alignment is not a multiple of the pointer size");
3925
3926      Alignment = BVAlign;
3927    }
3928  }
3929
3930  // Array members are always packed to their original alignment.
3931  if (Flags.isInConsecutiveRegs()) {
3932    // If the array member was split into multiple registers, the first
3933    // needs to be aligned to the size of the full type.  (Except for
3934    // ppcf128, which is only aligned as its f64 components.)
3935    if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3936      Alignment = Align(OrigVT.getStoreSize());
3937    else
3938      Alignment = Align(ArgVT.getStoreSize());
3939  }
3940
3941  return Alignment;
3942}
3943
3944/// CalculateStackSlotUsed - Return whether this argument will use its
3945/// stack slot (instead of being passed in registers).  ArgOffset,
3946/// AvailableFPRs, and AvailableVRs must hold the current argument
3947/// position, and will be updated to account for this argument.
3948static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3949                                   unsigned PtrByteSize, unsigned LinkageSize,
3950                                   unsigned ParamAreaSize, unsigned &ArgOffset,
3951                                   unsigned &AvailableFPRs,
3952                                   unsigned &AvailableVRs) {
3953  bool UseMemory = false;
3954
3955  // Respect alignment of argument on the stack.
3956  Align Alignment =
3957      CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3958  ArgOffset = alignTo(ArgOffset, Alignment);
3959  // If there's no space left in the argument save area, we must
3960  // use memory (this check also catches zero-sized arguments).
3961  if (ArgOffset >= LinkageSize + ParamAreaSize)
3962    UseMemory = true;
3963
3964  // Allocate argument on the stack.
3965  ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3966  if (Flags.isInConsecutiveRegsLast())
3967    ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3968  // If we overran the argument save area, we must use memory
3969  // (this check catches arguments passed partially in memory)
3970  if (ArgOffset > LinkageSize + ParamAreaSize)
3971    UseMemory = true;
3972
3973  // However, if the argument is actually passed in an FPR or a VR,
3974  // we don't use memory after all.
3975  if (!Flags.isByVal()) {
3976    if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3977      if (AvailableFPRs > 0) {
3978        --AvailableFPRs;
3979        return false;
3980      }
3981    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3982        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3983        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3984        ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3985      if (AvailableVRs > 0) {
3986        --AvailableVRs;
3987        return false;
3988      }
3989  }
3990
3991  return UseMemory;
3992}
3993
3994/// EnsureStackAlignment - Round stack frame size up from NumBytes to
3995/// ensure minimum alignment required for target.
3996static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3997                                     unsigned NumBytes) {
3998  return alignTo(NumBytes, Lowering->getStackAlign());
3999}
4000
4001SDValue PPCTargetLowering::LowerFormalArguments(
4002    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4003    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4004    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4005  if (Subtarget.isAIXABI())
4006    return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
4007                                    InVals);
4008  if (Subtarget.is64BitELFABI())
4009    return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4010                                       InVals);
4011  assert(Subtarget.is32BitELFABI());
4012  return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4013                                     InVals);
4014}
4015
4016SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
4017    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4018    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4019    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4020
4021  // 32-bit SVR4 ABI Stack Frame Layout:
4022  //              +-----------------------------------+
4023  //        +-->  |            Back chain             |
4024  //        |     +-----------------------------------+
4025  //        |     | Floating-point register save area |
4026  //        |     +-----------------------------------+
4027  //        |     |    General register save area     |
4028  //        |     +-----------------------------------+
4029  //        |     |          CR save word             |
4030  //        |     +-----------------------------------+
4031  //        |     |         VRSAVE save word          |
4032  //        |     +-----------------------------------+
4033  //        |     |         Alignment padding         |
4034  //        |     +-----------------------------------+
4035  //        |     |     Vector register save area     |
4036  //        |     +-----------------------------------+
4037  //        |     |       Local variable space        |
4038  //        |     +-----------------------------------+
4039  //        |     |        Parameter list area        |
4040  //        |     +-----------------------------------+
4041  //        |     |           LR save word            |
4042  //        |     +-----------------------------------+
4043  // SP-->  +---  |            Back chain             |
4044  //              +-----------------------------------+
4045  //
4046  // Specifications:
4047  //   System V Application Binary Interface PowerPC Processor Supplement
4048  //   AltiVec Technology Programming Interface Manual
4049
4050  MachineFunction &MF = DAG.getMachineFunction();
4051  MachineFrameInfo &MFI = MF.getFrameInfo();
4052  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4053
4054  EVT PtrVT = getPointerTy(MF.getDataLayout());
4055  // Potential tail calls could cause overwriting of argument stack slots.
4056  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4057                       (CallConv == CallingConv::Fast));
4058  const Align PtrAlign(4);
4059
4060  // Assign locations to all of the incoming arguments.
4061  SmallVector<CCValAssign, 16> ArgLocs;
4062  PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4063                 *DAG.getContext());
4064
4065  // Reserve space for the linkage area on the stack.
4066  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4067  CCInfo.AllocateStack(LinkageSize, PtrAlign);
4068  if (useSoftFloat())
4069    CCInfo.PreAnalyzeFormalArguments(Ins);
4070
4071  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4072  CCInfo.clearWasPPCF128();
4073
4074  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4075    CCValAssign &VA = ArgLocs[i];
4076
4077    // Arguments stored in registers.
4078    if (VA.isRegLoc()) {
4079      const TargetRegisterClass *RC;
4080      EVT ValVT = VA.getValVT();
4081
4082      switch (ValVT.getSimpleVT().SimpleTy) {
4083        default:
4084          llvm_unreachable("ValVT not supported by formal arguments Lowering");
4085        case MVT::i1:
4086        case MVT::i32:
4087          RC = &PPC::GPRCRegClass;
4088          break;
4089        case MVT::f32:
4090          if (Subtarget.hasP8Vector())
4091            RC = &PPC::VSSRCRegClass;
4092          else if (Subtarget.hasSPE())
4093            RC = &PPC::GPRCRegClass;
4094          else
4095            RC = &PPC::F4RCRegClass;
4096          break;
4097        case MVT::f64:
4098          if (Subtarget.hasVSX())
4099            RC = &PPC::VSFRCRegClass;
4100          else if (Subtarget.hasSPE())
4101            // SPE passes doubles in GPR pairs.
4102            RC = &PPC::GPRCRegClass;
4103          else
4104            RC = &PPC::F8RCRegClass;
4105          break;
4106        case MVT::v16i8:
4107        case MVT::v8i16:
4108        case MVT::v4i32:
4109          RC = &PPC::VRRCRegClass;
4110          break;
4111        case MVT::v4f32:
4112          RC = &PPC::VRRCRegClass;
4113          break;
4114        case MVT::v2f64:
4115        case MVT::v2i64:
4116          RC = &PPC::VRRCRegClass;
4117          break;
4118      }
4119
4120      SDValue ArgValue;
4121      // Transform the arguments stored in physical registers into
4122      // virtual ones.
4123      if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4124        assert(i + 1 < e && "No second half of double precision argument");
4125        Register RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4126        Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4127        SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4128        SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4129        if (!Subtarget.isLittleEndian())
4130          std::swap (ArgValueLo, ArgValueHi);
4131        ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4132                               ArgValueHi);
4133      } else {
4134        Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4135        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4136                                      ValVT == MVT::i1 ? MVT::i32 : ValVT);
4137        if (ValVT == MVT::i1)
4138          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4139      }
4140
4141      InVals.push_back(ArgValue);
4142    } else {
4143      // Argument stored in memory.
4144      assert(VA.isMemLoc());
4145
4146      // Get the extended size of the argument type in stack
4147      unsigned ArgSize = VA.getLocVT().getStoreSize();
4148      // Get the actual size of the argument type
4149      unsigned ObjSize = VA.getValVT().getStoreSize();
4150      unsigned ArgOffset = VA.getLocMemOffset();
4151      // Stack objects in PPC32 are right justified.
4152      ArgOffset += ArgSize - ObjSize;
4153      int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4154
4155      // Create load nodes to retrieve arguments from the stack.
4156      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4157      InVals.push_back(
4158          DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4159    }
4160  }
4161
4162  // Assign locations to all of the incoming aggregate by value arguments.
4163  // Aggregates passed by value are stored in the local variable space of the
4164  // caller's stack frame, right above the parameter list area.
4165  SmallVector<CCValAssign, 16> ByValArgLocs;
4166  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4167                      ByValArgLocs, *DAG.getContext());
4168
4169  // Reserve stack space for the allocations in CCInfo.
4170  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4171
4172  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4173
4174  // Area that is at least reserved in the caller of this function.
4175  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4176  MinReservedArea = std::max(MinReservedArea, LinkageSize);
4177
4178  // Set the size that is at least reserved in caller of this function.  Tail
4179  // call optimized function's reserved stack space needs to be aligned so that
4180  // taking the difference between two stack areas will result in an aligned
4181  // stack.
4182  MinReservedArea =
4183      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4184  FuncInfo->setMinReservedArea(MinReservedArea);
4185
4186  SmallVector<SDValue, 8> MemOps;
4187
4188  // If the function takes variable number of arguments, make a frame index for
4189  // the start of the first vararg value... for expansion of llvm.va_start.
4190  if (isVarArg) {
4191    static const MCPhysReg GPArgRegs[] = {
4192      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4193      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4194    };
4195    const unsigned NumGPArgRegs = std::size(GPArgRegs);
4196
4197    static const MCPhysReg FPArgRegs[] = {
4198      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4199      PPC::F8
4200    };
4201    unsigned NumFPArgRegs = std::size(FPArgRegs);
4202
4203    if (useSoftFloat() || hasSPE())
4204       NumFPArgRegs = 0;
4205
4206    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4207    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4208
4209    // Make room for NumGPArgRegs and NumFPArgRegs.
4210    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4211                NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4212
4213    FuncInfo->setVarArgsStackOffset(
4214      MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4215                            CCInfo.getNextStackOffset(), true));
4216
4217    FuncInfo->setVarArgsFrameIndex(
4218        MFI.CreateStackObject(Depth, Align(8), false));
4219    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4220
4221    // The fixed integer arguments of a variadic function are stored to the
4222    // VarArgsFrameIndex on the stack so that they may be loaded by
4223    // dereferencing the result of va_next.
4224    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4225      // Get an existing live-in vreg, or add a new one.
4226      Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4227      if (!VReg)
4228        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4229
4230      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4231      SDValue Store =
4232          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4233      MemOps.push_back(Store);
4234      // Increment the address by four for the next argument to store
4235      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4236      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4237    }
4238
4239    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4240    // is set.
4241    // The double arguments are stored to the VarArgsFrameIndex
4242    // on the stack.
4243    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4244      // Get an existing live-in vreg, or add a new one.
4245      Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4246      if (!VReg)
4247        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4248
4249      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4250      SDValue Store =
4251          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4252      MemOps.push_back(Store);
4253      // Increment the address by eight for the next argument to store
4254      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4255                                         PtrVT);
4256      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4257    }
4258  }
4259
4260  if (!MemOps.empty())
4261    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4262
4263  return Chain;
4264}
4265
4266// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4267// value to MVT::i64 and then truncate to the correct register size.
4268SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4269                                             EVT ObjectVT, SelectionDAG &DAG,
4270                                             SDValue ArgVal,
4271                                             const SDLoc &dl) const {
4272  if (Flags.isSExt())
4273    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4274                         DAG.getValueType(ObjectVT));
4275  else if (Flags.isZExt())
4276    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4277                         DAG.getValueType(ObjectVT));
4278
4279  return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4280}
4281
4282SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4283    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4284    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4285    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4286  // TODO: add description of PPC stack frame format, or at least some docs.
4287  //
4288  bool isELFv2ABI = Subtarget.isELFv2ABI();
4289  bool isLittleEndian = Subtarget.isLittleEndian();
4290  MachineFunction &MF = DAG.getMachineFunction();
4291  MachineFrameInfo &MFI = MF.getFrameInfo();
4292  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4293
4294  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4295         "fastcc not supported on varargs functions");
4296
4297  EVT PtrVT = getPointerTy(MF.getDataLayout());
4298  // Potential tail calls could cause overwriting of argument stack slots.
4299  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4300                       (CallConv == CallingConv::Fast));
4301  unsigned PtrByteSize = 8;
4302  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4303
4304  static const MCPhysReg GPR[] = {
4305    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4306    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4307  };
4308  static const MCPhysReg VR[] = {
4309    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4310    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4311  };
4312
4313  const unsigned Num_GPR_Regs = std::size(GPR);
4314  const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4315  const unsigned Num_VR_Regs = std::size(VR);
4316
4317  // Do a first pass over the arguments to determine whether the ABI
4318  // guarantees that our caller has allocated the parameter save area
4319  // on its stack frame.  In the ELFv1 ABI, this is always the case;
4320  // in the ELFv2 ABI, it is true if this is a vararg function or if
4321  // any parameter is located in a stack slot.
4322
4323  bool HasParameterArea = !isELFv2ABI || isVarArg;
4324  unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4325  unsigned NumBytes = LinkageSize;
4326  unsigned AvailableFPRs = Num_FPR_Regs;
4327  unsigned AvailableVRs = Num_VR_Regs;
4328  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4329    if (Ins[i].Flags.isNest())
4330      continue;
4331
4332    if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4333                               PtrByteSize, LinkageSize, ParamAreaSize,
4334                               NumBytes, AvailableFPRs, AvailableVRs))
4335      HasParameterArea = true;
4336  }
4337
4338  // Add DAG nodes to load the arguments or copy them out of registers.  On
4339  // entry to a function on PPC, the arguments start after the linkage area,
4340  // although the first ones are often in registers.
4341
4342  unsigned ArgOffset = LinkageSize;
4343  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4344  SmallVector<SDValue, 8> MemOps;
4345  Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4346  unsigned CurArgIdx = 0;
4347  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4348    SDValue ArgVal;
4349    bool needsLoad = false;
4350    EVT ObjectVT = Ins[ArgNo].VT;
4351    EVT OrigVT = Ins[ArgNo].ArgVT;
4352    unsigned ObjSize = ObjectVT.getStoreSize();
4353    unsigned ArgSize = ObjSize;
4354    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4355    if (Ins[ArgNo].isOrigArg()) {
4356      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4357      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4358    }
4359    // We re-align the argument offset for each argument, except when using the
4360    // fast calling convention, when we need to make sure we do that only when
4361    // we'll actually use a stack slot.
4362    unsigned CurArgOffset;
4363    Align Alignment;
4364    auto ComputeArgOffset = [&]() {
4365      /* Respect alignment of argument on the stack.  */
4366      Alignment =
4367          CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4368      ArgOffset = alignTo(ArgOffset, Alignment);
4369      CurArgOffset = ArgOffset;
4370    };
4371
4372    if (CallConv != CallingConv::Fast) {
4373      ComputeArgOffset();
4374
4375      /* Compute GPR index associated with argument offset.  */
4376      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4377      GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4378    }
4379
4380    // FIXME the codegen can be much improved in some cases.
4381    // We do not have to keep everything in memory.
4382    if (Flags.isByVal()) {
4383      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4384
4385      if (CallConv == CallingConv::Fast)
4386        ComputeArgOffset();
4387
4388      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4389      ObjSize = Flags.getByValSize();
4390      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4391      // Empty aggregate parameters do not take up registers.  Examples:
4392      //   struct { } a;
4393      //   union  { } b;
4394      //   int c[0];
4395      // etc.  However, we have to provide a place-holder in InVals, so
4396      // pretend we have an 8-byte item at the current address for that
4397      // purpose.
4398      if (!ObjSize) {
4399        int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4400        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4401        InVals.push_back(FIN);
4402        continue;
4403      }
4404
4405      // Create a stack object covering all stack doublewords occupied
4406      // by the argument.  If the argument is (fully or partially) on
4407      // the stack, or if the argument is fully in registers but the
4408      // caller has allocated the parameter save anyway, we can refer
4409      // directly to the caller's stack frame.  Otherwise, create a
4410      // local copy in our own frame.
4411      int FI;
4412      if (HasParameterArea ||
4413          ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4414        FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4415      else
4416        FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4417      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4418
4419      // Handle aggregates smaller than 8 bytes.
4420      if (ObjSize < PtrByteSize) {
4421        // The value of the object is its address, which differs from the
4422        // address of the enclosing doubleword on big-endian systems.
4423        SDValue Arg = FIN;
4424        if (!isLittleEndian) {
4425          SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4426          Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4427        }
4428        InVals.push_back(Arg);
4429
4430        if (GPR_idx != Num_GPR_Regs) {
4431          Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4432          FuncInfo->addLiveInAttr(VReg, Flags);
4433          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4434          EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4435          SDValue Store =
4436              DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4437                                MachinePointerInfo(&*FuncArg), ObjType);
4438          MemOps.push_back(Store);
4439        }
4440        // Whether we copied from a register or not, advance the offset
4441        // into the parameter save area by a full doubleword.
4442        ArgOffset += PtrByteSize;
4443        continue;
4444      }
4445
4446      // The value of the object is its address, which is the address of
4447      // its first stack doubleword.
4448      InVals.push_back(FIN);
4449
4450      // Store whatever pieces of the object are in registers to memory.
4451      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4452        if (GPR_idx == Num_GPR_Regs)
4453          break;
4454
4455        Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4456        FuncInfo->addLiveInAttr(VReg, Flags);
4457        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4458        SDValue Addr = FIN;
4459        if (j) {
4460          SDValue Off = DAG.getConstant(j, dl, PtrVT);
4461          Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4462        }
4463        unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8;
4464        EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits);
4465        SDValue Store =
4466            DAG.getTruncStore(Val.getValue(1), dl, Val, Addr,
4467                              MachinePointerInfo(&*FuncArg, j), ObjType);
4468        MemOps.push_back(Store);
4469        ++GPR_idx;
4470      }
4471      ArgOffset += ArgSize;
4472      continue;
4473    }
4474
4475    switch (ObjectVT.getSimpleVT().SimpleTy) {
4476    default: llvm_unreachable("Unhandled argument type!");
4477    case MVT::i1:
4478    case MVT::i32:
4479    case MVT::i64:
4480      if (Flags.isNest()) {
4481        // The 'nest' parameter, if any, is passed in R11.
4482        Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4483        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4484
4485        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4486          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4487
4488        break;
4489      }
4490
4491      // These can be scalar arguments or elements of an integer array type
4492      // passed directly.  Clang may use those instead of "byval" aggregate
4493      // types to avoid forcing arguments to memory unnecessarily.
4494      if (GPR_idx != Num_GPR_Regs) {
4495        Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4496        FuncInfo->addLiveInAttr(VReg, Flags);
4497        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4498
4499        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4500          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4501          // value to MVT::i64 and then truncate to the correct register size.
4502          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4503      } else {
4504        if (CallConv == CallingConv::Fast)
4505          ComputeArgOffset();
4506
4507        needsLoad = true;
4508        ArgSize = PtrByteSize;
4509      }
4510      if (CallConv != CallingConv::Fast || needsLoad)
4511        ArgOffset += 8;
4512      break;
4513
4514    case MVT::f32:
4515    case MVT::f64:
4516      // These can be scalar arguments or elements of a float array type
4517      // passed directly.  The latter are used to implement ELFv2 homogenous
4518      // float aggregates.
4519      if (FPR_idx != Num_FPR_Regs) {
4520        unsigned VReg;
4521
4522        if (ObjectVT == MVT::f32)
4523          VReg = MF.addLiveIn(FPR[FPR_idx],
4524                              Subtarget.hasP8Vector()
4525                                  ? &PPC::VSSRCRegClass
4526                                  : &PPC::F4RCRegClass);
4527        else
4528          VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4529                                                ? &PPC::VSFRCRegClass
4530                                                : &PPC::F8RCRegClass);
4531
4532        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4533        ++FPR_idx;
4534      } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4535        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4536        // once we support fp <-> gpr moves.
4537
4538        // This can only ever happen in the presence of f32 array types,
4539        // since otherwise we never run out of FPRs before running out
4540        // of GPRs.
4541        Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4542        FuncInfo->addLiveInAttr(VReg, Flags);
4543        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4544
4545        if (ObjectVT == MVT::f32) {
4546          if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4547            ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4548                                 DAG.getConstant(32, dl, MVT::i32));
4549          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4550        }
4551
4552        ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4553      } else {
4554        if (CallConv == CallingConv::Fast)
4555          ComputeArgOffset();
4556
4557        needsLoad = true;
4558      }
4559
4560      // When passing an array of floats, the array occupies consecutive
4561      // space in the argument area; only round up to the next doubleword
4562      // at the end of the array.  Otherwise, each float takes 8 bytes.
4563      if (CallConv != CallingConv::Fast || needsLoad) {
4564        ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4565        ArgOffset += ArgSize;
4566        if (Flags.isInConsecutiveRegsLast())
4567          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4568      }
4569      break;
4570    case MVT::v4f32:
4571    case MVT::v4i32:
4572    case MVT::v8i16:
4573    case MVT::v16i8:
4574    case MVT::v2f64:
4575    case MVT::v2i64:
4576    case MVT::v1i128:
4577    case MVT::f128:
4578      // These can be scalar arguments or elements of a vector array type
4579      // passed directly.  The latter are used to implement ELFv2 homogenous
4580      // vector aggregates.
4581      if (VR_idx != Num_VR_Regs) {
4582        Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4583        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4584        ++VR_idx;
4585      } else {
4586        if (CallConv == CallingConv::Fast)
4587          ComputeArgOffset();
4588        needsLoad = true;
4589      }
4590      if (CallConv != CallingConv::Fast || needsLoad)
4591        ArgOffset += 16;
4592      break;
4593    }
4594
4595    // We need to load the argument to a virtual register if we determined
4596    // above that we ran out of physical registers of the appropriate type.
4597    if (needsLoad) {
4598      if (ObjSize < ArgSize && !isLittleEndian)
4599        CurArgOffset += ArgSize - ObjSize;
4600      int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4601      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4602      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4603    }
4604
4605    InVals.push_back(ArgVal);
4606  }
4607
4608  // Area that is at least reserved in the caller of this function.
4609  unsigned MinReservedArea;
4610  if (HasParameterArea)
4611    MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4612  else
4613    MinReservedArea = LinkageSize;
4614
4615  // Set the size that is at least reserved in caller of this function.  Tail
4616  // call optimized functions' reserved stack space needs to be aligned so that
4617  // taking the difference between two stack areas will result in an aligned
4618  // stack.
4619  MinReservedArea =
4620      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4621  FuncInfo->setMinReservedArea(MinReservedArea);
4622
4623  // If the function takes variable number of arguments, make a frame index for
4624  // the start of the first vararg value... for expansion of llvm.va_start.
4625  // On ELFv2ABI spec, it writes:
4626  // C programs that are intended to be *portable* across different compilers
4627  // and architectures must use the header file <stdarg.h> to deal with variable
4628  // argument lists.
4629  if (isVarArg && MFI.hasVAStart()) {
4630    int Depth = ArgOffset;
4631
4632    FuncInfo->setVarArgsFrameIndex(
4633      MFI.CreateFixedObject(PtrByteSize, Depth, true));
4634    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4635
4636    // If this function is vararg, store any remaining integer argument regs
4637    // to their spots on the stack so that they may be loaded by dereferencing
4638    // the result of va_next.
4639    for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4640         GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4641      Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4642      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4643      SDValue Store =
4644          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4645      MemOps.push_back(Store);
4646      // Increment the address by four for the next argument to store
4647      SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4648      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4649    }
4650  }
4651
4652  if (!MemOps.empty())
4653    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4654
4655  return Chain;
4656}
4657
4658/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4659/// adjusted to accommodate the arguments for the tailcall.
4660static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4661                                   unsigned ParamSize) {
4662
4663  if (!isTailCall) return 0;
4664
4665  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4666  unsigned CallerMinReservedArea = FI->getMinReservedArea();
4667  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4668  // Remember only if the new adjustment is bigger.
4669  if (SPDiff < FI->getTailCallSPDelta())
4670    FI->setTailCallSPDelta(SPDiff);
4671
4672  return SPDiff;
4673}
4674
4675static bool isFunctionGlobalAddress(SDValue Callee);
4676
4677static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4678                              const TargetMachine &TM) {
4679  // It does not make sense to call callsShareTOCBase() with a caller that
4680  // is PC Relative since PC Relative callers do not have a TOC.
4681#ifndef NDEBUG
4682  const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4683  assert(!STICaller->isUsingPCRelativeCalls() &&
4684         "PC Relative callers do not have a TOC and cannot share a TOC Base");
4685#endif
4686
4687  // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4688  // don't have enough information to determine if the caller and callee share
4689  // the same  TOC base, so we have to pessimistically assume they don't for
4690  // correctness.
4691  GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4692  if (!G)
4693    return false;
4694
4695  const GlobalValue *GV = G->getGlobal();
4696
4697  // If the callee is preemptable, then the static linker will use a plt-stub
4698  // which saves the toc to the stack, and needs a nop after the call
4699  // instruction to convert to a toc-restore.
4700  if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4701    return false;
4702
4703  // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4704  // We may need a TOC restore in the situation where the caller requires a
4705  // valid TOC but the callee is PC Relative and does not.
4706  const Function *F = dyn_cast<Function>(GV);
4707  const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4708
4709  // If we have an Alias we can try to get the function from there.
4710  if (Alias) {
4711    const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4712    F = dyn_cast<Function>(GlobalObj);
4713  }
4714
4715  // If we still have no valid function pointer we do not have enough
4716  // information to determine if the callee uses PC Relative calls so we must
4717  // assume that it does.
4718  if (!F)
4719    return false;
4720
4721  // If the callee uses PC Relative we cannot guarantee that the callee won't
4722  // clobber the TOC of the caller and so we must assume that the two
4723  // functions do not share a TOC base.
4724  const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4725  if (STICallee->isUsingPCRelativeCalls())
4726    return false;
4727
4728  // If the GV is not a strong definition then we need to assume it can be
4729  // replaced by another function at link time. The function that replaces
4730  // it may not share the same TOC as the caller since the callee may be
4731  // replaced by a PC Relative version of the same function.
4732  if (!GV->isStrongDefinitionForLinker())
4733    return false;
4734
4735  // The medium and large code models are expected to provide a sufficiently
4736  // large TOC to provide all data addressing needs of a module with a
4737  // single TOC.
4738  if (CodeModel::Medium == TM.getCodeModel() ||
4739      CodeModel::Large == TM.getCodeModel())
4740    return true;
4741
4742  // Any explicitly-specified sections and section prefixes must also match.
4743  // Also, if we're using -ffunction-sections, then each function is always in
4744  // a different section (the same is true for COMDAT functions).
4745  if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4746      GV->getSection() != Caller->getSection())
4747    return false;
4748  if (const auto *F = dyn_cast<Function>(GV)) {
4749    if (F->getSectionPrefix() != Caller->getSectionPrefix())
4750      return false;
4751  }
4752
4753  return true;
4754}
4755
4756static bool
4757needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4758                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
4759  assert(Subtarget.is64BitELFABI());
4760
4761  const unsigned PtrByteSize = 8;
4762  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4763
4764  static const MCPhysReg GPR[] = {
4765    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4766    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4767  };
4768  static const MCPhysReg VR[] = {
4769    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4770    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4771  };
4772
4773  const unsigned NumGPRs = std::size(GPR);
4774  const unsigned NumFPRs = 13;
4775  const unsigned NumVRs = std::size(VR);
4776  const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4777
4778  unsigned NumBytes = LinkageSize;
4779  unsigned AvailableFPRs = NumFPRs;
4780  unsigned AvailableVRs = NumVRs;
4781
4782  for (const ISD::OutputArg& Param : Outs) {
4783    if (Param.Flags.isNest()) continue;
4784
4785    if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4786                               LinkageSize, ParamAreaSize, NumBytes,
4787                               AvailableFPRs, AvailableVRs))
4788      return true;
4789  }
4790  return false;
4791}
4792
4793static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4794  if (CB.arg_size() != CallerFn->arg_size())
4795    return false;
4796
4797  auto CalleeArgIter = CB.arg_begin();
4798  auto CalleeArgEnd = CB.arg_end();
4799  Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4800
4801  for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4802    const Value* CalleeArg = *CalleeArgIter;
4803    const Value* CallerArg = &(*CallerArgIter);
4804    if (CalleeArg == CallerArg)
4805      continue;
4806
4807    // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4808    //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4809    //      }
4810    // 1st argument of callee is undef and has the same type as caller.
4811    if (CalleeArg->getType() == CallerArg->getType() &&
4812        isa<UndefValue>(CalleeArg))
4813      continue;
4814
4815    return false;
4816  }
4817
4818  return true;
4819}
4820
4821// Returns true if TCO is possible between the callers and callees
4822// calling conventions.
4823static bool
4824areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4825                                    CallingConv::ID CalleeCC) {
4826  // Tail calls are possible with fastcc and ccc.
4827  auto isTailCallableCC  = [] (CallingConv::ID CC){
4828      return  CC == CallingConv::C || CC == CallingConv::Fast;
4829  };
4830  if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4831    return false;
4832
4833  // We can safely tail call both fastcc and ccc callees from a c calling
4834  // convention caller. If the caller is fastcc, we may have less stack space
4835  // than a non-fastcc caller with the same signature so disable tail-calls in
4836  // that case.
4837  return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4838}
4839
4840bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4841    SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4842    const SmallVectorImpl<ISD::OutputArg> &Outs,
4843    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4844  bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4845
4846  if (DisableSCO && !TailCallOpt) return false;
4847
4848  // Variadic argument functions are not supported.
4849  if (isVarArg) return false;
4850
4851  auto &Caller = DAG.getMachineFunction().getFunction();
4852  // Check that the calling conventions are compatible for tco.
4853  if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4854    return false;
4855
4856  // Caller contains any byval parameter is not supported.
4857  if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4858    return false;
4859
4860  // Callee contains any byval parameter is not supported, too.
4861  // Note: This is a quick work around, because in some cases, e.g.
4862  // caller's stack size > callee's stack size, we are still able to apply
4863  // sibling call optimization. For example, gcc is able to do SCO for caller1
4864  // in the following example, but not for caller2.
4865  //   struct test {
4866  //     long int a;
4867  //     char ary[56];
4868  //   } gTest;
4869  //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4870  //     b->a = v.a;
4871  //     return 0;
4872  //   }
4873  //   void caller1(struct test a, struct test c, struct test *b) {
4874  //     callee(gTest, b); }
4875  //   void caller2(struct test *b) { callee(gTest, b); }
4876  if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4877    return false;
4878
4879  // If callee and caller use different calling conventions, we cannot pass
4880  // parameters on stack since offsets for the parameter area may be different.
4881  if (Caller.getCallingConv() != CalleeCC &&
4882      needStackSlotPassParameters(Subtarget, Outs))
4883    return false;
4884
4885  // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4886  // the caller and callee share the same TOC for TCO/SCO. If the caller and
4887  // callee potentially have different TOC bases then we cannot tail call since
4888  // we need to restore the TOC pointer after the call.
4889  // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4890  // We cannot guarantee this for indirect calls or calls to external functions.
4891  // When PC-Relative addressing is used, the concept of the TOC is no longer
4892  // applicable so this check is not required.
4893  // Check first for indirect calls.
4894  if (!Subtarget.isUsingPCRelativeCalls() &&
4895      !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4896    return false;
4897
4898  // Check if we share the TOC base.
4899  if (!Subtarget.isUsingPCRelativeCalls() &&
4900      !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4901    return false;
4902
4903  // TCO allows altering callee ABI, so we don't have to check further.
4904  if (CalleeCC == CallingConv::Fast && TailCallOpt)
4905    return true;
4906
4907  if (DisableSCO) return false;
4908
4909  // If callee use the same argument list that caller is using, then we can
4910  // apply SCO on this case. If it is not, then we need to check if callee needs
4911  // stack for passing arguments.
4912  // PC Relative tail calls may not have a CallBase.
4913  // If there is no CallBase we cannot verify if we have the same argument
4914  // list so assume that we don't have the same argument list.
4915  if (CB && !hasSameArgumentList(&Caller, *CB) &&
4916      needStackSlotPassParameters(Subtarget, Outs))
4917    return false;
4918  else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4919    return false;
4920
4921  return true;
4922}
4923
4924/// IsEligibleForTailCallOptimization - Check whether the call is eligible
4925/// for tail call optimization. Targets which want to do tail call
4926/// optimization should implement this function.
4927bool
4928PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4929                                                     CallingConv::ID CalleeCC,
4930                                                     bool isVarArg,
4931                                      const SmallVectorImpl<ISD::InputArg> &Ins,
4932                                                     SelectionDAG& DAG) const {
4933  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4934    return false;
4935
4936  // Variable argument functions are not supported.
4937  if (isVarArg)
4938    return false;
4939
4940  MachineFunction &MF = DAG.getMachineFunction();
4941  CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4942  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4943    // Functions containing by val parameters are not supported.
4944    for (unsigned i = 0; i != Ins.size(); i++) {
4945       ISD::ArgFlagsTy Flags = Ins[i].Flags;
4946       if (Flags.isByVal()) return false;
4947    }
4948
4949    // Non-PIC/GOT tail calls are supported.
4950    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4951      return true;
4952
4953    // At the moment we can only do local tail calls (in same module, hidden
4954    // or protected) if we are generating PIC.
4955    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4956      return G->getGlobal()->hasHiddenVisibility()
4957          || G->getGlobal()->hasProtectedVisibility();
4958  }
4959
4960  return false;
4961}
4962
4963/// isCallCompatibleAddress - Return the immediate to use if the specified
4964/// 32-bit value is representable in the immediate field of a BxA instruction.
4965static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4966  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4967  if (!C) return nullptr;
4968
4969  int Addr = C->getZExtValue();
4970  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4971      SignExtend32<26>(Addr) != Addr)
4972    return nullptr;  // Top 6 bits have to be sext of immediate.
4973
4974  return DAG
4975      .getConstant(
4976          (int)C->getZExtValue() >> 2, SDLoc(Op),
4977          DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4978      .getNode();
4979}
4980
4981namespace {
4982
4983struct TailCallArgumentInfo {
4984  SDValue Arg;
4985  SDValue FrameIdxOp;
4986  int FrameIdx = 0;
4987
4988  TailCallArgumentInfo() = default;
4989};
4990
4991} // end anonymous namespace
4992
4993/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4994static void StoreTailCallArgumentsToStackSlot(
4995    SelectionDAG &DAG, SDValue Chain,
4996    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4997    SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4998  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4999    SDValue Arg = TailCallArgs[i].Arg;
5000    SDValue FIN = TailCallArgs[i].FrameIdxOp;
5001    int FI = TailCallArgs[i].FrameIdx;
5002    // Store relative to framepointer.
5003    MemOpChains.push_back(DAG.getStore(
5004        Chain, dl, Arg, FIN,
5005        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
5006  }
5007}
5008
5009/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
5010/// the appropriate stack slot for the tail call optimized function call.
5011static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
5012                                             SDValue OldRetAddr, SDValue OldFP,
5013                                             int SPDiff, const SDLoc &dl) {
5014  if (SPDiff) {
5015    // Calculate the new stack slot for the return address.
5016    MachineFunction &MF = DAG.getMachineFunction();
5017    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5018    const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5019    bool isPPC64 = Subtarget.isPPC64();
5020    int SlotSize = isPPC64 ? 8 : 4;
5021    int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5022    int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5023                                                         NewRetAddrLoc, true);
5024    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5025    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5026    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5027                         MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5028  }
5029  return Chain;
5030}
5031
5032/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5033/// the position of the argument.
5034static void
5035CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5036                         SDValue Arg, int SPDiff, unsigned ArgOffset,
5037                     SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5038  int Offset = ArgOffset + SPDiff;
5039  uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5040  int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5041  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5042  SDValue FIN = DAG.getFrameIndex(FI, VT);
5043  TailCallArgumentInfo Info;
5044  Info.Arg = Arg;
5045  Info.FrameIdxOp = FIN;
5046  Info.FrameIdx = FI;
5047  TailCallArguments.push_back(Info);
5048}
5049
5050/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5051/// stack slot. Returns the chain as result and the loaded frame pointers in
5052/// LROpOut/FPOpout. Used when tail calling.
5053SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5054    SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5055    SDValue &FPOpOut, const SDLoc &dl) const {
5056  if (SPDiff) {
5057    // Load the LR and FP stack slot for later adjusting.
5058    EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5059    LROpOut = getReturnAddrFrameIndex(DAG);
5060    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5061    Chain = SDValue(LROpOut.getNode(), 1);
5062  }
5063  return Chain;
5064}
5065
5066/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5067/// by "Src" to address "Dst" of size "Size".  Alignment information is
5068/// specified by the specific parameter attribute. The copy will be passed as
5069/// a byval function parameter.
5070/// Sometimes what we are copying is the end of a larger object, the part that
5071/// does not fit in registers.
5072static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5073                                         SDValue Chain, ISD::ArgFlagsTy Flags,
5074                                         SelectionDAG &DAG, const SDLoc &dl) {
5075  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5076  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5077                       Flags.getNonZeroByValAlign(), false, false, false,
5078                       MachinePointerInfo(), MachinePointerInfo());
5079}
5080
5081/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5082/// tail calls.
5083static void LowerMemOpCallTo(
5084    SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5085    SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5086    bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5087    SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5088  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5089  if (!isTailCall) {
5090    if (isVector) {
5091      SDValue StackPtr;
5092      if (isPPC64)
5093        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5094      else
5095        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5096      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5097                           DAG.getConstant(ArgOffset, dl, PtrVT));
5098    }
5099    MemOpChains.push_back(
5100        DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5101    // Calculate and remember argument location.
5102  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5103                                  TailCallArguments);
5104}
5105
5106static void
5107PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5108                const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5109                SDValue FPOp,
5110                SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5111  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5112  // might overwrite each other in case of tail call optimization.
5113  SmallVector<SDValue, 8> MemOpChains2;
5114  // Do not flag preceding copytoreg stuff together with the following stuff.
5115  InFlag = SDValue();
5116  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5117                                    MemOpChains2, dl);
5118  if (!MemOpChains2.empty())
5119    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5120
5121  // Store the return address to the appropriate stack slot.
5122  Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5123
5124  // Emit callseq_end just before tailcall node.
5125  Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, dl);
5126  InFlag = Chain.getValue(1);
5127}
5128
5129// Is this global address that of a function that can be called by name? (as
5130// opposed to something that must hold a descriptor for an indirect call).
5131static bool isFunctionGlobalAddress(SDValue Callee) {
5132  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5133    if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5134        Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5135      return false;
5136
5137    return G->getGlobal()->getValueType()->isFunctionTy();
5138  }
5139
5140  return false;
5141}
5142
5143SDValue PPCTargetLowering::LowerCallResult(
5144    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5145    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5146    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5147  SmallVector<CCValAssign, 16> RVLocs;
5148  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5149                    *DAG.getContext());
5150
5151  CCRetInfo.AnalyzeCallResult(
5152      Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5153               ? RetCC_PPC_Cold
5154               : RetCC_PPC);
5155
5156  // Copy all of the result registers out of their specified physreg.
5157  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5158    CCValAssign &VA = RVLocs[i];
5159    assert(VA.isRegLoc() && "Can only return in registers!");
5160
5161    SDValue Val;
5162
5163    if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5164      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5165                                      InFlag);
5166      Chain = Lo.getValue(1);
5167      InFlag = Lo.getValue(2);
5168      VA = RVLocs[++i]; // skip ahead to next loc
5169      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5170                                      InFlag);
5171      Chain = Hi.getValue(1);
5172      InFlag = Hi.getValue(2);
5173      if (!Subtarget.isLittleEndian())
5174        std::swap (Lo, Hi);
5175      Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5176    } else {
5177      Val = DAG.getCopyFromReg(Chain, dl,
5178                               VA.getLocReg(), VA.getLocVT(), InFlag);
5179      Chain = Val.getValue(1);
5180      InFlag = Val.getValue(2);
5181    }
5182
5183    switch (VA.getLocInfo()) {
5184    default: llvm_unreachable("Unknown loc info!");
5185    case CCValAssign::Full: break;
5186    case CCValAssign::AExt:
5187      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5188      break;
5189    case CCValAssign::ZExt:
5190      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5191                        DAG.getValueType(VA.getValVT()));
5192      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5193      break;
5194    case CCValAssign::SExt:
5195      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5196                        DAG.getValueType(VA.getValVT()));
5197      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5198      break;
5199    }
5200
5201    InVals.push_back(Val);
5202  }
5203
5204  return Chain;
5205}
5206
5207static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5208                           const PPCSubtarget &Subtarget, bool isPatchPoint) {
5209  // PatchPoint calls are not indirect.
5210  if (isPatchPoint)
5211    return false;
5212
5213  if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5214    return false;
5215
5216  // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5217  // becuase the immediate function pointer points to a descriptor instead of
5218  // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5219  // pointer immediate points to the global entry point, while the BLA would
5220  // need to jump to the local entry point (see rL211174).
5221  if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5222      isBLACompatibleAddress(Callee, DAG))
5223    return false;
5224
5225  return true;
5226}
5227
5228// AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5229static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5230  return Subtarget.isAIXABI() ||
5231         (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5232}
5233
5234static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5235                              const Function &Caller, const SDValue &Callee,
5236                              const PPCSubtarget &Subtarget,
5237                              const TargetMachine &TM,
5238                              bool IsStrictFPCall = false) {
5239  if (CFlags.IsTailCall)
5240    return PPCISD::TC_RETURN;
5241
5242  unsigned RetOpc = 0;
5243  // This is a call through a function pointer.
5244  if (CFlags.IsIndirect) {
5245    // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5246    // indirect calls. The save of the caller's TOC pointer to the stack will be
5247    // inserted into the DAG as part of call lowering. The restore of the TOC
5248    // pointer is modeled by using a pseudo instruction for the call opcode that
5249    // represents the 2 instruction sequence of an indirect branch and link,
5250    // immediately followed by a load of the TOC pointer from the the stack save
5251    // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5252    // as it is not saved or used.
5253    RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5254                                                 : PPCISD::BCTRL;
5255  } else if (Subtarget.isUsingPCRelativeCalls()) {
5256    assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5257    RetOpc = PPCISD::CALL_NOTOC;
5258  } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5259    // The ABIs that maintain a TOC pointer accross calls need to have a nop
5260    // immediately following the call instruction if the caller and callee may
5261    // have different TOC bases. At link time if the linker determines the calls
5262    // may not share a TOC base, the call is redirected to a trampoline inserted
5263    // by the linker. The trampoline will (among other things) save the callers
5264    // TOC pointer at an ABI designated offset in the linkage area and the
5265    // linker will rewrite the nop to be a load of the TOC pointer from the
5266    // linkage area into gpr2.
5267    RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5268                                                    : PPCISD::CALL_NOP;
5269  else
5270    RetOpc = PPCISD::CALL;
5271  if (IsStrictFPCall) {
5272    switch (RetOpc) {
5273    default:
5274      llvm_unreachable("Unknown call opcode");
5275    case PPCISD::BCTRL_LOAD_TOC:
5276      RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5277      break;
5278    case PPCISD::BCTRL:
5279      RetOpc = PPCISD::BCTRL_RM;
5280      break;
5281    case PPCISD::CALL_NOTOC:
5282      RetOpc = PPCISD::CALL_NOTOC_RM;
5283      break;
5284    case PPCISD::CALL:
5285      RetOpc = PPCISD::CALL_RM;
5286      break;
5287    case PPCISD::CALL_NOP:
5288      RetOpc = PPCISD::CALL_NOP_RM;
5289      break;
5290    }
5291  }
5292  return RetOpc;
5293}
5294
5295static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5296                               const SDLoc &dl, const PPCSubtarget &Subtarget) {
5297  if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5298    if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5299      return SDValue(Dest, 0);
5300
5301  // Returns true if the callee is local, and false otherwise.
5302  auto isLocalCallee = [&]() {
5303    const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5304    const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5305    const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5306
5307    return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5308           !isa_and_nonnull<GlobalIFunc>(GV);
5309  };
5310
5311  // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5312  // a static relocation model causes some versions of GNU LD (2.17.50, at
5313  // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5314  // built with secure-PLT.
5315  bool UsePlt =
5316      Subtarget.is32BitELFABI() && !isLocalCallee() &&
5317      Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5318
5319  const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5320    const TargetMachine &TM = Subtarget.getTargetMachine();
5321    const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5322    MCSymbolXCOFF *S =
5323        cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5324
5325    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5326    return DAG.getMCSymbol(S, PtrVT);
5327  };
5328
5329  if (isFunctionGlobalAddress(Callee)) {
5330    const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5331
5332    if (Subtarget.isAIXABI()) {
5333      assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5334      return getAIXFuncEntryPointSymbolSDNode(GV);
5335    }
5336    return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5337                                      UsePlt ? PPCII::MO_PLT : 0);
5338  }
5339
5340  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5341    const char *SymName = S->getSymbol();
5342    if (Subtarget.isAIXABI()) {
5343      // If there exists a user-declared function whose name is the same as the
5344      // ExternalSymbol's, then we pick up the user-declared version.
5345      const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5346      if (const Function *F =
5347              dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5348        return getAIXFuncEntryPointSymbolSDNode(F);
5349
5350      // On AIX, direct function calls reference the symbol for the function's
5351      // entry point, which is named by prepending a "." before the function's
5352      // C-linkage name. A Qualname is returned here because an external
5353      // function entry point is a csect with XTY_ER property.
5354      const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5355        auto &Context = DAG.getMachineFunction().getMMI().getContext();
5356        MCSectionXCOFF *Sec = Context.getXCOFFSection(
5357            (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5358            XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5359        return Sec->getQualNameSymbol();
5360      };
5361
5362      SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5363    }
5364    return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5365                                       UsePlt ? PPCII::MO_PLT : 0);
5366  }
5367
5368  // No transformation needed.
5369  assert(Callee.getNode() && "What no callee?");
5370  return Callee;
5371}
5372
5373static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5374  assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5375         "Expected a CALLSEQ_STARTSDNode.");
5376
5377  // The last operand is the chain, except when the node has glue. If the node
5378  // has glue, then the last operand is the glue, and the chain is the second
5379  // last operand.
5380  SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5381  if (LastValue.getValueType() != MVT::Glue)
5382    return LastValue;
5383
5384  return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5385}
5386
5387// Creates the node that moves a functions address into the count register
5388// to prepare for an indirect call instruction.
5389static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5390                                SDValue &Glue, SDValue &Chain,
5391                                const SDLoc &dl) {
5392  SDValue MTCTROps[] = {Chain, Callee, Glue};
5393  EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5394  Chain = DAG.getNode(PPCISD::MTCTR, dl, ArrayRef(ReturnTypes, 2),
5395                      ArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5396  // The glue is the second value produced.
5397  Glue = Chain.getValue(1);
5398}
5399
5400static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5401                                          SDValue &Glue, SDValue &Chain,
5402                                          SDValue CallSeqStart,
5403                                          const CallBase *CB, const SDLoc &dl,
5404                                          bool hasNest,
5405                                          const PPCSubtarget &Subtarget) {
5406  // Function pointers in the 64-bit SVR4 ABI do not point to the function
5407  // entry point, but to the function descriptor (the function entry point
5408  // address is part of the function descriptor though).
5409  // The function descriptor is a three doubleword structure with the
5410  // following fields: function entry point, TOC base address and
5411  // environment pointer.
5412  // Thus for a call through a function pointer, the following actions need
5413  // to be performed:
5414  //   1. Save the TOC of the caller in the TOC save area of its stack
5415  //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5416  //   2. Load the address of the function entry point from the function
5417  //      descriptor.
5418  //   3. Load the TOC of the callee from the function descriptor into r2.
5419  //   4. Load the environment pointer from the function descriptor into
5420  //      r11.
5421  //   5. Branch to the function entry point address.
5422  //   6. On return of the callee, the TOC of the caller needs to be
5423  //      restored (this is done in FinishCall()).
5424  //
5425  // The loads are scheduled at the beginning of the call sequence, and the
5426  // register copies are flagged together to ensure that no other
5427  // operations can be scheduled in between. E.g. without flagging the
5428  // copies together, a TOC access in the caller could be scheduled between
5429  // the assignment of the callee TOC and the branch to the callee, which leads
5430  // to incorrect code.
5431
5432  // Start by loading the function address from the descriptor.
5433  SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5434  auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5435                      ? (MachineMemOperand::MODereferenceable |
5436                         MachineMemOperand::MOInvariant)
5437                      : MachineMemOperand::MONone;
5438
5439  MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5440
5441  // Registers used in building the DAG.
5442  const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5443  const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5444
5445  // Offsets of descriptor members.
5446  const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5447  const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5448
5449  const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5450  const Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
5451
5452  // One load for the functions entry point address.
5453  SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5454                                    Alignment, MMOFlags);
5455
5456  // One for loading the TOC anchor for the module that contains the called
5457  // function.
5458  SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5459  SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5460  SDValue TOCPtr =
5461      DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5462                  MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5463
5464  // One for loading the environment pointer.
5465  SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5466  SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5467  SDValue LoadEnvPtr =
5468      DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5469                  MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5470
5471
5472  // Then copy the newly loaded TOC anchor to the TOC pointer.
5473  SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5474  Chain = TOCVal.getValue(0);
5475  Glue = TOCVal.getValue(1);
5476
5477  // If the function call has an explicit 'nest' parameter, it takes the
5478  // place of the environment pointer.
5479  assert((!hasNest || !Subtarget.isAIXABI()) &&
5480         "Nest parameter is not supported on AIX.");
5481  if (!hasNest) {
5482    SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5483    Chain = EnvVal.getValue(0);
5484    Glue = EnvVal.getValue(1);
5485  }
5486
5487  // The rest of the indirect call sequence is the same as the non-descriptor
5488  // DAG.
5489  prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5490}
5491
5492static void
5493buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5494                  PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5495                  SelectionDAG &DAG,
5496                  SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5497                  SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5498                  const PPCSubtarget &Subtarget) {
5499  const bool IsPPC64 = Subtarget.isPPC64();
5500  // MVT for a general purpose register.
5501  const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5502
5503  // First operand is always the chain.
5504  Ops.push_back(Chain);
5505
5506  // If it's a direct call pass the callee as the second operand.
5507  if (!CFlags.IsIndirect)
5508    Ops.push_back(Callee);
5509  else {
5510    assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5511
5512    // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5513    // on the stack (this would have been done in `LowerCall_64SVR4` or
5514    // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5515    // represents both the indirect branch and a load that restores the TOC
5516    // pointer from the linkage area. The operand for the TOC restore is an add
5517    // of the TOC save offset to the stack pointer. This must be the second
5518    // operand: after the chain input but before any other variadic arguments.
5519    // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5520    // saved or used.
5521    if (isTOCSaveRestoreRequired(Subtarget)) {
5522      const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5523
5524      SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5525      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5526      SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5527      SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5528      Ops.push_back(AddTOC);
5529    }
5530
5531    // Add the register used for the environment pointer.
5532    if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5533      Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5534                                    RegVT));
5535
5536
5537    // Add CTR register as callee so a bctr can be emitted later.
5538    if (CFlags.IsTailCall)
5539      Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5540  }
5541
5542  // If this is a tail call add stack pointer delta.
5543  if (CFlags.IsTailCall)
5544    Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5545
5546  // Add argument registers to the end of the list so that they are known live
5547  // into the call.
5548  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5549    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5550                                  RegsToPass[i].second.getValueType()));
5551
5552  // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5553  // no way to mark dependencies as implicit here.
5554  // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5555  if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5556       !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5557    Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5558
5559  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5560  if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5561    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5562
5563  // Add a register mask operand representing the call-preserved registers.
5564  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5565  const uint32_t *Mask =
5566      TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5567  assert(Mask && "Missing call preserved mask for calling convention");
5568  Ops.push_back(DAG.getRegisterMask(Mask));
5569
5570  // If the glue is valid, it is the last operand.
5571  if (Glue.getNode())
5572    Ops.push_back(Glue);
5573}
5574
5575SDValue PPCTargetLowering::FinishCall(
5576    CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5577    SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5578    SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5579    unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5580    SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5581
5582  if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5583      Subtarget.isAIXABI())
5584    setUsesTOCBasePtr(DAG);
5585
5586  unsigned CallOpc =
5587      getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5588                    Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5589
5590  if (!CFlags.IsIndirect)
5591    Callee = transformCallee(Callee, DAG, dl, Subtarget);
5592  else if (Subtarget.usesFunctionDescriptors())
5593    prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5594                                  dl, CFlags.HasNest, Subtarget);
5595  else
5596    prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5597
5598  // Build the operand list for the call instruction.
5599  SmallVector<SDValue, 8> Ops;
5600  buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5601                    SPDiff, Subtarget);
5602
5603  // Emit tail call.
5604  if (CFlags.IsTailCall) {
5605    // Indirect tail call when using PC Relative calls do not have the same
5606    // constraints.
5607    assert(((Callee.getOpcode() == ISD::Register &&
5608             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5609            Callee.getOpcode() == ISD::TargetExternalSymbol ||
5610            Callee.getOpcode() == ISD::TargetGlobalAddress ||
5611            isa<ConstantSDNode>(Callee) ||
5612            (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5613           "Expecting a global address, external symbol, absolute value, "
5614           "register or an indirect tail call when PC Relative calls are "
5615           "used.");
5616    // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5617    assert(CallOpc == PPCISD::TC_RETURN &&
5618           "Unexpected call opcode for a tail call.");
5619    DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5620    return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5621  }
5622
5623  std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5624  Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5625  DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5626  Glue = Chain.getValue(1);
5627
5628  // When performing tail call optimization the callee pops its arguments off
5629  // the stack. Account for this here so these bytes can be pushed back on in
5630  // PPCFrameLowering::eliminateCallFramePseudoInstr.
5631  int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5632                         getTargetMachine().Options.GuaranteedTailCallOpt)
5633                            ? NumBytes
5634                            : 0;
5635
5636  Chain = DAG.getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl);
5637  Glue = Chain.getValue(1);
5638
5639  return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5640                         DAG, InVals);
5641}
5642
5643SDValue
5644PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5645                             SmallVectorImpl<SDValue> &InVals) const {
5646  SelectionDAG &DAG                     = CLI.DAG;
5647  SDLoc &dl                             = CLI.DL;
5648  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5649  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5650  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5651  SDValue Chain                         = CLI.Chain;
5652  SDValue Callee                        = CLI.Callee;
5653  bool &isTailCall                      = CLI.IsTailCall;
5654  CallingConv::ID CallConv              = CLI.CallConv;
5655  bool isVarArg                         = CLI.IsVarArg;
5656  bool isPatchPoint                     = CLI.IsPatchPoint;
5657  const CallBase *CB                    = CLI.CB;
5658
5659  if (isTailCall) {
5660    if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5661      isTailCall = false;
5662    else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5663      isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5664          Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5665    else
5666      isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5667                                                     Ins, DAG);
5668    if (isTailCall) {
5669      ++NumTailCalls;
5670      if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5671        ++NumSiblingCalls;
5672
5673      // PC Relative calls no longer guarantee that the callee is a Global
5674      // Address Node. The callee could be an indirect tail call in which
5675      // case the SDValue for the callee could be a load (to load the address
5676      // of a function pointer) or it may be a register copy (to move the
5677      // address of the callee from a function parameter into a virtual
5678      // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5679      assert((Subtarget.isUsingPCRelativeCalls() ||
5680              isa<GlobalAddressSDNode>(Callee)) &&
5681             "Callee should be an llvm::Function object.");
5682
5683      LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5684                        << "\nTCO callee: ");
5685      LLVM_DEBUG(Callee.dump());
5686    }
5687  }
5688
5689  if (!isTailCall && CB && CB->isMustTailCall())
5690    report_fatal_error("failed to perform tail call elimination on a call "
5691                       "site marked musttail");
5692
5693  // When long calls (i.e. indirect calls) are always used, calls are always
5694  // made via function pointer. If we have a function name, first translate it
5695  // into a pointer.
5696  if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5697      !isTailCall)
5698    Callee = LowerGlobalAddress(Callee, DAG);
5699
5700  CallFlags CFlags(
5701      CallConv, isTailCall, isVarArg, isPatchPoint,
5702      isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5703      // hasNest
5704      Subtarget.is64BitELFABI() &&
5705          any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5706      CLI.NoMerge);
5707
5708  if (Subtarget.isAIXABI())
5709    return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5710                         InVals, CB);
5711
5712  assert(Subtarget.isSVR4ABI());
5713  if (Subtarget.isPPC64())
5714    return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5715                            InVals, CB);
5716  return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5717                          InVals, CB);
5718}
5719
5720SDValue PPCTargetLowering::LowerCall_32SVR4(
5721    SDValue Chain, SDValue Callee, CallFlags CFlags,
5722    const SmallVectorImpl<ISD::OutputArg> &Outs,
5723    const SmallVectorImpl<SDValue> &OutVals,
5724    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5725    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5726    const CallBase *CB) const {
5727  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5728  // of the 32-bit SVR4 ABI stack frame layout.
5729
5730  const CallingConv::ID CallConv = CFlags.CallConv;
5731  const bool IsVarArg = CFlags.IsVarArg;
5732  const bool IsTailCall = CFlags.IsTailCall;
5733
5734  assert((CallConv == CallingConv::C ||
5735          CallConv == CallingConv::Cold ||
5736          CallConv == CallingConv::Fast) && "Unknown calling convention!");
5737
5738  const Align PtrAlign(4);
5739
5740  MachineFunction &MF = DAG.getMachineFunction();
5741
5742  // Mark this function as potentially containing a function that contains a
5743  // tail call. As a consequence the frame pointer will be used for dynamicalloc
5744  // and restoring the callers stack pointer in this functions epilog. This is
5745  // done because by tail calling the called function might overwrite the value
5746  // in this function's (MF) stack pointer stack slot 0(SP).
5747  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5748      CallConv == CallingConv::Fast)
5749    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5750
5751  // Count how many bytes are to be pushed on the stack, including the linkage
5752  // area, parameter list area and the part of the local variable space which
5753  // contains copies of aggregates which are passed by value.
5754
5755  // Assign locations to all of the outgoing arguments.
5756  SmallVector<CCValAssign, 16> ArgLocs;
5757  PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5758
5759  // Reserve space for the linkage area on the stack.
5760  CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5761                       PtrAlign);
5762  if (useSoftFloat())
5763    CCInfo.PreAnalyzeCallOperands(Outs);
5764
5765  if (IsVarArg) {
5766    // Handle fixed and variable vector arguments differently.
5767    // Fixed vector arguments go into registers as long as registers are
5768    // available. Variable vector arguments always go into memory.
5769    unsigned NumArgs = Outs.size();
5770
5771    for (unsigned i = 0; i != NumArgs; ++i) {
5772      MVT ArgVT = Outs[i].VT;
5773      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5774      bool Result;
5775
5776      if (Outs[i].IsFixed) {
5777        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5778                               CCInfo);
5779      } else {
5780        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5781                                      ArgFlags, CCInfo);
5782      }
5783
5784      if (Result) {
5785#ifndef NDEBUG
5786        errs() << "Call operand #" << i << " has unhandled type "
5787             << EVT(ArgVT).getEVTString() << "\n";
5788#endif
5789        llvm_unreachable(nullptr);
5790      }
5791    }
5792  } else {
5793    // All arguments are treated the same.
5794    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5795  }
5796  CCInfo.clearWasPPCF128();
5797
5798  // Assign locations to all of the outgoing aggregate by value arguments.
5799  SmallVector<CCValAssign, 16> ByValArgLocs;
5800  CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5801
5802  // Reserve stack space for the allocations in CCInfo.
5803  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5804
5805  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5806
5807  // Size of the linkage area, parameter list area and the part of the local
5808  // space variable where copies of aggregates which are passed by value are
5809  // stored.
5810  unsigned NumBytes = CCByValInfo.getNextStackOffset();
5811
5812  // Calculate by how many bytes the stack has to be adjusted in case of tail
5813  // call optimization.
5814  int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5815
5816  // Adjust the stack pointer for the new arguments...
5817  // These operations are automatically eliminated by the prolog/epilog pass
5818  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5819  SDValue CallSeqStart = Chain;
5820
5821  // Load the return address and frame pointer so it can be moved somewhere else
5822  // later.
5823  SDValue LROp, FPOp;
5824  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5825
5826  // Set up a copy of the stack pointer for use loading and storing any
5827  // arguments that may not fit in the registers available for argument
5828  // passing.
5829  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5830
5831  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5832  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5833  SmallVector<SDValue, 8> MemOpChains;
5834
5835  bool seenFloatArg = false;
5836  // Walk the register/memloc assignments, inserting copies/loads.
5837  // i - Tracks the index into the list of registers allocated for the call
5838  // RealArgIdx - Tracks the index into the list of actual function arguments
5839  // j - Tracks the index into the list of byval arguments
5840  for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5841       i != e;
5842       ++i, ++RealArgIdx) {
5843    CCValAssign &VA = ArgLocs[i];
5844    SDValue Arg = OutVals[RealArgIdx];
5845    ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5846
5847    if (Flags.isByVal()) {
5848      // Argument is an aggregate which is passed by value, thus we need to
5849      // create a copy of it in the local variable space of the current stack
5850      // frame (which is the stack frame of the caller) and pass the address of
5851      // this copy to the callee.
5852      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5853      CCValAssign &ByValVA = ByValArgLocs[j++];
5854      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5855
5856      // Memory reserved in the local variable space of the callers stack frame.
5857      unsigned LocMemOffset = ByValVA.getLocMemOffset();
5858
5859      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5860      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5861                           StackPtr, PtrOff);
5862
5863      // Create a copy of the argument in the local area of the current
5864      // stack frame.
5865      SDValue MemcpyCall =
5866        CreateCopyOfByValArgument(Arg, PtrOff,
5867                                  CallSeqStart.getNode()->getOperand(0),
5868                                  Flags, DAG, dl);
5869
5870      // This must go outside the CALLSEQ_START..END.
5871      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5872                                                     SDLoc(MemcpyCall));
5873      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5874                             NewCallSeqStart.getNode());
5875      Chain = CallSeqStart = NewCallSeqStart;
5876
5877      // Pass the address of the aggregate copy on the stack either in a
5878      // physical register or in the parameter list area of the current stack
5879      // frame to the callee.
5880      Arg = PtrOff;
5881    }
5882
5883    // When useCRBits() is true, there can be i1 arguments.
5884    // It is because getRegisterType(MVT::i1) => MVT::i1,
5885    // and for other integer types getRegisterType() => MVT::i32.
5886    // Extend i1 and ensure callee will get i32.
5887    if (Arg.getValueType() == MVT::i1)
5888      Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5889                        dl, MVT::i32, Arg);
5890
5891    if (VA.isRegLoc()) {
5892      seenFloatArg |= VA.getLocVT().isFloatingPoint();
5893      // Put argument in a physical register.
5894      if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5895        bool IsLE = Subtarget.isLittleEndian();
5896        SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5897                        DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5898        RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5899        SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5900                           DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5901        RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5902                             SVal.getValue(0)));
5903      } else
5904        RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5905    } else {
5906      // Put argument in the parameter list area of the current stack frame.
5907      assert(VA.isMemLoc());
5908      unsigned LocMemOffset = VA.getLocMemOffset();
5909
5910      if (!IsTailCall) {
5911        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5912        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5913                             StackPtr, PtrOff);
5914
5915        MemOpChains.push_back(
5916            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5917      } else {
5918        // Calculate and remember argument location.
5919        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5920                                 TailCallArguments);
5921      }
5922    }
5923  }
5924
5925  if (!MemOpChains.empty())
5926    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5927
5928  // Build a sequence of copy-to-reg nodes chained together with token chain
5929  // and flag operands which copy the outgoing args into the appropriate regs.
5930  SDValue InFlag;
5931  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5932    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5933                             RegsToPass[i].second, InFlag);
5934    InFlag = Chain.getValue(1);
5935  }
5936
5937  // Set CR bit 6 to true if this is a vararg call with floating args passed in
5938  // registers.
5939  if (IsVarArg) {
5940    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5941    SDValue Ops[] = { Chain, InFlag };
5942
5943    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl,
5944                        VTs, ArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5945
5946    InFlag = Chain.getValue(1);
5947  }
5948
5949  if (IsTailCall)
5950    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5951                    TailCallArguments);
5952
5953  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5954                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
5955}
5956
5957// Copy an argument into memory, being careful to do this outside the
5958// call sequence for the call to which the argument belongs.
5959SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5960    SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5961    SelectionDAG &DAG, const SDLoc &dl) const {
5962  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5963                        CallSeqStart.getNode()->getOperand(0),
5964                        Flags, DAG, dl);
5965  // The MEMCPY must go outside the CALLSEQ_START..END.
5966  int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5967  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5968                                                 SDLoc(MemcpyCall));
5969  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5970                         NewCallSeqStart.getNode());
5971  return NewCallSeqStart;
5972}
5973
5974SDValue PPCTargetLowering::LowerCall_64SVR4(
5975    SDValue Chain, SDValue Callee, CallFlags CFlags,
5976    const SmallVectorImpl<ISD::OutputArg> &Outs,
5977    const SmallVectorImpl<SDValue> &OutVals,
5978    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5979    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5980    const CallBase *CB) const {
5981  bool isELFv2ABI = Subtarget.isELFv2ABI();
5982  bool isLittleEndian = Subtarget.isLittleEndian();
5983  unsigned NumOps = Outs.size();
5984  bool IsSibCall = false;
5985  bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5986
5987  EVT PtrVT = getPointerTy(DAG.getDataLayout());
5988  unsigned PtrByteSize = 8;
5989
5990  MachineFunction &MF = DAG.getMachineFunction();
5991
5992  if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5993    IsSibCall = true;
5994
5995  // Mark this function as potentially containing a function that contains a
5996  // tail call. As a consequence the frame pointer will be used for dynamicalloc
5997  // and restoring the callers stack pointer in this functions epilog. This is
5998  // done because by tail calling the called function might overwrite the value
5999  // in this function's (MF) stack pointer stack slot 0(SP).
6000  if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6001    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6002
6003  assert(!(IsFastCall && CFlags.IsVarArg) &&
6004         "fastcc not supported on varargs functions");
6005
6006  // Count how many bytes are to be pushed on the stack, including the linkage
6007  // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
6008  // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
6009  // area is 32 bytes reserved space for [SP][CR][LR][TOC].
6010  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6011  unsigned NumBytes = LinkageSize;
6012  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6013
6014  static const MCPhysReg GPR[] = {
6015    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6016    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6017  };
6018  static const MCPhysReg VR[] = {
6019    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6020    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6021  };
6022
6023  const unsigned NumGPRs = std::size(GPR);
6024  const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6025  const unsigned NumVRs = std::size(VR);
6026
6027  // On ELFv2, we can avoid allocating the parameter area if all the arguments
6028  // can be passed to the callee in registers.
6029  // For the fast calling convention, there is another check below.
6030  // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6031  bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6032  if (!HasParameterArea) {
6033    unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6034    unsigned AvailableFPRs = NumFPRs;
6035    unsigned AvailableVRs = NumVRs;
6036    unsigned NumBytesTmp = NumBytes;
6037    for (unsigned i = 0; i != NumOps; ++i) {
6038      if (Outs[i].Flags.isNest()) continue;
6039      if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6040                                 PtrByteSize, LinkageSize, ParamAreaSize,
6041                                 NumBytesTmp, AvailableFPRs, AvailableVRs))
6042        HasParameterArea = true;
6043    }
6044  }
6045
6046  // When using the fast calling convention, we don't provide backing for
6047  // arguments that will be in registers.
6048  unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6049
6050  // Avoid allocating parameter area for fastcc functions if all the arguments
6051  // can be passed in the registers.
6052  if (IsFastCall)
6053    HasParameterArea = false;
6054
6055  // Add up all the space actually used.
6056  for (unsigned i = 0; i != NumOps; ++i) {
6057    ISD::ArgFlagsTy Flags = Outs[i].Flags;
6058    EVT ArgVT = Outs[i].VT;
6059    EVT OrigVT = Outs[i].ArgVT;
6060
6061    if (Flags.isNest())
6062      continue;
6063
6064    if (IsFastCall) {
6065      if (Flags.isByVal()) {
6066        NumGPRsUsed += (Flags.getByValSize()+7)/8;
6067        if (NumGPRsUsed > NumGPRs)
6068          HasParameterArea = true;
6069      } else {
6070        switch (ArgVT.getSimpleVT().SimpleTy) {
6071        default: llvm_unreachable("Unexpected ValueType for argument!");
6072        case MVT::i1:
6073        case MVT::i32:
6074        case MVT::i64:
6075          if (++NumGPRsUsed <= NumGPRs)
6076            continue;
6077          break;
6078        case MVT::v4i32:
6079        case MVT::v8i16:
6080        case MVT::v16i8:
6081        case MVT::v2f64:
6082        case MVT::v2i64:
6083        case MVT::v1i128:
6084        case MVT::f128:
6085          if (++NumVRsUsed <= NumVRs)
6086            continue;
6087          break;
6088        case MVT::v4f32:
6089          if (++NumVRsUsed <= NumVRs)
6090            continue;
6091          break;
6092        case MVT::f32:
6093        case MVT::f64:
6094          if (++NumFPRsUsed <= NumFPRs)
6095            continue;
6096          break;
6097        }
6098        HasParameterArea = true;
6099      }
6100    }
6101
6102    /* Respect alignment of argument on the stack.  */
6103    auto Alignement =
6104        CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6105    NumBytes = alignTo(NumBytes, Alignement);
6106
6107    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6108    if (Flags.isInConsecutiveRegsLast())
6109      NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6110  }
6111
6112  unsigned NumBytesActuallyUsed = NumBytes;
6113
6114  // In the old ELFv1 ABI,
6115  // the prolog code of the callee may store up to 8 GPR argument registers to
6116  // the stack, allowing va_start to index over them in memory if its varargs.
6117  // Because we cannot tell if this is needed on the caller side, we have to
6118  // conservatively assume that it is needed.  As such, make sure we have at
6119  // least enough stack space for the caller to store the 8 GPRs.
6120  // In the ELFv2 ABI, we allocate the parameter area iff a callee
6121  // really requires memory operands, e.g. a vararg function.
6122  if (HasParameterArea)
6123    NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6124  else
6125    NumBytes = LinkageSize;
6126
6127  // Tail call needs the stack to be aligned.
6128  if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6129    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6130
6131  int SPDiff = 0;
6132
6133  // Calculate by how many bytes the stack has to be adjusted in case of tail
6134  // call optimization.
6135  if (!IsSibCall)
6136    SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6137
6138  // To protect arguments on the stack from being clobbered in a tail call,
6139  // force all the loads to happen before doing any other lowering.
6140  if (CFlags.IsTailCall)
6141    Chain = DAG.getStackArgumentTokenFactor(Chain);
6142
6143  // Adjust the stack pointer for the new arguments...
6144  // These operations are automatically eliminated by the prolog/epilog pass
6145  if (!IsSibCall)
6146    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6147  SDValue CallSeqStart = Chain;
6148
6149  // Load the return address and frame pointer so it can be move somewhere else
6150  // later.
6151  SDValue LROp, FPOp;
6152  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6153
6154  // Set up a copy of the stack pointer for use loading and storing any
6155  // arguments that may not fit in the registers available for argument
6156  // passing.
6157  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6158
6159  // Figure out which arguments are going to go in registers, and which in
6160  // memory.  Also, if this is a vararg function, floating point operations
6161  // must be stored to our stack, and loaded into integer regs as well, if
6162  // any integer regs are available for argument passing.
6163  unsigned ArgOffset = LinkageSize;
6164
6165  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6166  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6167
6168  SmallVector<SDValue, 8> MemOpChains;
6169  for (unsigned i = 0; i != NumOps; ++i) {
6170    SDValue Arg = OutVals[i];
6171    ISD::ArgFlagsTy Flags = Outs[i].Flags;
6172    EVT ArgVT = Outs[i].VT;
6173    EVT OrigVT = Outs[i].ArgVT;
6174
6175    // PtrOff will be used to store the current argument to the stack if a
6176    // register cannot be found for it.
6177    SDValue PtrOff;
6178
6179    // We re-align the argument offset for each argument, except when using the
6180    // fast calling convention, when we need to make sure we do that only when
6181    // we'll actually use a stack slot.
6182    auto ComputePtrOff = [&]() {
6183      /* Respect alignment of argument on the stack.  */
6184      auto Alignment =
6185          CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6186      ArgOffset = alignTo(ArgOffset, Alignment);
6187
6188      PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6189
6190      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6191    };
6192
6193    if (!IsFastCall) {
6194      ComputePtrOff();
6195
6196      /* Compute GPR index associated with argument offset.  */
6197      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6198      GPR_idx = std::min(GPR_idx, NumGPRs);
6199    }
6200
6201    // Promote integers to 64-bit values.
6202    if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6203      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6204      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6205      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6206    }
6207
6208    // FIXME memcpy is used way more than necessary.  Correctness first.
6209    // Note: "by value" is code for passing a structure by value, not
6210    // basic types.
6211    if (Flags.isByVal()) {
6212      // Note: Size includes alignment padding, so
6213      //   struct x { short a; char b; }
6214      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6215      // These are the proper values we need for right-justifying the
6216      // aggregate in a parameter register.
6217      unsigned Size = Flags.getByValSize();
6218
6219      // An empty aggregate parameter takes up no storage and no
6220      // registers.
6221      if (Size == 0)
6222        continue;
6223
6224      if (IsFastCall)
6225        ComputePtrOff();
6226
6227      // All aggregates smaller than 8 bytes must be passed right-justified.
6228      if (Size==1 || Size==2 || Size==4) {
6229        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6230        if (GPR_idx != NumGPRs) {
6231          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6232                                        MachinePointerInfo(), VT);
6233          MemOpChains.push_back(Load.getValue(1));
6234          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6235
6236          ArgOffset += PtrByteSize;
6237          continue;
6238        }
6239      }
6240
6241      if (GPR_idx == NumGPRs && Size < 8) {
6242        SDValue AddPtr = PtrOff;
6243        if (!isLittleEndian) {
6244          SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6245                                          PtrOff.getValueType());
6246          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6247        }
6248        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6249                                                          CallSeqStart,
6250                                                          Flags, DAG, dl);
6251        ArgOffset += PtrByteSize;
6252        continue;
6253      }
6254      // Copy the object to parameter save area if it can not be entirely passed
6255      // by registers.
6256      // FIXME: we only need to copy the parts which need to be passed in
6257      // parameter save area. For the parts passed by registers, we don't need
6258      // to copy them to the stack although we need to allocate space for them
6259      // in parameter save area.
6260      if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6261        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6262                                                          CallSeqStart,
6263                                                          Flags, DAG, dl);
6264
6265      // When a register is available, pass a small aggregate right-justified.
6266      if (Size < 8 && GPR_idx != NumGPRs) {
6267        // The easiest way to get this right-justified in a register
6268        // is to copy the structure into the rightmost portion of a
6269        // local variable slot, then load the whole slot into the
6270        // register.
6271        // FIXME: The memcpy seems to produce pretty awful code for
6272        // small aggregates, particularly for packed ones.
6273        // FIXME: It would be preferable to use the slot in the
6274        // parameter save area instead of a new local variable.
6275        SDValue AddPtr = PtrOff;
6276        if (!isLittleEndian) {
6277          SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6278          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6279        }
6280        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6281                                                          CallSeqStart,
6282                                                          Flags, DAG, dl);
6283
6284        // Load the slot into the register.
6285        SDValue Load =
6286            DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6287        MemOpChains.push_back(Load.getValue(1));
6288        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6289
6290        // Done with this argument.
6291        ArgOffset += PtrByteSize;
6292        continue;
6293      }
6294
6295      // For aggregates larger than PtrByteSize, copy the pieces of the
6296      // object that fit into registers from the parameter save area.
6297      for (unsigned j=0; j<Size; j+=PtrByteSize) {
6298        SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6299        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6300        if (GPR_idx != NumGPRs) {
6301          unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8;
6302          EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits);
6303          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg,
6304                                        MachinePointerInfo(), ObjType);
6305
6306          MemOpChains.push_back(Load.getValue(1));
6307          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6308          ArgOffset += PtrByteSize;
6309        } else {
6310          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6311          break;
6312        }
6313      }
6314      continue;
6315    }
6316
6317    switch (Arg.getSimpleValueType().SimpleTy) {
6318    default: llvm_unreachable("Unexpected ValueType for argument!");
6319    case MVT::i1:
6320    case MVT::i32:
6321    case MVT::i64:
6322      if (Flags.isNest()) {
6323        // The 'nest' parameter, if any, is passed in R11.
6324        RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6325        break;
6326      }
6327
6328      // These can be scalar arguments or elements of an integer array type
6329      // passed directly.  Clang may use those instead of "byval" aggregate
6330      // types to avoid forcing arguments to memory unnecessarily.
6331      if (GPR_idx != NumGPRs) {
6332        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6333      } else {
6334        if (IsFastCall)
6335          ComputePtrOff();
6336
6337        assert(HasParameterArea &&
6338               "Parameter area must exist to pass an argument in memory.");
6339        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6340                         true, CFlags.IsTailCall, false, MemOpChains,
6341                         TailCallArguments, dl);
6342        if (IsFastCall)
6343          ArgOffset += PtrByteSize;
6344      }
6345      if (!IsFastCall)
6346        ArgOffset += PtrByteSize;
6347      break;
6348    case MVT::f32:
6349    case MVT::f64: {
6350      // These can be scalar arguments or elements of a float array type
6351      // passed directly.  The latter are used to implement ELFv2 homogenous
6352      // float aggregates.
6353
6354      // Named arguments go into FPRs first, and once they overflow, the
6355      // remaining arguments go into GPRs and then the parameter save area.
6356      // Unnamed arguments for vararg functions always go to GPRs and
6357      // then the parameter save area.  For now, put all arguments to vararg
6358      // routines always in both locations (FPR *and* GPR or stack slot).
6359      bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6360      bool NeededLoad = false;
6361
6362      // First load the argument into the next available FPR.
6363      if (FPR_idx != NumFPRs)
6364        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6365
6366      // Next, load the argument into GPR or stack slot if needed.
6367      if (!NeedGPROrStack)
6368        ;
6369      else if (GPR_idx != NumGPRs && !IsFastCall) {
6370        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6371        // once we support fp <-> gpr moves.
6372
6373        // In the non-vararg case, this can only ever happen in the
6374        // presence of f32 array types, since otherwise we never run
6375        // out of FPRs before running out of GPRs.
6376        SDValue ArgVal;
6377
6378        // Double values are always passed in a single GPR.
6379        if (Arg.getValueType() != MVT::f32) {
6380          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6381
6382        // Non-array float values are extended and passed in a GPR.
6383        } else if (!Flags.isInConsecutiveRegs()) {
6384          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6385          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6386
6387        // If we have an array of floats, we collect every odd element
6388        // together with its predecessor into one GPR.
6389        } else if (ArgOffset % PtrByteSize != 0) {
6390          SDValue Lo, Hi;
6391          Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6392          Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6393          if (!isLittleEndian)
6394            std::swap(Lo, Hi);
6395          ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6396
6397        // The final element, if even, goes into the first half of a GPR.
6398        } else if (Flags.isInConsecutiveRegsLast()) {
6399          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6400          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6401          if (!isLittleEndian)
6402            ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6403                                 DAG.getConstant(32, dl, MVT::i32));
6404
6405        // Non-final even elements are skipped; they will be handled
6406        // together the with subsequent argument on the next go-around.
6407        } else
6408          ArgVal = SDValue();
6409
6410        if (ArgVal.getNode())
6411          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6412      } else {
6413        if (IsFastCall)
6414          ComputePtrOff();
6415
6416        // Single-precision floating-point values are mapped to the
6417        // second (rightmost) word of the stack doubleword.
6418        if (Arg.getValueType() == MVT::f32 &&
6419            !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6420          SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6421          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6422        }
6423
6424        assert(HasParameterArea &&
6425               "Parameter area must exist to pass an argument in memory.");
6426        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6427                         true, CFlags.IsTailCall, false, MemOpChains,
6428                         TailCallArguments, dl);
6429
6430        NeededLoad = true;
6431      }
6432      // When passing an array of floats, the array occupies consecutive
6433      // space in the argument area; only round up to the next doubleword
6434      // at the end of the array.  Otherwise, each float takes 8 bytes.
6435      if (!IsFastCall || NeededLoad) {
6436        ArgOffset += (Arg.getValueType() == MVT::f32 &&
6437                      Flags.isInConsecutiveRegs()) ? 4 : 8;
6438        if (Flags.isInConsecutiveRegsLast())
6439          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6440      }
6441      break;
6442    }
6443    case MVT::v4f32:
6444    case MVT::v4i32:
6445    case MVT::v8i16:
6446    case MVT::v16i8:
6447    case MVT::v2f64:
6448    case MVT::v2i64:
6449    case MVT::v1i128:
6450    case MVT::f128:
6451      // These can be scalar arguments or elements of a vector array type
6452      // passed directly.  The latter are used to implement ELFv2 homogenous
6453      // vector aggregates.
6454
6455      // For a varargs call, named arguments go into VRs or on the stack as
6456      // usual; unnamed arguments always go to the stack or the corresponding
6457      // GPRs when within range.  For now, we always put the value in both
6458      // locations (or even all three).
6459      if (CFlags.IsVarArg) {
6460        assert(HasParameterArea &&
6461               "Parameter area must exist if we have a varargs call.");
6462        // We could elide this store in the case where the object fits
6463        // entirely in R registers.  Maybe later.
6464        SDValue Store =
6465            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6466        MemOpChains.push_back(Store);
6467        if (VR_idx != NumVRs) {
6468          SDValue Load =
6469              DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6470          MemOpChains.push_back(Load.getValue(1));
6471          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6472        }
6473        ArgOffset += 16;
6474        for (unsigned i=0; i<16; i+=PtrByteSize) {
6475          if (GPR_idx == NumGPRs)
6476            break;
6477          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6478                                   DAG.getConstant(i, dl, PtrVT));
6479          SDValue Load =
6480              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6481          MemOpChains.push_back(Load.getValue(1));
6482          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6483        }
6484        break;
6485      }
6486
6487      // Non-varargs Altivec params go into VRs or on the stack.
6488      if (VR_idx != NumVRs) {
6489        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6490      } else {
6491        if (IsFastCall)
6492          ComputePtrOff();
6493
6494        assert(HasParameterArea &&
6495               "Parameter area must exist to pass an argument in memory.");
6496        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6497                         true, CFlags.IsTailCall, true, MemOpChains,
6498                         TailCallArguments, dl);
6499        if (IsFastCall)
6500          ArgOffset += 16;
6501      }
6502
6503      if (!IsFastCall)
6504        ArgOffset += 16;
6505      break;
6506    }
6507  }
6508
6509  assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6510         "mismatch in size of parameter area");
6511  (void)NumBytesActuallyUsed;
6512
6513  if (!MemOpChains.empty())
6514    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6515
6516  // Check if this is an indirect call (MTCTR/BCTRL).
6517  // See prepareDescriptorIndirectCall and buildCallOperands for more
6518  // information about calls through function pointers in the 64-bit SVR4 ABI.
6519  if (CFlags.IsIndirect) {
6520    // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6521    // caller in the TOC save area.
6522    if (isTOCSaveRestoreRequired(Subtarget)) {
6523      assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6524      // Load r2 into a virtual register and store it to the TOC save area.
6525      setUsesTOCBasePtr(DAG);
6526      SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6527      // TOC save area offset.
6528      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6529      SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6530      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6531      Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6532                           MachinePointerInfo::getStack(
6533                               DAG.getMachineFunction(), TOCSaveOffset));
6534    }
6535    // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6536    // This does not mean the MTCTR instruction must use R12; it's easier
6537    // to model this as an extra parameter, so do that.
6538    if (isELFv2ABI && !CFlags.IsPatchPoint)
6539      RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6540  }
6541
6542  // Build a sequence of copy-to-reg nodes chained together with token chain
6543  // and flag operands which copy the outgoing args into the appropriate regs.
6544  SDValue InFlag;
6545  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6546    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6547                             RegsToPass[i].second, InFlag);
6548    InFlag = Chain.getValue(1);
6549  }
6550
6551  if (CFlags.IsTailCall && !IsSibCall)
6552    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6553                    TailCallArguments);
6554
6555  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6556                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
6557}
6558
6559// Returns true when the shadow of a general purpose argument register
6560// in the parameter save area is aligned to at least 'RequiredAlign'.
6561static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6562  assert(RequiredAlign.value() <= 16 &&
6563         "Required alignment greater than stack alignment.");
6564  switch (Reg) {
6565  default:
6566    report_fatal_error("called on invalid register.");
6567  case PPC::R5:
6568  case PPC::R9:
6569  case PPC::X3:
6570  case PPC::X5:
6571  case PPC::X7:
6572  case PPC::X9:
6573    // These registers are 16 byte aligned which is the most strict aligment
6574    // we can support.
6575    return true;
6576  case PPC::R3:
6577  case PPC::R7:
6578  case PPC::X4:
6579  case PPC::X6:
6580  case PPC::X8:
6581  case PPC::X10:
6582    // The shadow of these registers in the PSA is 8 byte aligned.
6583    return RequiredAlign <= 8;
6584  case PPC::R4:
6585  case PPC::R6:
6586  case PPC::R8:
6587  case PPC::R10:
6588    return RequiredAlign <= 4;
6589  }
6590}
6591
6592static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6593                   CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6594                   CCState &S) {
6595  AIXCCState &State = static_cast<AIXCCState &>(S);
6596  const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6597      State.getMachineFunction().getSubtarget());
6598  const bool IsPPC64 = Subtarget.isPPC64();
6599  const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6600  const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6601
6602  if (ValVT == MVT::f128)
6603    report_fatal_error("f128 is unimplemented on AIX.");
6604
6605  if (ArgFlags.isNest())
6606    report_fatal_error("Nest arguments are unimplemented.");
6607
6608  static const MCPhysReg GPR_32[] = {// 32-bit registers.
6609                                     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6610                                     PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6611  static const MCPhysReg GPR_64[] = {// 64-bit registers.
6612                                     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6613                                     PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6614
6615  static const MCPhysReg VR[] = {// Vector registers.
6616                                 PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6617                                 PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6618                                 PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6619
6620  if (ArgFlags.isByVal()) {
6621    if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6622      report_fatal_error("Pass-by-value arguments with alignment greater than "
6623                         "register width are not supported.");
6624
6625    const unsigned ByValSize = ArgFlags.getByValSize();
6626
6627    // An empty aggregate parameter takes up no storage and no registers,
6628    // but needs a MemLoc for a stack slot for the formal arguments side.
6629    if (ByValSize == 0) {
6630      State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6631                                       State.getNextStackOffset(), RegVT,
6632                                       LocInfo));
6633      return false;
6634    }
6635
6636    const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6637    unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6638    for (const unsigned E = Offset + StackSize; Offset < E;
6639         Offset += PtrAlign.value()) {
6640      if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6641        State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6642      else {
6643        State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6644                                         Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6645                                         LocInfo));
6646        break;
6647      }
6648    }
6649    return false;
6650  }
6651
6652  // Arguments always reserve parameter save area.
6653  switch (ValVT.SimpleTy) {
6654  default:
6655    report_fatal_error("Unhandled value type for argument.");
6656  case MVT::i64:
6657    // i64 arguments should have been split to i32 for PPC32.
6658    assert(IsPPC64 && "PPC32 should have split i64 values.");
6659    [[fallthrough]];
6660  case MVT::i1:
6661  case MVT::i32: {
6662    const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6663    // AIX integer arguments are always passed in register width.
6664    if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6665      LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6666                                  : CCValAssign::LocInfo::ZExt;
6667    if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6668      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6669    else
6670      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6671
6672    return false;
6673  }
6674  case MVT::f32:
6675  case MVT::f64: {
6676    // Parameter save area (PSA) is reserved even if the float passes in fpr.
6677    const unsigned StoreSize = LocVT.getStoreSize();
6678    // Floats are always 4-byte aligned in the PSA on AIX.
6679    // This includes f64 in 64-bit mode for ABI compatibility.
6680    const unsigned Offset =
6681        State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6682    unsigned FReg = State.AllocateReg(FPR);
6683    if (FReg)
6684      State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6685
6686    // Reserve and initialize GPRs or initialize the PSA as required.
6687    for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6688      if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6689        assert(FReg && "An FPR should be available when a GPR is reserved.");
6690        if (State.isVarArg()) {
6691          // Successfully reserved GPRs are only initialized for vararg calls.
6692          // Custom handling is required for:
6693          //   f64 in PPC32 needs to be split into 2 GPRs.
6694          //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6695          State.addLoc(
6696              CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6697        }
6698      } else {
6699        // If there are insufficient GPRs, the PSA needs to be initialized.
6700        // Initialization occurs even if an FPR was initialized for
6701        // compatibility with the AIX XL compiler. The full memory for the
6702        // argument will be initialized even if a prior word is saved in GPR.
6703        // A custom memLoc is used when the argument also passes in FPR so
6704        // that the callee handling can skip over it easily.
6705        State.addLoc(
6706            FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6707                                             LocInfo)
6708                 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6709        break;
6710      }
6711    }
6712
6713    return false;
6714  }
6715  case MVT::v4f32:
6716  case MVT::v4i32:
6717  case MVT::v8i16:
6718  case MVT::v16i8:
6719  case MVT::v2i64:
6720  case MVT::v2f64:
6721  case MVT::v1i128: {
6722    const unsigned VecSize = 16;
6723    const Align VecAlign(VecSize);
6724
6725    if (!State.isVarArg()) {
6726      // If there are vector registers remaining we don't consume any stack
6727      // space.
6728      if (unsigned VReg = State.AllocateReg(VR)) {
6729        State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6730        return false;
6731      }
6732      // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6733      // might be allocated in the portion of the PSA that is shadowed by the
6734      // GPRs.
6735      const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6736      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6737      return false;
6738    }
6739
6740    const unsigned PtrSize = IsPPC64 ? 8 : 4;
6741    ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6742
6743    unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6744    // Burn any underaligned registers and their shadowed stack space until
6745    // we reach the required alignment.
6746    while (NextRegIndex != GPRs.size() &&
6747           !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6748      // Shadow allocate register and its stack shadow.
6749      unsigned Reg = State.AllocateReg(GPRs);
6750      State.AllocateStack(PtrSize, PtrAlign);
6751      assert(Reg && "Allocating register unexpectedly failed.");
6752      (void)Reg;
6753      NextRegIndex = State.getFirstUnallocated(GPRs);
6754    }
6755
6756    // Vectors that are passed as fixed arguments are handled differently.
6757    // They are passed in VRs if any are available (unlike arguments passed
6758    // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6759    // functions)
6760    if (State.isFixed(ValNo)) {
6761      if (unsigned VReg = State.AllocateReg(VR)) {
6762        State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6763        // Shadow allocate GPRs and stack space even though we pass in a VR.
6764        for (unsigned I = 0; I != VecSize; I += PtrSize)
6765          State.AllocateReg(GPRs);
6766        State.AllocateStack(VecSize, VecAlign);
6767        return false;
6768      }
6769      // No vector registers remain so pass on the stack.
6770      const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6771      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6772      return false;
6773    }
6774
6775    // If all GPRS are consumed then we pass the argument fully on the stack.
6776    if (NextRegIndex == GPRs.size()) {
6777      const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6778      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6779      return false;
6780    }
6781
6782    // Corner case for 32-bit codegen. We have 2 registers to pass the first
6783    // half of the argument, and then need to pass the remaining half on the
6784    // stack.
6785    if (GPRs[NextRegIndex] == PPC::R9) {
6786      const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6787      State.addLoc(
6788          CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6789
6790      const unsigned FirstReg = State.AllocateReg(PPC::R9);
6791      const unsigned SecondReg = State.AllocateReg(PPC::R10);
6792      assert(FirstReg && SecondReg &&
6793             "Allocating R9 or R10 unexpectedly failed.");
6794      State.addLoc(
6795          CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6796      State.addLoc(
6797          CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6798      return false;
6799    }
6800
6801    // We have enough GPRs to fully pass the vector argument, and we have
6802    // already consumed any underaligned registers. Start with the custom
6803    // MemLoc and then the custom RegLocs.
6804    const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6805    State.addLoc(
6806        CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6807    for (unsigned I = 0; I != VecSize; I += PtrSize) {
6808      const unsigned Reg = State.AllocateReg(GPRs);
6809      assert(Reg && "Failed to allocated register for vararg vector argument");
6810      State.addLoc(
6811          CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6812    }
6813    return false;
6814  }
6815  }
6816  return true;
6817}
6818
6819// So far, this function is only used by LowerFormalArguments_AIX()
6820static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6821                                                    bool IsPPC64,
6822                                                    bool HasP8Vector,
6823                                                    bool HasVSX) {
6824  assert((IsPPC64 || SVT != MVT::i64) &&
6825         "i64 should have been split for 32-bit codegen.");
6826
6827  switch (SVT) {
6828  default:
6829    report_fatal_error("Unexpected value type for formal argument");
6830  case MVT::i1:
6831  case MVT::i32:
6832  case MVT::i64:
6833    return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6834  case MVT::f32:
6835    return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6836  case MVT::f64:
6837    return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6838  case MVT::v4f32:
6839  case MVT::v4i32:
6840  case MVT::v8i16:
6841  case MVT::v16i8:
6842  case MVT::v2i64:
6843  case MVT::v2f64:
6844  case MVT::v1i128:
6845    return &PPC::VRRCRegClass;
6846  }
6847}
6848
6849static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6850                                        SelectionDAG &DAG, SDValue ArgValue,
6851                                        MVT LocVT, const SDLoc &dl) {
6852  assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6853  assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6854
6855  if (Flags.isSExt())
6856    ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6857                           DAG.getValueType(ValVT));
6858  else if (Flags.isZExt())
6859    ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6860                           DAG.getValueType(ValVT));
6861
6862  return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6863}
6864
6865static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6866  const unsigned LASize = FL->getLinkageSize();
6867
6868  if (PPC::GPRCRegClass.contains(Reg)) {
6869    assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6870           "Reg must be a valid argument register!");
6871    return LASize + 4 * (Reg - PPC::R3);
6872  }
6873
6874  if (PPC::G8RCRegClass.contains(Reg)) {
6875    assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6876           "Reg must be a valid argument register!");
6877    return LASize + 8 * (Reg - PPC::X3);
6878  }
6879
6880  llvm_unreachable("Only general purpose registers expected.");
6881}
6882
6883//   AIX ABI Stack Frame Layout:
6884//
6885//   Low Memory +--------------------------------------------+
6886//   SP   +---> | Back chain                                 | ---+
6887//        |     +--------------------------------------------+    |
6888//        |     | Saved Condition Register                   |    |
6889//        |     +--------------------------------------------+    |
6890//        |     | Saved Linkage Register                     |    |
6891//        |     +--------------------------------------------+    | Linkage Area
6892//        |     | Reserved for compilers                     |    |
6893//        |     +--------------------------------------------+    |
6894//        |     | Reserved for binders                       |    |
6895//        |     +--------------------------------------------+    |
6896//        |     | Saved TOC pointer                          | ---+
6897//        |     +--------------------------------------------+
6898//        |     | Parameter save area                        |
6899//        |     +--------------------------------------------+
6900//        |     | Alloca space                               |
6901//        |     +--------------------------------------------+
6902//        |     | Local variable space                       |
6903//        |     +--------------------------------------------+
6904//        |     | Float/int conversion temporary             |
6905//        |     +--------------------------------------------+
6906//        |     | Save area for AltiVec registers            |
6907//        |     +--------------------------------------------+
6908//        |     | AltiVec alignment padding                  |
6909//        |     +--------------------------------------------+
6910//        |     | Save area for VRSAVE register              |
6911//        |     +--------------------------------------------+
6912//        |     | Save area for General Purpose registers    |
6913//        |     +--------------------------------------------+
6914//        |     | Save area for Floating Point registers     |
6915//        |     +--------------------------------------------+
6916//        +---- | Back chain                                 |
6917// High Memory  +--------------------------------------------+
6918//
6919//  Specifications:
6920//  AIX 7.2 Assembler Language Reference
6921//  Subroutine linkage convention
6922
6923SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6924    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6925    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6926    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6927
6928  assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6929          CallConv == CallingConv::Fast) &&
6930         "Unexpected calling convention!");
6931
6932  if (getTargetMachine().Options.GuaranteedTailCallOpt)
6933    report_fatal_error("Tail call support is unimplemented on AIX.");
6934
6935  if (useSoftFloat())
6936    report_fatal_error("Soft float support is unimplemented on AIX.");
6937
6938  const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
6939
6940  const bool IsPPC64 = Subtarget.isPPC64();
6941  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6942
6943  // Assign locations to all of the incoming arguments.
6944  SmallVector<CCValAssign, 16> ArgLocs;
6945  MachineFunction &MF = DAG.getMachineFunction();
6946  MachineFrameInfo &MFI = MF.getFrameInfo();
6947  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6948  AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6949
6950  const EVT PtrVT = getPointerTy(MF.getDataLayout());
6951  // Reserve space for the linkage area on the stack.
6952  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6953  CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6954  CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6955
6956  SmallVector<SDValue, 8> MemOps;
6957
6958  for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6959    CCValAssign &VA = ArgLocs[I++];
6960    MVT LocVT = VA.getLocVT();
6961    MVT ValVT = VA.getValVT();
6962    ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6963    // For compatibility with the AIX XL compiler, the float args in the
6964    // parameter save area are initialized even if the argument is available
6965    // in register.  The caller is required to initialize both the register
6966    // and memory, however, the callee can choose to expect it in either.
6967    // The memloc is dismissed here because the argument is retrieved from
6968    // the register.
6969    if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6970      continue;
6971
6972    auto HandleMemLoc = [&]() {
6973      const unsigned LocSize = LocVT.getStoreSize();
6974      const unsigned ValSize = ValVT.getStoreSize();
6975      assert((ValSize <= LocSize) &&
6976             "Object size is larger than size of MemLoc");
6977      int CurArgOffset = VA.getLocMemOffset();
6978      // Objects are right-justified because AIX is big-endian.
6979      if (LocSize > ValSize)
6980        CurArgOffset += LocSize - ValSize;
6981      // Potential tail calls could cause overwriting of argument stack slots.
6982      const bool IsImmutable =
6983          !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6984            (CallConv == CallingConv::Fast));
6985      int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6986      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6987      SDValue ArgValue =
6988          DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6989      InVals.push_back(ArgValue);
6990    };
6991
6992    // Vector arguments to VaArg functions are passed both on the stack, and
6993    // in any available GPRs. Load the value from the stack and add the GPRs
6994    // as live ins.
6995    if (VA.isMemLoc() && VA.needsCustom()) {
6996      assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6997      assert(isVarArg && "Only use custom memloc for vararg.");
6998      // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6999      // matching custom RegLocs.
7000      const unsigned OriginalValNo = VA.getValNo();
7001      (void)OriginalValNo;
7002
7003      auto HandleCustomVecRegLoc = [&]() {
7004        assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7005               "Missing custom RegLoc.");
7006        VA = ArgLocs[I++];
7007        assert(VA.getValVT().isVector() &&
7008               "Unexpected Val type for custom RegLoc.");
7009        assert(VA.getValNo() == OriginalValNo &&
7010               "ValNo mismatch between custom MemLoc and RegLoc.");
7011        MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
7012        MF.addLiveIn(VA.getLocReg(),
7013                     getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7014                                       Subtarget.hasVSX()));
7015      };
7016
7017      HandleMemLoc();
7018      // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7019      // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7020      // R10.
7021      HandleCustomVecRegLoc();
7022      HandleCustomVecRegLoc();
7023
7024      // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
7025      // we passed the vector in R5, R6, R7 and R8.
7026      if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
7027        assert(!IsPPC64 &&
7028               "Only 2 custom RegLocs expected for 64-bit codegen.");
7029        HandleCustomVecRegLoc();
7030        HandleCustomVecRegLoc();
7031      }
7032
7033      continue;
7034    }
7035
7036    if (VA.isRegLoc()) {
7037      if (VA.getValVT().isScalarInteger())
7038        FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7039      else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
7040        switch (VA.getValVT().SimpleTy) {
7041        default:
7042          report_fatal_error("Unhandled value type for argument.");
7043        case MVT::f32:
7044          FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
7045          break;
7046        case MVT::f64:
7047          FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7048          break;
7049        }
7050      } else if (VA.getValVT().isVector()) {
7051        switch (VA.getValVT().SimpleTy) {
7052        default:
7053          report_fatal_error("Unhandled value type for argument.");
7054        case MVT::v16i8:
7055          FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7056          break;
7057        case MVT::v8i16:
7058          FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7059          break;
7060        case MVT::v4i32:
7061        case MVT::v2i64:
7062        case MVT::v1i128:
7063          FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7064          break;
7065        case MVT::v4f32:
7066        case MVT::v2f64:
7067          FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7068          break;
7069        }
7070      }
7071    }
7072
7073    if (Flags.isByVal() && VA.isMemLoc()) {
7074      const unsigned Size =
7075          alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7076                  PtrByteSize);
7077      const int FI = MF.getFrameInfo().CreateFixedObject(
7078          Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7079          /* IsAliased */ true);
7080      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7081      InVals.push_back(FIN);
7082
7083      continue;
7084    }
7085
7086    if (Flags.isByVal()) {
7087      assert(VA.isRegLoc() && "MemLocs should already be handled.");
7088
7089      const MCPhysReg ArgReg = VA.getLocReg();
7090      const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7091
7092      if (Flags.getNonZeroByValAlign() > PtrByteSize)
7093        report_fatal_error("Over aligned byvals not supported yet.");
7094
7095      const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7096      const int FI = MF.getFrameInfo().CreateFixedObject(
7097          StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7098          /* IsAliased */ true);
7099      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7100      InVals.push_back(FIN);
7101
7102      // Add live ins for all the RegLocs for the same ByVal.
7103      const TargetRegisterClass *RegClass =
7104          IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7105
7106      auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7107                                               unsigned Offset) {
7108        const Register VReg = MF.addLiveIn(PhysReg, RegClass);
7109        // Since the callers side has left justified the aggregate in the
7110        // register, we can simply store the entire register into the stack
7111        // slot.
7112        SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7113        // The store to the fixedstack object is needed becuase accessing a
7114        // field of the ByVal will use a gep and load. Ideally we will optimize
7115        // to extracting the value from the register directly, and elide the
7116        // stores when the arguments address is not taken, but that will need to
7117        // be future work.
7118        SDValue Store = DAG.getStore(
7119            CopyFrom.getValue(1), dl, CopyFrom,
7120            DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7121            MachinePointerInfo::getFixedStack(MF, FI, Offset));
7122
7123        MemOps.push_back(Store);
7124      };
7125
7126      unsigned Offset = 0;
7127      HandleRegLoc(VA.getLocReg(), Offset);
7128      Offset += PtrByteSize;
7129      for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7130           Offset += PtrByteSize) {
7131        assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7132               "RegLocs should be for ByVal argument.");
7133
7134        const CCValAssign RL = ArgLocs[I++];
7135        HandleRegLoc(RL.getLocReg(), Offset);
7136        FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7137      }
7138
7139      if (Offset != StackSize) {
7140        assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7141               "Expected MemLoc for remaining bytes.");
7142        assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7143        // Consume the MemLoc.The InVal has already been emitted, so nothing
7144        // more needs to be done.
7145        ++I;
7146      }
7147
7148      continue;
7149    }
7150
7151    if (VA.isRegLoc() && !VA.needsCustom()) {
7152      MVT::SimpleValueType SVT = ValVT.SimpleTy;
7153      Register VReg =
7154          MF.addLiveIn(VA.getLocReg(),
7155                       getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7156                                         Subtarget.hasVSX()));
7157      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7158      if (ValVT.isScalarInteger() &&
7159          (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7160        ArgValue =
7161            truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7162      }
7163      InVals.push_back(ArgValue);
7164      continue;
7165    }
7166    if (VA.isMemLoc()) {
7167      HandleMemLoc();
7168      continue;
7169    }
7170  }
7171
7172  // On AIX a minimum of 8 words is saved to the parameter save area.
7173  const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7174  // Area that is at least reserved in the caller of this function.
7175  unsigned CallerReservedArea =
7176      std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7177
7178  // Set the size that is at least reserved in caller of this function. Tail
7179  // call optimized function's reserved stack space needs to be aligned so
7180  // that taking the difference between two stack areas will result in an
7181  // aligned stack.
7182  CallerReservedArea =
7183      EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7184  FuncInfo->setMinReservedArea(CallerReservedArea);
7185
7186  if (isVarArg) {
7187    FuncInfo->setVarArgsFrameIndex(
7188        MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7189    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7190
7191    static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7192                                       PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7193
7194    static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7195                                       PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7196    const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32);
7197
7198    // The fixed integer arguments of a variadic function are stored to the
7199    // VarArgsFrameIndex on the stack so that they may be loaded by
7200    // dereferencing the result of va_next.
7201    for (unsigned GPRIndex =
7202             (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7203         GPRIndex < NumGPArgRegs; ++GPRIndex) {
7204
7205      const Register VReg =
7206          IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7207                  : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7208
7209      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7210      SDValue Store =
7211          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7212      MemOps.push_back(Store);
7213      // Increment the address for the next argument to store.
7214      SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7215      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7216    }
7217  }
7218
7219  if (!MemOps.empty())
7220    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7221
7222  return Chain;
7223}
7224
7225SDValue PPCTargetLowering::LowerCall_AIX(
7226    SDValue Chain, SDValue Callee, CallFlags CFlags,
7227    const SmallVectorImpl<ISD::OutputArg> &Outs,
7228    const SmallVectorImpl<SDValue> &OutVals,
7229    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7230    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7231    const CallBase *CB) const {
7232  // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7233  // AIX ABI stack frame layout.
7234
7235  assert((CFlags.CallConv == CallingConv::C ||
7236          CFlags.CallConv == CallingConv::Cold ||
7237          CFlags.CallConv == CallingConv::Fast) &&
7238         "Unexpected calling convention!");
7239
7240  if (CFlags.IsPatchPoint)
7241    report_fatal_error("This call type is unimplemented on AIX.");
7242
7243  const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
7244
7245  MachineFunction &MF = DAG.getMachineFunction();
7246  SmallVector<CCValAssign, 16> ArgLocs;
7247  AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7248                    *DAG.getContext());
7249
7250  // Reserve space for the linkage save area (LSA) on the stack.
7251  // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7252  //   [SP][CR][LR][2 x reserved][TOC].
7253  // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7254  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7255  const bool IsPPC64 = Subtarget.isPPC64();
7256  const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7257  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7258  CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7259  CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7260
7261  // The prolog code of the callee may store up to 8 GPR argument registers to
7262  // the stack, allowing va_start to index over them in memory if the callee
7263  // is variadic.
7264  // Because we cannot tell if this is needed on the caller side, we have to
7265  // conservatively assume that it is needed.  As such, make sure we have at
7266  // least enough stack space for the caller to store the 8 GPRs.
7267  const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7268  const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7269                                     CCInfo.getNextStackOffset());
7270
7271  // Adjust the stack pointer for the new arguments...
7272  // These operations are automatically eliminated by the prolog/epilog pass.
7273  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7274  SDValue CallSeqStart = Chain;
7275
7276  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7277  SmallVector<SDValue, 8> MemOpChains;
7278
7279  // Set up a copy of the stack pointer for loading and storing any
7280  // arguments that may not fit in the registers available for argument
7281  // passing.
7282  const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7283                                   : DAG.getRegister(PPC::R1, MVT::i32);
7284
7285  for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7286    const unsigned ValNo = ArgLocs[I].getValNo();
7287    SDValue Arg = OutVals[ValNo];
7288    ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7289
7290    if (Flags.isByVal()) {
7291      const unsigned ByValSize = Flags.getByValSize();
7292
7293      // Nothing to do for zero-sized ByVals on the caller side.
7294      if (!ByValSize) {
7295        ++I;
7296        continue;
7297      }
7298
7299      auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7300        return DAG.getExtLoad(
7301            ISD::ZEXTLOAD, dl, PtrVT, Chain,
7302            (LoadOffset != 0)
7303                ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7304                : Arg,
7305            MachinePointerInfo(), VT);
7306      };
7307
7308      unsigned LoadOffset = 0;
7309
7310      // Initialize registers, which are fully occupied by the by-val argument.
7311      while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7312        SDValue Load = GetLoad(PtrVT, LoadOffset);
7313        MemOpChains.push_back(Load.getValue(1));
7314        LoadOffset += PtrByteSize;
7315        const CCValAssign &ByValVA = ArgLocs[I++];
7316        assert(ByValVA.getValNo() == ValNo &&
7317               "Unexpected location for pass-by-value argument.");
7318        RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7319      }
7320
7321      if (LoadOffset == ByValSize)
7322        continue;
7323
7324      // There must be one more loc to handle the remainder.
7325      assert(ArgLocs[I].getValNo() == ValNo &&
7326             "Expected additional location for by-value argument.");
7327
7328      if (ArgLocs[I].isMemLoc()) {
7329        assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7330        const CCValAssign &ByValVA = ArgLocs[I++];
7331        ISD::ArgFlagsTy MemcpyFlags = Flags;
7332        // Only memcpy the bytes that don't pass in register.
7333        MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7334        Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7335            (LoadOffset != 0)
7336                ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7337                : Arg,
7338            DAG.getObjectPtrOffset(dl, StackPtr,
7339                                   TypeSize::Fixed(ByValVA.getLocMemOffset())),
7340            CallSeqStart, MemcpyFlags, DAG, dl);
7341        continue;
7342      }
7343
7344      // Initialize the final register residue.
7345      // Any residue that occupies the final by-val arg register must be
7346      // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7347      // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7348      // 2 and 1 byte loads.
7349      const unsigned ResidueBytes = ByValSize % PtrByteSize;
7350      assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7351             "Unexpected register residue for by-value argument.");
7352      SDValue ResidueVal;
7353      for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7354        const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7355        const MVT VT =
7356            N == 1 ? MVT::i8
7357                   : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7358        SDValue Load = GetLoad(VT, LoadOffset);
7359        MemOpChains.push_back(Load.getValue(1));
7360        LoadOffset += N;
7361        Bytes += N;
7362
7363        // By-val arguments are passed left-justfied in register.
7364        // Every load here needs to be shifted, otherwise a full register load
7365        // should have been used.
7366        assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7367               "Unexpected load emitted during handling of pass-by-value "
7368               "argument.");
7369        unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7370        EVT ShiftAmountTy =
7371            getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7372        SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7373        SDValue ShiftedLoad =
7374            DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7375        ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7376                                              ShiftedLoad)
7377                                : ShiftedLoad;
7378      }
7379
7380      const CCValAssign &ByValVA = ArgLocs[I++];
7381      RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7382      continue;
7383    }
7384
7385    CCValAssign &VA = ArgLocs[I++];
7386    const MVT LocVT = VA.getLocVT();
7387    const MVT ValVT = VA.getValVT();
7388
7389    switch (VA.getLocInfo()) {
7390    default:
7391      report_fatal_error("Unexpected argument extension type.");
7392    case CCValAssign::Full:
7393      break;
7394    case CCValAssign::ZExt:
7395      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7396      break;
7397    case CCValAssign::SExt:
7398      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7399      break;
7400    }
7401
7402    if (VA.isRegLoc() && !VA.needsCustom()) {
7403      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7404      continue;
7405    }
7406
7407    // Vector arguments passed to VarArg functions need custom handling when
7408    // they are passed (at least partially) in GPRs.
7409    if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7410      assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7411      // Store value to its stack slot.
7412      SDValue PtrOff =
7413          DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7414      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7415      SDValue Store =
7416          DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7417      MemOpChains.push_back(Store);
7418      const unsigned OriginalValNo = VA.getValNo();
7419      // Then load the GPRs from the stack
7420      unsigned LoadOffset = 0;
7421      auto HandleCustomVecRegLoc = [&]() {
7422        assert(I != E && "Unexpected end of CCvalAssigns.");
7423        assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7424               "Expected custom RegLoc.");
7425        CCValAssign RegVA = ArgLocs[I++];
7426        assert(RegVA.getValNo() == OriginalValNo &&
7427               "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7428        SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7429                                  DAG.getConstant(LoadOffset, dl, PtrVT));
7430        SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7431        MemOpChains.push_back(Load.getValue(1));
7432        RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7433        LoadOffset += PtrByteSize;
7434      };
7435
7436      // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7437      // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7438      // R10.
7439      HandleCustomVecRegLoc();
7440      HandleCustomVecRegLoc();
7441
7442      if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7443          ArgLocs[I].getValNo() == OriginalValNo) {
7444        assert(!IsPPC64 &&
7445               "Only 2 custom RegLocs expected for 64-bit codegen.");
7446        HandleCustomVecRegLoc();
7447        HandleCustomVecRegLoc();
7448      }
7449
7450      continue;
7451    }
7452
7453    if (VA.isMemLoc()) {
7454      SDValue PtrOff =
7455          DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7456      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7457      MemOpChains.push_back(
7458          DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7459
7460      continue;
7461    }
7462
7463    if (!ValVT.isFloatingPoint())
7464      report_fatal_error(
7465          "Unexpected register handling for calling convention.");
7466
7467    // Custom handling is used for GPR initializations for vararg float
7468    // arguments.
7469    assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7470           LocVT.isInteger() &&
7471           "Custom register handling only expected for VarArg.");
7472
7473    SDValue ArgAsInt =
7474        DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7475
7476    if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7477      // f32 in 32-bit GPR
7478      // f64 in 64-bit GPR
7479      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7480    else if (Arg.getValueType().getFixedSizeInBits() <
7481             LocVT.getFixedSizeInBits())
7482      // f32 in 64-bit GPR.
7483      RegsToPass.push_back(std::make_pair(
7484          VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7485    else {
7486      // f64 in two 32-bit GPRs
7487      // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7488      assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7489             "Unexpected custom register for argument!");
7490      CCValAssign &GPR1 = VA;
7491      SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7492                                     DAG.getConstant(32, dl, MVT::i8));
7493      RegsToPass.push_back(std::make_pair(
7494          GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7495
7496      if (I != E) {
7497        // If only 1 GPR was available, there will only be one custom GPR and
7498        // the argument will also pass in memory.
7499        CCValAssign &PeekArg = ArgLocs[I];
7500        if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7501          assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7502          CCValAssign &GPR2 = ArgLocs[I++];
7503          RegsToPass.push_back(std::make_pair(
7504              GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7505        }
7506      }
7507    }
7508  }
7509
7510  if (!MemOpChains.empty())
7511    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7512
7513  // For indirect calls, we need to save the TOC base to the stack for
7514  // restoration after the call.
7515  if (CFlags.IsIndirect) {
7516    assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7517    const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7518    const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7519    const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7520    const unsigned TOCSaveOffset =
7521        Subtarget.getFrameLowering()->getTOCSaveOffset();
7522
7523    setUsesTOCBasePtr(DAG);
7524    SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7525    SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7526    SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7527    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7528    Chain = DAG.getStore(
7529        Val.getValue(1), dl, Val, AddPtr,
7530        MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7531  }
7532
7533  // Build a sequence of copy-to-reg nodes chained together with token chain
7534  // and flag operands which copy the outgoing args into the appropriate regs.
7535  SDValue InFlag;
7536  for (auto Reg : RegsToPass) {
7537    Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7538    InFlag = Chain.getValue(1);
7539  }
7540
7541  const int SPDiff = 0;
7542  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7543                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
7544}
7545
7546bool
7547PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7548                                  MachineFunction &MF, bool isVarArg,
7549                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
7550                                  LLVMContext &Context) const {
7551  SmallVector<CCValAssign, 16> RVLocs;
7552  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7553  return CCInfo.CheckReturn(
7554      Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7555                ? RetCC_PPC_Cold
7556                : RetCC_PPC);
7557}
7558
7559SDValue
7560PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7561                               bool isVarArg,
7562                               const SmallVectorImpl<ISD::OutputArg> &Outs,
7563                               const SmallVectorImpl<SDValue> &OutVals,
7564                               const SDLoc &dl, SelectionDAG &DAG) const {
7565  SmallVector<CCValAssign, 16> RVLocs;
7566  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7567                 *DAG.getContext());
7568  CCInfo.AnalyzeReturn(Outs,
7569                       (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7570                           ? RetCC_PPC_Cold
7571                           : RetCC_PPC);
7572
7573  SDValue Flag;
7574  SmallVector<SDValue, 4> RetOps(1, Chain);
7575
7576  // Copy the result values into the output registers.
7577  for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7578    CCValAssign &VA = RVLocs[i];
7579    assert(VA.isRegLoc() && "Can only return in registers!");
7580
7581    SDValue Arg = OutVals[RealResIdx];
7582
7583    switch (VA.getLocInfo()) {
7584    default: llvm_unreachable("Unknown loc info!");
7585    case CCValAssign::Full: break;
7586    case CCValAssign::AExt:
7587      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7588      break;
7589    case CCValAssign::ZExt:
7590      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7591      break;
7592    case CCValAssign::SExt:
7593      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7594      break;
7595    }
7596    if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7597      bool isLittleEndian = Subtarget.isLittleEndian();
7598      // Legalize ret f64 -> ret 2 x i32.
7599      SDValue SVal =
7600          DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7601                      DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7602      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7603      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7604      SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7605                         DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7606      Flag = Chain.getValue(1);
7607      VA = RVLocs[++i]; // skip ahead to next loc
7608      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7609    } else
7610      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7611    Flag = Chain.getValue(1);
7612    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7613  }
7614
7615  RetOps[0] = Chain;  // Update chain.
7616
7617  // Add the flag if we have it.
7618  if (Flag.getNode())
7619    RetOps.push_back(Flag);
7620
7621  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7622}
7623
7624SDValue
7625PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7626                                                SelectionDAG &DAG) const {
7627  SDLoc dl(Op);
7628
7629  // Get the correct type for integers.
7630  EVT IntVT = Op.getValueType();
7631
7632  // Get the inputs.
7633  SDValue Chain = Op.getOperand(0);
7634  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7635  // Build a DYNAREAOFFSET node.
7636  SDValue Ops[2] = {Chain, FPSIdx};
7637  SDVTList VTs = DAG.getVTList(IntVT);
7638  return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7639}
7640
7641SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7642                                             SelectionDAG &DAG) const {
7643  // When we pop the dynamic allocation we need to restore the SP link.
7644  SDLoc dl(Op);
7645
7646  // Get the correct type for pointers.
7647  EVT PtrVT = getPointerTy(DAG.getDataLayout());
7648
7649  // Construct the stack pointer operand.
7650  bool isPPC64 = Subtarget.isPPC64();
7651  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7652  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7653
7654  // Get the operands for the STACKRESTORE.
7655  SDValue Chain = Op.getOperand(0);
7656  SDValue SaveSP = Op.getOperand(1);
7657
7658  // Load the old link SP.
7659  SDValue LoadLinkSP =
7660      DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7661
7662  // Restore the stack pointer.
7663  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7664
7665  // Store the old link SP.
7666  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7667}
7668
7669SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7670  MachineFunction &MF = DAG.getMachineFunction();
7671  bool isPPC64 = Subtarget.isPPC64();
7672  EVT PtrVT = getPointerTy(MF.getDataLayout());
7673
7674  // Get current frame pointer save index.  The users of this index will be
7675  // primarily DYNALLOC instructions.
7676  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7677  int RASI = FI->getReturnAddrSaveIndex();
7678
7679  // If the frame pointer save index hasn't been defined yet.
7680  if (!RASI) {
7681    // Find out what the fix offset of the frame pointer save area.
7682    int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7683    // Allocate the frame index for frame pointer save area.
7684    RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7685    // Save the result.
7686    FI->setReturnAddrSaveIndex(RASI);
7687  }
7688  return DAG.getFrameIndex(RASI, PtrVT);
7689}
7690
7691SDValue
7692PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7693  MachineFunction &MF = DAG.getMachineFunction();
7694  bool isPPC64 = Subtarget.isPPC64();
7695  EVT PtrVT = getPointerTy(MF.getDataLayout());
7696
7697  // Get current frame pointer save index.  The users of this index will be
7698  // primarily DYNALLOC instructions.
7699  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7700  int FPSI = FI->getFramePointerSaveIndex();
7701
7702  // If the frame pointer save index hasn't been defined yet.
7703  if (!FPSI) {
7704    // Find out what the fix offset of the frame pointer save area.
7705    int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7706    // Allocate the frame index for frame pointer save area.
7707    FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7708    // Save the result.
7709    FI->setFramePointerSaveIndex(FPSI);
7710  }
7711  return DAG.getFrameIndex(FPSI, PtrVT);
7712}
7713
7714SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7715                                                   SelectionDAG &DAG) const {
7716  MachineFunction &MF = DAG.getMachineFunction();
7717  // Get the inputs.
7718  SDValue Chain = Op.getOperand(0);
7719  SDValue Size  = Op.getOperand(1);
7720  SDLoc dl(Op);
7721
7722  // Get the correct type for pointers.
7723  EVT PtrVT = getPointerTy(DAG.getDataLayout());
7724  // Negate the size.
7725  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7726                                DAG.getConstant(0, dl, PtrVT), Size);
7727  // Construct a node for the frame pointer save index.
7728  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7729  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7730  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7731  if (hasInlineStackProbe(MF))
7732    return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7733  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7734}
7735
7736SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7737                                                     SelectionDAG &DAG) const {
7738  MachineFunction &MF = DAG.getMachineFunction();
7739
7740  bool isPPC64 = Subtarget.isPPC64();
7741  EVT PtrVT = getPointerTy(DAG.getDataLayout());
7742
7743  int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7744  return DAG.getFrameIndex(FI, PtrVT);
7745}
7746
7747SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7748                                               SelectionDAG &DAG) const {
7749  SDLoc DL(Op);
7750  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7751                     DAG.getVTList(MVT::i32, MVT::Other),
7752                     Op.getOperand(0), Op.getOperand(1));
7753}
7754
7755SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7756                                                SelectionDAG &DAG) const {
7757  SDLoc DL(Op);
7758  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7759                     Op.getOperand(0), Op.getOperand(1));
7760}
7761
7762SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7763  if (Op.getValueType().isVector())
7764    return LowerVectorLoad(Op, DAG);
7765
7766  assert(Op.getValueType() == MVT::i1 &&
7767         "Custom lowering only for i1 loads");
7768
7769  // First, load 8 bits into 32 bits, then truncate to 1 bit.
7770
7771  SDLoc dl(Op);
7772  LoadSDNode *LD = cast<LoadSDNode>(Op);
7773
7774  SDValue Chain = LD->getChain();
7775  SDValue BasePtr = LD->getBasePtr();
7776  MachineMemOperand *MMO = LD->getMemOperand();
7777
7778  SDValue NewLD =
7779      DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7780                     BasePtr, MVT::i8, MMO);
7781  SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7782
7783  SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7784  return DAG.getMergeValues(Ops, dl);
7785}
7786
7787SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7788  if (Op.getOperand(1).getValueType().isVector())
7789    return LowerVectorStore(Op, DAG);
7790
7791  assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7792         "Custom lowering only for i1 stores");
7793
7794  // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7795
7796  SDLoc dl(Op);
7797  StoreSDNode *ST = cast<StoreSDNode>(Op);
7798
7799  SDValue Chain = ST->getChain();
7800  SDValue BasePtr = ST->getBasePtr();
7801  SDValue Value = ST->getValue();
7802  MachineMemOperand *MMO = ST->getMemOperand();
7803
7804  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7805                      Value);
7806  return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7807}
7808
7809// FIXME: Remove this once the ANDI glue bug is fixed:
7810SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7811  assert(Op.getValueType() == MVT::i1 &&
7812         "Custom lowering only for i1 results");
7813
7814  SDLoc DL(Op);
7815  return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7816}
7817
7818SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7819                                               SelectionDAG &DAG) const {
7820
7821  // Implements a vector truncate that fits in a vector register as a shuffle.
7822  // We want to legalize vector truncates down to where the source fits in
7823  // a vector register (and target is therefore smaller than vector register
7824  // size).  At that point legalization will try to custom lower the sub-legal
7825  // result and get here - where we can contain the truncate as a single target
7826  // operation.
7827
7828  // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7829  //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7830  //
7831  // We will implement it for big-endian ordering as this (where x denotes
7832  // undefined):
7833  //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7834  //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7835  //
7836  // The same operation in little-endian ordering will be:
7837  //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7838  //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7839
7840  EVT TrgVT = Op.getValueType();
7841  assert(TrgVT.isVector() && "Vector type expected.");
7842  unsigned TrgNumElts = TrgVT.getVectorNumElements();
7843  EVT EltVT = TrgVT.getVectorElementType();
7844  if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7845      TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7846      !isPowerOf2_32(EltVT.getSizeInBits()))
7847    return SDValue();
7848
7849  SDValue N1 = Op.getOperand(0);
7850  EVT SrcVT = N1.getValueType();
7851  unsigned SrcSize = SrcVT.getSizeInBits();
7852  if (SrcSize > 256 ||
7853      !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7854      !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7855    return SDValue();
7856  if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7857    return SDValue();
7858
7859  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7860  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7861
7862  SDLoc DL(Op);
7863  SDValue Op1, Op2;
7864  if (SrcSize == 256) {
7865    EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7866    EVT SplitVT =
7867        N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7868    unsigned SplitNumElts = SplitVT.getVectorNumElements();
7869    Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7870                      DAG.getConstant(0, DL, VecIdxTy));
7871    Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7872                      DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7873  }
7874  else {
7875    Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7876    Op2 = DAG.getUNDEF(WideVT);
7877  }
7878
7879  // First list the elements we want to keep.
7880  unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7881  SmallVector<int, 16> ShuffV;
7882  if (Subtarget.isLittleEndian())
7883    for (unsigned i = 0; i < TrgNumElts; ++i)
7884      ShuffV.push_back(i * SizeMult);
7885  else
7886    for (unsigned i = 1; i <= TrgNumElts; ++i)
7887      ShuffV.push_back(i * SizeMult - 1);
7888
7889  // Populate the remaining elements with undefs.
7890  for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7891    // ShuffV.push_back(i + WideNumElts);
7892    ShuffV.push_back(WideNumElts + 1);
7893
7894  Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7895  Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7896  return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7897}
7898
7899/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7900/// possible.
7901SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7902  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7903  EVT ResVT = Op.getValueType();
7904  EVT CmpVT = Op.getOperand(0).getValueType();
7905  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7906  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7907  SDLoc dl(Op);
7908
7909  // Without power9-vector, we don't have native instruction for f128 comparison.
7910  // Following transformation to libcall is needed for setcc:
7911  // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7912  if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7913    SDValue Z = DAG.getSetCC(
7914        dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7915        LHS, RHS, CC);
7916    SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7917    return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7918  }
7919
7920  // Not FP, or using SPE? Not a fsel.
7921  if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7922      Subtarget.hasSPE())
7923    return Op;
7924
7925  SDNodeFlags Flags = Op.getNode()->getFlags();
7926
7927  // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the
7928  // presence of infinities.
7929  if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7930    switch (CC) {
7931    default:
7932      break;
7933    case ISD::SETOGT:
7934    case ISD::SETGT:
7935      return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS);
7936    case ISD::SETOLT:
7937    case ISD::SETLT:
7938      return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS);
7939    }
7940  }
7941
7942  // We might be able to do better than this under some circumstances, but in
7943  // general, fsel-based lowering of select is a finite-math-only optimization.
7944  // For more information, see section F.3 of the 2.06 ISA specification.
7945  // With ISA 3.0
7946  if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7947      (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7948    return Op;
7949
7950  // If the RHS of the comparison is a 0.0, we don't need to do the
7951  // subtraction at all.
7952  SDValue Sel1;
7953  if (isFloatingPointZero(RHS))
7954    switch (CC) {
7955    default: break;       // SETUO etc aren't handled by fsel.
7956    case ISD::SETNE:
7957      std::swap(TV, FV);
7958      [[fallthrough]];
7959    case ISD::SETEQ:
7960      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7961        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7962      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7963      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7964        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7965      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7966                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7967    case ISD::SETULT:
7968    case ISD::SETLT:
7969      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7970      [[fallthrough]];
7971    case ISD::SETOGE:
7972    case ISD::SETGE:
7973      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7974        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7975      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7976    case ISD::SETUGT:
7977    case ISD::SETGT:
7978      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7979      [[fallthrough]];
7980    case ISD::SETOLE:
7981    case ISD::SETLE:
7982      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7983        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7984      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7985                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7986    }
7987
7988  SDValue Cmp;
7989  switch (CC) {
7990  default: break;       // SETUO etc aren't handled by fsel.
7991  case ISD::SETNE:
7992    std::swap(TV, FV);
7993    [[fallthrough]];
7994  case ISD::SETEQ:
7995    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7996    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7997      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7998    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7999    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8000      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8001    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8002                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8003  case ISD::SETULT:
8004  case ISD::SETLT:
8005    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8006    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8007      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8008    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8009  case ISD::SETOGE:
8010  case ISD::SETGE:
8011    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8012    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8013      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8014    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8015  case ISD::SETUGT:
8016  case ISD::SETGT:
8017    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8018    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8019      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8020    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8021  case ISD::SETOLE:
8022  case ISD::SETLE:
8023    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8024    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8025      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8026    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8027  }
8028  return Op;
8029}
8030
8031static unsigned getPPCStrictOpcode(unsigned Opc) {
8032  switch (Opc) {
8033  default:
8034    llvm_unreachable("No strict version of this opcode!");
8035  case PPCISD::FCTIDZ:
8036    return PPCISD::STRICT_FCTIDZ;
8037  case PPCISD::FCTIWZ:
8038    return PPCISD::STRICT_FCTIWZ;
8039  case PPCISD::FCTIDUZ:
8040    return PPCISD::STRICT_FCTIDUZ;
8041  case PPCISD::FCTIWUZ:
8042    return PPCISD::STRICT_FCTIWUZ;
8043  case PPCISD::FCFID:
8044    return PPCISD::STRICT_FCFID;
8045  case PPCISD::FCFIDU:
8046    return PPCISD::STRICT_FCFIDU;
8047  case PPCISD::FCFIDS:
8048    return PPCISD::STRICT_FCFIDS;
8049  case PPCISD::FCFIDUS:
8050    return PPCISD::STRICT_FCFIDUS;
8051  }
8052}
8053
8054static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8055                              const PPCSubtarget &Subtarget) {
8056  SDLoc dl(Op);
8057  bool IsStrict = Op->isStrictFPOpcode();
8058  bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8059                  Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8060
8061  // TODO: Any other flags to propagate?
8062  SDNodeFlags Flags;
8063  Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8064
8065  // For strict nodes, source is the second operand.
8066  SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8067  SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8068  assert(Src.getValueType().isFloatingPoint());
8069  if (Src.getValueType() == MVT::f32) {
8070    if (IsStrict) {
8071      Src =
8072          DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8073                      DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8074      Chain = Src.getValue(1);
8075    } else
8076      Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8077  }
8078  SDValue Conv;
8079  unsigned Opc = ISD::DELETED_NODE;
8080  switch (Op.getSimpleValueType().SimpleTy) {
8081  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8082  case MVT::i32:
8083    Opc = IsSigned ? PPCISD::FCTIWZ
8084                   : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8085    break;
8086  case MVT::i64:
8087    assert((IsSigned || Subtarget.hasFPCVT()) &&
8088           "i64 FP_TO_UINT is supported only with FPCVT");
8089    Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8090  }
8091  if (IsStrict) {
8092    Opc = getPPCStrictOpcode(Opc);
8093    Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8094                       {Chain, Src}, Flags);
8095  } else {
8096    Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8097  }
8098  return Conv;
8099}
8100
8101void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8102                                               SelectionDAG &DAG,
8103                                               const SDLoc &dl) const {
8104  SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8105  bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8106                  Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8107  bool IsStrict = Op->isStrictFPOpcode();
8108
8109  // Convert the FP value to an int value through memory.
8110  bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8111                  (IsSigned || Subtarget.hasFPCVT());
8112  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8113  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8114  MachinePointerInfo MPI =
8115      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8116
8117  // Emit a store to the stack slot.
8118  SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8119  Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8120  if (i32Stack) {
8121    MachineFunction &MF = DAG.getMachineFunction();
8122    Alignment = Align(4);
8123    MachineMemOperand *MMO =
8124        MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8125    SDValue Ops[] = { Chain, Tmp, FIPtr };
8126    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8127              DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8128  } else
8129    Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8130
8131  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8132  // add in a bias on big endian.
8133  if (Op.getValueType() == MVT::i32 && !i32Stack) {
8134    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8135                        DAG.getConstant(4, dl, FIPtr.getValueType()));
8136    MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8137  }
8138
8139  RLI.Chain = Chain;
8140  RLI.Ptr = FIPtr;
8141  RLI.MPI = MPI;
8142  RLI.Alignment = Alignment;
8143}
8144
8145/// Custom lowers floating point to integer conversions to use
8146/// the direct move instructions available in ISA 2.07 to avoid the
8147/// need for load/store combinations.
8148SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8149                                                    SelectionDAG &DAG,
8150                                                    const SDLoc &dl) const {
8151  SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8152  SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8153  if (Op->isStrictFPOpcode())
8154    return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8155  else
8156    return Mov;
8157}
8158
8159SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8160                                          const SDLoc &dl) const {
8161  bool IsStrict = Op->isStrictFPOpcode();
8162  bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8163                  Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8164  SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8165  EVT SrcVT = Src.getValueType();
8166  EVT DstVT = Op.getValueType();
8167
8168  // FP to INT conversions are legal for f128.
8169  if (SrcVT == MVT::f128)
8170    return Subtarget.hasP9Vector() ? Op : SDValue();
8171
8172  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8173  // PPC (the libcall is not available).
8174  if (SrcVT == MVT::ppcf128) {
8175    if (DstVT == MVT::i32) {
8176      // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8177      // set other fast-math flags to FP operations in both strict and
8178      // non-strict cases. (FP_TO_SINT, FSUB)
8179      SDNodeFlags Flags;
8180      Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8181
8182      if (IsSigned) {
8183        SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8184                                 DAG.getIntPtrConstant(0, dl));
8185        SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8186                                 DAG.getIntPtrConstant(1, dl));
8187
8188        // Add the two halves of the long double in round-to-zero mode, and use
8189        // a smaller FP_TO_SINT.
8190        if (IsStrict) {
8191          SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8192                                    DAG.getVTList(MVT::f64, MVT::Other),
8193                                    {Op.getOperand(0), Lo, Hi}, Flags);
8194          return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8195                             DAG.getVTList(MVT::i32, MVT::Other),
8196                             {Res.getValue(1), Res}, Flags);
8197        } else {
8198          SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8199          return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8200        }
8201      } else {
8202        const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8203        APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8204        SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8205        SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8206        if (IsStrict) {
8207          // Sel = Src < 0x80000000
8208          // FltOfs = select Sel, 0.0, 0x80000000
8209          // IntOfs = select Sel, 0, 0x80000000
8210          // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8211          SDValue Chain = Op.getOperand(0);
8212          EVT SetCCVT =
8213              getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8214          EVT DstSetCCVT =
8215              getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8216          SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8217                                     Chain, true);
8218          Chain = Sel.getValue(1);
8219
8220          SDValue FltOfs = DAG.getSelect(
8221              dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8222          Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8223
8224          SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8225                                    DAG.getVTList(SrcVT, MVT::Other),
8226                                    {Chain, Src, FltOfs}, Flags);
8227          Chain = Val.getValue(1);
8228          SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8229                                     DAG.getVTList(DstVT, MVT::Other),
8230                                     {Chain, Val}, Flags);
8231          Chain = SInt.getValue(1);
8232          SDValue IntOfs = DAG.getSelect(
8233              dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8234          SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8235          return DAG.getMergeValues({Result, Chain}, dl);
8236        } else {
8237          // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8238          // FIXME: generated code sucks.
8239          SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8240          True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8241          True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8242          SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8243          return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8244        }
8245      }
8246    }
8247
8248    return SDValue();
8249  }
8250
8251  if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8252    return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8253
8254  ReuseLoadInfo RLI;
8255  LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8256
8257  return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8258                     RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8259}
8260
8261// We're trying to insert a regular store, S, and then a load, L. If the
8262// incoming value, O, is a load, we might just be able to have our load use the
8263// address used by O. However, we don't know if anything else will store to
8264// that address before we can load from it. To prevent this situation, we need
8265// to insert our load, L, into the chain as a peer of O. To do this, we give L
8266// the same chain operand as O, we create a token factor from the chain results
8267// of O and L, and we replace all uses of O's chain result with that token
8268// factor (see spliceIntoChain below for this last part).
8269bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8270                                            ReuseLoadInfo &RLI,
8271                                            SelectionDAG &DAG,
8272                                            ISD::LoadExtType ET) const {
8273  // Conservatively skip reusing for constrained FP nodes.
8274  if (Op->isStrictFPOpcode())
8275    return false;
8276
8277  SDLoc dl(Op);
8278  bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8279                       (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8280  if (ET == ISD::NON_EXTLOAD &&
8281      (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8282      isOperationLegalOrCustom(Op.getOpcode(),
8283                               Op.getOperand(0).getValueType())) {
8284
8285    LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8286    return true;
8287  }
8288
8289  LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8290  if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8291      LD->isNonTemporal())
8292    return false;
8293  if (LD->getMemoryVT() != MemVT)
8294    return false;
8295
8296  // If the result of the load is an illegal type, then we can't build a
8297  // valid chain for reuse since the legalised loads and token factor node that
8298  // ties the legalised loads together uses a different output chain then the
8299  // illegal load.
8300  if (!isTypeLegal(LD->getValueType(0)))
8301    return false;
8302
8303  RLI.Ptr = LD->getBasePtr();
8304  if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8305    assert(LD->getAddressingMode() == ISD::PRE_INC &&
8306           "Non-pre-inc AM on PPC?");
8307    RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8308                          LD->getOffset());
8309  }
8310
8311  RLI.Chain = LD->getChain();
8312  RLI.MPI = LD->getPointerInfo();
8313  RLI.IsDereferenceable = LD->isDereferenceable();
8314  RLI.IsInvariant = LD->isInvariant();
8315  RLI.Alignment = LD->getAlign();
8316  RLI.AAInfo = LD->getAAInfo();
8317  RLI.Ranges = LD->getRanges();
8318
8319  RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8320  return true;
8321}
8322
8323// Given the head of the old chain, ResChain, insert a token factor containing
8324// it and NewResChain, and make users of ResChain now be users of that token
8325// factor.
8326// TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8327void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8328                                        SDValue NewResChain,
8329                                        SelectionDAG &DAG) const {
8330  if (!ResChain)
8331    return;
8332
8333  SDLoc dl(NewResChain);
8334
8335  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8336                           NewResChain, DAG.getUNDEF(MVT::Other));
8337  assert(TF.getNode() != NewResChain.getNode() &&
8338         "A new TF really is required here");
8339
8340  DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8341  DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8342}
8343
8344/// Analyze profitability of direct move
8345/// prefer float load to int load plus direct move
8346/// when there is no integer use of int load
8347bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8348  SDNode *Origin = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0).getNode();
8349  if (Origin->getOpcode() != ISD::LOAD)
8350    return true;
8351
8352  // If there is no LXSIBZX/LXSIHZX, like Power8,
8353  // prefer direct move if the memory size is 1 or 2 bytes.
8354  MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8355  if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8356    return true;
8357
8358  for (SDNode::use_iterator UI = Origin->use_begin(),
8359                            UE = Origin->use_end();
8360       UI != UE; ++UI) {
8361
8362    // Only look at the users of the loaded value.
8363    if (UI.getUse().get().getResNo() != 0)
8364      continue;
8365
8366    if (UI->getOpcode() != ISD::SINT_TO_FP &&
8367        UI->getOpcode() != ISD::UINT_TO_FP &&
8368        UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8369        UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8370      return true;
8371  }
8372
8373  return false;
8374}
8375
8376static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8377                              const PPCSubtarget &Subtarget,
8378                              SDValue Chain = SDValue()) {
8379  bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8380                  Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8381  SDLoc dl(Op);
8382
8383  // TODO: Any other flags to propagate?
8384  SDNodeFlags Flags;
8385  Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8386
8387  // If we have FCFIDS, then use it when converting to single-precision.
8388  // Otherwise, convert to double-precision and then round.
8389  bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8390  unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8391                              : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8392  EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8393  if (Op->isStrictFPOpcode()) {
8394    if (!Chain)
8395      Chain = Op.getOperand(0);
8396    return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8397                       DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8398  } else
8399    return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8400}
8401
8402/// Custom lowers integer to floating point conversions to use
8403/// the direct move instructions available in ISA 2.07 to avoid the
8404/// need for load/store combinations.
8405SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8406                                                    SelectionDAG &DAG,
8407                                                    const SDLoc &dl) const {
8408  assert((Op.getValueType() == MVT::f32 ||
8409          Op.getValueType() == MVT::f64) &&
8410         "Invalid floating point type as target of conversion");
8411  assert(Subtarget.hasFPCVT() &&
8412         "Int to FP conversions with direct moves require FPCVT");
8413  SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8414  bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8415  bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8416                Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8417  unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8418  SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8419  return convertIntToFP(Op, Mov, DAG, Subtarget);
8420}
8421
8422static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8423
8424  EVT VecVT = Vec.getValueType();
8425  assert(VecVT.isVector() && "Expected a vector type.");
8426  assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8427
8428  EVT EltVT = VecVT.getVectorElementType();
8429  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8430  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8431
8432  unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8433  SmallVector<SDValue, 16> Ops(NumConcat);
8434  Ops[0] = Vec;
8435  SDValue UndefVec = DAG.getUNDEF(VecVT);
8436  for (unsigned i = 1; i < NumConcat; ++i)
8437    Ops[i] = UndefVec;
8438
8439  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8440}
8441
8442SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8443                                                const SDLoc &dl) const {
8444  bool IsStrict = Op->isStrictFPOpcode();
8445  unsigned Opc = Op.getOpcode();
8446  SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8447  assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8448          Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8449         "Unexpected conversion type");
8450  assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8451         "Supports conversions to v2f64/v4f32 only.");
8452
8453  // TODO: Any other flags to propagate?
8454  SDNodeFlags Flags;
8455  Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8456
8457  bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8458  bool FourEltRes = Op.getValueType() == MVT::v4f32;
8459
8460  SDValue Wide = widenVec(DAG, Src, dl);
8461  EVT WideVT = Wide.getValueType();
8462  unsigned WideNumElts = WideVT.getVectorNumElements();
8463  MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8464
8465  SmallVector<int, 16> ShuffV;
8466  for (unsigned i = 0; i < WideNumElts; ++i)
8467    ShuffV.push_back(i + WideNumElts);
8468
8469  int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8470  int SaveElts = FourEltRes ? 4 : 2;
8471  if (Subtarget.isLittleEndian())
8472    for (int i = 0; i < SaveElts; i++)
8473      ShuffV[i * Stride] = i;
8474  else
8475    for (int i = 1; i <= SaveElts; i++)
8476      ShuffV[i * Stride - 1] = i - 1;
8477
8478  SDValue ShuffleSrc2 =
8479      SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8480  SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8481
8482  SDValue Extend;
8483  if (SignedConv) {
8484    Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8485    EVT ExtVT = Src.getValueType();
8486    if (Subtarget.hasP9Altivec())
8487      ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8488                               IntermediateVT.getVectorNumElements());
8489
8490    Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8491                         DAG.getValueType(ExtVT));
8492  } else
8493    Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8494
8495  if (IsStrict)
8496    return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8497                       {Op.getOperand(0), Extend}, Flags);
8498
8499  return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8500}
8501
8502SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8503                                          SelectionDAG &DAG) const {
8504  SDLoc dl(Op);
8505  bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8506                  Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8507  bool IsStrict = Op->isStrictFPOpcode();
8508  SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8509  SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8510
8511  // TODO: Any other flags to propagate?
8512  SDNodeFlags Flags;
8513  Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8514
8515  EVT InVT = Src.getValueType();
8516  EVT OutVT = Op.getValueType();
8517  if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8518      isOperationCustom(Op.getOpcode(), InVT))
8519    return LowerINT_TO_FPVector(Op, DAG, dl);
8520
8521  // Conversions to f128 are legal.
8522  if (Op.getValueType() == MVT::f128)
8523    return Subtarget.hasP9Vector() ? Op : SDValue();
8524
8525  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8526  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8527    return SDValue();
8528
8529  if (Src.getValueType() == MVT::i1) {
8530    SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8531                              DAG.getConstantFP(1.0, dl, Op.getValueType()),
8532                              DAG.getConstantFP(0.0, dl, Op.getValueType()));
8533    if (IsStrict)
8534      return DAG.getMergeValues({Sel, Chain}, dl);
8535    else
8536      return Sel;
8537  }
8538
8539  // If we have direct moves, we can do all the conversion, skip the store/load
8540  // however, without FPCVT we can't do most conversions.
8541  if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8542      Subtarget.isPPC64() && Subtarget.hasFPCVT())
8543    return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8544
8545  assert((IsSigned || Subtarget.hasFPCVT()) &&
8546         "UINT_TO_FP is supported only with FPCVT");
8547
8548  if (Src.getValueType() == MVT::i64) {
8549    SDValue SINT = Src;
8550    // When converting to single-precision, we actually need to convert
8551    // to double-precision first and then round to single-precision.
8552    // To avoid double-rounding effects during that operation, we have
8553    // to prepare the input operand.  Bits that might be truncated when
8554    // converting to double-precision are replaced by a bit that won't
8555    // be lost at this stage, but is below the single-precision rounding
8556    // position.
8557    //
8558    // However, if -enable-unsafe-fp-math is in effect, accept double
8559    // rounding to avoid the extra overhead.
8560    if (Op.getValueType() == MVT::f32 &&
8561        !Subtarget.hasFPCVT() &&
8562        !DAG.getTarget().Options.UnsafeFPMath) {
8563
8564      // Twiddle input to make sure the low 11 bits are zero.  (If this
8565      // is the case, we are guaranteed the value will fit into the 53 bit
8566      // mantissa of an IEEE double-precision value without rounding.)
8567      // If any of those low 11 bits were not zero originally, make sure
8568      // bit 12 (value 2048) is set instead, so that the final rounding
8569      // to single-precision gets the correct result.
8570      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8571                                  SINT, DAG.getConstant(2047, dl, MVT::i64));
8572      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8573                          Round, DAG.getConstant(2047, dl, MVT::i64));
8574      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8575      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8576                          Round, DAG.getConstant(-2048, dl, MVT::i64));
8577
8578      // However, we cannot use that value unconditionally: if the magnitude
8579      // of the input value is small, the bit-twiddling we did above might
8580      // end up visibly changing the output.  Fortunately, in that case, we
8581      // don't need to twiddle bits since the original input will convert
8582      // exactly to double-precision floating-point already.  Therefore,
8583      // construct a conditional to use the original value if the top 11
8584      // bits are all sign-bit copies, and use the rounded value computed
8585      // above otherwise.
8586      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8587                                 SINT, DAG.getConstant(53, dl, MVT::i32));
8588      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8589                         Cond, DAG.getConstant(1, dl, MVT::i64));
8590      Cond = DAG.getSetCC(
8591          dl,
8592          getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8593          Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8594
8595      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8596    }
8597
8598    ReuseLoadInfo RLI;
8599    SDValue Bits;
8600
8601    MachineFunction &MF = DAG.getMachineFunction();
8602    if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8603      Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8604                         RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8605      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8606    } else if (Subtarget.hasLFIWAX() &&
8607               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8608      MachineMemOperand *MMO =
8609        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8610                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8611      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8612      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8613                                     DAG.getVTList(MVT::f64, MVT::Other),
8614                                     Ops, MVT::i32, MMO);
8615      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8616    } else if (Subtarget.hasFPCVT() &&
8617               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8618      MachineMemOperand *MMO =
8619        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8620                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8621      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8622      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8623                                     DAG.getVTList(MVT::f64, MVT::Other),
8624                                     Ops, MVT::i32, MMO);
8625      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8626    } else if (((Subtarget.hasLFIWAX() &&
8627                 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8628                (Subtarget.hasFPCVT() &&
8629                 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8630               SINT.getOperand(0).getValueType() == MVT::i32) {
8631      MachineFrameInfo &MFI = MF.getFrameInfo();
8632      EVT PtrVT = getPointerTy(DAG.getDataLayout());
8633
8634      int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8635      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8636
8637      SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8638                                   MachinePointerInfo::getFixedStack(
8639                                       DAG.getMachineFunction(), FrameIdx));
8640      Chain = Store;
8641
8642      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8643             "Expected an i32 store");
8644
8645      RLI.Ptr = FIdx;
8646      RLI.Chain = Chain;
8647      RLI.MPI =
8648          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8649      RLI.Alignment = Align(4);
8650
8651      MachineMemOperand *MMO =
8652        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8653                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8654      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8655      Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8656                                     PPCISD::LFIWZX : PPCISD::LFIWAX,
8657                                     dl, DAG.getVTList(MVT::f64, MVT::Other),
8658                                     Ops, MVT::i32, MMO);
8659      Chain = Bits.getValue(1);
8660    } else
8661      Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8662
8663    SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8664    if (IsStrict)
8665      Chain = FP.getValue(1);
8666
8667    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8668      if (IsStrict)
8669        FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8670                         DAG.getVTList(MVT::f32, MVT::Other),
8671                         {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8672      else
8673        FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8674                         DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
8675    }
8676    return FP;
8677  }
8678
8679  assert(Src.getValueType() == MVT::i32 &&
8680         "Unhandled INT_TO_FP type in custom expander!");
8681  // Since we only generate this in 64-bit mode, we can take advantage of
8682  // 64-bit registers.  In particular, sign extend the input value into the
8683  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8684  // then lfd it and fcfid it.
8685  MachineFunction &MF = DAG.getMachineFunction();
8686  MachineFrameInfo &MFI = MF.getFrameInfo();
8687  EVT PtrVT = getPointerTy(MF.getDataLayout());
8688
8689  SDValue Ld;
8690  if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8691    ReuseLoadInfo RLI;
8692    bool ReusingLoad;
8693    if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8694      int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8695      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8696
8697      SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8698                                   MachinePointerInfo::getFixedStack(
8699                                       DAG.getMachineFunction(), FrameIdx));
8700      Chain = Store;
8701
8702      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8703             "Expected an i32 store");
8704
8705      RLI.Ptr = FIdx;
8706      RLI.Chain = Chain;
8707      RLI.MPI =
8708          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8709      RLI.Alignment = Align(4);
8710    }
8711
8712    MachineMemOperand *MMO =
8713      MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8714                              RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8715    SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8716    Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8717                                 DAG.getVTList(MVT::f64, MVT::Other), Ops,
8718                                 MVT::i32, MMO);
8719    Chain = Ld.getValue(1);
8720    if (ReusingLoad)
8721      spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8722  } else {
8723    assert(Subtarget.isPPC64() &&
8724           "i32->FP without LFIWAX supported only on PPC64");
8725
8726    int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8727    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8728
8729    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8730
8731    // STD the extended value into the stack slot.
8732    SDValue Store = DAG.getStore(
8733        Chain, dl, Ext64, FIdx,
8734        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8735    Chain = Store;
8736
8737    // Load the value as a double.
8738    Ld = DAG.getLoad(
8739        MVT::f64, dl, Chain, FIdx,
8740        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8741    Chain = Ld.getValue(1);
8742  }
8743
8744  // FCFID it and return it.
8745  SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8746  if (IsStrict)
8747    Chain = FP.getValue(1);
8748  if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8749    if (IsStrict)
8750      FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8751                       DAG.getVTList(MVT::f32, MVT::Other),
8752                       {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8753    else
8754      FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8755                       DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
8756  }
8757  return FP;
8758}
8759
8760SDValue PPCTargetLowering::LowerGET_ROUNDING(SDValue Op,
8761                                             SelectionDAG &DAG) const {
8762  SDLoc dl(Op);
8763  /*
8764   The rounding mode is in bits 30:31 of FPSR, and has the following
8765   settings:
8766     00 Round to nearest
8767     01 Round to 0
8768     10 Round to +inf
8769     11 Round to -inf
8770
8771  GET_ROUNDING, on the other hand, expects the following:
8772    -1 Undefined
8773     0 Round to 0
8774     1 Round to nearest
8775     2 Round to +inf
8776     3 Round to -inf
8777
8778  To perform the conversion, we do:
8779    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8780  */
8781
8782  MachineFunction &MF = DAG.getMachineFunction();
8783  EVT VT = Op.getValueType();
8784  EVT PtrVT = getPointerTy(MF.getDataLayout());
8785
8786  // Save FP Control Word to register
8787  SDValue Chain = Op.getOperand(0);
8788  SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8789  Chain = MFFS.getValue(1);
8790
8791  SDValue CWD;
8792  if (isTypeLegal(MVT::i64)) {
8793    CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8794                      DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8795  } else {
8796    // Save FP register to stack slot
8797    int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8798    SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8799    Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8800
8801    // Load FP Control Word from low 32 bits of stack slot.
8802    assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8803           "Stack slot adjustment is valid only on big endian subtargets!");
8804    SDValue Four = DAG.getConstant(4, dl, PtrVT);
8805    SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8806    CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8807    Chain = CWD.getValue(1);
8808  }
8809
8810  // Transform as necessary
8811  SDValue CWD1 =
8812    DAG.getNode(ISD::AND, dl, MVT::i32,
8813                CWD, DAG.getConstant(3, dl, MVT::i32));
8814  SDValue CWD2 =
8815    DAG.getNode(ISD::SRL, dl, MVT::i32,
8816                DAG.getNode(ISD::AND, dl, MVT::i32,
8817                            DAG.getNode(ISD::XOR, dl, MVT::i32,
8818                                        CWD, DAG.getConstant(3, dl, MVT::i32)),
8819                            DAG.getConstant(3, dl, MVT::i32)),
8820                DAG.getConstant(1, dl, MVT::i32));
8821
8822  SDValue RetVal =
8823    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8824
8825  RetVal =
8826      DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8827                  dl, VT, RetVal);
8828
8829  return DAG.getMergeValues({RetVal, Chain}, dl);
8830}
8831
8832SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8833  EVT VT = Op.getValueType();
8834  unsigned BitWidth = VT.getSizeInBits();
8835  SDLoc dl(Op);
8836  assert(Op.getNumOperands() == 3 &&
8837         VT == Op.getOperand(1).getValueType() &&
8838         "Unexpected SHL!");
8839
8840  // Expand into a bunch of logical ops.  Note that these ops
8841  // depend on the PPC behavior for oversized shift amounts.
8842  SDValue Lo = Op.getOperand(0);
8843  SDValue Hi = Op.getOperand(1);
8844  SDValue Amt = Op.getOperand(2);
8845  EVT AmtVT = Amt.getValueType();
8846
8847  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8848                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8849  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8850  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8851  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8852  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8853                             DAG.getConstant(-BitWidth, dl, AmtVT));
8854  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8855  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8856  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8857  SDValue OutOps[] = { OutLo, OutHi };
8858  return DAG.getMergeValues(OutOps, dl);
8859}
8860
8861SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8862  EVT VT = Op.getValueType();
8863  SDLoc dl(Op);
8864  unsigned BitWidth = VT.getSizeInBits();
8865  assert(Op.getNumOperands() == 3 &&
8866         VT == Op.getOperand(1).getValueType() &&
8867         "Unexpected SRL!");
8868
8869  // Expand into a bunch of logical ops.  Note that these ops
8870  // depend on the PPC behavior for oversized shift amounts.
8871  SDValue Lo = Op.getOperand(0);
8872  SDValue Hi = Op.getOperand(1);
8873  SDValue Amt = Op.getOperand(2);
8874  EVT AmtVT = Amt.getValueType();
8875
8876  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8877                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8878  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8879  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8880  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8881  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8882                             DAG.getConstant(-BitWidth, dl, AmtVT));
8883  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8884  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8885  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8886  SDValue OutOps[] = { OutLo, OutHi };
8887  return DAG.getMergeValues(OutOps, dl);
8888}
8889
8890SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8891  SDLoc dl(Op);
8892  EVT VT = Op.getValueType();
8893  unsigned BitWidth = VT.getSizeInBits();
8894  assert(Op.getNumOperands() == 3 &&
8895         VT == Op.getOperand(1).getValueType() &&
8896         "Unexpected SRA!");
8897
8898  // Expand into a bunch of logical ops, followed by a select_cc.
8899  SDValue Lo = Op.getOperand(0);
8900  SDValue Hi = Op.getOperand(1);
8901  SDValue Amt = Op.getOperand(2);
8902  EVT AmtVT = Amt.getValueType();
8903
8904  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8905                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8906  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8907  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8908  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8909  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8910                             DAG.getConstant(-BitWidth, dl, AmtVT));
8911  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8912  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8913  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8914                                  Tmp4, Tmp6, ISD::SETLE);
8915  SDValue OutOps[] = { OutLo, OutHi };
8916  return DAG.getMergeValues(OutOps, dl);
8917}
8918
8919SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8920                                            SelectionDAG &DAG) const {
8921  SDLoc dl(Op);
8922  EVT VT = Op.getValueType();
8923  unsigned BitWidth = VT.getSizeInBits();
8924
8925  bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8926  SDValue X = Op.getOperand(0);
8927  SDValue Y = Op.getOperand(1);
8928  SDValue Z = Op.getOperand(2);
8929  EVT AmtVT = Z.getValueType();
8930
8931  // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8932  // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8933  // This is simpler than TargetLowering::expandFunnelShift because we can rely
8934  // on PowerPC shift by BW being well defined.
8935  Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8936                  DAG.getConstant(BitWidth - 1, dl, AmtVT));
8937  SDValue SubZ =
8938      DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8939  X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8940  Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8941  return DAG.getNode(ISD::OR, dl, VT, X, Y);
8942}
8943
8944//===----------------------------------------------------------------------===//
8945// Vector related lowering.
8946//
8947
8948/// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8949/// element size of SplatSize. Cast the result to VT.
8950static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8951                                      SelectionDAG &DAG, const SDLoc &dl) {
8952  static const MVT VTys[] = { // canonical VT to use for each size.
8953    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8954  };
8955
8956  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8957
8958  // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8959  if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8960    SplatSize = 1;
8961    Val = 0xFF;
8962  }
8963
8964  EVT CanonicalVT = VTys[SplatSize-1];
8965
8966  // Build a canonical splat for this value.
8967  return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8968}
8969
8970/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8971/// specified intrinsic ID.
8972static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8973                                const SDLoc &dl, EVT DestVT = MVT::Other) {
8974  if (DestVT == MVT::Other) DestVT = Op.getValueType();
8975  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8976                     DAG.getConstant(IID, dl, MVT::i32), Op);
8977}
8978
8979/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8980/// specified intrinsic ID.
8981static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8982                                SelectionDAG &DAG, const SDLoc &dl,
8983                                EVT DestVT = MVT::Other) {
8984  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8985  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8986                     DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8987}
8988
8989/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8990/// specified intrinsic ID.
8991static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8992                                SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8993                                EVT DestVT = MVT::Other) {
8994  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8995  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8996                     DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8997}
8998
8999/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9000/// amount.  The result has the specified value type.
9001static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9002                           SelectionDAG &DAG, const SDLoc &dl) {
9003  // Force LHS/RHS to be the right type.
9004  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9005  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9006
9007  int Ops[16];
9008  for (unsigned i = 0; i != 16; ++i)
9009    Ops[i] = i + Amt;
9010  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9011  return DAG.getNode(ISD::BITCAST, dl, VT, T);
9012}
9013
9014/// Do we have an efficient pattern in a .td file for this node?
9015///
9016/// \param V - pointer to the BuildVectorSDNode being matched
9017/// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9018///
9019/// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9020/// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9021/// the opposite is true (expansion is beneficial) are:
9022/// - The node builds a vector out of integers that are not 32 or 64-bits
9023/// - The node builds a vector out of constants
9024/// - The node is a "load-and-splat"
9025/// In all other cases, we will choose to keep the BUILD_VECTOR.
9026static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9027                                            bool HasDirectMove,
9028                                            bool HasP8Vector) {
9029  EVT VecVT = V->getValueType(0);
9030  bool RightType = VecVT == MVT::v2f64 ||
9031    (HasP8Vector && VecVT == MVT::v4f32) ||
9032    (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9033  if (!RightType)
9034    return false;
9035
9036  bool IsSplat = true;
9037  bool IsLoad = false;
9038  SDValue Op0 = V->getOperand(0);
9039
9040  // This function is called in a block that confirms the node is not a constant
9041  // splat. So a constant BUILD_VECTOR here means the vector is built out of
9042  // different constants.
9043  if (V->isConstant())
9044    return false;
9045  for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9046    if (V->getOperand(i).isUndef())
9047      return false;
9048    // We want to expand nodes that represent load-and-splat even if the
9049    // loaded value is a floating point truncation or conversion to int.
9050    if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9051        (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9052         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9053        (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9054         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9055        (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9056         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9057      IsLoad = true;
9058    // If the operands are different or the input is not a load and has more
9059    // uses than just this BV node, then it isn't a splat.
9060    if (V->getOperand(i) != Op0 ||
9061        (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9062      IsSplat = false;
9063  }
9064  return !(IsSplat && IsLoad);
9065}
9066
9067// Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9068SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9069
9070  SDLoc dl(Op);
9071  SDValue Op0 = Op->getOperand(0);
9072
9073  if ((Op.getValueType() != MVT::f128) ||
9074      (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9075      (Op0.getOperand(0).getValueType() != MVT::i64) ||
9076      (Op0.getOperand(1).getValueType() != MVT::i64))
9077    return SDValue();
9078
9079  return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9080                     Op0.getOperand(1));
9081}
9082
9083static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9084  const SDValue *InputLoad = &Op;
9085  while (InputLoad->getOpcode() == ISD::BITCAST)
9086    InputLoad = &InputLoad->getOperand(0);
9087  if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9088      InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9089    IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9090    InputLoad = &InputLoad->getOperand(0);
9091  }
9092  if (InputLoad->getOpcode() != ISD::LOAD)
9093    return nullptr;
9094  LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9095  return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9096}
9097
9098// Convert the argument APFloat to a single precision APFloat if there is no
9099// loss in information during the conversion to single precision APFloat and the
9100// resulting number is not a denormal number. Return true if successful.
9101bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9102  APFloat APFloatToConvert = ArgAPFloat;
9103  bool LosesInfo = true;
9104  APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9105                           &LosesInfo);
9106  bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9107  if (Success)
9108    ArgAPFloat = APFloatToConvert;
9109  return Success;
9110}
9111
9112// Bitcast the argument APInt to a double and convert it to a single precision
9113// APFloat, bitcast the APFloat to an APInt and assign it to the original
9114// argument if there is no loss in information during the conversion from
9115// double to single precision APFloat and the resulting number is not a denormal
9116// number. Return true if successful.
9117bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9118  double DpValue = ArgAPInt.bitsToDouble();
9119  APFloat APFloatDp(DpValue);
9120  bool Success = convertToNonDenormSingle(APFloatDp);
9121  if (Success)
9122    ArgAPInt = APFloatDp.bitcastToAPInt();
9123  return Success;
9124}
9125
9126// Nondestructive check for convertTonNonDenormSingle.
9127bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9128  // Only convert if it loses info, since XXSPLTIDP should
9129  // handle the other case.
9130  APFloat APFloatToConvert = ArgAPFloat;
9131  bool LosesInfo = true;
9132  APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9133                           &LosesInfo);
9134
9135  return (!LosesInfo && !APFloatToConvert.isDenormal());
9136}
9137
9138static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9139                             unsigned &Opcode) {
9140  LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0));
9141  if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode))
9142    return false;
9143
9144  EVT Ty = Op->getValueType(0);
9145  // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending
9146  // as we cannot handle extending loads for these types.
9147  if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) &&
9148      ISD::isNON_EXTLoad(InputNode))
9149    return true;
9150
9151  EVT MemVT = InputNode->getMemoryVT();
9152  // For v8i16 and v16i8 types, extending loads can be handled as long as the
9153  // memory VT is the same vector element VT type.
9154  // The loads feeding into the v8i16 and v16i8 types will be extending because
9155  // scalar i8/i16 are not legal types.
9156  if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) &&
9157      (MemVT == Ty.getVectorElementType()))
9158    return true;
9159
9160  if (Ty == MVT::v2i64) {
9161    // Check the extend type, when the input type is i32, and the output vector
9162    // type is v2i64.
9163    if (MemVT == MVT::i32) {
9164      if (ISD::isZEXTLoad(InputNode))
9165        Opcode = PPCISD::ZEXT_LD_SPLAT;
9166      if (ISD::isSEXTLoad(InputNode))
9167        Opcode = PPCISD::SEXT_LD_SPLAT;
9168    }
9169    return true;
9170  }
9171  return false;
9172}
9173
9174// If this is a case we can't handle, return null and let the default
9175// expansion code take care of it.  If we CAN select this case, and if it
9176// selects to a single instruction, return Op.  Otherwise, if we can codegen
9177// this case more efficiently than a constant pool load, lower it to the
9178// sequence of ops that should be used.
9179SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9180                                             SelectionDAG &DAG) const {
9181  SDLoc dl(Op);
9182  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9183  assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9184
9185  // Check if this is a splat of a constant value.
9186  APInt APSplatBits, APSplatUndef;
9187  unsigned SplatBitSize;
9188  bool HasAnyUndefs;
9189  bool BVNIsConstantSplat =
9190      BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9191                           HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9192
9193  // If it is a splat of a double, check if we can shrink it to a 32 bit
9194  // non-denormal float which when converted back to double gives us the same
9195  // double. This is to exploit the XXSPLTIDP instruction.
9196  // If we lose precision, we use XXSPLTI32DX.
9197  if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9198      Subtarget.hasPrefixInstrs()) {
9199    // Check the type first to short-circuit so we don't modify APSplatBits if
9200    // this block isn't executed.
9201    if ((Op->getValueType(0) == MVT::v2f64) &&
9202        convertToNonDenormSingle(APSplatBits)) {
9203      SDValue SplatNode = DAG.getNode(
9204          PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9205          DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9206      return DAG.getBitcast(Op.getValueType(), SplatNode);
9207    } else {
9208      // We may lose precision, so we have to use XXSPLTI32DX.
9209
9210      uint32_t Hi =
9211          (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9212      uint32_t Lo =
9213          (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9214      SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9215
9216      if (!Hi || !Lo)
9217        // If either load is 0, then we should generate XXLXOR to set to 0.
9218        SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9219
9220      if (Hi)
9221        SplatNode = DAG.getNode(
9222            PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9223            DAG.getTargetConstant(0, dl, MVT::i32),
9224            DAG.getTargetConstant(Hi, dl, MVT::i32));
9225
9226      if (Lo)
9227        SplatNode =
9228            DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9229                        DAG.getTargetConstant(1, dl, MVT::i32),
9230                        DAG.getTargetConstant(Lo, dl, MVT::i32));
9231
9232      return DAG.getBitcast(Op.getValueType(), SplatNode);
9233    }
9234  }
9235
9236  if (!BVNIsConstantSplat || SplatBitSize > 32) {
9237    unsigned NewOpcode = PPCISD::LD_SPLAT;
9238
9239    // Handle load-and-splat patterns as we have instructions that will do this
9240    // in one go.
9241    if (DAG.isSplatValue(Op, true) &&
9242        isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9243      const SDValue *InputLoad = &Op.getOperand(0);
9244      LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9245
9246      // If the input load is an extending load, it will be an i32 -> i64
9247      // extending load and isValidSplatLoad() will update NewOpcode.
9248      unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9249      unsigned ElementSize =
9250          MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9251
9252      assert(((ElementSize == 2 * MemorySize)
9253                  ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9254                     NewOpcode == PPCISD::SEXT_LD_SPLAT)
9255                  : (NewOpcode == PPCISD::LD_SPLAT)) &&
9256             "Unmatched element size and opcode!\n");
9257
9258      // Checking for a single use of this load, we have to check for vector
9259      // width (128 bits) / ElementSize uses (since each operand of the
9260      // BUILD_VECTOR is a separate use of the value.
9261      unsigned NumUsesOfInputLD = 128 / ElementSize;
9262      for (SDValue BVInOp : Op->ops())
9263        if (BVInOp.isUndef())
9264          NumUsesOfInputLD--;
9265
9266      // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9267      // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9268      // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9269      // 15", but funciton IsValidSplatLoad() now will only return true when
9270      // the data at index 0 is not nullptr. So we will not get into trouble for
9271      // these cases.
9272      //
9273      // case 1 - lfiwzx/lfiwax
9274      // 1.1: load result is i32 and is sign/zero extend to i64;
9275      // 1.2: build a v2i64 vector type with above loaded value;
9276      // 1.3: the vector has only one value at index 0, others are all undef;
9277      // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9278      if (NumUsesOfInputLD == 1 &&
9279          (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9280           !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9281           Subtarget.hasLFIWAX()))
9282        return SDValue();
9283
9284      // case 2 - lxvr[hb]x
9285      // 2.1: load result is at most i16;
9286      // 2.2: build a vector with above loaded value;
9287      // 2.3: the vector has only one value at index 0, others are all undef;
9288      // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9289      if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9290          Subtarget.isISA3_1() && ElementSize <= 16)
9291        return SDValue();
9292
9293      assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9294      if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9295          Subtarget.hasVSX()) {
9296        SDValue Ops[] = {
9297          LD->getChain(),    // Chain
9298          LD->getBasePtr(),  // Ptr
9299          DAG.getValueType(Op.getValueType()) // VT
9300        };
9301        SDValue LdSplt = DAG.getMemIntrinsicNode(
9302            NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9303            LD->getMemoryVT(), LD->getMemOperand());
9304        // Replace all uses of the output chain of the original load with the
9305        // output chain of the new load.
9306        DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9307                                      LdSplt.getValue(1));
9308        return LdSplt;
9309      }
9310    }
9311
9312    // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9313    // 32-bits can be lowered to VSX instructions under certain conditions.
9314    // Without VSX, there is no pattern more efficient than expanding the node.
9315    if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9316        haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9317                                        Subtarget.hasP8Vector()))
9318      return Op;
9319    return SDValue();
9320  }
9321
9322  uint64_t SplatBits = APSplatBits.getZExtValue();
9323  uint64_t SplatUndef = APSplatUndef.getZExtValue();
9324  unsigned SplatSize = SplatBitSize / 8;
9325
9326  // First, handle single instruction cases.
9327
9328  // All zeros?
9329  if (SplatBits == 0) {
9330    // Canonicalize all zero vectors to be v4i32.
9331    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9332      SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9333      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9334    }
9335    return Op;
9336  }
9337
9338  // We have XXSPLTIW for constant splats four bytes wide.
9339  // Given vector length is a multiple of 4, 2-byte splats can be replaced
9340  // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9341  // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9342  // turned into a 4-byte splat of 0xABABABAB.
9343  if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9344    return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9345                                  Op.getValueType(), DAG, dl);
9346
9347  if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9348    return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9349                                  dl);
9350
9351  // We have XXSPLTIB for constant splats one byte wide.
9352  if (Subtarget.hasP9Vector() && SplatSize == 1)
9353    return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9354                                  dl);
9355
9356  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9357  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9358                    (32-SplatBitSize));
9359  if (SextVal >= -16 && SextVal <= 15)
9360    return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9361                                  dl);
9362
9363  // Two instruction sequences.
9364
9365  // If this value is in the range [-32,30] and is even, use:
9366  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9367  // If this value is in the range [17,31] and is odd, use:
9368  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9369  // If this value is in the range [-31,-17] and is odd, use:
9370  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9371  // Note the last two are three-instruction sequences.
9372  if (SextVal >= -32 && SextVal <= 31) {
9373    // To avoid having these optimizations undone by constant folding,
9374    // we convert to a pseudo that will be expanded later into one of
9375    // the above forms.
9376    SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9377    EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9378              (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9379    SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9380    SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9381    if (VT == Op.getValueType())
9382      return RetVal;
9383    else
9384      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9385  }
9386
9387  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9388  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9389  // for fneg/fabs.
9390  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9391    // Make -1 and vspltisw -1:
9392    SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9393
9394    // Make the VSLW intrinsic, computing 0x8000_0000.
9395    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9396                                   OnesV, DAG, dl);
9397
9398    // xor by OnesV to invert it.
9399    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9400    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9401  }
9402
9403  // Check to see if this is a wide variety of vsplti*, binop self cases.
9404  static const signed char SplatCsts[] = {
9405    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9406    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9407  };
9408
9409  for (unsigned idx = 0; idx < std::size(SplatCsts); ++idx) {
9410    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9411    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9412    int i = SplatCsts[idx];
9413
9414    // Figure out what shift amount will be used by altivec if shifted by i in
9415    // this splat size.
9416    unsigned TypeShiftAmt = i & (SplatBitSize-1);
9417
9418    // vsplti + shl self.
9419    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9420      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9421      static const unsigned IIDs[] = { // Intrinsic to use for each size.
9422        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9423        Intrinsic::ppc_altivec_vslw
9424      };
9425      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9426      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9427    }
9428
9429    // vsplti + srl self.
9430    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9431      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9432      static const unsigned IIDs[] = { // Intrinsic to use for each size.
9433        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9434        Intrinsic::ppc_altivec_vsrw
9435      };
9436      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9437      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9438    }
9439
9440    // vsplti + rol self.
9441    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9442                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9443      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9444      static const unsigned IIDs[] = { // Intrinsic to use for each size.
9445        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9446        Intrinsic::ppc_altivec_vrlw
9447      };
9448      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9449      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9450    }
9451
9452    // t = vsplti c, result = vsldoi t, t, 1
9453    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9454      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9455      unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9456      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9457    }
9458    // t = vsplti c, result = vsldoi t, t, 2
9459    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9460      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9461      unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9462      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9463    }
9464    // t = vsplti c, result = vsldoi t, t, 3
9465    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9466      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9467      unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9468      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9469    }
9470  }
9471
9472  return SDValue();
9473}
9474
9475/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9476/// the specified operations to build the shuffle.
9477static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9478                                      SDValue RHS, SelectionDAG &DAG,
9479                                      const SDLoc &dl) {
9480  unsigned OpNum = (PFEntry >> 26) & 0x0F;
9481  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9482  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9483
9484  enum {
9485    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9486    OP_VMRGHW,
9487    OP_VMRGLW,
9488    OP_VSPLTISW0,
9489    OP_VSPLTISW1,
9490    OP_VSPLTISW2,
9491    OP_VSPLTISW3,
9492    OP_VSLDOI4,
9493    OP_VSLDOI8,
9494    OP_VSLDOI12
9495  };
9496
9497  if (OpNum == OP_COPY) {
9498    if (LHSID == (1*9+2)*9+3) return LHS;
9499    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9500    return RHS;
9501  }
9502
9503  SDValue OpLHS, OpRHS;
9504  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9505  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9506
9507  int ShufIdxs[16];
9508  switch (OpNum) {
9509  default: llvm_unreachable("Unknown i32 permute!");
9510  case OP_VMRGHW:
9511    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9512    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9513    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9514    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9515    break;
9516  case OP_VMRGLW:
9517    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9518    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9519    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9520    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9521    break;
9522  case OP_VSPLTISW0:
9523    for (unsigned i = 0; i != 16; ++i)
9524      ShufIdxs[i] = (i&3)+0;
9525    break;
9526  case OP_VSPLTISW1:
9527    for (unsigned i = 0; i != 16; ++i)
9528      ShufIdxs[i] = (i&3)+4;
9529    break;
9530  case OP_VSPLTISW2:
9531    for (unsigned i = 0; i != 16; ++i)
9532      ShufIdxs[i] = (i&3)+8;
9533    break;
9534  case OP_VSPLTISW3:
9535    for (unsigned i = 0; i != 16; ++i)
9536      ShufIdxs[i] = (i&3)+12;
9537    break;
9538  case OP_VSLDOI4:
9539    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9540  case OP_VSLDOI8:
9541    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9542  case OP_VSLDOI12:
9543    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9544  }
9545  EVT VT = OpLHS.getValueType();
9546  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9547  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9548  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9549  return DAG.getNode(ISD::BITCAST, dl, VT, T);
9550}
9551
9552/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9553/// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9554/// SDValue.
9555SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9556                                           SelectionDAG &DAG) const {
9557  const unsigned BytesInVector = 16;
9558  bool IsLE = Subtarget.isLittleEndian();
9559  SDLoc dl(N);
9560  SDValue V1 = N->getOperand(0);
9561  SDValue V2 = N->getOperand(1);
9562  unsigned ShiftElts = 0, InsertAtByte = 0;
9563  bool Swap = false;
9564
9565  // Shifts required to get the byte we want at element 7.
9566  unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9567                                   0, 15, 14, 13, 12, 11, 10, 9};
9568  unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9569                                1, 2,  3,  4,  5,  6,  7,  8};
9570
9571  ArrayRef<int> Mask = N->getMask();
9572  int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9573
9574  // For each mask element, find out if we're just inserting something
9575  // from V2 into V1 or vice versa.
9576  // Possible permutations inserting an element from V2 into V1:
9577  //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9578  //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9579  //   ...
9580  //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9581  // Inserting from V1 into V2 will be similar, except mask range will be
9582  // [16,31].
9583
9584  bool FoundCandidate = false;
9585  // If both vector operands for the shuffle are the same vector, the mask
9586  // will contain only elements from the first one and the second one will be
9587  // undef.
9588  unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9589  // Go through the mask of half-words to find an element that's being moved
9590  // from one vector to the other.
9591  for (unsigned i = 0; i < BytesInVector; ++i) {
9592    unsigned CurrentElement = Mask[i];
9593    // If 2nd operand is undefined, we should only look for element 7 in the
9594    // Mask.
9595    if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9596      continue;
9597
9598    bool OtherElementsInOrder = true;
9599    // Examine the other elements in the Mask to see if they're in original
9600    // order.
9601    for (unsigned j = 0; j < BytesInVector; ++j) {
9602      if (j == i)
9603        continue;
9604      // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9605      // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9606      // in which we always assume we're always picking from the 1st operand.
9607      int MaskOffset =
9608          (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9609      if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9610        OtherElementsInOrder = false;
9611        break;
9612      }
9613    }
9614    // If other elements are in original order, we record the number of shifts
9615    // we need to get the element we want into element 7. Also record which byte
9616    // in the vector we should insert into.
9617    if (OtherElementsInOrder) {
9618      // If 2nd operand is undefined, we assume no shifts and no swapping.
9619      if (V2.isUndef()) {
9620        ShiftElts = 0;
9621        Swap = false;
9622      } else {
9623        // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9624        ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9625                         : BigEndianShifts[CurrentElement & 0xF];
9626        Swap = CurrentElement < BytesInVector;
9627      }
9628      InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9629      FoundCandidate = true;
9630      break;
9631    }
9632  }
9633
9634  if (!FoundCandidate)
9635    return SDValue();
9636
9637  // Candidate found, construct the proper SDAG sequence with VINSERTB,
9638  // optionally with VECSHL if shift is required.
9639  if (Swap)
9640    std::swap(V1, V2);
9641  if (V2.isUndef())
9642    V2 = V1;
9643  if (ShiftElts) {
9644    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9645                              DAG.getConstant(ShiftElts, dl, MVT::i32));
9646    return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9647                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
9648  }
9649  return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9650                     DAG.getConstant(InsertAtByte, dl, MVT::i32));
9651}
9652
9653/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9654/// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9655/// SDValue.
9656SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9657                                           SelectionDAG &DAG) const {
9658  const unsigned NumHalfWords = 8;
9659  const unsigned BytesInVector = NumHalfWords * 2;
9660  // Check that the shuffle is on half-words.
9661  if (!isNByteElemShuffleMask(N, 2, 1))
9662    return SDValue();
9663
9664  bool IsLE = Subtarget.isLittleEndian();
9665  SDLoc dl(N);
9666  SDValue V1 = N->getOperand(0);
9667  SDValue V2 = N->getOperand(1);
9668  unsigned ShiftElts = 0, InsertAtByte = 0;
9669  bool Swap = false;
9670
9671  // Shifts required to get the half-word we want at element 3.
9672  unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9673  unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9674
9675  uint32_t Mask = 0;
9676  uint32_t OriginalOrderLow = 0x1234567;
9677  uint32_t OriginalOrderHigh = 0x89ABCDEF;
9678  // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9679  // 32-bit space, only need 4-bit nibbles per element.
9680  for (unsigned i = 0; i < NumHalfWords; ++i) {
9681    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9682    Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9683  }
9684
9685  // For each mask element, find out if we're just inserting something
9686  // from V2 into V1 or vice versa.  Possible permutations inserting an element
9687  // from V2 into V1:
9688  //   X, 1, 2, 3, 4, 5, 6, 7
9689  //   0, X, 2, 3, 4, 5, 6, 7
9690  //   0, 1, X, 3, 4, 5, 6, 7
9691  //   0, 1, 2, X, 4, 5, 6, 7
9692  //   0, 1, 2, 3, X, 5, 6, 7
9693  //   0, 1, 2, 3, 4, X, 6, 7
9694  //   0, 1, 2, 3, 4, 5, X, 7
9695  //   0, 1, 2, 3, 4, 5, 6, X
9696  // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9697
9698  bool FoundCandidate = false;
9699  // Go through the mask of half-words to find an element that's being moved
9700  // from one vector to the other.
9701  for (unsigned i = 0; i < NumHalfWords; ++i) {
9702    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9703    uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9704    uint32_t MaskOtherElts = ~(0xF << MaskShift);
9705    uint32_t TargetOrder = 0x0;
9706
9707    // If both vector operands for the shuffle are the same vector, the mask
9708    // will contain only elements from the first one and the second one will be
9709    // undef.
9710    if (V2.isUndef()) {
9711      ShiftElts = 0;
9712      unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9713      TargetOrder = OriginalOrderLow;
9714      Swap = false;
9715      // Skip if not the correct element or mask of other elements don't equal
9716      // to our expected order.
9717      if (MaskOneElt == VINSERTHSrcElem &&
9718          (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9719        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9720        FoundCandidate = true;
9721        break;
9722      }
9723    } else { // If both operands are defined.
9724      // Target order is [8,15] if the current mask is between [0,7].
9725      TargetOrder =
9726          (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9727      // Skip if mask of other elements don't equal our expected order.
9728      if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9729        // We only need the last 3 bits for the number of shifts.
9730        ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9731                         : BigEndianShifts[MaskOneElt & 0x7];
9732        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9733        Swap = MaskOneElt < NumHalfWords;
9734        FoundCandidate = true;
9735        break;
9736      }
9737    }
9738  }
9739
9740  if (!FoundCandidate)
9741    return SDValue();
9742
9743  // Candidate found, construct the proper SDAG sequence with VINSERTH,
9744  // optionally with VECSHL if shift is required.
9745  if (Swap)
9746    std::swap(V1, V2);
9747  if (V2.isUndef())
9748    V2 = V1;
9749  SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9750  if (ShiftElts) {
9751    // Double ShiftElts because we're left shifting on v16i8 type.
9752    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9753                              DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9754    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9755    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9756                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
9757    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9758  }
9759  SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9760  SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9761                            DAG.getConstant(InsertAtByte, dl, MVT::i32));
9762  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9763}
9764
9765/// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9766/// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9767/// return the default SDValue.
9768SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9769                                              SelectionDAG &DAG) const {
9770  // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9771  // to v16i8. Peek through the bitcasts to get the actual operands.
9772  SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9773  SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9774
9775  auto ShuffleMask = SVN->getMask();
9776  SDValue VecShuffle(SVN, 0);
9777  SDLoc DL(SVN);
9778
9779  // Check that we have a four byte shuffle.
9780  if (!isNByteElemShuffleMask(SVN, 4, 1))
9781    return SDValue();
9782
9783  // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9784  if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9785    std::swap(LHS, RHS);
9786    VecShuffle = peekThroughBitcasts(DAG.getCommutedVectorShuffle(*SVN));
9787    ShuffleVectorSDNode *CommutedSV = dyn_cast<ShuffleVectorSDNode>(VecShuffle);
9788    if (!CommutedSV)
9789      return SDValue();
9790    ShuffleMask = CommutedSV->getMask();
9791  }
9792
9793  // Ensure that the RHS is a vector of constants.
9794  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9795  if (!BVN)
9796    return SDValue();
9797
9798  // Check if RHS is a splat of 4-bytes (or smaller).
9799  APInt APSplatValue, APSplatUndef;
9800  unsigned SplatBitSize;
9801  bool HasAnyUndefs;
9802  if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9803                            HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9804      SplatBitSize > 32)
9805    return SDValue();
9806
9807  // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9808  // The instruction splats a constant C into two words of the source vector
9809  // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9810  // Thus we check that the shuffle mask is the equivalent  of
9811  // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9812  // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9813  // within each word are consecutive, so we only need to check the first byte.
9814  SDValue Index;
9815  bool IsLE = Subtarget.isLittleEndian();
9816  if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9817      (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9818       ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9819    Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9820  else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9821           (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9822            ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9823    Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9824  else
9825    return SDValue();
9826
9827  // If the splat is narrower than 32-bits, we need to get the 32-bit value
9828  // for XXSPLTI32DX.
9829  unsigned SplatVal = APSplatValue.getZExtValue();
9830  for (; SplatBitSize < 32; SplatBitSize <<= 1)
9831    SplatVal |= (SplatVal << SplatBitSize);
9832
9833  SDValue SplatNode = DAG.getNode(
9834      PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9835      Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9836  return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9837}
9838
9839/// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9840/// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9841/// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9842/// i.e (or (shl x, C1), (srl x, 128-C1)).
9843SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9844  assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9845  assert(Op.getValueType() == MVT::v1i128 &&
9846         "Only set v1i128 as custom, other type shouldn't reach here!");
9847  SDLoc dl(Op);
9848  SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9849  SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9850  unsigned SHLAmt = N1.getConstantOperandVal(0);
9851  if (SHLAmt % 8 == 0) {
9852    std::array<int, 16> Mask;
9853    std::iota(Mask.begin(), Mask.end(), 0);
9854    std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9855    if (SDValue Shuffle =
9856            DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9857                                 DAG.getUNDEF(MVT::v16i8), Mask))
9858      return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9859  }
9860  SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9861  SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9862                              DAG.getConstant(SHLAmt, dl, MVT::i32));
9863  SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9864                              DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9865  SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9866  return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9867}
9868
9869/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9870/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9871/// return the code it can be lowered into.  Worst case, it can always be
9872/// lowered into a vperm.
9873SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9874                                               SelectionDAG &DAG) const {
9875  SDLoc dl(Op);
9876  SDValue V1 = Op.getOperand(0);
9877  SDValue V2 = Op.getOperand(1);
9878  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9879
9880  // Any nodes that were combined in the target-independent combiner prior
9881  // to vector legalization will not be sent to the target combine. Try to
9882  // combine it here.
9883  if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9884    if (!isa<ShuffleVectorSDNode>(NewShuffle))
9885      return NewShuffle;
9886    Op = NewShuffle;
9887    SVOp = cast<ShuffleVectorSDNode>(Op);
9888    V1 = Op.getOperand(0);
9889    V2 = Op.getOperand(1);
9890  }
9891  EVT VT = Op.getValueType();
9892  bool isLittleEndian = Subtarget.isLittleEndian();
9893
9894  unsigned ShiftElts, InsertAtByte;
9895  bool Swap = false;
9896
9897  // If this is a load-and-splat, we can do that with a single instruction
9898  // in some cases. However if the load has multiple uses, we don't want to
9899  // combine it because that will just produce multiple loads.
9900  bool IsPermutedLoad = false;
9901  const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9902  if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9903      (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9904      InputLoad->hasOneUse()) {
9905    bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9906    int SplatIdx =
9907      PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9908
9909    // The splat index for permuted loads will be in the left half of the vector
9910    // which is strictly wider than the loaded value by 8 bytes. So we need to
9911    // adjust the splat index to point to the correct address in memory.
9912    if (IsPermutedLoad) {
9913      assert((isLittleEndian || IsFourByte) &&
9914             "Unexpected size for permuted load on big endian target");
9915      SplatIdx += IsFourByte ? 2 : 1;
9916      assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9917             "Splat of a value outside of the loaded memory");
9918    }
9919
9920    LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9921    // For 4-byte load-and-splat, we need Power9.
9922    if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9923      uint64_t Offset = 0;
9924      if (IsFourByte)
9925        Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9926      else
9927        Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9928
9929      // If the width of the load is the same as the width of the splat,
9930      // loading with an offset would load the wrong memory.
9931      if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9932        Offset = 0;
9933
9934      SDValue BasePtr = LD->getBasePtr();
9935      if (Offset != 0)
9936        BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9937                              BasePtr, DAG.getIntPtrConstant(Offset, dl));
9938      SDValue Ops[] = {
9939        LD->getChain(),    // Chain
9940        BasePtr,           // BasePtr
9941        DAG.getValueType(Op.getValueType()) // VT
9942      };
9943      SDVTList VTL =
9944        DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9945      SDValue LdSplt =
9946        DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9947                                Ops, LD->getMemoryVT(), LD->getMemOperand());
9948      DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9949      if (LdSplt.getValueType() != SVOp->getValueType(0))
9950        LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9951      return LdSplt;
9952    }
9953  }
9954
9955  // All v2i64 and v2f64 shuffles are legal
9956  if (VT == MVT::v2i64 || VT == MVT::v2f64)
9957    return Op;
9958
9959  if (Subtarget.hasP9Vector() &&
9960      PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9961                           isLittleEndian)) {
9962    if (Swap)
9963      std::swap(V1, V2);
9964    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9965    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9966    if (ShiftElts) {
9967      SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9968                                DAG.getConstant(ShiftElts, dl, MVT::i32));
9969      SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9970                                DAG.getConstant(InsertAtByte, dl, MVT::i32));
9971      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9972    }
9973    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9974                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
9975    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9976  }
9977
9978  if (Subtarget.hasPrefixInstrs()) {
9979    SDValue SplatInsertNode;
9980    if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9981      return SplatInsertNode;
9982  }
9983
9984  if (Subtarget.hasP9Altivec()) {
9985    SDValue NewISDNode;
9986    if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9987      return NewISDNode;
9988
9989    if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9990      return NewISDNode;
9991  }
9992
9993  if (Subtarget.hasVSX() &&
9994      PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9995    if (Swap)
9996      std::swap(V1, V2);
9997    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9998    SDValue Conv2 =
9999        DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
10000
10001    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
10002                              DAG.getConstant(ShiftElts, dl, MVT::i32));
10003    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
10004  }
10005
10006  if (Subtarget.hasVSX() &&
10007    PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
10008    if (Swap)
10009      std::swap(V1, V2);
10010    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10011    SDValue Conv2 =
10012        DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
10013
10014    SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
10015                              DAG.getConstant(ShiftElts, dl, MVT::i32));
10016    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
10017  }
10018
10019  if (Subtarget.hasP9Vector()) {
10020     if (PPC::isXXBRHShuffleMask(SVOp)) {
10021      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10022      SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
10023      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
10024    } else if (PPC::isXXBRWShuffleMask(SVOp)) {
10025      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10026      SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
10027      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
10028    } else if (PPC::isXXBRDShuffleMask(SVOp)) {
10029      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10030      SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
10031      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
10032    } else if (PPC::isXXBRQShuffleMask(SVOp)) {
10033      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
10034      SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
10035      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
10036    }
10037  }
10038
10039  if (Subtarget.hasVSX()) {
10040    if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
10041      int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
10042
10043      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10044      SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
10045                                  DAG.getConstant(SplatIdx, dl, MVT::i32));
10046      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
10047    }
10048
10049    // Left shifts of 8 bytes are actually swaps. Convert accordingly.
10050    if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
10051      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10052      SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
10053      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
10054    }
10055  }
10056
10057  // Cases that are handled by instructions that take permute immediates
10058  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
10059  // selected by the instruction selector.
10060  if (V2.isUndef()) {
10061    if (PPC::isSplatShuffleMask(SVOp, 1) ||
10062        PPC::isSplatShuffleMask(SVOp, 2) ||
10063        PPC::isSplatShuffleMask(SVOp, 4) ||
10064        PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10065        PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10066        PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10067        PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10068        PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10069        PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10070        PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10071        PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10072        PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10073        (Subtarget.hasP8Altivec() && (
10074         PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10075         PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10076         PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10077      return Op;
10078    }
10079  }
10080
10081  // Altivec has a variety of "shuffle immediates" that take two vector inputs
10082  // and produce a fixed permutation.  If any of these match, do not lower to
10083  // VPERM.
10084  unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10085  if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10086      PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10087      PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10088      PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10089      PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10090      PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10091      PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10092      PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10093      PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10094      (Subtarget.hasP8Altivec() && (
10095       PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10096       PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10097       PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10098    return Op;
10099
10100  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10101  // perfect shuffle table to emit an optimal matching sequence.
10102  ArrayRef<int> PermMask = SVOp->getMask();
10103
10104  if (!DisablePerfectShuffle && !isLittleEndian) {
10105    unsigned PFIndexes[4];
10106    bool isFourElementShuffle = true;
10107    for (unsigned i = 0; i != 4 && isFourElementShuffle;
10108         ++i) {                           // Element number
10109      unsigned EltNo = 8;                 // Start out undef.
10110      for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
10111        if (PermMask[i * 4 + j] < 0)
10112          continue; // Undef, ignore it.
10113
10114        unsigned ByteSource = PermMask[i * 4 + j];
10115        if ((ByteSource & 3) != j) {
10116          isFourElementShuffle = false;
10117          break;
10118        }
10119
10120        if (EltNo == 8) {
10121          EltNo = ByteSource / 4;
10122        } else if (EltNo != ByteSource / 4) {
10123          isFourElementShuffle = false;
10124          break;
10125        }
10126      }
10127      PFIndexes[i] = EltNo;
10128    }
10129
10130    // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10131    // perfect shuffle vector to determine if it is cost effective to do this as
10132    // discrete instructions, or whether we should use a vperm.
10133    // For now, we skip this for little endian until such time as we have a
10134    // little-endian perfect shuffle table.
10135    if (isFourElementShuffle) {
10136      // Compute the index in the perfect shuffle table.
10137      unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
10138                              PFIndexes[2] * 9 + PFIndexes[3];
10139
10140      unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10141      unsigned Cost = (PFEntry >> 30);
10142
10143      // Determining when to avoid vperm is tricky.  Many things affect the cost
10144      // of vperm, particularly how many times the perm mask needs to be
10145      // computed. For example, if the perm mask can be hoisted out of a loop or
10146      // is already used (perhaps because there are multiple permutes with the
10147      // same shuffle mask?) the vperm has a cost of 1.  OTOH, hoisting the
10148      // permute mask out of the loop requires an extra register.
10149      //
10150      // As a compromise, we only emit discrete instructions if the shuffle can
10151      // be generated in 3 or fewer operations.  When we have loop information
10152      // available, if this block is within a loop, we should avoid using vperm
10153      // for 3-operation perms and use a constant pool load instead.
10154      if (Cost < 3)
10155        return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10156    }
10157  }
10158
10159  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10160  // vector that will get spilled to the constant pool.
10161  if (V2.isUndef()) V2 = V1;
10162
10163  return LowerVPERM(Op, DAG, PermMask, VT, V1, V2);
10164}
10165
10166SDValue PPCTargetLowering::LowerVPERM(SDValue Op, SelectionDAG &DAG,
10167                                      ArrayRef<int> PermMask, EVT VT,
10168                                      SDValue V1, SDValue V2) const {
10169  unsigned Opcode = PPCISD::VPERM;
10170  EVT ValType = V1.getValueType();
10171  SDLoc dl(Op);
10172  bool NeedSwap = false;
10173  bool isLittleEndian = Subtarget.isLittleEndian();
10174  bool isPPC64 = Subtarget.isPPC64();
10175
10176  // Only need to place items backwards in LE,
10177  // the mask will be properly calculated.
10178  if (isLittleEndian)
10179    std::swap(V1, V2);
10180
10181  if (Subtarget.isISA3_0() && (V1->hasOneUse() || V2->hasOneUse())) {
10182    LLVM_DEBUG(dbgs() << "At least one of two input vectors are dead - using "
10183                         "XXPERM instead\n");
10184    Opcode = PPCISD::XXPERM;
10185
10186    // if V2 is dead, then we swap V1 and V2 so we can
10187    // use V2 as the destination instead.
10188    if (!V1->hasOneUse() && V2->hasOneUse()) {
10189      std::swap(V1, V2);
10190      NeedSwap = !NeedSwap;
10191    }
10192  }
10193
10194  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10195  // that it is in input element units, not in bytes.  Convert now.
10196
10197  // For little endian, the order of the input vectors is reversed, and
10198  // the permutation mask is complemented with respect to 31.  This is
10199  // necessary to produce proper semantics with the big-endian-based vperm
10200  // instruction.
10201  EVT EltVT = V1.getValueType().getVectorElementType();
10202  unsigned BytesPerElement = EltVT.getSizeInBits() / 8;
10203
10204  bool V1HasXXSWAPD = V1->getOperand(0)->getOpcode() == PPCISD::XXSWAPD;
10205  bool V2HasXXSWAPD = V2->getOperand(0)->getOpcode() == PPCISD::XXSWAPD;
10206
10207  /*
10208  Vectors will be appended like so: [ V1 | v2 ]
10209  XXSWAPD on V1:
10210  [   A   |   B   |   C   |   D   ] -> [   C   |   D   |   A   |   B   ]
10211     0-3     4-7     8-11   12-15         0-3     4-7     8-11   12-15
10212  i.e.  index of A, B += 8, and index of C, D -= 8.
10213  XXSWAPD on V2:
10214  [   E   |   F   |   G   |   H   ] -> [   G   |   H   |   E   |   F   ]
10215    16-19   20-23   24-27   28-31        16-19   20-23   24-27   28-31
10216  i.e.  index of E, F += 8, index of G, H -= 8
10217  Swap V1 and V2:
10218  [   V1   |   V2  ] -> [   V2   |   V1   ]
10219     0-15     16-31        0-15     16-31
10220  i.e.  index of V1 += 16, index of V2 -= 16
10221  */
10222
10223  SmallVector<SDValue, 16> ResultMask;
10224  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10225    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10226
10227    if (Opcode == PPCISD::XXPERM) {
10228      if (V1HasXXSWAPD) {
10229        if (SrcElt < 8)
10230          SrcElt += 8;
10231        else if (SrcElt < 16)
10232          SrcElt -= 8;
10233      }
10234      if (V2HasXXSWAPD) {
10235        if (SrcElt > 23)
10236          SrcElt -= 8;
10237        else if (SrcElt > 15)
10238          SrcElt += 8;
10239      }
10240      if (NeedSwap) {
10241        if (SrcElt < 16)
10242          SrcElt += 16;
10243        else
10244          SrcElt -= 16;
10245      }
10246    }
10247
10248    for (unsigned j = 0; j != BytesPerElement; ++j)
10249      if (isLittleEndian)
10250        ResultMask.push_back(
10251            DAG.getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32));
10252      else
10253        ResultMask.push_back(
10254            DAG.getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32));
10255  }
10256
10257  if (Opcode == PPCISD::XXPERM && (V1HasXXSWAPD || V2HasXXSWAPD)) {
10258    if (V1HasXXSWAPD) {
10259      dl = SDLoc(V1->getOperand(0));
10260      V1 = V1->getOperand(0)->getOperand(1);
10261    }
10262    if (V2HasXXSWAPD) {
10263      dl = SDLoc(V2->getOperand(0));
10264      V2 = V2->getOperand(0)->getOperand(1);
10265    }
10266    if (isPPC64 && ValType != MVT::v2f64)
10267      V1 = DAG.getBitcast(MVT::v2f64, V1);
10268    if (isPPC64 && V2.getValueType() != MVT::v2f64)
10269      V2 = DAG.getBitcast(MVT::v2f64, V2);
10270  }
10271
10272  ShufflesHandledWithVPERM++;
10273  SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10274  LLVM_DEBUG({
10275    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10276    if (Opcode == PPCISD::XXPERM) {
10277      dbgs() << "Emitting a XXPERM for the following shuffle:\n";
10278    } else {
10279      dbgs() << "Emitting a VPERM for the following shuffle:\n";
10280    }
10281    SVOp->dump();
10282    dbgs() << "With the following permute control vector:\n";
10283    VPermMask.dump();
10284  });
10285
10286  if (Opcode == PPCISD::XXPERM)
10287    VPermMask = DAG.getBitcast(MVT::v4i32, VPermMask);
10288
10289  SDValue VPERMNode =
10290      DAG.getNode(Opcode, dl, V1.getValueType(), V1, V2, VPermMask);
10291
10292  VPERMNode = DAG.getBitcast(ValType, VPERMNode);
10293  return VPERMNode;
10294}
10295
10296/// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10297/// vector comparison.  If it is, return true and fill in Opc/isDot with
10298/// information about the intrinsic.
10299static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10300                                 bool &isDot, const PPCSubtarget &Subtarget) {
10301  unsigned IntrinsicID =
10302      cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10303  CompareOpc = -1;
10304  isDot = false;
10305  switch (IntrinsicID) {
10306  default:
10307    return false;
10308  // Comparison predicates.
10309  case Intrinsic::ppc_altivec_vcmpbfp_p:
10310    CompareOpc = 966;
10311    isDot = true;
10312    break;
10313  case Intrinsic::ppc_altivec_vcmpeqfp_p:
10314    CompareOpc = 198;
10315    isDot = true;
10316    break;
10317  case Intrinsic::ppc_altivec_vcmpequb_p:
10318    CompareOpc = 6;
10319    isDot = true;
10320    break;
10321  case Intrinsic::ppc_altivec_vcmpequh_p:
10322    CompareOpc = 70;
10323    isDot = true;
10324    break;
10325  case Intrinsic::ppc_altivec_vcmpequw_p:
10326    CompareOpc = 134;
10327    isDot = true;
10328    break;
10329  case Intrinsic::ppc_altivec_vcmpequd_p:
10330    if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10331      CompareOpc = 199;
10332      isDot = true;
10333    } else
10334      return false;
10335    break;
10336  case Intrinsic::ppc_altivec_vcmpneb_p:
10337  case Intrinsic::ppc_altivec_vcmpneh_p:
10338  case Intrinsic::ppc_altivec_vcmpnew_p:
10339  case Intrinsic::ppc_altivec_vcmpnezb_p:
10340  case Intrinsic::ppc_altivec_vcmpnezh_p:
10341  case Intrinsic::ppc_altivec_vcmpnezw_p:
10342    if (Subtarget.hasP9Altivec()) {
10343      switch (IntrinsicID) {
10344      default:
10345        llvm_unreachable("Unknown comparison intrinsic.");
10346      case Intrinsic::ppc_altivec_vcmpneb_p:
10347        CompareOpc = 7;
10348        break;
10349      case Intrinsic::ppc_altivec_vcmpneh_p:
10350        CompareOpc = 71;
10351        break;
10352      case Intrinsic::ppc_altivec_vcmpnew_p:
10353        CompareOpc = 135;
10354        break;
10355      case Intrinsic::ppc_altivec_vcmpnezb_p:
10356        CompareOpc = 263;
10357        break;
10358      case Intrinsic::ppc_altivec_vcmpnezh_p:
10359        CompareOpc = 327;
10360        break;
10361      case Intrinsic::ppc_altivec_vcmpnezw_p:
10362        CompareOpc = 391;
10363        break;
10364      }
10365      isDot = true;
10366    } else
10367      return false;
10368    break;
10369  case Intrinsic::ppc_altivec_vcmpgefp_p:
10370    CompareOpc = 454;
10371    isDot = true;
10372    break;
10373  case Intrinsic::ppc_altivec_vcmpgtfp_p:
10374    CompareOpc = 710;
10375    isDot = true;
10376    break;
10377  case Intrinsic::ppc_altivec_vcmpgtsb_p:
10378    CompareOpc = 774;
10379    isDot = true;
10380    break;
10381  case Intrinsic::ppc_altivec_vcmpgtsh_p:
10382    CompareOpc = 838;
10383    isDot = true;
10384    break;
10385  case Intrinsic::ppc_altivec_vcmpgtsw_p:
10386    CompareOpc = 902;
10387    isDot = true;
10388    break;
10389  case Intrinsic::ppc_altivec_vcmpgtsd_p:
10390    if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10391      CompareOpc = 967;
10392      isDot = true;
10393    } else
10394      return false;
10395    break;
10396  case Intrinsic::ppc_altivec_vcmpgtub_p:
10397    CompareOpc = 518;
10398    isDot = true;
10399    break;
10400  case Intrinsic::ppc_altivec_vcmpgtuh_p:
10401    CompareOpc = 582;
10402    isDot = true;
10403    break;
10404  case Intrinsic::ppc_altivec_vcmpgtuw_p:
10405    CompareOpc = 646;
10406    isDot = true;
10407    break;
10408  case Intrinsic::ppc_altivec_vcmpgtud_p:
10409    if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10410      CompareOpc = 711;
10411      isDot = true;
10412    } else
10413      return false;
10414    break;
10415
10416  case Intrinsic::ppc_altivec_vcmpequq:
10417  case Intrinsic::ppc_altivec_vcmpgtsq:
10418  case Intrinsic::ppc_altivec_vcmpgtuq:
10419    if (!Subtarget.isISA3_1())
10420      return false;
10421    switch (IntrinsicID) {
10422    default:
10423      llvm_unreachable("Unknown comparison intrinsic.");
10424    case Intrinsic::ppc_altivec_vcmpequq:
10425      CompareOpc = 455;
10426      break;
10427    case Intrinsic::ppc_altivec_vcmpgtsq:
10428      CompareOpc = 903;
10429      break;
10430    case Intrinsic::ppc_altivec_vcmpgtuq:
10431      CompareOpc = 647;
10432      break;
10433    }
10434    break;
10435
10436  // VSX predicate comparisons use the same infrastructure
10437  case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10438  case Intrinsic::ppc_vsx_xvcmpgedp_p:
10439  case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10440  case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10441  case Intrinsic::ppc_vsx_xvcmpgesp_p:
10442  case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10443    if (Subtarget.hasVSX()) {
10444      switch (IntrinsicID) {
10445      case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10446        CompareOpc = 99;
10447        break;
10448      case Intrinsic::ppc_vsx_xvcmpgedp_p:
10449        CompareOpc = 115;
10450        break;
10451      case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10452        CompareOpc = 107;
10453        break;
10454      case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10455        CompareOpc = 67;
10456        break;
10457      case Intrinsic::ppc_vsx_xvcmpgesp_p:
10458        CompareOpc = 83;
10459        break;
10460      case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10461        CompareOpc = 75;
10462        break;
10463      }
10464      isDot = true;
10465    } else
10466      return false;
10467    break;
10468
10469  // Normal Comparisons.
10470  case Intrinsic::ppc_altivec_vcmpbfp:
10471    CompareOpc = 966;
10472    break;
10473  case Intrinsic::ppc_altivec_vcmpeqfp:
10474    CompareOpc = 198;
10475    break;
10476  case Intrinsic::ppc_altivec_vcmpequb:
10477    CompareOpc = 6;
10478    break;
10479  case Intrinsic::ppc_altivec_vcmpequh:
10480    CompareOpc = 70;
10481    break;
10482  case Intrinsic::ppc_altivec_vcmpequw:
10483    CompareOpc = 134;
10484    break;
10485  case Intrinsic::ppc_altivec_vcmpequd:
10486    if (Subtarget.hasP8Altivec())
10487      CompareOpc = 199;
10488    else
10489      return false;
10490    break;
10491  case Intrinsic::ppc_altivec_vcmpneb:
10492  case Intrinsic::ppc_altivec_vcmpneh:
10493  case Intrinsic::ppc_altivec_vcmpnew:
10494  case Intrinsic::ppc_altivec_vcmpnezb:
10495  case Intrinsic::ppc_altivec_vcmpnezh:
10496  case Intrinsic::ppc_altivec_vcmpnezw:
10497    if (Subtarget.hasP9Altivec())
10498      switch (IntrinsicID) {
10499      default:
10500        llvm_unreachable("Unknown comparison intrinsic.");
10501      case Intrinsic::ppc_altivec_vcmpneb:
10502        CompareOpc = 7;
10503        break;
10504      case Intrinsic::ppc_altivec_vcmpneh:
10505        CompareOpc = 71;
10506        break;
10507      case Intrinsic::ppc_altivec_vcmpnew:
10508        CompareOpc = 135;
10509        break;
10510      case Intrinsic::ppc_altivec_vcmpnezb:
10511        CompareOpc = 263;
10512        break;
10513      case Intrinsic::ppc_altivec_vcmpnezh:
10514        CompareOpc = 327;
10515        break;
10516      case Intrinsic::ppc_altivec_vcmpnezw:
10517        CompareOpc = 391;
10518        break;
10519      }
10520    else
10521      return false;
10522    break;
10523  case Intrinsic::ppc_altivec_vcmpgefp:
10524    CompareOpc = 454;
10525    break;
10526  case Intrinsic::ppc_altivec_vcmpgtfp:
10527    CompareOpc = 710;
10528    break;
10529  case Intrinsic::ppc_altivec_vcmpgtsb:
10530    CompareOpc = 774;
10531    break;
10532  case Intrinsic::ppc_altivec_vcmpgtsh:
10533    CompareOpc = 838;
10534    break;
10535  case Intrinsic::ppc_altivec_vcmpgtsw:
10536    CompareOpc = 902;
10537    break;
10538  case Intrinsic::ppc_altivec_vcmpgtsd:
10539    if (Subtarget.hasP8Altivec())
10540      CompareOpc = 967;
10541    else
10542      return false;
10543    break;
10544  case Intrinsic::ppc_altivec_vcmpgtub:
10545    CompareOpc = 518;
10546    break;
10547  case Intrinsic::ppc_altivec_vcmpgtuh:
10548    CompareOpc = 582;
10549    break;
10550  case Intrinsic::ppc_altivec_vcmpgtuw:
10551    CompareOpc = 646;
10552    break;
10553  case Intrinsic::ppc_altivec_vcmpgtud:
10554    if (Subtarget.hasP8Altivec())
10555      CompareOpc = 711;
10556    else
10557      return false;
10558    break;
10559  case Intrinsic::ppc_altivec_vcmpequq_p:
10560  case Intrinsic::ppc_altivec_vcmpgtsq_p:
10561  case Intrinsic::ppc_altivec_vcmpgtuq_p:
10562    if (!Subtarget.isISA3_1())
10563      return false;
10564    switch (IntrinsicID) {
10565    default:
10566      llvm_unreachable("Unknown comparison intrinsic.");
10567    case Intrinsic::ppc_altivec_vcmpequq_p:
10568      CompareOpc = 455;
10569      break;
10570    case Intrinsic::ppc_altivec_vcmpgtsq_p:
10571      CompareOpc = 903;
10572      break;
10573    case Intrinsic::ppc_altivec_vcmpgtuq_p:
10574      CompareOpc = 647;
10575      break;
10576    }
10577    isDot = true;
10578    break;
10579  }
10580  return true;
10581}
10582
10583/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10584/// lower, do it, otherwise return null.
10585SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10586                                                   SelectionDAG &DAG) const {
10587  unsigned IntrinsicID =
10588    cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10589
10590  SDLoc dl(Op);
10591
10592  switch (IntrinsicID) {
10593  case Intrinsic::thread_pointer:
10594    // Reads the thread pointer register, used for __builtin_thread_pointer.
10595    if (Subtarget.isPPC64())
10596      return DAG.getRegister(PPC::X13, MVT::i64);
10597    return DAG.getRegister(PPC::R2, MVT::i32);
10598
10599  case Intrinsic::ppc_mma_disassemble_acc: {
10600    if (Subtarget.isISAFuture()) {
10601      EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
10602      SDValue WideVec = SDValue(DAG.getMachineNode(PPC::DMXXEXTFDMR512, dl,
10603                                                   ArrayRef(ReturnTypes, 2),
10604                                                   Op.getOperand(1)),
10605                                0);
10606      SmallVector<SDValue, 4> RetOps;
10607      SDValue Value = SDValue(WideVec.getNode(), 0);
10608      SDValue Value2 = SDValue(WideVec.getNode(), 1);
10609
10610      SDValue Extract;
10611      Extract = DAG.getNode(
10612          PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10613          Subtarget.isLittleEndian() ? Value2 : Value,
10614          DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0,
10615                          dl, getPointerTy(DAG.getDataLayout())));
10616      RetOps.push_back(Extract);
10617      Extract = DAG.getNode(
10618          PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10619          Subtarget.isLittleEndian() ? Value2 : Value,
10620          DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1,
10621                          dl, getPointerTy(DAG.getDataLayout())));
10622      RetOps.push_back(Extract);
10623      Extract = DAG.getNode(
10624          PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10625          Subtarget.isLittleEndian() ? Value : Value2,
10626          DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0,
10627                          dl, getPointerTy(DAG.getDataLayout())));
10628      RetOps.push_back(Extract);
10629      Extract = DAG.getNode(
10630          PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10631          Subtarget.isLittleEndian() ? Value : Value2,
10632          DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1,
10633                          dl, getPointerTy(DAG.getDataLayout())));
10634      RetOps.push_back(Extract);
10635      return DAG.getMergeValues(RetOps, dl);
10636    }
10637    LLVM_FALLTHROUGH;
10638  }
10639  case Intrinsic::ppc_vsx_disassemble_pair: {
10640    int NumVecs = 2;
10641    SDValue WideVec = Op.getOperand(1);
10642    if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10643      NumVecs = 4;
10644      WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10645    }
10646    SmallVector<SDValue, 4> RetOps;
10647    for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10648      SDValue Extract = DAG.getNode(
10649          PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10650          DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10651                                                     : VecNo,
10652                          dl, getPointerTy(DAG.getDataLayout())));
10653      RetOps.push_back(Extract);
10654    }
10655    return DAG.getMergeValues(RetOps, dl);
10656  }
10657
10658  case Intrinsic::ppc_unpack_longdouble: {
10659    auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10660    assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10661           "Argument of long double unpack must be 0 or 1!");
10662    return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10663                       DAG.getConstant(!!(Idx->getSExtValue()), dl,
10664                                       Idx->getValueType(0)));
10665  }
10666
10667  case Intrinsic::ppc_compare_exp_lt:
10668  case Intrinsic::ppc_compare_exp_gt:
10669  case Intrinsic::ppc_compare_exp_eq:
10670  case Intrinsic::ppc_compare_exp_uo: {
10671    unsigned Pred;
10672    switch (IntrinsicID) {
10673    case Intrinsic::ppc_compare_exp_lt:
10674      Pred = PPC::PRED_LT;
10675      break;
10676    case Intrinsic::ppc_compare_exp_gt:
10677      Pred = PPC::PRED_GT;
10678      break;
10679    case Intrinsic::ppc_compare_exp_eq:
10680      Pred = PPC::PRED_EQ;
10681      break;
10682    case Intrinsic::ppc_compare_exp_uo:
10683      Pred = PPC::PRED_UN;
10684      break;
10685    }
10686    return SDValue(
10687        DAG.getMachineNode(
10688            PPC::SELECT_CC_I4, dl, MVT::i32,
10689            {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10690                                        Op.getOperand(1), Op.getOperand(2)),
10691                     0),
10692             DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10693             DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10694        0);
10695  }
10696  case Intrinsic::ppc_test_data_class: {
10697    EVT OpVT = Op.getOperand(1).getValueType();
10698    unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP
10699                                         : (OpVT == MVT::f64 ? PPC::XSTSTDCDP
10700                                                             : PPC::XSTSTDCSP);
10701    return SDValue(
10702        DAG.getMachineNode(
10703            PPC::SELECT_CC_I4, dl, MVT::i32,
10704            {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10705                                        Op.getOperand(1)),
10706                     0),
10707             DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10708             DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10709        0);
10710  }
10711  case Intrinsic::ppc_fnmsub: {
10712    EVT VT = Op.getOperand(1).getValueType();
10713    if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128))
10714      return DAG.getNode(
10715          ISD::FNEG, dl, VT,
10716          DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2),
10717                      DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3))));
10718    return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1),
10719                       Op.getOperand(2), Op.getOperand(3));
10720  }
10721  case Intrinsic::ppc_convert_f128_to_ppcf128:
10722  case Intrinsic::ppc_convert_ppcf128_to_f128: {
10723    RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10724                            ? RTLIB::CONVERT_PPCF128_F128
10725                            : RTLIB::CONVERT_F128_PPCF128;
10726    MakeLibCallOptions CallOptions;
10727    std::pair<SDValue, SDValue> Result =
10728        makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10729                    dl, SDValue());
10730    return Result.first;
10731  }
10732  case Intrinsic::ppc_maxfe:
10733  case Intrinsic::ppc_maxfl:
10734  case Intrinsic::ppc_maxfs:
10735  case Intrinsic::ppc_minfe:
10736  case Intrinsic::ppc_minfl:
10737  case Intrinsic::ppc_minfs: {
10738    EVT VT = Op.getValueType();
10739    assert(
10740        all_of(Op->ops().drop_front(4),
10741               [VT](const SDUse &Use) { return Use.getValueType() == VT; }) &&
10742        "ppc_[max|min]f[e|l|s] must have uniform type arguments");
10743    (void)VT;
10744    ISD::CondCode CC = ISD::SETGT;
10745    if (IntrinsicID == Intrinsic::ppc_minfe ||
10746        IntrinsicID == Intrinsic::ppc_minfl ||
10747        IntrinsicID == Intrinsic::ppc_minfs)
10748      CC = ISD::SETLT;
10749    unsigned I = Op.getNumOperands() - 2, Cnt = I;
10750    SDValue Res = Op.getOperand(I);
10751    for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) {
10752      Res =
10753          DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC);
10754    }
10755    return Res;
10756  }
10757  }
10758
10759  // If this is a lowered altivec predicate compare, CompareOpc is set to the
10760  // opcode number of the comparison.
10761  int CompareOpc;
10762  bool isDot;
10763  if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10764    return SDValue();    // Don't custom lower most intrinsics.
10765
10766  // If this is a non-dot comparison, make the VCMP node and we are done.
10767  if (!isDot) {
10768    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10769                              Op.getOperand(1), Op.getOperand(2),
10770                              DAG.getConstant(CompareOpc, dl, MVT::i32));
10771    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10772  }
10773
10774  // Create the PPCISD altivec 'dot' comparison node.
10775  SDValue Ops[] = {
10776    Op.getOperand(2),  // LHS
10777    Op.getOperand(3),  // RHS
10778    DAG.getConstant(CompareOpc, dl, MVT::i32)
10779  };
10780  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10781  SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10782
10783  // Now that we have the comparison, emit a copy from the CR to a GPR.
10784  // This is flagged to the above dot comparison.
10785  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10786                                DAG.getRegister(PPC::CR6, MVT::i32),
10787                                CompNode.getValue(1));
10788
10789  // Unpack the result based on how the target uses it.
10790  unsigned BitNo;   // Bit # of CR6.
10791  bool InvertBit;   // Invert result?
10792  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10793  default:  // Can't happen, don't crash on invalid number though.
10794  case 0:   // Return the value of the EQ bit of CR6.
10795    BitNo = 0; InvertBit = false;
10796    break;
10797  case 1:   // Return the inverted value of the EQ bit of CR6.
10798    BitNo = 0; InvertBit = true;
10799    break;
10800  case 2:   // Return the value of the LT bit of CR6.
10801    BitNo = 2; InvertBit = false;
10802    break;
10803  case 3:   // Return the inverted value of the LT bit of CR6.
10804    BitNo = 2; InvertBit = true;
10805    break;
10806  }
10807
10808  // Shift the bit into the low position.
10809  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10810                      DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10811  // Isolate the bit.
10812  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10813                      DAG.getConstant(1, dl, MVT::i32));
10814
10815  // If we are supposed to, toggle the bit.
10816  if (InvertBit)
10817    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10818                        DAG.getConstant(1, dl, MVT::i32));
10819  return Flags;
10820}
10821
10822SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10823                                               SelectionDAG &DAG) const {
10824  // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10825  // the beginning of the argument list.
10826  int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10827  SDLoc DL(Op);
10828  switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10829  case Intrinsic::ppc_cfence: {
10830    assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10831    assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10832    SDValue Val = Op.getOperand(ArgStart + 1);
10833    EVT Ty = Val.getValueType();
10834    if (Ty == MVT::i128) {
10835      // FIXME: Testing one of two paired registers is sufficient to guarantee
10836      // ordering?
10837      Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10838    }
10839    return SDValue(
10840        DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10841                           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10842                           Op.getOperand(0)),
10843        0);
10844  }
10845  default:
10846    break;
10847  }
10848  return SDValue();
10849}
10850
10851// Lower scalar BSWAP64 to xxbrd.
10852SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10853  SDLoc dl(Op);
10854  if (!Subtarget.isPPC64())
10855    return Op;
10856  // MTVSRDD
10857  Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10858                   Op.getOperand(0));
10859  // XXBRD
10860  Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10861  // MFVSRD
10862  int VectorIndex = 0;
10863  if (Subtarget.isLittleEndian())
10864    VectorIndex = 1;
10865  Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10866                   DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10867  return Op;
10868}
10869
10870// ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10871// compared to a value that is atomically loaded (atomic loads zero-extend).
10872SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10873                                                SelectionDAG &DAG) const {
10874  assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10875         "Expecting an atomic compare-and-swap here.");
10876  SDLoc dl(Op);
10877  auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10878  EVT MemVT = AtomicNode->getMemoryVT();
10879  if (MemVT.getSizeInBits() >= 32)
10880    return Op;
10881
10882  SDValue CmpOp = Op.getOperand(2);
10883  // If this is already correctly zero-extended, leave it alone.
10884  auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10885  if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10886    return Op;
10887
10888  // Clear the high bits of the compare operand.
10889  unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10890  SDValue NewCmpOp =
10891    DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10892                DAG.getConstant(MaskVal, dl, MVT::i32));
10893
10894  // Replace the existing compare operand with the properly zero-extended one.
10895  SmallVector<SDValue, 4> Ops;
10896  for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10897    Ops.push_back(AtomicNode->getOperand(i));
10898  Ops[2] = NewCmpOp;
10899  MachineMemOperand *MMO = AtomicNode->getMemOperand();
10900  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10901  auto NodeTy =
10902    (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10903  return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10904}
10905
10906SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10907                                                  SelectionDAG &DAG) const {
10908  AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10909  EVT MemVT = N->getMemoryVT();
10910  assert(MemVT.getSimpleVT() == MVT::i128 &&
10911         "Expect quadword atomic operations");
10912  SDLoc dl(N);
10913  unsigned Opc = N->getOpcode();
10914  switch (Opc) {
10915  case ISD::ATOMIC_LOAD: {
10916    // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10917    // lowered to ppc instructions by pattern matching instruction selector.
10918    SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10919    SmallVector<SDValue, 4> Ops{
10920        N->getOperand(0),
10921        DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10922    for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10923      Ops.push_back(N->getOperand(I));
10924    SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10925                                                Ops, MemVT, N->getMemOperand());
10926    SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10927    SDValue ValHi =
10928        DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10929    ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10930                        DAG.getConstant(64, dl, MVT::i32));
10931    SDValue Val =
10932        DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10933    return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10934                       {Val, LoadedVal.getValue(2)});
10935  }
10936  case ISD::ATOMIC_STORE: {
10937    // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10938    // lowered to ppc instructions by pattern matching instruction selector.
10939    SDVTList Tys = DAG.getVTList(MVT::Other);
10940    SmallVector<SDValue, 4> Ops{
10941        N->getOperand(0),
10942        DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10943    SDValue Val = N->getOperand(2);
10944    SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10945    SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10946                                DAG.getConstant(64, dl, MVT::i32));
10947    ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10948    Ops.push_back(ValLo);
10949    Ops.push_back(ValHi);
10950    Ops.push_back(N->getOperand(1));
10951    return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10952                                   N->getMemOperand());
10953  }
10954  default:
10955    llvm_unreachable("Unexpected atomic opcode");
10956  }
10957}
10958
10959SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10960                                                 SelectionDAG &DAG) const {
10961  SDLoc dl(Op);
10962  // Create a stack slot that is 16-byte aligned.
10963  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10964  int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10965  EVT PtrVT = getPointerTy(DAG.getDataLayout());
10966  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10967
10968  // Store the input value into Value#0 of the stack slot.
10969  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10970                               MachinePointerInfo());
10971  // Load it out.
10972  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10973}
10974
10975SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10976                                                  SelectionDAG &DAG) const {
10977  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10978         "Should only be called for ISD::INSERT_VECTOR_ELT");
10979
10980  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10981
10982  EVT VT = Op.getValueType();
10983  SDLoc dl(Op);
10984  SDValue V1 = Op.getOperand(0);
10985  SDValue V2 = Op.getOperand(1);
10986
10987  if (VT == MVT::v2f64 && C)
10988    return Op;
10989
10990  if (Subtarget.hasP9Vector()) {
10991    // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way
10992    // because on P10, it allows this specific insert_vector_elt load pattern to
10993    // utilize the refactored load and store infrastructure in order to exploit
10994    // prefixed loads.
10995    // On targets with inexpensive direct moves (Power9 and up), a
10996    // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer
10997    // load since a single precision load will involve conversion to double
10998    // precision on the load followed by another conversion to single precision.
10999    if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) &&
11000        (isa<LoadSDNode>(V2))) {
11001      SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1);
11002      SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2);
11003      SDValue InsVecElt =
11004          DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector,
11005                      BitcastLoad, Op.getOperand(2));
11006      return DAG.getBitcast(MVT::v4f32, InsVecElt);
11007    }
11008  }
11009
11010  if (Subtarget.isISA3_1()) {
11011    if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
11012      return SDValue();
11013    // On P10, we have legal lowering for constant and variable indices for
11014    // all vectors.
11015    if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
11016        VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
11017      return Op;
11018  }
11019
11020  // Before P10, we have legal lowering for constant indices but not for
11021  // variable ones.
11022  if (!C)
11023    return SDValue();
11024
11025  // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
11026  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
11027    SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
11028    unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
11029    unsigned InsertAtElement = C->getZExtValue();
11030    unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
11031    if (Subtarget.isLittleEndian()) {
11032      InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
11033    }
11034    return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
11035                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
11036  }
11037  return Op;
11038}
11039
11040SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
11041                                           SelectionDAG &DAG) const {
11042  SDLoc dl(Op);
11043  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
11044  SDValue LoadChain = LN->getChain();
11045  SDValue BasePtr = LN->getBasePtr();
11046  EVT VT = Op.getValueType();
11047
11048  if (VT != MVT::v256i1 && VT != MVT::v512i1)
11049    return Op;
11050
11051  // Type v256i1 is used for pairs and v512i1 is used for accumulators.
11052  // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
11053  // 2 or 4 vsx registers.
11054  assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
11055         "Type unsupported without MMA");
11056  assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
11057         "Type unsupported without paired vector support");
11058  Align Alignment = LN->getAlign();
11059  SmallVector<SDValue, 4> Loads;
11060  SmallVector<SDValue, 4> LoadChains;
11061  unsigned NumVecs = VT.getSizeInBits() / 128;
11062  for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
11063    SDValue Load =
11064        DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
11065                    LN->getPointerInfo().getWithOffset(Idx * 16),
11066                    commonAlignment(Alignment, Idx * 16),
11067                    LN->getMemOperand()->getFlags(), LN->getAAInfo());
11068    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
11069                          DAG.getConstant(16, dl, BasePtr.getValueType()));
11070    Loads.push_back(Load);
11071    LoadChains.push_back(Load.getValue(1));
11072  }
11073  if (Subtarget.isLittleEndian()) {
11074    std::reverse(Loads.begin(), Loads.end());
11075    std::reverse(LoadChains.begin(), LoadChains.end());
11076  }
11077  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
11078  SDValue Value =
11079      DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
11080                  dl, VT, Loads);
11081  SDValue RetOps[] = {Value, TF};
11082  return DAG.getMergeValues(RetOps, dl);
11083}
11084
11085SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
11086                                            SelectionDAG &DAG) const {
11087  SDLoc dl(Op);
11088  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
11089  SDValue StoreChain = SN->getChain();
11090  SDValue BasePtr = SN->getBasePtr();
11091  SDValue Value = SN->getValue();
11092  SDValue Value2 = SN->getValue();
11093  EVT StoreVT = Value.getValueType();
11094
11095  if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
11096    return Op;
11097
11098  // Type v256i1 is used for pairs and v512i1 is used for accumulators.
11099  // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
11100  // underlying registers individually.
11101  assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
11102         "Type unsupported without MMA");
11103  assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
11104         "Type unsupported without paired vector support");
11105  Align Alignment = SN->getAlign();
11106  SmallVector<SDValue, 4> Stores;
11107  unsigned NumVecs = 2;
11108  if (StoreVT == MVT::v512i1) {
11109    if (Subtarget.isISAFuture()) {
11110      EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
11111      MachineSDNode *ExtNode = DAG.getMachineNode(
11112          PPC::DMXXEXTFDMR512, dl, ArrayRef(ReturnTypes, 2), Op.getOperand(1));
11113
11114      Value = SDValue(ExtNode, 0);
11115      Value2 = SDValue(ExtNode, 1);
11116    } else
11117      Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
11118    NumVecs = 4;
11119  }
11120  for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
11121    unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
11122    SDValue Elt;
11123    if (Subtarget.isISAFuture()) {
11124      VecNum = Subtarget.isLittleEndian() ? 1 - (Idx % 2) : (Idx % 2);
11125      Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
11126                        Idx > 1 ? Value2 : Value,
11127                        DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
11128    } else
11129      Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
11130                        DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
11131
11132    SDValue Store =
11133        DAG.getStore(StoreChain, dl, Elt, BasePtr,
11134                     SN->getPointerInfo().getWithOffset(Idx * 16),
11135                     commonAlignment(Alignment, Idx * 16),
11136                     SN->getMemOperand()->getFlags(), SN->getAAInfo());
11137    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
11138                          DAG.getConstant(16, dl, BasePtr.getValueType()));
11139    Stores.push_back(Store);
11140  }
11141  SDValue TF = DAG.getTokenFactor(dl, Stores);
11142  return TF;
11143}
11144
11145SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
11146  SDLoc dl(Op);
11147  if (Op.getValueType() == MVT::v4i32) {
11148    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
11149
11150    SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
11151    // +16 as shift amt.
11152    SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
11153    SDValue RHSSwap =   // = vrlw RHS, 16
11154      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
11155
11156    // Shrinkify inputs to v8i16.
11157    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
11158    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
11159    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
11160
11161    // Low parts multiplied together, generating 32-bit results (we ignore the
11162    // top parts).
11163    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
11164                                        LHS, RHS, DAG, dl, MVT::v4i32);
11165
11166    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
11167                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
11168    // Shift the high parts up 16 bits.
11169    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
11170                              Neg16, DAG, dl);
11171    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
11172  } else if (Op.getValueType() == MVT::v16i8) {
11173    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
11174    bool isLittleEndian = Subtarget.isLittleEndian();
11175
11176    // Multiply the even 8-bit parts, producing 16-bit sums.
11177    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
11178                                           LHS, RHS, DAG, dl, MVT::v8i16);
11179    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
11180
11181    // Multiply the odd 8-bit parts, producing 16-bit sums.
11182    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
11183                                          LHS, RHS, DAG, dl, MVT::v8i16);
11184    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
11185
11186    // Merge the results together.  Because vmuleub and vmuloub are
11187    // instructions with a big-endian bias, we must reverse the
11188    // element numbering and reverse the meaning of "odd" and "even"
11189    // when generating little endian code.
11190    int Ops[16];
11191    for (unsigned i = 0; i != 8; ++i) {
11192      if (isLittleEndian) {
11193        Ops[i*2  ] = 2*i;
11194        Ops[i*2+1] = 2*i+16;
11195      } else {
11196        Ops[i*2  ] = 2*i+1;
11197        Ops[i*2+1] = 2*i+1+16;
11198      }
11199    }
11200    if (isLittleEndian)
11201      return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
11202    else
11203      return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
11204  } else {
11205    llvm_unreachable("Unknown mul to lower!");
11206  }
11207}
11208
11209SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
11210  bool IsStrict = Op->isStrictFPOpcode();
11211  if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
11212      !Subtarget.hasP9Vector())
11213    return SDValue();
11214
11215  return Op;
11216}
11217
11218// Custom lowering for fpext vf32 to v2f64
11219SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11220
11221  assert(Op.getOpcode() == ISD::FP_EXTEND &&
11222         "Should only be called for ISD::FP_EXTEND");
11223
11224  // FIXME: handle extends from half precision float vectors on P9.
11225  // We only want to custom lower an extend from v2f32 to v2f64.
11226  if (Op.getValueType() != MVT::v2f64 ||
11227      Op.getOperand(0).getValueType() != MVT::v2f32)
11228    return SDValue();
11229
11230  SDLoc dl(Op);
11231  SDValue Op0 = Op.getOperand(0);
11232
11233  switch (Op0.getOpcode()) {
11234  default:
11235    return SDValue();
11236  case ISD::EXTRACT_SUBVECTOR: {
11237    assert(Op0.getNumOperands() == 2 &&
11238           isa<ConstantSDNode>(Op0->getOperand(1)) &&
11239           "Node should have 2 operands with second one being a constant!");
11240
11241    if (Op0.getOperand(0).getValueType() != MVT::v4f32)
11242      return SDValue();
11243
11244    // Custom lower is only done for high or low doubleword.
11245    int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
11246    if (Idx % 2 != 0)
11247      return SDValue();
11248
11249    // Since input is v4f32, at this point Idx is either 0 or 2.
11250    // Shift to get the doubleword position we want.
11251    int DWord = Idx >> 1;
11252
11253    // High and low word positions are different on little endian.
11254    if (Subtarget.isLittleEndian())
11255      DWord ^= 0x1;
11256
11257    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
11258                       Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
11259  }
11260  case ISD::FADD:
11261  case ISD::FMUL:
11262  case ISD::FSUB: {
11263    SDValue NewLoad[2];
11264    for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
11265      // Ensure both input are loads.
11266      SDValue LdOp = Op0.getOperand(i);
11267      if (LdOp.getOpcode() != ISD::LOAD)
11268        return SDValue();
11269      // Generate new load node.
11270      LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11271      SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11272      NewLoad[i] = DAG.getMemIntrinsicNode(
11273          PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11274          LD->getMemoryVT(), LD->getMemOperand());
11275    }
11276    SDValue NewOp =
11277        DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11278                    NewLoad[1], Op0.getNode()->getFlags());
11279    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11280                       DAG.getConstant(0, dl, MVT::i32));
11281  }
11282  case ISD::LOAD: {
11283    LoadSDNode *LD = cast<LoadSDNode>(Op0);
11284    SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11285    SDValue NewLd = DAG.getMemIntrinsicNode(
11286        PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11287        LD->getMemoryVT(), LD->getMemOperand());
11288    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11289                       DAG.getConstant(0, dl, MVT::i32));
11290  }
11291  }
11292  llvm_unreachable("ERROR:Should return for all cases within swtich.");
11293}
11294
11295/// LowerOperation - Provide custom lowering hooks for some operations.
11296///
11297SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11298  switch (Op.getOpcode()) {
11299  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11300  case ISD::FPOW:               return lowerPow(Op, DAG);
11301  case ISD::FSIN:               return lowerSin(Op, DAG);
11302  case ISD::FCOS:               return lowerCos(Op, DAG);
11303  case ISD::FLOG:               return lowerLog(Op, DAG);
11304  case ISD::FLOG10:             return lowerLog10(Op, DAG);
11305  case ISD::FEXP:               return lowerExp(Op, DAG);
11306  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11307  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11308  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11309  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11310  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11311  case ISD::STRICT_FSETCC:
11312  case ISD::STRICT_FSETCCS:
11313  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11314  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11315  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11316
11317  case ISD::INLINEASM:
11318  case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11319  // Variable argument lowering.
11320  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11321  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11322  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11323
11324  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11325  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11326  case ISD::GET_DYNAMIC_AREA_OFFSET:
11327    return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11328
11329  // Exception handling lowering.
11330  case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11331  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11332  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11333
11334  case ISD::LOAD:               return LowerLOAD(Op, DAG);
11335  case ISD::STORE:              return LowerSTORE(Op, DAG);
11336  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11337  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11338  case ISD::STRICT_FP_TO_UINT:
11339  case ISD::STRICT_FP_TO_SINT:
11340  case ISD::FP_TO_UINT:
11341  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11342  case ISD::STRICT_UINT_TO_FP:
11343  case ISD::STRICT_SINT_TO_FP:
11344  case ISD::UINT_TO_FP:
11345  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11346  case ISD::GET_ROUNDING:       return LowerGET_ROUNDING(Op, DAG);
11347
11348  // Lower 64-bit shifts.
11349  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11350  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11351  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11352
11353  case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11354  case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11355
11356  // Vector-related lowering.
11357  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11358  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11359  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11360  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11361  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11362  case ISD::MUL:                return LowerMUL(Op, DAG);
11363  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11364  case ISD::STRICT_FP_ROUND:
11365  case ISD::FP_ROUND:
11366    return LowerFP_ROUND(Op, DAG);
11367  case ISD::ROTL:               return LowerROTL(Op, DAG);
11368
11369  // For counter-based loop handling.
11370  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11371
11372  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11373
11374  // Frame & Return address.
11375  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11376  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11377
11378  case ISD::INTRINSIC_VOID:
11379    return LowerINTRINSIC_VOID(Op, DAG);
11380  case ISD::BSWAP:
11381    return LowerBSWAP(Op, DAG);
11382  case ISD::ATOMIC_CMP_SWAP:
11383    return LowerATOMIC_CMP_SWAP(Op, DAG);
11384  case ISD::ATOMIC_STORE:
11385    return LowerATOMIC_LOAD_STORE(Op, DAG);
11386  }
11387}
11388
11389void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11390                                           SmallVectorImpl<SDValue>&Results,
11391                                           SelectionDAG &DAG) const {
11392  SDLoc dl(N);
11393  switch (N->getOpcode()) {
11394  default:
11395    llvm_unreachable("Do not know how to custom type legalize this operation!");
11396  case ISD::ATOMIC_LOAD: {
11397    SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11398    Results.push_back(Res);
11399    Results.push_back(Res.getValue(1));
11400    break;
11401  }
11402  case ISD::READCYCLECOUNTER: {
11403    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11404    SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11405
11406    Results.push_back(
11407        DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11408    Results.push_back(RTB.getValue(2));
11409    break;
11410  }
11411  case ISD::INTRINSIC_W_CHAIN: {
11412    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11413        Intrinsic::loop_decrement)
11414      break;
11415
11416    assert(N->getValueType(0) == MVT::i1 &&
11417           "Unexpected result type for CTR decrement intrinsic");
11418    EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11419                                 N->getValueType(0));
11420    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11421    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11422                                 N->getOperand(1));
11423
11424    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11425    Results.push_back(NewInt.getValue(1));
11426    break;
11427  }
11428  case ISD::INTRINSIC_WO_CHAIN: {
11429    switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
11430    case Intrinsic::ppc_pack_longdouble:
11431      Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11432                                    N->getOperand(2), N->getOperand(1)));
11433      break;
11434    case Intrinsic::ppc_maxfe:
11435    case Intrinsic::ppc_minfe:
11436    case Intrinsic::ppc_fnmsub:
11437    case Intrinsic::ppc_convert_f128_to_ppcf128:
11438      Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11439      break;
11440    }
11441    break;
11442  }
11443  case ISD::VAARG: {
11444    if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11445      return;
11446
11447    EVT VT = N->getValueType(0);
11448
11449    if (VT == MVT::i64) {
11450      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11451
11452      Results.push_back(NewNode);
11453      Results.push_back(NewNode.getValue(1));
11454    }
11455    return;
11456  }
11457  case ISD::STRICT_FP_TO_SINT:
11458  case ISD::STRICT_FP_TO_UINT:
11459  case ISD::FP_TO_SINT:
11460  case ISD::FP_TO_UINT: {
11461    // LowerFP_TO_INT() can only handle f32 and f64.
11462    if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11463        MVT::ppcf128)
11464      return;
11465    SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl);
11466    Results.push_back(LoweredValue);
11467    if (N->isStrictFPOpcode())
11468      Results.push_back(LoweredValue.getValue(1));
11469    return;
11470  }
11471  case ISD::TRUNCATE: {
11472    if (!N->getValueType(0).isVector())
11473      return;
11474    SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11475    if (Lowered)
11476      Results.push_back(Lowered);
11477    return;
11478  }
11479  case ISD::FSHL:
11480  case ISD::FSHR:
11481    // Don't handle funnel shifts here.
11482    return;
11483  case ISD::BITCAST:
11484    // Don't handle bitcast here.
11485    return;
11486  case ISD::FP_EXTEND:
11487    SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11488    if (Lowered)
11489      Results.push_back(Lowered);
11490    return;
11491  }
11492}
11493
11494//===----------------------------------------------------------------------===//
11495//  Other Lowering Code
11496//===----------------------------------------------------------------------===//
11497
11498static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11499  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11500  Function *Func = Intrinsic::getDeclaration(M, Id);
11501  return Builder.CreateCall(Func, {});
11502}
11503
11504// The mappings for emitLeading/TrailingFence is taken from
11505// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11506Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11507                                                 Instruction *Inst,
11508                                                 AtomicOrdering Ord) const {
11509  if (Ord == AtomicOrdering::SequentiallyConsistent)
11510    return callIntrinsic(Builder, Intrinsic::ppc_sync);
11511  if (isReleaseOrStronger(Ord))
11512    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11513  return nullptr;
11514}
11515
11516Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11517                                                  Instruction *Inst,
11518                                                  AtomicOrdering Ord) const {
11519  if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11520    // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11521    // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11522    // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11523    if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11524      return Builder.CreateCall(
11525          Intrinsic::getDeclaration(
11526              Builder.GetInsertBlock()->getParent()->getParent(),
11527              Intrinsic::ppc_cfence, {Inst->getType()}),
11528          {Inst});
11529    // FIXME: Can use isync for rmw operation.
11530    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11531  }
11532  return nullptr;
11533}
11534
11535MachineBasicBlock *
11536PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11537                                    unsigned AtomicSize,
11538                                    unsigned BinOpcode,
11539                                    unsigned CmpOpcode,
11540                                    unsigned CmpPred) const {
11541  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11542  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11543
11544  auto LoadMnemonic = PPC::LDARX;
11545  auto StoreMnemonic = PPC::STDCX;
11546  switch (AtomicSize) {
11547  default:
11548    llvm_unreachable("Unexpected size of atomic entity");
11549  case 1:
11550    LoadMnemonic = PPC::LBARX;
11551    StoreMnemonic = PPC::STBCX;
11552    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11553    break;
11554  case 2:
11555    LoadMnemonic = PPC::LHARX;
11556    StoreMnemonic = PPC::STHCX;
11557    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11558    break;
11559  case 4:
11560    LoadMnemonic = PPC::LWARX;
11561    StoreMnemonic = PPC::STWCX;
11562    break;
11563  case 8:
11564    LoadMnemonic = PPC::LDARX;
11565    StoreMnemonic = PPC::STDCX;
11566    break;
11567  }
11568
11569  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11570  MachineFunction *F = BB->getParent();
11571  MachineFunction::iterator It = ++BB->getIterator();
11572
11573  Register dest = MI.getOperand(0).getReg();
11574  Register ptrA = MI.getOperand(1).getReg();
11575  Register ptrB = MI.getOperand(2).getReg();
11576  Register incr = MI.getOperand(3).getReg();
11577  DebugLoc dl = MI.getDebugLoc();
11578
11579  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11580  MachineBasicBlock *loop2MBB =
11581    CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11582  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11583  F->insert(It, loopMBB);
11584  if (CmpOpcode)
11585    F->insert(It, loop2MBB);
11586  F->insert(It, exitMBB);
11587  exitMBB->splice(exitMBB->begin(), BB,
11588                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
11589  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11590
11591  MachineRegisterInfo &RegInfo = F->getRegInfo();
11592  Register TmpReg = (!BinOpcode) ? incr :
11593    RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11594                                           : &PPC::GPRCRegClass);
11595
11596  //  thisMBB:
11597  //   ...
11598  //   fallthrough --> loopMBB
11599  BB->addSuccessor(loopMBB);
11600
11601  //  loopMBB:
11602  //   l[wd]arx dest, ptr
11603  //   add r0, dest, incr
11604  //   st[wd]cx. r0, ptr
11605  //   bne- loopMBB
11606  //   fallthrough --> exitMBB
11607
11608  // For max/min...
11609  //  loopMBB:
11610  //   l[wd]arx dest, ptr
11611  //   cmpl?[wd] dest, incr
11612  //   bgt exitMBB
11613  //  loop2MBB:
11614  //   st[wd]cx. dest, ptr
11615  //   bne- loopMBB
11616  //   fallthrough --> exitMBB
11617
11618  BB = loopMBB;
11619  BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11620    .addReg(ptrA).addReg(ptrB);
11621  if (BinOpcode)
11622    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11623  if (CmpOpcode) {
11624    Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11625    // Signed comparisons of byte or halfword values must be sign-extended.
11626    if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11627      Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11628      BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11629              ExtReg).addReg(dest);
11630      BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ExtReg).addReg(incr);
11631    } else
11632      BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(dest).addReg(incr);
11633
11634    BuildMI(BB, dl, TII->get(PPC::BCC))
11635        .addImm(CmpPred)
11636        .addReg(CrReg)
11637        .addMBB(exitMBB);
11638    BB->addSuccessor(loop2MBB);
11639    BB->addSuccessor(exitMBB);
11640    BB = loop2MBB;
11641  }
11642  BuildMI(BB, dl, TII->get(StoreMnemonic))
11643    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11644  BuildMI(BB, dl, TII->get(PPC::BCC))
11645    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11646  BB->addSuccessor(loopMBB);
11647  BB->addSuccessor(exitMBB);
11648
11649  //  exitMBB:
11650  //   ...
11651  BB = exitMBB;
11652  return BB;
11653}
11654
11655static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11656  switch(MI.getOpcode()) {
11657  default:
11658    return false;
11659  case PPC::COPY:
11660    return TII->isSignExtended(MI.getOperand(1).getReg(),
11661                               &MI.getMF()->getRegInfo());
11662  case PPC::LHA:
11663  case PPC::LHA8:
11664  case PPC::LHAU:
11665  case PPC::LHAU8:
11666  case PPC::LHAUX:
11667  case PPC::LHAUX8:
11668  case PPC::LHAX:
11669  case PPC::LHAX8:
11670  case PPC::LWA:
11671  case PPC::LWAUX:
11672  case PPC::LWAX:
11673  case PPC::LWAX_32:
11674  case PPC::LWA_32:
11675  case PPC::PLHA:
11676  case PPC::PLHA8:
11677  case PPC::PLHA8pc:
11678  case PPC::PLHApc:
11679  case PPC::PLWA:
11680  case PPC::PLWA8:
11681  case PPC::PLWA8pc:
11682  case PPC::PLWApc:
11683  case PPC::EXTSB:
11684  case PPC::EXTSB8:
11685  case PPC::EXTSB8_32_64:
11686  case PPC::EXTSB8_rec:
11687  case PPC::EXTSB_rec:
11688  case PPC::EXTSH:
11689  case PPC::EXTSH8:
11690  case PPC::EXTSH8_32_64:
11691  case PPC::EXTSH8_rec:
11692  case PPC::EXTSH_rec:
11693  case PPC::EXTSW:
11694  case PPC::EXTSWSLI:
11695  case PPC::EXTSWSLI_32_64:
11696  case PPC::EXTSWSLI_32_64_rec:
11697  case PPC::EXTSWSLI_rec:
11698  case PPC::EXTSW_32:
11699  case PPC::EXTSW_32_64:
11700  case PPC::EXTSW_32_64_rec:
11701  case PPC::EXTSW_rec:
11702  case PPC::SRAW:
11703  case PPC::SRAWI:
11704  case PPC::SRAWI_rec:
11705  case PPC::SRAW_rec:
11706    return true;
11707  }
11708  return false;
11709}
11710
11711MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11712    MachineInstr &MI, MachineBasicBlock *BB,
11713    bool is8bit, // operation
11714    unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11715  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11716  const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11717
11718  // If this is a signed comparison and the value being compared is not known
11719  // to be sign extended, sign extend it here.
11720  DebugLoc dl = MI.getDebugLoc();
11721  MachineFunction *F = BB->getParent();
11722  MachineRegisterInfo &RegInfo = F->getRegInfo();
11723  Register incr = MI.getOperand(3).getReg();
11724  bool IsSignExtended =
11725      incr.isVirtual() && isSignExtended(*RegInfo.getVRegDef(incr), TII);
11726
11727  if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11728    Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11729    BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11730        .addReg(MI.getOperand(3).getReg());
11731    MI.getOperand(3).setReg(ValueReg);
11732  }
11733  // If we support part-word atomic mnemonics, just use them
11734  if (Subtarget.hasPartwordAtomics())
11735    return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11736                            CmpPred);
11737
11738  // In 64 bit mode we have to use 64 bits for addresses, even though the
11739  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11740  // registers without caring whether they're 32 or 64, but here we're
11741  // doing actual arithmetic on the addresses.
11742  bool is64bit = Subtarget.isPPC64();
11743  bool isLittleEndian = Subtarget.isLittleEndian();
11744  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11745
11746  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11747  MachineFunction::iterator It = ++BB->getIterator();
11748
11749  Register dest = MI.getOperand(0).getReg();
11750  Register ptrA = MI.getOperand(1).getReg();
11751  Register ptrB = MI.getOperand(2).getReg();
11752
11753  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11754  MachineBasicBlock *loop2MBB =
11755      CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11756  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11757  F->insert(It, loopMBB);
11758  if (CmpOpcode)
11759    F->insert(It, loop2MBB);
11760  F->insert(It, exitMBB);
11761  exitMBB->splice(exitMBB->begin(), BB,
11762                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
11763  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11764
11765  const TargetRegisterClass *RC =
11766      is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11767  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11768
11769  Register PtrReg = RegInfo.createVirtualRegister(RC);
11770  Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11771  Register ShiftReg =
11772      isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11773  Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11774  Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11775  Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11776  Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11777  Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11778  Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11779  Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11780  Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11781  Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11782  Register Ptr1Reg;
11783  Register TmpReg =
11784      (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11785
11786  //  thisMBB:
11787  //   ...
11788  //   fallthrough --> loopMBB
11789  BB->addSuccessor(loopMBB);
11790
11791  // The 4-byte load must be aligned, while a char or short may be
11792  // anywhere in the word.  Hence all this nasty bookkeeping code.
11793  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11794  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11795  //   xori shift, shift1, 24 [16]
11796  //   rlwinm ptr, ptr1, 0, 0, 29
11797  //   slw incr2, incr, shift
11798  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11799  //   slw mask, mask2, shift
11800  //  loopMBB:
11801  //   lwarx tmpDest, ptr
11802  //   add tmp, tmpDest, incr2
11803  //   andc tmp2, tmpDest, mask
11804  //   and tmp3, tmp, mask
11805  //   or tmp4, tmp3, tmp2
11806  //   stwcx. tmp4, ptr
11807  //   bne- loopMBB
11808  //   fallthrough --> exitMBB
11809  //   srw SrwDest, tmpDest, shift
11810  //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11811  if (ptrA != ZeroReg) {
11812    Ptr1Reg = RegInfo.createVirtualRegister(RC);
11813    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11814        .addReg(ptrA)
11815        .addReg(ptrB);
11816  } else {
11817    Ptr1Reg = ptrB;
11818  }
11819  // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11820  // mode.
11821  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11822      .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11823      .addImm(3)
11824      .addImm(27)
11825      .addImm(is8bit ? 28 : 27);
11826  if (!isLittleEndian)
11827    BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11828        .addReg(Shift1Reg)
11829        .addImm(is8bit ? 24 : 16);
11830  if (is64bit)
11831    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11832        .addReg(Ptr1Reg)
11833        .addImm(0)
11834        .addImm(61);
11835  else
11836    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11837        .addReg(Ptr1Reg)
11838        .addImm(0)
11839        .addImm(0)
11840        .addImm(29);
11841  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11842  if (is8bit)
11843    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11844  else {
11845    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11846    BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11847        .addReg(Mask3Reg)
11848        .addImm(65535);
11849  }
11850  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11851      .addReg(Mask2Reg)
11852      .addReg(ShiftReg);
11853
11854  BB = loopMBB;
11855  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11856      .addReg(ZeroReg)
11857      .addReg(PtrReg);
11858  if (BinOpcode)
11859    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11860        .addReg(Incr2Reg)
11861        .addReg(TmpDestReg);
11862  BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11863      .addReg(TmpDestReg)
11864      .addReg(MaskReg);
11865  BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11866  if (CmpOpcode) {
11867    // For unsigned comparisons, we can directly compare the shifted values.
11868    // For signed comparisons we shift and sign extend.
11869    Register SReg = RegInfo.createVirtualRegister(GPRC);
11870    Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11871    BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11872        .addReg(TmpDestReg)
11873        .addReg(MaskReg);
11874    unsigned ValueReg = SReg;
11875    unsigned CmpReg = Incr2Reg;
11876    if (CmpOpcode == PPC::CMPW) {
11877      ValueReg = RegInfo.createVirtualRegister(GPRC);
11878      BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11879          .addReg(SReg)
11880          .addReg(ShiftReg);
11881      Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11882      BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11883          .addReg(ValueReg);
11884      ValueReg = ValueSReg;
11885      CmpReg = incr;
11886    }
11887    BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ValueReg).addReg(CmpReg);
11888    BuildMI(BB, dl, TII->get(PPC::BCC))
11889        .addImm(CmpPred)
11890        .addReg(CrReg)
11891        .addMBB(exitMBB);
11892    BB->addSuccessor(loop2MBB);
11893    BB->addSuccessor(exitMBB);
11894    BB = loop2MBB;
11895  }
11896  BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11897  BuildMI(BB, dl, TII->get(PPC::STWCX))
11898      .addReg(Tmp4Reg)
11899      .addReg(ZeroReg)
11900      .addReg(PtrReg);
11901  BuildMI(BB, dl, TII->get(PPC::BCC))
11902      .addImm(PPC::PRED_NE)
11903      .addReg(PPC::CR0)
11904      .addMBB(loopMBB);
11905  BB->addSuccessor(loopMBB);
11906  BB->addSuccessor(exitMBB);
11907
11908  //  exitMBB:
11909  //   ...
11910  BB = exitMBB;
11911  // Since the shift amount is not a constant, we need to clear
11912  // the upper bits with a separate RLWINM.
11913  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11914      .addReg(SrwDestReg)
11915      .addImm(0)
11916      .addImm(is8bit ? 24 : 16)
11917      .addImm(31);
11918  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11919      .addReg(TmpDestReg)
11920      .addReg(ShiftReg);
11921  return BB;
11922}
11923
11924llvm::MachineBasicBlock *
11925PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11926                                    MachineBasicBlock *MBB) const {
11927  DebugLoc DL = MI.getDebugLoc();
11928  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11929  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11930
11931  MachineFunction *MF = MBB->getParent();
11932  MachineRegisterInfo &MRI = MF->getRegInfo();
11933
11934  const BasicBlock *BB = MBB->getBasicBlock();
11935  MachineFunction::iterator I = ++MBB->getIterator();
11936
11937  Register DstReg = MI.getOperand(0).getReg();
11938  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11939  assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11940  Register mainDstReg = MRI.createVirtualRegister(RC);
11941  Register restoreDstReg = MRI.createVirtualRegister(RC);
11942
11943  MVT PVT = getPointerTy(MF->getDataLayout());
11944  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11945         "Invalid Pointer Size!");
11946  // For v = setjmp(buf), we generate
11947  //
11948  // thisMBB:
11949  //  SjLjSetup mainMBB
11950  //  bl mainMBB
11951  //  v_restore = 1
11952  //  b sinkMBB
11953  //
11954  // mainMBB:
11955  //  buf[LabelOffset] = LR
11956  //  v_main = 0
11957  //
11958  // sinkMBB:
11959  //  v = phi(main, restore)
11960  //
11961
11962  MachineBasicBlock *thisMBB = MBB;
11963  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11964  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11965  MF->insert(I, mainMBB);
11966  MF->insert(I, sinkMBB);
11967
11968  MachineInstrBuilder MIB;
11969
11970  // Transfer the remainder of BB and its successor edges to sinkMBB.
11971  sinkMBB->splice(sinkMBB->begin(), MBB,
11972                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11973  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11974
11975  // Note that the structure of the jmp_buf used here is not compatible
11976  // with that used by libc, and is not designed to be. Specifically, it
11977  // stores only those 'reserved' registers that LLVM does not otherwise
11978  // understand how to spill. Also, by convention, by the time this
11979  // intrinsic is called, Clang has already stored the frame address in the
11980  // first slot of the buffer and stack address in the third. Following the
11981  // X86 target code, we'll store the jump address in the second slot. We also
11982  // need to save the TOC pointer (R2) to handle jumps between shared
11983  // libraries, and that will be stored in the fourth slot. The thread
11984  // identifier (R13) is not affected.
11985
11986  // thisMBB:
11987  const int64_t LabelOffset = 1 * PVT.getStoreSize();
11988  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11989  const int64_t BPOffset    = 4 * PVT.getStoreSize();
11990
11991  // Prepare IP either in reg.
11992  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11993  Register LabelReg = MRI.createVirtualRegister(PtrRC);
11994  Register BufReg = MI.getOperand(1).getReg();
11995
11996  if (Subtarget.is64BitELFABI()) {
11997    setUsesTOCBasePtr(*MBB->getParent());
11998    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11999              .addReg(PPC::X2)
12000              .addImm(TOCOffset)
12001              .addReg(BufReg)
12002              .cloneMemRefs(MI);
12003  }
12004
12005  // Naked functions never have a base pointer, and so we use r1. For all
12006  // other functions, this decision must be delayed until during PEI.
12007  unsigned BaseReg;
12008  if (MF->getFunction().hasFnAttribute(Attribute::Naked))
12009    BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
12010  else
12011    BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
12012
12013  MIB = BuildMI(*thisMBB, MI, DL,
12014                TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
12015            .addReg(BaseReg)
12016            .addImm(BPOffset)
12017            .addReg(BufReg)
12018            .cloneMemRefs(MI);
12019
12020  // Setup
12021  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
12022  MIB.addRegMask(TRI->getNoPreservedMask());
12023
12024  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
12025
12026  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
12027          .addMBB(mainMBB);
12028  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
12029
12030  thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
12031  thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
12032
12033  // mainMBB:
12034  //  mainDstReg = 0
12035  MIB =
12036      BuildMI(mainMBB, DL,
12037              TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
12038
12039  // Store IP
12040  if (Subtarget.isPPC64()) {
12041    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
12042            .addReg(LabelReg)
12043            .addImm(LabelOffset)
12044            .addReg(BufReg);
12045  } else {
12046    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
12047            .addReg(LabelReg)
12048            .addImm(LabelOffset)
12049            .addReg(BufReg);
12050  }
12051  MIB.cloneMemRefs(MI);
12052
12053  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
12054  mainMBB->addSuccessor(sinkMBB);
12055
12056  // sinkMBB:
12057  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12058          TII->get(PPC::PHI), DstReg)
12059    .addReg(mainDstReg).addMBB(mainMBB)
12060    .addReg(restoreDstReg).addMBB(thisMBB);
12061
12062  MI.eraseFromParent();
12063  return sinkMBB;
12064}
12065
12066MachineBasicBlock *
12067PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
12068                                     MachineBasicBlock *MBB) const {
12069  DebugLoc DL = MI.getDebugLoc();
12070  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12071
12072  MachineFunction *MF = MBB->getParent();
12073  MachineRegisterInfo &MRI = MF->getRegInfo();
12074
12075  MVT PVT = getPointerTy(MF->getDataLayout());
12076  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
12077         "Invalid Pointer Size!");
12078
12079  const TargetRegisterClass *RC =
12080    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12081  Register Tmp = MRI.createVirtualRegister(RC);
12082  // Since FP is only updated here but NOT referenced, it's treated as GPR.
12083  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
12084  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
12085  unsigned BP =
12086      (PVT == MVT::i64)
12087          ? PPC::X30
12088          : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
12089                                                              : PPC::R30);
12090
12091  MachineInstrBuilder MIB;
12092
12093  const int64_t LabelOffset = 1 * PVT.getStoreSize();
12094  const int64_t SPOffset    = 2 * PVT.getStoreSize();
12095  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
12096  const int64_t BPOffset    = 4 * PVT.getStoreSize();
12097
12098  Register BufReg = MI.getOperand(0).getReg();
12099
12100  // Reload FP (the jumped-to function may not have had a
12101  // frame pointer, and if so, then its r31 will be restored
12102  // as necessary).
12103  if (PVT == MVT::i64) {
12104    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
12105            .addImm(0)
12106            .addReg(BufReg);
12107  } else {
12108    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
12109            .addImm(0)
12110            .addReg(BufReg);
12111  }
12112  MIB.cloneMemRefs(MI);
12113
12114  // Reload IP
12115  if (PVT == MVT::i64) {
12116    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
12117            .addImm(LabelOffset)
12118            .addReg(BufReg);
12119  } else {
12120    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
12121            .addImm(LabelOffset)
12122            .addReg(BufReg);
12123  }
12124  MIB.cloneMemRefs(MI);
12125
12126  // Reload SP
12127  if (PVT == MVT::i64) {
12128    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
12129            .addImm(SPOffset)
12130            .addReg(BufReg);
12131  } else {
12132    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
12133            .addImm(SPOffset)
12134            .addReg(BufReg);
12135  }
12136  MIB.cloneMemRefs(MI);
12137
12138  // Reload BP
12139  if (PVT == MVT::i64) {
12140    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
12141            .addImm(BPOffset)
12142            .addReg(BufReg);
12143  } else {
12144    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
12145            .addImm(BPOffset)
12146            .addReg(BufReg);
12147  }
12148  MIB.cloneMemRefs(MI);
12149
12150  // Reload TOC
12151  if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
12152    setUsesTOCBasePtr(*MBB->getParent());
12153    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
12154              .addImm(TOCOffset)
12155              .addReg(BufReg)
12156              .cloneMemRefs(MI);
12157  }
12158
12159  // Jump
12160  BuildMI(*MBB, MI, DL,
12161          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
12162  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
12163
12164  MI.eraseFromParent();
12165  return MBB;
12166}
12167
12168bool PPCTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
12169  // If the function specifically requests inline stack probes, emit them.
12170  if (MF.getFunction().hasFnAttribute("probe-stack"))
12171    return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
12172           "inline-asm";
12173  return false;
12174}
12175
12176unsigned PPCTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
12177  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
12178  unsigned StackAlign = TFI->getStackAlignment();
12179  assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
12180         "Unexpected stack alignment");
12181  // The default stack probe size is 4096 if the function has no
12182  // stack-probe-size attribute.
12183  const Function &Fn = MF.getFunction();
12184  unsigned StackProbeSize =
12185      Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
12186  // Round down to the stack alignment.
12187  StackProbeSize &= ~(StackAlign - 1);
12188  return StackProbeSize ? StackProbeSize : StackAlign;
12189}
12190
12191// Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
12192// into three phases. In the first phase, it uses pseudo instruction
12193// PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
12194// FinalStackPtr. In the second phase, it generates a loop for probing blocks.
12195// At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
12196// MaxCallFrameSize so that it can calculate correct data area pointer.
12197MachineBasicBlock *
12198PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
12199                                    MachineBasicBlock *MBB) const {
12200  const bool isPPC64 = Subtarget.isPPC64();
12201  MachineFunction *MF = MBB->getParent();
12202  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12203  DebugLoc DL = MI.getDebugLoc();
12204  const unsigned ProbeSize = getStackProbeSize(*MF);
12205  const BasicBlock *ProbedBB = MBB->getBasicBlock();
12206  MachineRegisterInfo &MRI = MF->getRegInfo();
12207  // The CFG of probing stack looks as
12208  //         +-----+
12209  //         | MBB |
12210  //         +--+--+
12211  //            |
12212  //       +----v----+
12213  //  +--->+ TestMBB +---+
12214  //  |    +----+----+   |
12215  //  |         |        |
12216  //  |   +-----v----+   |
12217  //  +---+ BlockMBB |   |
12218  //      +----------+   |
12219  //                     |
12220  //       +---------+   |
12221  //       | TailMBB +<--+
12222  //       +---------+
12223  // In MBB, calculate previous frame pointer and final stack pointer.
12224  // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
12225  // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
12226  // TailMBB is spliced via \p MI.
12227  MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
12228  MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
12229  MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
12230
12231  MachineFunction::iterator MBBIter = ++MBB->getIterator();
12232  MF->insert(MBBIter, TestMBB);
12233  MF->insert(MBBIter, BlockMBB);
12234  MF->insert(MBBIter, TailMBB);
12235
12236  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
12237  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12238
12239  Register DstReg = MI.getOperand(0).getReg();
12240  Register NegSizeReg = MI.getOperand(1).getReg();
12241  Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
12242  Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12243  Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12244  Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12245
12246  // Since value of NegSizeReg might be realigned in prologepilog, insert a
12247  // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
12248  // NegSize.
12249  unsigned ProbeOpc;
12250  if (!MRI.hasOneNonDBGUse(NegSizeReg))
12251    ProbeOpc =
12252        isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
12253  else
12254    // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
12255    // and NegSizeReg will be allocated in the same phyreg to avoid
12256    // redundant copy when NegSizeReg has only one use which is current MI and
12257    // will be replaced by PREPARE_PROBED_ALLOCA then.
12258    ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
12259                       : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
12260  BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
12261      .addDef(ActualNegSizeReg)
12262      .addReg(NegSizeReg)
12263      .add(MI.getOperand(2))
12264      .add(MI.getOperand(3));
12265
12266  // Calculate final stack pointer, which equals to SP + ActualNegSize.
12267  BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
12268          FinalStackPtr)
12269      .addReg(SPReg)
12270      .addReg(ActualNegSizeReg);
12271
12272  // Materialize a scratch register for update.
12273  int64_t NegProbeSize = -(int64_t)ProbeSize;
12274  assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
12275  Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12276  if (!isInt<16>(NegProbeSize)) {
12277    Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12278    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
12279        .addImm(NegProbeSize >> 16);
12280    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12281            ScratchReg)
12282        .addReg(TempReg)
12283        .addImm(NegProbeSize & 0xFFFF);
12284  } else
12285    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12286        .addImm(NegProbeSize);
12287
12288  {
12289    // Probing leading residual part.
12290    Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12291    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12292        .addReg(ActualNegSizeReg)
12293        .addReg(ScratchReg);
12294    Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12295    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12296        .addReg(Div)
12297        .addReg(ScratchReg);
12298    Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12299    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12300        .addReg(Mul)
12301        .addReg(ActualNegSizeReg);
12302    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12303        .addReg(FramePointer)
12304        .addReg(SPReg)
12305        .addReg(NegMod);
12306  }
12307
12308  {
12309    // Remaining part should be multiple of ProbeSize.
12310    Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12311    BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12312        .addReg(SPReg)
12313        .addReg(FinalStackPtr);
12314    BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12315        .addImm(PPC::PRED_EQ)
12316        .addReg(CmpResult)
12317        .addMBB(TailMBB);
12318    TestMBB->addSuccessor(BlockMBB);
12319    TestMBB->addSuccessor(TailMBB);
12320  }
12321
12322  {
12323    // Touch the block.
12324    // |P...|P...|P...
12325    BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12326        .addReg(FramePointer)
12327        .addReg(SPReg)
12328        .addReg(ScratchReg);
12329    BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12330    BlockMBB->addSuccessor(TestMBB);
12331  }
12332
12333  // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12334  // DYNAREAOFFSET pseudo instruction to get the future result.
12335  Register MaxCallFrameSizeReg =
12336      MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12337  BuildMI(TailMBB, DL,
12338          TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12339          MaxCallFrameSizeReg)
12340      .add(MI.getOperand(2))
12341      .add(MI.getOperand(3));
12342  BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12343      .addReg(SPReg)
12344      .addReg(MaxCallFrameSizeReg);
12345
12346  // Splice instructions after MI to TailMBB.
12347  TailMBB->splice(TailMBB->end(), MBB,
12348                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12349  TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12350  MBB->addSuccessor(TestMBB);
12351
12352  // Delete the pseudo instruction.
12353  MI.eraseFromParent();
12354
12355  ++NumDynamicAllocaProbed;
12356  return TailMBB;
12357}
12358
12359MachineBasicBlock *
12360PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12361                                               MachineBasicBlock *BB) const {
12362  if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12363      MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12364    if (Subtarget.is64BitELFABI() &&
12365        MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12366        !Subtarget.isUsingPCRelativeCalls()) {
12367      // Call lowering should have added an r2 operand to indicate a dependence
12368      // on the TOC base pointer value. It can't however, because there is no
12369      // way to mark the dependence as implicit there, and so the stackmap code
12370      // will confuse it with a regular operand. Instead, add the dependence
12371      // here.
12372      MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12373    }
12374
12375    return emitPatchPoint(MI, BB);
12376  }
12377
12378  if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12379      MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12380    return emitEHSjLjSetJmp(MI, BB);
12381  } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12382             MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12383    return emitEHSjLjLongJmp(MI, BB);
12384  }
12385
12386  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12387
12388  // To "insert" these instructions we actually have to insert their
12389  // control-flow patterns.
12390  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12391  MachineFunction::iterator It = ++BB->getIterator();
12392
12393  MachineFunction *F = BB->getParent();
12394  MachineRegisterInfo &MRI = F->getRegInfo();
12395
12396  if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12397      MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12398      MI.getOpcode() == PPC::SELECT_I8) {
12399    SmallVector<MachineOperand, 2> Cond;
12400    if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12401        MI.getOpcode() == PPC::SELECT_CC_I8)
12402      Cond.push_back(MI.getOperand(4));
12403    else
12404      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12405    Cond.push_back(MI.getOperand(1));
12406
12407    DebugLoc dl = MI.getDebugLoc();
12408    TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12409                      MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12410  } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12411             MI.getOpcode() == PPC::SELECT_CC_F8 ||
12412             MI.getOpcode() == PPC::SELECT_CC_F16 ||
12413             MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12414             MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12415             MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12416             MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12417             MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12418             MI.getOpcode() == PPC::SELECT_CC_SPE ||
12419             MI.getOpcode() == PPC::SELECT_F4 ||
12420             MI.getOpcode() == PPC::SELECT_F8 ||
12421             MI.getOpcode() == PPC::SELECT_F16 ||
12422             MI.getOpcode() == PPC::SELECT_SPE ||
12423             MI.getOpcode() == PPC::SELECT_SPE4 ||
12424             MI.getOpcode() == PPC::SELECT_VRRC ||
12425             MI.getOpcode() == PPC::SELECT_VSFRC ||
12426             MI.getOpcode() == PPC::SELECT_VSSRC ||
12427             MI.getOpcode() == PPC::SELECT_VSRC) {
12428    // The incoming instruction knows the destination vreg to set, the
12429    // condition code register to branch on, the true/false values to
12430    // select between, and a branch opcode to use.
12431
12432    //  thisMBB:
12433    //  ...
12434    //   TrueVal = ...
12435    //   cmpTY ccX, r1, r2
12436    //   bCC copy1MBB
12437    //   fallthrough --> copy0MBB
12438    MachineBasicBlock *thisMBB = BB;
12439    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12440    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12441    DebugLoc dl = MI.getDebugLoc();
12442    F->insert(It, copy0MBB);
12443    F->insert(It, sinkMBB);
12444
12445    // Transfer the remainder of BB and its successor edges to sinkMBB.
12446    sinkMBB->splice(sinkMBB->begin(), BB,
12447                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
12448    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12449
12450    // Next, add the true and fallthrough blocks as its successors.
12451    BB->addSuccessor(copy0MBB);
12452    BB->addSuccessor(sinkMBB);
12453
12454    if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12455        MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12456        MI.getOpcode() == PPC::SELECT_F16 ||
12457        MI.getOpcode() == PPC::SELECT_SPE4 ||
12458        MI.getOpcode() == PPC::SELECT_SPE ||
12459        MI.getOpcode() == PPC::SELECT_VRRC ||
12460        MI.getOpcode() == PPC::SELECT_VSFRC ||
12461        MI.getOpcode() == PPC::SELECT_VSSRC ||
12462        MI.getOpcode() == PPC::SELECT_VSRC) {
12463      BuildMI(BB, dl, TII->get(PPC::BC))
12464          .addReg(MI.getOperand(1).getReg())
12465          .addMBB(sinkMBB);
12466    } else {
12467      unsigned SelectPred = MI.getOperand(4).getImm();
12468      BuildMI(BB, dl, TII->get(PPC::BCC))
12469          .addImm(SelectPred)
12470          .addReg(MI.getOperand(1).getReg())
12471          .addMBB(sinkMBB);
12472    }
12473
12474    //  copy0MBB:
12475    //   %FalseValue = ...
12476    //   # fallthrough to sinkMBB
12477    BB = copy0MBB;
12478
12479    // Update machine-CFG edges
12480    BB->addSuccessor(sinkMBB);
12481
12482    //  sinkMBB:
12483    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12484    //  ...
12485    BB = sinkMBB;
12486    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12487        .addReg(MI.getOperand(3).getReg())
12488        .addMBB(copy0MBB)
12489        .addReg(MI.getOperand(2).getReg())
12490        .addMBB(thisMBB);
12491  } else if (MI.getOpcode() == PPC::ReadTB) {
12492    // To read the 64-bit time-base register on a 32-bit target, we read the
12493    // two halves. Should the counter have wrapped while it was being read, we
12494    // need to try again.
12495    // ...
12496    // readLoop:
12497    // mfspr Rx,TBU # load from TBU
12498    // mfspr Ry,TB  # load from TB
12499    // mfspr Rz,TBU # load from TBU
12500    // cmpw crX,Rx,Rz # check if 'old'='new'
12501    // bne readLoop   # branch if they're not equal
12502    // ...
12503
12504    MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12505    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12506    DebugLoc dl = MI.getDebugLoc();
12507    F->insert(It, readMBB);
12508    F->insert(It, sinkMBB);
12509
12510    // Transfer the remainder of BB and its successor edges to sinkMBB.
12511    sinkMBB->splice(sinkMBB->begin(), BB,
12512                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
12513    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12514
12515    BB->addSuccessor(readMBB);
12516    BB = readMBB;
12517
12518    MachineRegisterInfo &RegInfo = F->getRegInfo();
12519    Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12520    Register LoReg = MI.getOperand(0).getReg();
12521    Register HiReg = MI.getOperand(1).getReg();
12522
12523    BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12524    BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12525    BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12526
12527    Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12528
12529    BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12530        .addReg(HiReg)
12531        .addReg(ReadAgainReg);
12532    BuildMI(BB, dl, TII->get(PPC::BCC))
12533        .addImm(PPC::PRED_NE)
12534        .addReg(CmpReg)
12535        .addMBB(readMBB);
12536
12537    BB->addSuccessor(readMBB);
12538    BB->addSuccessor(sinkMBB);
12539  } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12540    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12541  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12542    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12543  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12544    BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12545  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12546    BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12547
12548  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12549    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12550  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12551    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12552  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12553    BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12554  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12555    BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12556
12557  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12558    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12559  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12560    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12561  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12562    BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12563  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12564    BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12565
12566  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12567    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12568  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12569    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12570  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12571    BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12572  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12573    BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12574
12575  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12576    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12577  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12578    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12579  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12580    BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12581  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12582    BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12583
12584  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12585    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12586  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12587    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12588  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12589    BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12590  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12591    BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12592
12593  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12594    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LT);
12595  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12596    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LT);
12597  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12598    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LT);
12599  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12600    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LT);
12601
12602  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12603    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GT);
12604  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12605    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GT);
12606  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12607    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GT);
12608  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12609    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GT);
12610
12611  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12612    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LT);
12613  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12614    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LT);
12615  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12616    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LT);
12617  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12618    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LT);
12619
12620  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12621    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GT);
12622  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12623    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GT);
12624  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12625    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GT);
12626  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12627    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GT);
12628
12629  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12630    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12631  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12632    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12633  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12634    BB = EmitAtomicBinary(MI, BB, 4, 0);
12635  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12636    BB = EmitAtomicBinary(MI, BB, 8, 0);
12637  else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12638           MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12639           (Subtarget.hasPartwordAtomics() &&
12640            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12641           (Subtarget.hasPartwordAtomics() &&
12642            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12643    bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12644
12645    auto LoadMnemonic = PPC::LDARX;
12646    auto StoreMnemonic = PPC::STDCX;
12647    switch (MI.getOpcode()) {
12648    default:
12649      llvm_unreachable("Compare and swap of unknown size");
12650    case PPC::ATOMIC_CMP_SWAP_I8:
12651      LoadMnemonic = PPC::LBARX;
12652      StoreMnemonic = PPC::STBCX;
12653      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12654      break;
12655    case PPC::ATOMIC_CMP_SWAP_I16:
12656      LoadMnemonic = PPC::LHARX;
12657      StoreMnemonic = PPC::STHCX;
12658      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12659      break;
12660    case PPC::ATOMIC_CMP_SWAP_I32:
12661      LoadMnemonic = PPC::LWARX;
12662      StoreMnemonic = PPC::STWCX;
12663      break;
12664    case PPC::ATOMIC_CMP_SWAP_I64:
12665      LoadMnemonic = PPC::LDARX;
12666      StoreMnemonic = PPC::STDCX;
12667      break;
12668    }
12669    MachineRegisterInfo &RegInfo = F->getRegInfo();
12670    Register dest = MI.getOperand(0).getReg();
12671    Register ptrA = MI.getOperand(1).getReg();
12672    Register ptrB = MI.getOperand(2).getReg();
12673    Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12674    Register oldval = MI.getOperand(3).getReg();
12675    Register newval = MI.getOperand(4).getReg();
12676    DebugLoc dl = MI.getDebugLoc();
12677
12678    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12679    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12680    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12681    F->insert(It, loop1MBB);
12682    F->insert(It, loop2MBB);
12683    F->insert(It, exitMBB);
12684    exitMBB->splice(exitMBB->begin(), BB,
12685                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
12686    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12687
12688    //  thisMBB:
12689    //   ...
12690    //   fallthrough --> loopMBB
12691    BB->addSuccessor(loop1MBB);
12692
12693    // loop1MBB:
12694    //   l[bhwd]arx dest, ptr
12695    //   cmp[wd] dest, oldval
12696    //   bne- exitBB
12697    // loop2MBB:
12698    //   st[bhwd]cx. newval, ptr
12699    //   bne- loopMBB
12700    //   b exitBB
12701    // exitBB:
12702    BB = loop1MBB;
12703    BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12704    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg)
12705        .addReg(dest)
12706        .addReg(oldval);
12707    BuildMI(BB, dl, TII->get(PPC::BCC))
12708        .addImm(PPC::PRED_NE)
12709        .addReg(CrReg)
12710        .addMBB(exitMBB);
12711    BB->addSuccessor(loop2MBB);
12712    BB->addSuccessor(exitMBB);
12713
12714    BB = loop2MBB;
12715    BuildMI(BB, dl, TII->get(StoreMnemonic))
12716        .addReg(newval)
12717        .addReg(ptrA)
12718        .addReg(ptrB);
12719    BuildMI(BB, dl, TII->get(PPC::BCC))
12720        .addImm(PPC::PRED_NE)
12721        .addReg(PPC::CR0)
12722        .addMBB(loop1MBB);
12723    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12724    BB->addSuccessor(loop1MBB);
12725    BB->addSuccessor(exitMBB);
12726
12727    //  exitMBB:
12728    //   ...
12729    BB = exitMBB;
12730  } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12731             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12732    // We must use 64-bit registers for addresses when targeting 64-bit,
12733    // since we're actually doing arithmetic on them.  Other registers
12734    // can be 32-bit.
12735    bool is64bit = Subtarget.isPPC64();
12736    bool isLittleEndian = Subtarget.isLittleEndian();
12737    bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12738
12739    Register dest = MI.getOperand(0).getReg();
12740    Register ptrA = MI.getOperand(1).getReg();
12741    Register ptrB = MI.getOperand(2).getReg();
12742    Register oldval = MI.getOperand(3).getReg();
12743    Register newval = MI.getOperand(4).getReg();
12744    DebugLoc dl = MI.getDebugLoc();
12745
12746    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12747    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12748    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12749    F->insert(It, loop1MBB);
12750    F->insert(It, loop2MBB);
12751    F->insert(It, exitMBB);
12752    exitMBB->splice(exitMBB->begin(), BB,
12753                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
12754    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12755
12756    MachineRegisterInfo &RegInfo = F->getRegInfo();
12757    const TargetRegisterClass *RC =
12758        is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12759    const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12760
12761    Register PtrReg = RegInfo.createVirtualRegister(RC);
12762    Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12763    Register ShiftReg =
12764        isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12765    Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12766    Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12767    Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12768    Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12769    Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12770    Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12771    Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12772    Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12773    Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12774    Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12775    Register Ptr1Reg;
12776    Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12777    Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12778    Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12779    //  thisMBB:
12780    //   ...
12781    //   fallthrough --> loopMBB
12782    BB->addSuccessor(loop1MBB);
12783
12784    // The 4-byte load must be aligned, while a char or short may be
12785    // anywhere in the word.  Hence all this nasty bookkeeping code.
12786    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12787    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12788    //   xori shift, shift1, 24 [16]
12789    //   rlwinm ptr, ptr1, 0, 0, 29
12790    //   slw newval2, newval, shift
12791    //   slw oldval2, oldval,shift
12792    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12793    //   slw mask, mask2, shift
12794    //   and newval3, newval2, mask
12795    //   and oldval3, oldval2, mask
12796    // loop1MBB:
12797    //   lwarx tmpDest, ptr
12798    //   and tmp, tmpDest, mask
12799    //   cmpw tmp, oldval3
12800    //   bne- exitBB
12801    // loop2MBB:
12802    //   andc tmp2, tmpDest, mask
12803    //   or tmp4, tmp2, newval3
12804    //   stwcx. tmp4, ptr
12805    //   bne- loop1MBB
12806    //   b exitBB
12807    // exitBB:
12808    //   srw dest, tmpDest, shift
12809    if (ptrA != ZeroReg) {
12810      Ptr1Reg = RegInfo.createVirtualRegister(RC);
12811      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12812          .addReg(ptrA)
12813          .addReg(ptrB);
12814    } else {
12815      Ptr1Reg = ptrB;
12816    }
12817
12818    // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12819    // mode.
12820    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12821        .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12822        .addImm(3)
12823        .addImm(27)
12824        .addImm(is8bit ? 28 : 27);
12825    if (!isLittleEndian)
12826      BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12827          .addReg(Shift1Reg)
12828          .addImm(is8bit ? 24 : 16);
12829    if (is64bit)
12830      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12831          .addReg(Ptr1Reg)
12832          .addImm(0)
12833          .addImm(61);
12834    else
12835      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12836          .addReg(Ptr1Reg)
12837          .addImm(0)
12838          .addImm(0)
12839          .addImm(29);
12840    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12841        .addReg(newval)
12842        .addReg(ShiftReg);
12843    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12844        .addReg(oldval)
12845        .addReg(ShiftReg);
12846    if (is8bit)
12847      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12848    else {
12849      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12850      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12851          .addReg(Mask3Reg)
12852          .addImm(65535);
12853    }
12854    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12855        .addReg(Mask2Reg)
12856        .addReg(ShiftReg);
12857    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12858        .addReg(NewVal2Reg)
12859        .addReg(MaskReg);
12860    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12861        .addReg(OldVal2Reg)
12862        .addReg(MaskReg);
12863
12864    BB = loop1MBB;
12865    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12866        .addReg(ZeroReg)
12867        .addReg(PtrReg);
12868    BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12869        .addReg(TmpDestReg)
12870        .addReg(MaskReg);
12871    BuildMI(BB, dl, TII->get(PPC::CMPW), CrReg)
12872        .addReg(TmpReg)
12873        .addReg(OldVal3Reg);
12874    BuildMI(BB, dl, TII->get(PPC::BCC))
12875        .addImm(PPC::PRED_NE)
12876        .addReg(CrReg)
12877        .addMBB(exitMBB);
12878    BB->addSuccessor(loop2MBB);
12879    BB->addSuccessor(exitMBB);
12880
12881    BB = loop2MBB;
12882    BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12883        .addReg(TmpDestReg)
12884        .addReg(MaskReg);
12885    BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12886        .addReg(Tmp2Reg)
12887        .addReg(NewVal3Reg);
12888    BuildMI(BB, dl, TII->get(PPC::STWCX))
12889        .addReg(Tmp4Reg)
12890        .addReg(ZeroReg)
12891        .addReg(PtrReg);
12892    BuildMI(BB, dl, TII->get(PPC::BCC))
12893        .addImm(PPC::PRED_NE)
12894        .addReg(PPC::CR0)
12895        .addMBB(loop1MBB);
12896    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12897    BB->addSuccessor(loop1MBB);
12898    BB->addSuccessor(exitMBB);
12899
12900    //  exitMBB:
12901    //   ...
12902    BB = exitMBB;
12903    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12904        .addReg(TmpReg)
12905        .addReg(ShiftReg);
12906  } else if (MI.getOpcode() == PPC::FADDrtz) {
12907    // This pseudo performs an FADD with rounding mode temporarily forced
12908    // to round-to-zero.  We emit this via custom inserter since the FPSCR
12909    // is not modeled at the SelectionDAG level.
12910    Register Dest = MI.getOperand(0).getReg();
12911    Register Src1 = MI.getOperand(1).getReg();
12912    Register Src2 = MI.getOperand(2).getReg();
12913    DebugLoc dl = MI.getDebugLoc();
12914
12915    MachineRegisterInfo &RegInfo = F->getRegInfo();
12916    Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12917
12918    // Save FPSCR value.
12919    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12920
12921    // Set rounding mode to round-to-zero.
12922    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12923        .addImm(31)
12924        .addReg(PPC::RM, RegState::ImplicitDefine);
12925
12926    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12927        .addImm(30)
12928        .addReg(PPC::RM, RegState::ImplicitDefine);
12929
12930    // Perform addition.
12931    auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12932                   .addReg(Src1)
12933                   .addReg(Src2);
12934    if (MI.getFlag(MachineInstr::NoFPExcept))
12935      MIB.setMIFlag(MachineInstr::NoFPExcept);
12936
12937    // Restore FPSCR value.
12938    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12939  } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12940             MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12941             MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12942             MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12943    unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12944                       MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12945                          ? PPC::ANDI8_rec
12946                          : PPC::ANDI_rec;
12947    bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12948                 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12949
12950    MachineRegisterInfo &RegInfo = F->getRegInfo();
12951    Register Dest = RegInfo.createVirtualRegister(
12952        Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12953
12954    DebugLoc Dl = MI.getDebugLoc();
12955    BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12956        .addReg(MI.getOperand(1).getReg())
12957        .addImm(1);
12958    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12959            MI.getOperand(0).getReg())
12960        .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12961  } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12962    DebugLoc Dl = MI.getDebugLoc();
12963    MachineRegisterInfo &RegInfo = F->getRegInfo();
12964    Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12965    BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12966    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12967            MI.getOperand(0).getReg())
12968        .addReg(CRReg);
12969  } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12970    DebugLoc Dl = MI.getDebugLoc();
12971    unsigned Imm = MI.getOperand(1).getImm();
12972    BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12973    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12974            MI.getOperand(0).getReg())
12975        .addReg(PPC::CR0EQ);
12976  } else if (MI.getOpcode() == PPC::SETRNDi) {
12977    DebugLoc dl = MI.getDebugLoc();
12978    Register OldFPSCRReg = MI.getOperand(0).getReg();
12979
12980    // Save FPSCR value.
12981    if (MRI.use_empty(OldFPSCRReg))
12982      BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12983    else
12984      BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12985
12986    // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12987    // the following settings:
12988    //   00 Round to nearest
12989    //   01 Round to 0
12990    //   10 Round to +inf
12991    //   11 Round to -inf
12992
12993    // When the operand is immediate, using the two least significant bits of
12994    // the immediate to set the bits 62:63 of FPSCR.
12995    unsigned Mode = MI.getOperand(1).getImm();
12996    BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12997        .addImm(31)
12998        .addReg(PPC::RM, RegState::ImplicitDefine);
12999
13000    BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
13001        .addImm(30)
13002        .addReg(PPC::RM, RegState::ImplicitDefine);
13003  } else if (MI.getOpcode() == PPC::SETRND) {
13004    DebugLoc dl = MI.getDebugLoc();
13005
13006    // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
13007    // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
13008    // If the target doesn't have DirectMove, we should use stack to do the
13009    // conversion, because the target doesn't have the instructions like mtvsrd
13010    // or mfvsrd to do this conversion directly.
13011    auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
13012      if (Subtarget.hasDirectMove()) {
13013        BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
13014          .addReg(SrcReg);
13015      } else {
13016        // Use stack to do the register copy.
13017        unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
13018        MachineRegisterInfo &RegInfo = F->getRegInfo();
13019        const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
13020        if (RC == &PPC::F8RCRegClass) {
13021          // Copy register from F8RCRegClass to G8RCRegclass.
13022          assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
13023                 "Unsupported RegClass.");
13024
13025          StoreOp = PPC::STFD;
13026          LoadOp = PPC::LD;
13027        } else {
13028          // Copy register from G8RCRegClass to F8RCRegclass.
13029          assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
13030                 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
13031                 "Unsupported RegClass.");
13032        }
13033
13034        MachineFrameInfo &MFI = F->getFrameInfo();
13035        int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
13036
13037        MachineMemOperand *MMOStore = F->getMachineMemOperand(
13038            MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
13039            MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
13040            MFI.getObjectAlign(FrameIdx));
13041
13042        // Store the SrcReg into the stack.
13043        BuildMI(*BB, MI, dl, TII->get(StoreOp))
13044          .addReg(SrcReg)
13045          .addImm(0)
13046          .addFrameIndex(FrameIdx)
13047          .addMemOperand(MMOStore);
13048
13049        MachineMemOperand *MMOLoad = F->getMachineMemOperand(
13050            MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
13051            MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
13052            MFI.getObjectAlign(FrameIdx));
13053
13054        // Load from the stack where SrcReg is stored, and save to DestReg,
13055        // so we have done the RegClass conversion from RegClass::SrcReg to
13056        // RegClass::DestReg.
13057        BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
13058          .addImm(0)
13059          .addFrameIndex(FrameIdx)
13060          .addMemOperand(MMOLoad);
13061      }
13062    };
13063
13064    Register OldFPSCRReg = MI.getOperand(0).getReg();
13065
13066    // Save FPSCR value.
13067    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
13068
13069    // When the operand is gprc register, use two least significant bits of the
13070    // register and mtfsf instruction to set the bits 62:63 of FPSCR.
13071    //
13072    // copy OldFPSCRTmpReg, OldFPSCRReg
13073    // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
13074    // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
13075    // copy NewFPSCRReg, NewFPSCRTmpReg
13076    // mtfsf 255, NewFPSCRReg
13077    MachineOperand SrcOp = MI.getOperand(1);
13078    MachineRegisterInfo &RegInfo = F->getRegInfo();
13079    Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13080
13081    copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
13082
13083    Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13084    Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13085
13086    // The first operand of INSERT_SUBREG should be a register which has
13087    // subregisters, we only care about its RegClass, so we should use an
13088    // IMPLICIT_DEF register.
13089    BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
13090    BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
13091      .addReg(ImDefReg)
13092      .add(SrcOp)
13093      .addImm(1);
13094
13095    Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13096    BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
13097      .addReg(OldFPSCRTmpReg)
13098      .addReg(ExtSrcReg)
13099      .addImm(0)
13100      .addImm(62);
13101
13102    Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
13103    copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
13104
13105    // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
13106    // bits of FPSCR.
13107    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
13108      .addImm(255)
13109      .addReg(NewFPSCRReg)
13110      .addImm(0)
13111      .addImm(0);
13112  } else if (MI.getOpcode() == PPC::SETFLM) {
13113    DebugLoc Dl = MI.getDebugLoc();
13114
13115    // Result of setflm is previous FPSCR content, so we need to save it first.
13116    Register OldFPSCRReg = MI.getOperand(0).getReg();
13117    if (MRI.use_empty(OldFPSCRReg))
13118      BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
13119    else
13120      BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
13121
13122    // Put bits in 32:63 to FPSCR.
13123    Register NewFPSCRReg = MI.getOperand(1).getReg();
13124    BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
13125        .addImm(255)
13126        .addReg(NewFPSCRReg)
13127        .addImm(0)
13128        .addImm(0);
13129  } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
13130             MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
13131    return emitProbedAlloca(MI, BB);
13132  } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
13133    DebugLoc DL = MI.getDebugLoc();
13134    Register Src = MI.getOperand(2).getReg();
13135    Register Lo = MI.getOperand(0).getReg();
13136    Register Hi = MI.getOperand(1).getReg();
13137    BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
13138        .addDef(Lo)
13139        .addUse(Src, 0, PPC::sub_gp8_x1);
13140    BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
13141        .addDef(Hi)
13142        .addUse(Src, 0, PPC::sub_gp8_x0);
13143  } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
13144             MI.getOpcode() == PPC::STQX_PSEUDO) {
13145    DebugLoc DL = MI.getDebugLoc();
13146    // Ptr is used as the ptr_rc_no_r0 part
13147    // of LQ/STQ's memory operand and adding result of RA and RB,
13148    // so it has to be g8rc_and_g8rc_nox0.
13149    Register Ptr =
13150        F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
13151    Register Val = MI.getOperand(0).getReg();
13152    Register RA = MI.getOperand(1).getReg();
13153    Register RB = MI.getOperand(2).getReg();
13154    BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
13155    BuildMI(*BB, MI, DL,
13156            MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
13157                                              : TII->get(PPC::STQ))
13158        .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
13159        .addImm(0)
13160        .addReg(Ptr);
13161  } else {
13162    llvm_unreachable("Unexpected instr type to insert");
13163  }
13164
13165  MI.eraseFromParent(); // The pseudo instruction is gone now.
13166  return BB;
13167}
13168
13169//===----------------------------------------------------------------------===//
13170// Target Optimization Hooks
13171//===----------------------------------------------------------------------===//
13172
13173static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
13174  // For the estimates, convergence is quadratic, so we essentially double the
13175  // number of digits correct after every iteration. For both FRE and FRSQRTE,
13176  // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
13177  // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
13178  int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
13179  if (VT.getScalarType() == MVT::f64)
13180    RefinementSteps++;
13181  return RefinementSteps;
13182}
13183
13184SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
13185                                            const DenormalMode &Mode) const {
13186  // We only have VSX Vector Test for software Square Root.
13187  EVT VT = Op.getValueType();
13188  if (!isTypeLegal(MVT::i1) ||
13189      (VT != MVT::f64 &&
13190       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
13191    return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
13192
13193  SDLoc DL(Op);
13194  // The output register of FTSQRT is CR field.
13195  SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
13196  // ftsqrt BF,FRB
13197  // Let e_b be the unbiased exponent of the double-precision
13198  // floating-point operand in register FRB.
13199  // fe_flag is set to 1 if either of the following conditions occurs.
13200  //   - The double-precision floating-point operand in register FRB is a zero,
13201  //     a NaN, or an infinity, or a negative value.
13202  //   - e_b is less than or equal to -970.
13203  // Otherwise fe_flag is set to 0.
13204  // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
13205  // not eligible for iteration. (zero/negative/infinity/nan or unbiased
13206  // exponent is less than -970)
13207  SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
13208  return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
13209                                    FTSQRT, SRIdxVal),
13210                 0);
13211}
13212
13213SDValue
13214PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
13215                                               SelectionDAG &DAG) const {
13216  // We only have VSX Vector Square Root.
13217  EVT VT = Op.getValueType();
13218  if (VT != MVT::f64 &&
13219      ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
13220    return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
13221
13222  return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
13223}
13224
13225SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
13226                                           int Enabled, int &RefinementSteps,
13227                                           bool &UseOneConstNR,
13228                                           bool Reciprocal) const {
13229  EVT VT = Operand.getValueType();
13230  if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
13231      (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
13232      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13233      (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13234    if (RefinementSteps == ReciprocalEstimate::Unspecified)
13235      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13236
13237    // The Newton-Raphson computation with a single constant does not provide
13238    // enough accuracy on some CPUs.
13239    UseOneConstNR = !Subtarget.needsTwoConstNR();
13240    return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
13241  }
13242  return SDValue();
13243}
13244
13245SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
13246                                            int Enabled,
13247                                            int &RefinementSteps) const {
13248  EVT VT = Operand.getValueType();
13249  if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
13250      (VT == MVT::f64 && Subtarget.hasFRE()) ||
13251      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13252      (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13253    if (RefinementSteps == ReciprocalEstimate::Unspecified)
13254      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13255    return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
13256  }
13257  return SDValue();
13258}
13259
13260unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
13261  // Note: This functionality is used only when unsafe-fp-math is enabled, and
13262  // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13263  // enabled for division), this functionality is redundant with the default
13264  // combiner logic (once the division -> reciprocal/multiply transformation
13265  // has taken place). As a result, this matters more for older cores than for
13266  // newer ones.
13267
13268  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13269  // reciprocal if there are two or more FDIVs (for embedded cores with only
13270  // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13271  switch (Subtarget.getCPUDirective()) {
13272  default:
13273    return 3;
13274  case PPC::DIR_440:
13275  case PPC::DIR_A2:
13276  case PPC::DIR_E500:
13277  case PPC::DIR_E500mc:
13278  case PPC::DIR_E5500:
13279    return 2;
13280  }
13281}
13282
13283// isConsecutiveLSLoc needs to work even if all adds have not yet been
13284// collapsed, and so we need to look through chains of them.
13285static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13286                                     int64_t& Offset, SelectionDAG &DAG) {
13287  if (DAG.isBaseWithConstantOffset(Loc)) {
13288    Base = Loc.getOperand(0);
13289    Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13290
13291    // The base might itself be a base plus an offset, and if so, accumulate
13292    // that as well.
13293    getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13294  }
13295}
13296
13297static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13298                            unsigned Bytes, int Dist,
13299                            SelectionDAG &DAG) {
13300  if (VT.getSizeInBits() / 8 != Bytes)
13301    return false;
13302
13303  SDValue BaseLoc = Base->getBasePtr();
13304  if (Loc.getOpcode() == ISD::FrameIndex) {
13305    if (BaseLoc.getOpcode() != ISD::FrameIndex)
13306      return false;
13307    const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13308    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13309    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13310    int FS  = MFI.getObjectSize(FI);
13311    int BFS = MFI.getObjectSize(BFI);
13312    if (FS != BFS || FS != (int)Bytes) return false;
13313    return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13314  }
13315
13316  SDValue Base1 = Loc, Base2 = BaseLoc;
13317  int64_t Offset1 = 0, Offset2 = 0;
13318  getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13319  getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13320  if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13321    return true;
13322
13323  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13324  const GlobalValue *GV1 = nullptr;
13325  const GlobalValue *GV2 = nullptr;
13326  Offset1 = 0;
13327  Offset2 = 0;
13328  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13329  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13330  if (isGA1 && isGA2 && GV1 == GV2)
13331    return Offset1 == (Offset2 + Dist*Bytes);
13332  return false;
13333}
13334
13335// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13336// not enforce equality of the chain operands.
13337static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13338                            unsigned Bytes, int Dist,
13339                            SelectionDAG &DAG) {
13340  if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13341    EVT VT = LS->getMemoryVT();
13342    SDValue Loc = LS->getBasePtr();
13343    return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13344  }
13345
13346  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13347    EVT VT;
13348    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13349    default: return false;
13350    case Intrinsic::ppc_altivec_lvx:
13351    case Intrinsic::ppc_altivec_lvxl:
13352    case Intrinsic::ppc_vsx_lxvw4x:
13353    case Intrinsic::ppc_vsx_lxvw4x_be:
13354      VT = MVT::v4i32;
13355      break;
13356    case Intrinsic::ppc_vsx_lxvd2x:
13357    case Intrinsic::ppc_vsx_lxvd2x_be:
13358      VT = MVT::v2f64;
13359      break;
13360    case Intrinsic::ppc_altivec_lvebx:
13361      VT = MVT::i8;
13362      break;
13363    case Intrinsic::ppc_altivec_lvehx:
13364      VT = MVT::i16;
13365      break;
13366    case Intrinsic::ppc_altivec_lvewx:
13367      VT = MVT::i32;
13368      break;
13369    }
13370
13371    return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13372  }
13373
13374  if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13375    EVT VT;
13376    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13377    default: return false;
13378    case Intrinsic::ppc_altivec_stvx:
13379    case Intrinsic::ppc_altivec_stvxl:
13380    case Intrinsic::ppc_vsx_stxvw4x:
13381      VT = MVT::v4i32;
13382      break;
13383    case Intrinsic::ppc_vsx_stxvd2x:
13384      VT = MVT::v2f64;
13385      break;
13386    case Intrinsic::ppc_vsx_stxvw4x_be:
13387      VT = MVT::v4i32;
13388      break;
13389    case Intrinsic::ppc_vsx_stxvd2x_be:
13390      VT = MVT::v2f64;
13391      break;
13392    case Intrinsic::ppc_altivec_stvebx:
13393      VT = MVT::i8;
13394      break;
13395    case Intrinsic::ppc_altivec_stvehx:
13396      VT = MVT::i16;
13397      break;
13398    case Intrinsic::ppc_altivec_stvewx:
13399      VT = MVT::i32;
13400      break;
13401    }
13402
13403    return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13404  }
13405
13406  return false;
13407}
13408
13409// Return true is there is a nearyby consecutive load to the one provided
13410// (regardless of alignment). We search up and down the chain, looking though
13411// token factors and other loads (but nothing else). As a result, a true result
13412// indicates that it is safe to create a new consecutive load adjacent to the
13413// load provided.
13414static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13415  SDValue Chain = LD->getChain();
13416  EVT VT = LD->getMemoryVT();
13417
13418  SmallSet<SDNode *, 16> LoadRoots;
13419  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13420  SmallSet<SDNode *, 16> Visited;
13421
13422  // First, search up the chain, branching to follow all token-factor operands.
13423  // If we find a consecutive load, then we're done, otherwise, record all
13424  // nodes just above the top-level loads and token factors.
13425  while (!Queue.empty()) {
13426    SDNode *ChainNext = Queue.pop_back_val();
13427    if (!Visited.insert(ChainNext).second)
13428      continue;
13429
13430    if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13431      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13432        return true;
13433
13434      if (!Visited.count(ChainLD->getChain().getNode()))
13435        Queue.push_back(ChainLD->getChain().getNode());
13436    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13437      for (const SDUse &O : ChainNext->ops())
13438        if (!Visited.count(O.getNode()))
13439          Queue.push_back(O.getNode());
13440    } else
13441      LoadRoots.insert(ChainNext);
13442  }
13443
13444  // Second, search down the chain, starting from the top-level nodes recorded
13445  // in the first phase. These top-level nodes are the nodes just above all
13446  // loads and token factors. Starting with their uses, recursively look though
13447  // all loads (just the chain uses) and token factors to find a consecutive
13448  // load.
13449  Visited.clear();
13450  Queue.clear();
13451
13452  for (SDNode *I : LoadRoots) {
13453    Queue.push_back(I);
13454
13455    while (!Queue.empty()) {
13456      SDNode *LoadRoot = Queue.pop_back_val();
13457      if (!Visited.insert(LoadRoot).second)
13458        continue;
13459
13460      if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13461        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13462          return true;
13463
13464      for (SDNode *U : LoadRoot->uses())
13465        if (((isa<MemSDNode>(U) &&
13466              cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13467             U->getOpcode() == ISD::TokenFactor) &&
13468            !Visited.count(U))
13469          Queue.push_back(U);
13470    }
13471  }
13472
13473  return false;
13474}
13475
13476/// This function is called when we have proved that a SETCC node can be replaced
13477/// by subtraction (and other supporting instructions) so that the result of
13478/// comparison is kept in a GPR instead of CR. This function is purely for
13479/// codegen purposes and has some flags to guide the codegen process.
13480static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13481                                     bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13482  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13483
13484  // Zero extend the operands to the largest legal integer. Originally, they
13485  // must be of a strictly smaller size.
13486  auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13487                         DAG.getConstant(Size, DL, MVT::i32));
13488  auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13489                         DAG.getConstant(Size, DL, MVT::i32));
13490
13491  // Swap if needed. Depends on the condition code.
13492  if (Swap)
13493    std::swap(Op0, Op1);
13494
13495  // Subtract extended integers.
13496  auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13497
13498  // Move the sign bit to the least significant position and zero out the rest.
13499  // Now the least significant bit carries the result of original comparison.
13500  auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13501                             DAG.getConstant(Size - 1, DL, MVT::i32));
13502  auto Final = Shifted;
13503
13504  // Complement the result if needed. Based on the condition code.
13505  if (Complement)
13506    Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13507                        DAG.getConstant(1, DL, MVT::i64));
13508
13509  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13510}
13511
13512SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13513                                                  DAGCombinerInfo &DCI) const {
13514  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13515
13516  SelectionDAG &DAG = DCI.DAG;
13517  SDLoc DL(N);
13518
13519  // Size of integers being compared has a critical role in the following
13520  // analysis, so we prefer to do this when all types are legal.
13521  if (!DCI.isAfterLegalizeDAG())
13522    return SDValue();
13523
13524  // If all users of SETCC extend its value to a legal integer type
13525  // then we replace SETCC with a subtraction
13526  for (const SDNode *U : N->uses())
13527    if (U->getOpcode() != ISD::ZERO_EXTEND)
13528      return SDValue();
13529
13530  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13531  auto OpSize = N->getOperand(0).getValueSizeInBits();
13532
13533  unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13534
13535  if (OpSize < Size) {
13536    switch (CC) {
13537    default: break;
13538    case ISD::SETULT:
13539      return generateEquivalentSub(N, Size, false, false, DL, DAG);
13540    case ISD::SETULE:
13541      return generateEquivalentSub(N, Size, true, true, DL, DAG);
13542    case ISD::SETUGT:
13543      return generateEquivalentSub(N, Size, false, true, DL, DAG);
13544    case ISD::SETUGE:
13545      return generateEquivalentSub(N, Size, true, false, DL, DAG);
13546    }
13547  }
13548
13549  return SDValue();
13550}
13551
13552SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13553                                                  DAGCombinerInfo &DCI) const {
13554  SelectionDAG &DAG = DCI.DAG;
13555  SDLoc dl(N);
13556
13557  assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13558  // If we're tracking CR bits, we need to be careful that we don't have:
13559  //   trunc(binary-ops(zext(x), zext(y)))
13560  // or
13561  //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13562  // such that we're unnecessarily moving things into GPRs when it would be
13563  // better to keep them in CR bits.
13564
13565  // Note that trunc here can be an actual i1 trunc, or can be the effective
13566  // truncation that comes from a setcc or select_cc.
13567  if (N->getOpcode() == ISD::TRUNCATE &&
13568      N->getValueType(0) != MVT::i1)
13569    return SDValue();
13570
13571  if (N->getOperand(0).getValueType() != MVT::i32 &&
13572      N->getOperand(0).getValueType() != MVT::i64)
13573    return SDValue();
13574
13575  if (N->getOpcode() == ISD::SETCC ||
13576      N->getOpcode() == ISD::SELECT_CC) {
13577    // If we're looking at a comparison, then we need to make sure that the
13578    // high bits (all except for the first) don't matter the result.
13579    ISD::CondCode CC =
13580      cast<CondCodeSDNode>(N->getOperand(
13581        N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13582    unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13583
13584    if (ISD::isSignedIntSetCC(CC)) {
13585      if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13586          DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13587        return SDValue();
13588    } else if (ISD::isUnsignedIntSetCC(CC)) {
13589      if (!DAG.MaskedValueIsZero(N->getOperand(0),
13590                                 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13591          !DAG.MaskedValueIsZero(N->getOperand(1),
13592                                 APInt::getHighBitsSet(OpBits, OpBits-1)))
13593        return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13594                                             : SDValue());
13595    } else {
13596      // This is neither a signed nor an unsigned comparison, just make sure
13597      // that the high bits are equal.
13598      KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13599      KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13600
13601      // We don't really care about what is known about the first bit (if
13602      // anything), so pretend that it is known zero for both to ensure they can
13603      // be compared as constants.
13604      Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13605      Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13606
13607      if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13608          Op1Known.getConstant() != Op2Known.getConstant())
13609        return SDValue();
13610    }
13611  }
13612
13613  // We now know that the higher-order bits are irrelevant, we just need to
13614  // make sure that all of the intermediate operations are bit operations, and
13615  // all inputs are extensions.
13616  if (N->getOperand(0).getOpcode() != ISD::AND &&
13617      N->getOperand(0).getOpcode() != ISD::OR  &&
13618      N->getOperand(0).getOpcode() != ISD::XOR &&
13619      N->getOperand(0).getOpcode() != ISD::SELECT &&
13620      N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13621      N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13622      N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13623      N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13624      N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13625    return SDValue();
13626
13627  if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13628      N->getOperand(1).getOpcode() != ISD::AND &&
13629      N->getOperand(1).getOpcode() != ISD::OR  &&
13630      N->getOperand(1).getOpcode() != ISD::XOR &&
13631      N->getOperand(1).getOpcode() != ISD::SELECT &&
13632      N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13633      N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13634      N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13635      N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13636      N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13637    return SDValue();
13638
13639  SmallVector<SDValue, 4> Inputs;
13640  SmallVector<SDValue, 8> BinOps, PromOps;
13641  SmallPtrSet<SDNode *, 16> Visited;
13642
13643  for (unsigned i = 0; i < 2; ++i) {
13644    if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13645          N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13646          N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13647          N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13648        isa<ConstantSDNode>(N->getOperand(i)))
13649      Inputs.push_back(N->getOperand(i));
13650    else
13651      BinOps.push_back(N->getOperand(i));
13652
13653    if (N->getOpcode() == ISD::TRUNCATE)
13654      break;
13655  }
13656
13657  // Visit all inputs, collect all binary operations (and, or, xor and
13658  // select) that are all fed by extensions.
13659  while (!BinOps.empty()) {
13660    SDValue BinOp = BinOps.pop_back_val();
13661
13662    if (!Visited.insert(BinOp.getNode()).second)
13663      continue;
13664
13665    PromOps.push_back(BinOp);
13666
13667    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13668      // The condition of the select is not promoted.
13669      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13670        continue;
13671      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13672        continue;
13673
13674      if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13675            BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13676            BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13677           BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13678          isa<ConstantSDNode>(BinOp.getOperand(i))) {
13679        Inputs.push_back(BinOp.getOperand(i));
13680      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13681                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13682                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13683                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13684                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13685                 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13686                 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13687                 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13688                 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13689        BinOps.push_back(BinOp.getOperand(i));
13690      } else {
13691        // We have an input that is not an extension or another binary
13692        // operation; we'll abort this transformation.
13693        return SDValue();
13694      }
13695    }
13696  }
13697
13698  // Make sure that this is a self-contained cluster of operations (which
13699  // is not quite the same thing as saying that everything has only one
13700  // use).
13701  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13702    if (isa<ConstantSDNode>(Inputs[i]))
13703      continue;
13704
13705    for (const SDNode *User : Inputs[i].getNode()->uses()) {
13706      if (User != N && !Visited.count(User))
13707        return SDValue();
13708
13709      // Make sure that we're not going to promote the non-output-value
13710      // operand(s) or SELECT or SELECT_CC.
13711      // FIXME: Although we could sometimes handle this, and it does occur in
13712      // practice that one of the condition inputs to the select is also one of
13713      // the outputs, we currently can't deal with this.
13714      if (User->getOpcode() == ISD::SELECT) {
13715        if (User->getOperand(0) == Inputs[i])
13716          return SDValue();
13717      } else if (User->getOpcode() == ISD::SELECT_CC) {
13718        if (User->getOperand(0) == Inputs[i] ||
13719            User->getOperand(1) == Inputs[i])
13720          return SDValue();
13721      }
13722    }
13723  }
13724
13725  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13726    for (const SDNode *User : PromOps[i].getNode()->uses()) {
13727      if (User != N && !Visited.count(User))
13728        return SDValue();
13729
13730      // Make sure that we're not going to promote the non-output-value
13731      // operand(s) or SELECT or SELECT_CC.
13732      // FIXME: Although we could sometimes handle this, and it does occur in
13733      // practice that one of the condition inputs to the select is also one of
13734      // the outputs, we currently can't deal with this.
13735      if (User->getOpcode() == ISD::SELECT) {
13736        if (User->getOperand(0) == PromOps[i])
13737          return SDValue();
13738      } else if (User->getOpcode() == ISD::SELECT_CC) {
13739        if (User->getOperand(0) == PromOps[i] ||
13740            User->getOperand(1) == PromOps[i])
13741          return SDValue();
13742      }
13743    }
13744  }
13745
13746  // Replace all inputs with the extension operand.
13747  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13748    // Constants may have users outside the cluster of to-be-promoted nodes,
13749    // and so we need to replace those as we do the promotions.
13750    if (isa<ConstantSDNode>(Inputs[i]))
13751      continue;
13752    else
13753      DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13754  }
13755
13756  std::list<HandleSDNode> PromOpHandles;
13757  for (auto &PromOp : PromOps)
13758    PromOpHandles.emplace_back(PromOp);
13759
13760  // Replace all operations (these are all the same, but have a different
13761  // (i1) return type). DAG.getNode will validate that the types of
13762  // a binary operator match, so go through the list in reverse so that
13763  // we've likely promoted both operands first. Any intermediate truncations or
13764  // extensions disappear.
13765  while (!PromOpHandles.empty()) {
13766    SDValue PromOp = PromOpHandles.back().getValue();
13767    PromOpHandles.pop_back();
13768
13769    if (PromOp.getOpcode() == ISD::TRUNCATE ||
13770        PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13771        PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13772        PromOp.getOpcode() == ISD::ANY_EXTEND) {
13773      if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13774          PromOp.getOperand(0).getValueType() != MVT::i1) {
13775        // The operand is not yet ready (see comment below).
13776        PromOpHandles.emplace_front(PromOp);
13777        continue;
13778      }
13779
13780      SDValue RepValue = PromOp.getOperand(0);
13781      if (isa<ConstantSDNode>(RepValue))
13782        RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13783
13784      DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13785      continue;
13786    }
13787
13788    unsigned C;
13789    switch (PromOp.getOpcode()) {
13790    default:             C = 0; break;
13791    case ISD::SELECT:    C = 1; break;
13792    case ISD::SELECT_CC: C = 2; break;
13793    }
13794
13795    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13796         PromOp.getOperand(C).getValueType() != MVT::i1) ||
13797        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13798         PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13799      // The to-be-promoted operands of this node have not yet been
13800      // promoted (this should be rare because we're going through the
13801      // list backward, but if one of the operands has several users in
13802      // this cluster of to-be-promoted nodes, it is possible).
13803      PromOpHandles.emplace_front(PromOp);
13804      continue;
13805    }
13806
13807    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13808                                PromOp.getNode()->op_end());
13809
13810    // If there are any constant inputs, make sure they're replaced now.
13811    for (unsigned i = 0; i < 2; ++i)
13812      if (isa<ConstantSDNode>(Ops[C+i]))
13813        Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13814
13815    DAG.ReplaceAllUsesOfValueWith(PromOp,
13816      DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13817  }
13818
13819  // Now we're left with the initial truncation itself.
13820  if (N->getOpcode() == ISD::TRUNCATE)
13821    return N->getOperand(0);
13822
13823  // Otherwise, this is a comparison. The operands to be compared have just
13824  // changed type (to i1), but everything else is the same.
13825  return SDValue(N, 0);
13826}
13827
13828SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13829                                                  DAGCombinerInfo &DCI) const {
13830  SelectionDAG &DAG = DCI.DAG;
13831  SDLoc dl(N);
13832
13833  // If we're tracking CR bits, we need to be careful that we don't have:
13834  //   zext(binary-ops(trunc(x), trunc(y)))
13835  // or
13836  //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13837  // such that we're unnecessarily moving things into CR bits that can more
13838  // efficiently stay in GPRs. Note that if we're not certain that the high
13839  // bits are set as required by the final extension, we still may need to do
13840  // some masking to get the proper behavior.
13841
13842  // This same functionality is important on PPC64 when dealing with
13843  // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13844  // the return values of functions. Because it is so similar, it is handled
13845  // here as well.
13846
13847  if (N->getValueType(0) != MVT::i32 &&
13848      N->getValueType(0) != MVT::i64)
13849    return SDValue();
13850
13851  if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13852        (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13853    return SDValue();
13854
13855  if (N->getOperand(0).getOpcode() != ISD::AND &&
13856      N->getOperand(0).getOpcode() != ISD::OR  &&
13857      N->getOperand(0).getOpcode() != ISD::XOR &&
13858      N->getOperand(0).getOpcode() != ISD::SELECT &&
13859      N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13860    return SDValue();
13861
13862  SmallVector<SDValue, 4> Inputs;
13863  SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13864  SmallPtrSet<SDNode *, 16> Visited;
13865
13866  // Visit all inputs, collect all binary operations (and, or, xor and
13867  // select) that are all fed by truncations.
13868  while (!BinOps.empty()) {
13869    SDValue BinOp = BinOps.pop_back_val();
13870
13871    if (!Visited.insert(BinOp.getNode()).second)
13872      continue;
13873
13874    PromOps.push_back(BinOp);
13875
13876    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13877      // The condition of the select is not promoted.
13878      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13879        continue;
13880      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13881        continue;
13882
13883      if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13884          isa<ConstantSDNode>(BinOp.getOperand(i))) {
13885        Inputs.push_back(BinOp.getOperand(i));
13886      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13887                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13888                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13889                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13890                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13891        BinOps.push_back(BinOp.getOperand(i));
13892      } else {
13893        // We have an input that is not a truncation or another binary
13894        // operation; we'll abort this transformation.
13895        return SDValue();
13896      }
13897    }
13898  }
13899
13900  // The operands of a select that must be truncated when the select is
13901  // promoted because the operand is actually part of the to-be-promoted set.
13902  DenseMap<SDNode *, EVT> SelectTruncOp[2];
13903
13904  // Make sure that this is a self-contained cluster of operations (which
13905  // is not quite the same thing as saying that everything has only one
13906  // use).
13907  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13908    if (isa<ConstantSDNode>(Inputs[i]))
13909      continue;
13910
13911    for (SDNode *User : Inputs[i].getNode()->uses()) {
13912      if (User != N && !Visited.count(User))
13913        return SDValue();
13914
13915      // If we're going to promote the non-output-value operand(s) or SELECT or
13916      // SELECT_CC, record them for truncation.
13917      if (User->getOpcode() == ISD::SELECT) {
13918        if (User->getOperand(0) == Inputs[i])
13919          SelectTruncOp[0].insert(std::make_pair(User,
13920                                    User->getOperand(0).getValueType()));
13921      } else if (User->getOpcode() == ISD::SELECT_CC) {
13922        if (User->getOperand(0) == Inputs[i])
13923          SelectTruncOp[0].insert(std::make_pair(User,
13924                                    User->getOperand(0).getValueType()));
13925        if (User->getOperand(1) == Inputs[i])
13926          SelectTruncOp[1].insert(std::make_pair(User,
13927                                    User->getOperand(1).getValueType()));
13928      }
13929    }
13930  }
13931
13932  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13933    for (SDNode *User : PromOps[i].getNode()->uses()) {
13934      if (User != N && !Visited.count(User))
13935        return SDValue();
13936
13937      // If we're going to promote the non-output-value operand(s) or SELECT or
13938      // SELECT_CC, record them for truncation.
13939      if (User->getOpcode() == ISD::SELECT) {
13940        if (User->getOperand(0) == PromOps[i])
13941          SelectTruncOp[0].insert(std::make_pair(User,
13942                                    User->getOperand(0).getValueType()));
13943      } else if (User->getOpcode() == ISD::SELECT_CC) {
13944        if (User->getOperand(0) == PromOps[i])
13945          SelectTruncOp[0].insert(std::make_pair(User,
13946                                    User->getOperand(0).getValueType()));
13947        if (User->getOperand(1) == PromOps[i])
13948          SelectTruncOp[1].insert(std::make_pair(User,
13949                                    User->getOperand(1).getValueType()));
13950      }
13951    }
13952  }
13953
13954  unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13955  bool ReallyNeedsExt = false;
13956  if (N->getOpcode() != ISD::ANY_EXTEND) {
13957    // If all of the inputs are not already sign/zero extended, then
13958    // we'll still need to do that at the end.
13959    for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13960      if (isa<ConstantSDNode>(Inputs[i]))
13961        continue;
13962
13963      unsigned OpBits =
13964        Inputs[i].getOperand(0).getValueSizeInBits();
13965      assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13966
13967      if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13968           !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13969                                  APInt::getHighBitsSet(OpBits,
13970                                                        OpBits-PromBits))) ||
13971          (N->getOpcode() == ISD::SIGN_EXTEND &&
13972           DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13973             (OpBits-(PromBits-1)))) {
13974        ReallyNeedsExt = true;
13975        break;
13976      }
13977    }
13978  }
13979
13980  // Replace all inputs, either with the truncation operand, or a
13981  // truncation or extension to the final output type.
13982  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13983    // Constant inputs need to be replaced with the to-be-promoted nodes that
13984    // use them because they might have users outside of the cluster of
13985    // promoted nodes.
13986    if (isa<ConstantSDNode>(Inputs[i]))
13987      continue;
13988
13989    SDValue InSrc = Inputs[i].getOperand(0);
13990    if (Inputs[i].getValueType() == N->getValueType(0))
13991      DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13992    else if (N->getOpcode() == ISD::SIGN_EXTEND)
13993      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13994        DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13995    else if (N->getOpcode() == ISD::ZERO_EXTEND)
13996      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13997        DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13998    else
13999      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
14000        DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
14001  }
14002
14003  std::list<HandleSDNode> PromOpHandles;
14004  for (auto &PromOp : PromOps)
14005    PromOpHandles.emplace_back(PromOp);
14006
14007  // Replace all operations (these are all the same, but have a different
14008  // (promoted) return type). DAG.getNode will validate that the types of
14009  // a binary operator match, so go through the list in reverse so that
14010  // we've likely promoted both operands first.
14011  while (!PromOpHandles.empty()) {
14012    SDValue PromOp = PromOpHandles.back().getValue();
14013    PromOpHandles.pop_back();
14014
14015    unsigned C;
14016    switch (PromOp.getOpcode()) {
14017    default:             C = 0; break;
14018    case ISD::SELECT:    C = 1; break;
14019    case ISD::SELECT_CC: C = 2; break;
14020    }
14021
14022    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
14023         PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
14024        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
14025         PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
14026      // The to-be-promoted operands of this node have not yet been
14027      // promoted (this should be rare because we're going through the
14028      // list backward, but if one of the operands has several users in
14029      // this cluster of to-be-promoted nodes, it is possible).
14030      PromOpHandles.emplace_front(PromOp);
14031      continue;
14032    }
14033
14034    // For SELECT and SELECT_CC nodes, we do a similar check for any
14035    // to-be-promoted comparison inputs.
14036    if (PromOp.getOpcode() == ISD::SELECT ||
14037        PromOp.getOpcode() == ISD::SELECT_CC) {
14038      if ((SelectTruncOp[0].count(PromOp.getNode()) &&
14039           PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
14040          (SelectTruncOp[1].count(PromOp.getNode()) &&
14041           PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
14042        PromOpHandles.emplace_front(PromOp);
14043        continue;
14044      }
14045    }
14046
14047    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
14048                                PromOp.getNode()->op_end());
14049
14050    // If this node has constant inputs, then they'll need to be promoted here.
14051    for (unsigned i = 0; i < 2; ++i) {
14052      if (!isa<ConstantSDNode>(Ops[C+i]))
14053        continue;
14054      if (Ops[C+i].getValueType() == N->getValueType(0))
14055        continue;
14056
14057      if (N->getOpcode() == ISD::SIGN_EXTEND)
14058        Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14059      else if (N->getOpcode() == ISD::ZERO_EXTEND)
14060        Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14061      else
14062        Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14063    }
14064
14065    // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
14066    // truncate them again to the original value type.
14067    if (PromOp.getOpcode() == ISD::SELECT ||
14068        PromOp.getOpcode() == ISD::SELECT_CC) {
14069      auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
14070      if (SI0 != SelectTruncOp[0].end())
14071        Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
14072      auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
14073      if (SI1 != SelectTruncOp[1].end())
14074        Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
14075    }
14076
14077    DAG.ReplaceAllUsesOfValueWith(PromOp,
14078      DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
14079  }
14080
14081  // Now we're left with the initial extension itself.
14082  if (!ReallyNeedsExt)
14083    return N->getOperand(0);
14084
14085  // To zero extend, just mask off everything except for the first bit (in the
14086  // i1 case).
14087  if (N->getOpcode() == ISD::ZERO_EXTEND)
14088    return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
14089                       DAG.getConstant(APInt::getLowBitsSet(
14090                                         N->getValueSizeInBits(0), PromBits),
14091                                       dl, N->getValueType(0)));
14092
14093  assert(N->getOpcode() == ISD::SIGN_EXTEND &&
14094         "Invalid extension type");
14095  EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
14096  SDValue ShiftCst =
14097      DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
14098  return DAG.getNode(
14099      ISD::SRA, dl, N->getValueType(0),
14100      DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
14101      ShiftCst);
14102}
14103
14104SDValue PPCTargetLowering::combineSetCC(SDNode *N,
14105                                        DAGCombinerInfo &DCI) const {
14106  assert(N->getOpcode() == ISD::SETCC &&
14107         "Should be called with a SETCC node");
14108
14109  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
14110  if (CC == ISD::SETNE || CC == ISD::SETEQ) {
14111    SDValue LHS = N->getOperand(0);
14112    SDValue RHS = N->getOperand(1);
14113
14114    // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
14115    if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
14116        LHS.hasOneUse())
14117      std::swap(LHS, RHS);
14118
14119    // x == 0-y --> x+y == 0
14120    // x != 0-y --> x+y != 0
14121    if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
14122        RHS.hasOneUse()) {
14123      SDLoc DL(N);
14124      SelectionDAG &DAG = DCI.DAG;
14125      EVT VT = N->getValueType(0);
14126      EVT OpVT = LHS.getValueType();
14127      SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
14128      return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
14129    }
14130  }
14131
14132  return DAGCombineTruncBoolExt(N, DCI);
14133}
14134
14135// Is this an extending load from an f32 to an f64?
14136static bool isFPExtLoad(SDValue Op) {
14137  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
14138    return LD->getExtensionType() == ISD::EXTLOAD &&
14139      Op.getValueType() == MVT::f64;
14140  return false;
14141}
14142
14143/// Reduces the number of fp-to-int conversion when building a vector.
14144///
14145/// If this vector is built out of floating to integer conversions,
14146/// transform it to a vector built out of floating point values followed by a
14147/// single floating to integer conversion of the vector.
14148/// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
14149/// becomes (fptosi (build_vector ($A, $B, ...)))
14150SDValue PPCTargetLowering::
14151combineElementTruncationToVectorTruncation(SDNode *N,
14152                                           DAGCombinerInfo &DCI) const {
14153  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14154         "Should be called with a BUILD_VECTOR node");
14155
14156  SelectionDAG &DAG = DCI.DAG;
14157  SDLoc dl(N);
14158
14159  SDValue FirstInput = N->getOperand(0);
14160  assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
14161         "The input operand must be an fp-to-int conversion.");
14162
14163  // This combine happens after legalization so the fp_to_[su]i nodes are
14164  // already converted to PPCSISD nodes.
14165  unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
14166  if (FirstConversion == PPCISD::FCTIDZ ||
14167      FirstConversion == PPCISD::FCTIDUZ ||
14168      FirstConversion == PPCISD::FCTIWZ ||
14169      FirstConversion == PPCISD::FCTIWUZ) {
14170    bool IsSplat = true;
14171    bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
14172      FirstConversion == PPCISD::FCTIWUZ;
14173    EVT SrcVT = FirstInput.getOperand(0).getValueType();
14174    SmallVector<SDValue, 4> Ops;
14175    EVT TargetVT = N->getValueType(0);
14176    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14177      SDValue NextOp = N->getOperand(i);
14178      if (NextOp.getOpcode() != PPCISD::MFVSR)
14179        return SDValue();
14180      unsigned NextConversion = NextOp.getOperand(0).getOpcode();
14181      if (NextConversion != FirstConversion)
14182        return SDValue();
14183      // If we are converting to 32-bit integers, we need to add an FP_ROUND.
14184      // This is not valid if the input was originally double precision. It is
14185      // also not profitable to do unless this is an extending load in which
14186      // case doing this combine will allow us to combine consecutive loads.
14187      if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
14188        return SDValue();
14189      if (N->getOperand(i) != FirstInput)
14190        IsSplat = false;
14191    }
14192
14193    // If this is a splat, we leave it as-is since there will be only a single
14194    // fp-to-int conversion followed by a splat of the integer. This is better
14195    // for 32-bit and smaller ints and neutral for 64-bit ints.
14196    if (IsSplat)
14197      return SDValue();
14198
14199    // Now that we know we have the right type of node, get its operands
14200    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14201      SDValue In = N->getOperand(i).getOperand(0);
14202      if (Is32Bit) {
14203        // For 32-bit values, we need to add an FP_ROUND node (if we made it
14204        // here, we know that all inputs are extending loads so this is safe).
14205        if (In.isUndef())
14206          Ops.push_back(DAG.getUNDEF(SrcVT));
14207        else {
14208          SDValue Trunc =
14209              DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, In.getOperand(0),
14210                          DAG.getIntPtrConstant(1, dl, /*isTarget=*/true));
14211          Ops.push_back(Trunc);
14212        }
14213      } else
14214        Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
14215    }
14216
14217    unsigned Opcode;
14218    if (FirstConversion == PPCISD::FCTIDZ ||
14219        FirstConversion == PPCISD::FCTIWZ)
14220      Opcode = ISD::FP_TO_SINT;
14221    else
14222      Opcode = ISD::FP_TO_UINT;
14223
14224    EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
14225    SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
14226    return DAG.getNode(Opcode, dl, TargetVT, BV);
14227  }
14228  return SDValue();
14229}
14230
14231/// Reduce the number of loads when building a vector.
14232///
14233/// Building a vector out of multiple loads can be converted to a load
14234/// of the vector type if the loads are consecutive. If the loads are
14235/// consecutive but in descending order, a shuffle is added at the end
14236/// to reorder the vector.
14237static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
14238  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14239         "Should be called with a BUILD_VECTOR node");
14240
14241  SDLoc dl(N);
14242
14243  // Return early for non byte-sized type, as they can't be consecutive.
14244  if (!N->getValueType(0).getVectorElementType().isByteSized())
14245    return SDValue();
14246
14247  bool InputsAreConsecutiveLoads = true;
14248  bool InputsAreReverseConsecutive = true;
14249  unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
14250  SDValue FirstInput = N->getOperand(0);
14251  bool IsRoundOfExtLoad = false;
14252  LoadSDNode *FirstLoad = nullptr;
14253
14254  if (FirstInput.getOpcode() == ISD::FP_ROUND &&
14255      FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
14256    FirstLoad = cast<LoadSDNode>(FirstInput.getOperand(0));
14257    IsRoundOfExtLoad = FirstLoad->getExtensionType() == ISD::EXTLOAD;
14258  }
14259  // Not a build vector of (possibly fp_rounded) loads.
14260  if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
14261      N->getNumOperands() == 1)
14262    return SDValue();
14263
14264  if (!IsRoundOfExtLoad)
14265    FirstLoad = cast<LoadSDNode>(FirstInput);
14266
14267  SmallVector<LoadSDNode *, 4> InputLoads;
14268  InputLoads.push_back(FirstLoad);
14269  for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14270    // If any inputs are fp_round(extload), they all must be.
14271    if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14272      return SDValue();
14273
14274    SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14275      N->getOperand(i);
14276    if (NextInput.getOpcode() != ISD::LOAD)
14277      return SDValue();
14278
14279    SDValue PreviousInput =
14280      IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14281    LoadSDNode *LD1 = cast<LoadSDNode>(PreviousInput);
14282    LoadSDNode *LD2 = cast<LoadSDNode>(NextInput);
14283
14284    // If any inputs are fp_round(extload), they all must be.
14285    if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14286      return SDValue();
14287
14288    // We only care about regular loads. The PPC-specific load intrinsics
14289    // will not lead to a merge opportunity.
14290    if (!DAG.areNonVolatileConsecutiveLoads(LD2, LD1, ElemSize, 1))
14291      InputsAreConsecutiveLoads = false;
14292    if (!DAG.areNonVolatileConsecutiveLoads(LD1, LD2, ElemSize, 1))
14293      InputsAreReverseConsecutive = false;
14294
14295    // Exit early if the loads are neither consecutive nor reverse consecutive.
14296    if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14297      return SDValue();
14298    InputLoads.push_back(LD2);
14299  }
14300
14301  assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14302         "The loads cannot be both consecutive and reverse consecutive.");
14303
14304  SDValue WideLoad;
14305  SDValue ReturnSDVal;
14306  if (InputsAreConsecutiveLoads) {
14307    assert(FirstLoad && "Input needs to be a LoadSDNode.");
14308    WideLoad = DAG.getLoad(N->getValueType(0), dl, FirstLoad->getChain(),
14309                           FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
14310                           FirstLoad->getAlign());
14311    ReturnSDVal = WideLoad;
14312  } else if (InputsAreReverseConsecutive) {
14313    LoadSDNode *LastLoad = InputLoads.back();
14314    assert(LastLoad && "Input needs to be a LoadSDNode.");
14315    WideLoad = DAG.getLoad(N->getValueType(0), dl, LastLoad->getChain(),
14316                           LastLoad->getBasePtr(), LastLoad->getPointerInfo(),
14317                           LastLoad->getAlign());
14318    SmallVector<int, 16> Ops;
14319    for (int i = N->getNumOperands() - 1; i >= 0; i--)
14320      Ops.push_back(i);
14321
14322    ReturnSDVal = DAG.getVectorShuffle(N->getValueType(0), dl, WideLoad,
14323                                       DAG.getUNDEF(N->getValueType(0)), Ops);
14324  } else
14325    return SDValue();
14326
14327  for (auto *LD : InputLoads)
14328    DAG.makeEquivalentMemoryOrdering(LD, WideLoad);
14329  return ReturnSDVal;
14330}
14331
14332// This function adds the required vector_shuffle needed to get
14333// the elements of the vector extract in the correct position
14334// as specified by the CorrectElems encoding.
14335static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14336                                      SDValue Input, uint64_t Elems,
14337                                      uint64_t CorrectElems) {
14338  SDLoc dl(N);
14339
14340  unsigned NumElems = Input.getValueType().getVectorNumElements();
14341  SmallVector<int, 16> ShuffleMask(NumElems, -1);
14342
14343  // Knowing the element indices being extracted from the original
14344  // vector and the order in which they're being inserted, just put
14345  // them at element indices required for the instruction.
14346  for (unsigned i = 0; i < N->getNumOperands(); i++) {
14347    if (DAG.getDataLayout().isLittleEndian())
14348      ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14349    else
14350      ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14351    CorrectElems = CorrectElems >> 8;
14352    Elems = Elems >> 8;
14353  }
14354
14355  SDValue Shuffle =
14356      DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14357                           DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14358
14359  EVT VT = N->getValueType(0);
14360  SDValue Conv = DAG.getBitcast(VT, Shuffle);
14361
14362  EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14363                               Input.getValueType().getVectorElementType(),
14364                               VT.getVectorNumElements());
14365  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14366                     DAG.getValueType(ExtVT));
14367}
14368
14369// Look for build vector patterns where input operands come from sign
14370// extended vector_extract elements of specific indices. If the correct indices
14371// aren't used, add a vector shuffle to fix up the indices and create
14372// SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14373// during instruction selection.
14374static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14375  // This array encodes the indices that the vector sign extend instructions
14376  // extract from when extending from one type to another for both BE and LE.
14377  // The right nibble of each byte corresponds to the LE incides.
14378  // and the left nibble of each byte corresponds to the BE incides.
14379  // For example: 0x3074B8FC  byte->word
14380  // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14381  // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14382  // For example: 0x000070F8  byte->double word
14383  // For LE: the allowed indices are: 0x0,0x8
14384  // For BE: the allowed indices are: 0x7,0xF
14385  uint64_t TargetElems[] = {
14386      0x3074B8FC, // b->w
14387      0x000070F8, // b->d
14388      0x10325476, // h->w
14389      0x00003074, // h->d
14390      0x00001032, // w->d
14391  };
14392
14393  uint64_t Elems = 0;
14394  int Index;
14395  SDValue Input;
14396
14397  auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14398    if (!Op)
14399      return false;
14400    if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14401        Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14402      return false;
14403
14404    // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14405    // of the right width.
14406    SDValue Extract = Op.getOperand(0);
14407    if (Extract.getOpcode() == ISD::ANY_EXTEND)
14408      Extract = Extract.getOperand(0);
14409    if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14410      return false;
14411
14412    ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14413    if (!ExtOp)
14414      return false;
14415
14416    Index = ExtOp->getZExtValue();
14417    if (Input && Input != Extract.getOperand(0))
14418      return false;
14419
14420    if (!Input)
14421      Input = Extract.getOperand(0);
14422
14423    Elems = Elems << 8;
14424    Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14425    Elems |= Index;
14426
14427    return true;
14428  };
14429
14430  // If the build vector operands aren't sign extended vector extracts,
14431  // of the same input vector, then return.
14432  for (unsigned i = 0; i < N->getNumOperands(); i++) {
14433    if (!isSExtOfVecExtract(N->getOperand(i))) {
14434      return SDValue();
14435    }
14436  }
14437
14438  // If the vector extract indicies are not correct, add the appropriate
14439  // vector_shuffle.
14440  int TgtElemArrayIdx;
14441  int InputSize = Input.getValueType().getScalarSizeInBits();
14442  int OutputSize = N->getValueType(0).getScalarSizeInBits();
14443  if (InputSize + OutputSize == 40)
14444    TgtElemArrayIdx = 0;
14445  else if (InputSize + OutputSize == 72)
14446    TgtElemArrayIdx = 1;
14447  else if (InputSize + OutputSize == 48)
14448    TgtElemArrayIdx = 2;
14449  else if (InputSize + OutputSize == 80)
14450    TgtElemArrayIdx = 3;
14451  else if (InputSize + OutputSize == 96)
14452    TgtElemArrayIdx = 4;
14453  else
14454    return SDValue();
14455
14456  uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14457  CorrectElems = DAG.getDataLayout().isLittleEndian()
14458                     ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14459                     : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14460  if (Elems != CorrectElems) {
14461    return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14462  }
14463
14464  // Regular lowering will catch cases where a shuffle is not needed.
14465  return SDValue();
14466}
14467
14468// Look for the pattern of a load from a narrow width to i128, feeding
14469// into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14470// (LXVRZX). This node represents a zero extending load that will be matched
14471// to the Load VSX Vector Rightmost instructions.
14472static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14473  SDLoc DL(N);
14474
14475  // This combine is only eligible for a BUILD_VECTOR of v1i128.
14476  if (N->getValueType(0) != MVT::v1i128)
14477    return SDValue();
14478
14479  SDValue Operand = N->getOperand(0);
14480  // Proceed with the transformation if the operand to the BUILD_VECTOR
14481  // is a load instruction.
14482  if (Operand.getOpcode() != ISD::LOAD)
14483    return SDValue();
14484
14485  auto *LD = cast<LoadSDNode>(Operand);
14486  EVT MemoryType = LD->getMemoryVT();
14487
14488  // This transformation is only valid if the we are loading either a byte,
14489  // halfword, word, or doubleword.
14490  bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14491                     MemoryType == MVT::i32 || MemoryType == MVT::i64;
14492
14493  // Ensure that the load from the narrow width is being zero extended to i128.
14494  if (!ValidLDType ||
14495      (LD->getExtensionType() != ISD::ZEXTLOAD &&
14496       LD->getExtensionType() != ISD::EXTLOAD))
14497    return SDValue();
14498
14499  SDValue LoadOps[] = {
14500      LD->getChain(), LD->getBasePtr(),
14501      DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14502
14503  return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14504                                 DAG.getVTList(MVT::v1i128, MVT::Other),
14505                                 LoadOps, MemoryType, LD->getMemOperand());
14506}
14507
14508SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14509                                                 DAGCombinerInfo &DCI) const {
14510  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14511         "Should be called with a BUILD_VECTOR node");
14512
14513  SelectionDAG &DAG = DCI.DAG;
14514  SDLoc dl(N);
14515
14516  if (!Subtarget.hasVSX())
14517    return SDValue();
14518
14519  // The target independent DAG combiner will leave a build_vector of
14520  // float-to-int conversions intact. We can generate MUCH better code for
14521  // a float-to-int conversion of a vector of floats.
14522  SDValue FirstInput = N->getOperand(0);
14523  if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14524    SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14525    if (Reduced)
14526      return Reduced;
14527  }
14528
14529  // If we're building a vector out of consecutive loads, just load that
14530  // vector type.
14531  SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14532  if (Reduced)
14533    return Reduced;
14534
14535  // If we're building a vector out of extended elements from another vector
14536  // we have P9 vector integer extend instructions. The code assumes legal
14537  // input types (i.e. it can't handle things like v4i16) so do not run before
14538  // legalization.
14539  if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14540    Reduced = combineBVOfVecSExt(N, DAG);
14541    if (Reduced)
14542      return Reduced;
14543  }
14544
14545  // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14546  // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14547  // is a load from <valid narrow width> to i128.
14548  if (Subtarget.isISA3_1()) {
14549    SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14550    if (BVOfZLoad)
14551      return BVOfZLoad;
14552  }
14553
14554  if (N->getValueType(0) != MVT::v2f64)
14555    return SDValue();
14556
14557  // Looking for:
14558  // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14559  if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14560      FirstInput.getOpcode() != ISD::UINT_TO_FP)
14561    return SDValue();
14562  if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14563      N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14564    return SDValue();
14565  if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14566    return SDValue();
14567
14568  SDValue Ext1 = FirstInput.getOperand(0);
14569  SDValue Ext2 = N->getOperand(1).getOperand(0);
14570  if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14571     Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14572    return SDValue();
14573
14574  ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14575  ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14576  if (!Ext1Op || !Ext2Op)
14577    return SDValue();
14578  if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14579      Ext1.getOperand(0) != Ext2.getOperand(0))
14580    return SDValue();
14581
14582  int FirstElem = Ext1Op->getZExtValue();
14583  int SecondElem = Ext2Op->getZExtValue();
14584  int SubvecIdx;
14585  if (FirstElem == 0 && SecondElem == 1)
14586    SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14587  else if (FirstElem == 2 && SecondElem == 3)
14588    SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14589  else
14590    return SDValue();
14591
14592  SDValue SrcVec = Ext1.getOperand(0);
14593  auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14594    PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14595  return DAG.getNode(NodeType, dl, MVT::v2f64,
14596                     SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14597}
14598
14599SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14600                                              DAGCombinerInfo &DCI) const {
14601  assert((N->getOpcode() == ISD::SINT_TO_FP ||
14602          N->getOpcode() == ISD::UINT_TO_FP) &&
14603         "Need an int -> FP conversion node here");
14604
14605  if (useSoftFloat() || !Subtarget.has64BitSupport())
14606    return SDValue();
14607
14608  SelectionDAG &DAG = DCI.DAG;
14609  SDLoc dl(N);
14610  SDValue Op(N, 0);
14611
14612  // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14613  // from the hardware.
14614  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14615    return SDValue();
14616  if (!Op.getOperand(0).getValueType().isSimple())
14617    return SDValue();
14618  if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14619      Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14620    return SDValue();
14621
14622  SDValue FirstOperand(Op.getOperand(0));
14623  bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14624    (FirstOperand.getValueType() == MVT::i8 ||
14625     FirstOperand.getValueType() == MVT::i16);
14626  if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14627    bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14628    bool DstDouble = Op.getValueType() == MVT::f64;
14629    unsigned ConvOp = Signed ?
14630      (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14631      (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14632    SDValue WidthConst =
14633      DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14634                            dl, false);
14635    LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14636    SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14637    SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14638                                         DAG.getVTList(MVT::f64, MVT::Other),
14639                                         Ops, MVT::i8, LDN->getMemOperand());
14640
14641    // For signed conversion, we need to sign-extend the value in the VSR
14642    if (Signed) {
14643      SDValue ExtOps[] = { Ld, WidthConst };
14644      SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14645      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14646    } else
14647      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14648  }
14649
14650
14651  // For i32 intermediate values, unfortunately, the conversion functions
14652  // leave the upper 32 bits of the value are undefined. Within the set of
14653  // scalar instructions, we have no method for zero- or sign-extending the
14654  // value. Thus, we cannot handle i32 intermediate values here.
14655  if (Op.getOperand(0).getValueType() == MVT::i32)
14656    return SDValue();
14657
14658  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14659         "UINT_TO_FP is supported only with FPCVT");
14660
14661  // If we have FCFIDS, then use it when converting to single-precision.
14662  // Otherwise, convert to double-precision and then round.
14663  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14664                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14665                                                            : PPCISD::FCFIDS)
14666                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14667                                                            : PPCISD::FCFID);
14668  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14669                  ? MVT::f32
14670                  : MVT::f64;
14671
14672  // If we're converting from a float, to an int, and back to a float again,
14673  // then we don't need the store/load pair at all.
14674  if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14675       Subtarget.hasFPCVT()) ||
14676      (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14677    SDValue Src = Op.getOperand(0).getOperand(0);
14678    if (Src.getValueType() == MVT::f32) {
14679      Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14680      DCI.AddToWorklist(Src.getNode());
14681    } else if (Src.getValueType() != MVT::f64) {
14682      // Make sure that we don't pick up a ppc_fp128 source value.
14683      return SDValue();
14684    }
14685
14686    unsigned FCTOp =
14687      Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14688                                                        PPCISD::FCTIDUZ;
14689
14690    SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14691    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14692
14693    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14694      FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
14695                       DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
14696      DCI.AddToWorklist(FP.getNode());
14697    }
14698
14699    return FP;
14700  }
14701
14702  return SDValue();
14703}
14704
14705// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14706// builtins) into loads with swaps.
14707SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14708                                              DAGCombinerInfo &DCI) const {
14709  // Delay VSX load for LE combine until after LegalizeOps to prioritize other
14710  // load combines.
14711  if (DCI.isBeforeLegalizeOps())
14712    return SDValue();
14713
14714  SelectionDAG &DAG = DCI.DAG;
14715  SDLoc dl(N);
14716  SDValue Chain;
14717  SDValue Base;
14718  MachineMemOperand *MMO;
14719
14720  switch (N->getOpcode()) {
14721  default:
14722    llvm_unreachable("Unexpected opcode for little endian VSX load");
14723  case ISD::LOAD: {
14724    LoadSDNode *LD = cast<LoadSDNode>(N);
14725    Chain = LD->getChain();
14726    Base = LD->getBasePtr();
14727    MMO = LD->getMemOperand();
14728    // If the MMO suggests this isn't a load of a full vector, leave
14729    // things alone.  For a built-in, we have to make the change for
14730    // correctness, so if there is a size problem that will be a bug.
14731    if (MMO->getSize() < 16)
14732      return SDValue();
14733    break;
14734  }
14735  case ISD::INTRINSIC_W_CHAIN: {
14736    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14737    Chain = Intrin->getChain();
14738    // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14739    // us what we want. Get operand 2 instead.
14740    Base = Intrin->getOperand(2);
14741    MMO = Intrin->getMemOperand();
14742    break;
14743  }
14744  }
14745
14746  MVT VecTy = N->getValueType(0).getSimpleVT();
14747
14748  SDValue LoadOps[] = { Chain, Base };
14749  SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14750                                         DAG.getVTList(MVT::v2f64, MVT::Other),
14751                                         LoadOps, MVT::v2f64, MMO);
14752
14753  DCI.AddToWorklist(Load.getNode());
14754  Chain = Load.getValue(1);
14755  SDValue Swap = DAG.getNode(
14756      PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14757  DCI.AddToWorklist(Swap.getNode());
14758
14759  // Add a bitcast if the resulting load type doesn't match v2f64.
14760  if (VecTy != MVT::v2f64) {
14761    SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14762    DCI.AddToWorklist(N.getNode());
14763    // Package {bitcast value, swap's chain} to match Load's shape.
14764    return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14765                       N, Swap.getValue(1));
14766  }
14767
14768  return Swap;
14769}
14770
14771// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14772// builtins) into stores with swaps.
14773SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14774                                               DAGCombinerInfo &DCI) const {
14775  // Delay VSX store for LE combine until after LegalizeOps to prioritize other
14776  // store combines.
14777  if (DCI.isBeforeLegalizeOps())
14778    return SDValue();
14779
14780  SelectionDAG &DAG = DCI.DAG;
14781  SDLoc dl(N);
14782  SDValue Chain;
14783  SDValue Base;
14784  unsigned SrcOpnd;
14785  MachineMemOperand *MMO;
14786
14787  switch (N->getOpcode()) {
14788  default:
14789    llvm_unreachable("Unexpected opcode for little endian VSX store");
14790  case ISD::STORE: {
14791    StoreSDNode *ST = cast<StoreSDNode>(N);
14792    Chain = ST->getChain();
14793    Base = ST->getBasePtr();
14794    MMO = ST->getMemOperand();
14795    SrcOpnd = 1;
14796    // If the MMO suggests this isn't a store of a full vector, leave
14797    // things alone.  For a built-in, we have to make the change for
14798    // correctness, so if there is a size problem that will be a bug.
14799    if (MMO->getSize() < 16)
14800      return SDValue();
14801    break;
14802  }
14803  case ISD::INTRINSIC_VOID: {
14804    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14805    Chain = Intrin->getChain();
14806    // Intrin->getBasePtr() oddly does not get what we want.
14807    Base = Intrin->getOperand(3);
14808    MMO = Intrin->getMemOperand();
14809    SrcOpnd = 2;
14810    break;
14811  }
14812  }
14813
14814  SDValue Src = N->getOperand(SrcOpnd);
14815  MVT VecTy = Src.getValueType().getSimpleVT();
14816
14817  // All stores are done as v2f64 and possible bit cast.
14818  if (VecTy != MVT::v2f64) {
14819    Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14820    DCI.AddToWorklist(Src.getNode());
14821  }
14822
14823  SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14824                             DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14825  DCI.AddToWorklist(Swap.getNode());
14826  Chain = Swap.getValue(1);
14827  SDValue StoreOps[] = { Chain, Swap, Base };
14828  SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14829                                          DAG.getVTList(MVT::Other),
14830                                          StoreOps, VecTy, MMO);
14831  DCI.AddToWorklist(Store.getNode());
14832  return Store;
14833}
14834
14835// Handle DAG combine for STORE (FP_TO_INT F).
14836SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14837                                               DAGCombinerInfo &DCI) const {
14838
14839  SelectionDAG &DAG = DCI.DAG;
14840  SDLoc dl(N);
14841  unsigned Opcode = N->getOperand(1).getOpcode();
14842
14843  assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14844         && "Not a FP_TO_INT Instruction!");
14845
14846  SDValue Val = N->getOperand(1).getOperand(0);
14847  EVT Op1VT = N->getOperand(1).getValueType();
14848  EVT ResVT = Val.getValueType();
14849
14850  if (!isTypeLegal(ResVT))
14851    return SDValue();
14852
14853  // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14854  bool ValidTypeForStoreFltAsInt =
14855        (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14856         (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14857
14858  if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14859    return SDValue();
14860
14861  if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14862      cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14863    return SDValue();
14864
14865  // Extend f32 values to f64
14866  if (ResVT.getScalarSizeInBits() == 32) {
14867    Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14868    DCI.AddToWorklist(Val.getNode());
14869  }
14870
14871  // Set signed or unsigned conversion opcode.
14872  unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14873                          PPCISD::FP_TO_SINT_IN_VSR :
14874                          PPCISD::FP_TO_UINT_IN_VSR;
14875
14876  Val = DAG.getNode(ConvOpcode,
14877                    dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14878  DCI.AddToWorklist(Val.getNode());
14879
14880  // Set number of bytes being converted.
14881  unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14882  SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14883                    DAG.getIntPtrConstant(ByteSize, dl, false),
14884                    DAG.getValueType(Op1VT) };
14885
14886  Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14887          DAG.getVTList(MVT::Other), Ops,
14888          cast<StoreSDNode>(N)->getMemoryVT(),
14889          cast<StoreSDNode>(N)->getMemOperand());
14890
14891  DCI.AddToWorklist(Val.getNode());
14892  return Val;
14893}
14894
14895static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14896  // Check that the source of the element keeps flipping
14897  // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14898  bool PrevElemFromFirstVec = Mask[0] < NumElts;
14899  for (int i = 1, e = Mask.size(); i < e; i++) {
14900    if (PrevElemFromFirstVec && Mask[i] < NumElts)
14901      return false;
14902    if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14903      return false;
14904    PrevElemFromFirstVec = !PrevElemFromFirstVec;
14905  }
14906  return true;
14907}
14908
14909static bool isSplatBV(SDValue Op) {
14910  if (Op.getOpcode() != ISD::BUILD_VECTOR)
14911    return false;
14912  SDValue FirstOp;
14913
14914  // Find first non-undef input.
14915  for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14916    FirstOp = Op.getOperand(i);
14917    if (!FirstOp.isUndef())
14918      break;
14919  }
14920
14921  // All inputs are undef or the same as the first non-undef input.
14922  for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14923    if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14924      return false;
14925  return true;
14926}
14927
14928static SDValue isScalarToVec(SDValue Op) {
14929  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14930    return Op;
14931  if (Op.getOpcode() != ISD::BITCAST)
14932    return SDValue();
14933  Op = Op.getOperand(0);
14934  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14935    return Op;
14936  return SDValue();
14937}
14938
14939// Fix up the shuffle mask to account for the fact that the result of
14940// scalar_to_vector is not in lane zero. This just takes all values in
14941// the ranges specified by the min/max indices and adds the number of
14942// elements required to ensure each element comes from the respective
14943// position in the valid lane.
14944// On little endian, that's just the corresponding element in the other
14945// half of the vector. On big endian, it is in the same half but right
14946// justified rather than left justified in that half.
14947static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14948                                            int LHSMaxIdx, int RHSMinIdx,
14949                                            int RHSMaxIdx, int HalfVec,
14950                                            unsigned ValidLaneWidth,
14951                                            const PPCSubtarget &Subtarget) {
14952  for (int i = 0, e = ShuffV.size(); i < e; i++) {
14953    int Idx = ShuffV[i];
14954    if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14955      ShuffV[i] +=
14956          Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14957  }
14958}
14959
14960// Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14961// the original is:
14962// (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14963// In such a case, just change the shuffle mask to extract the element
14964// from the permuted index.
14965static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14966                               const PPCSubtarget &Subtarget) {
14967  SDLoc dl(OrigSToV);
14968  EVT VT = OrigSToV.getValueType();
14969  assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14970         "Expecting a SCALAR_TO_VECTOR here");
14971  SDValue Input = OrigSToV.getOperand(0);
14972
14973  if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14974    ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14975    SDValue OrigVector = Input.getOperand(0);
14976
14977    // Can't handle non-const element indices or different vector types
14978    // for the input to the extract and the output of the scalar_to_vector.
14979    if (Idx && VT == OrigVector.getValueType()) {
14980      unsigned NumElts = VT.getVectorNumElements();
14981      assert(
14982          NumElts > 1 &&
14983          "Cannot produce a permuted scalar_to_vector for one element vector");
14984      SmallVector<int, 16> NewMask(NumElts, -1);
14985      unsigned ResultInElt = NumElts / 2;
14986      ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14987      NewMask[ResultInElt] = Idx->getZExtValue();
14988      return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14989    }
14990  }
14991  return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14992                     OrigSToV.getOperand(0));
14993}
14994
14995// On little endian subtargets, combine shuffles such as:
14996// vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14997// into:
14998// vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14999// because the latter can be matched to a single instruction merge.
15000// Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
15001// to put the value into element zero. Adjust the shuffle mask so that the
15002// vector can remain in permuted form (to prevent a swap prior to a shuffle).
15003// On big endian targets, this is still useful for SCALAR_TO_VECTOR
15004// nodes with elements smaller than doubleword because all the ways
15005// of getting scalar data into a vector register put the value in the
15006// rightmost element of the left half of the vector.
15007SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
15008                                                SelectionDAG &DAG) const {
15009  SDValue LHS = SVN->getOperand(0);
15010  SDValue RHS = SVN->getOperand(1);
15011  auto Mask = SVN->getMask();
15012  int NumElts = LHS.getValueType().getVectorNumElements();
15013  SDValue Res(SVN, 0);
15014  SDLoc dl(SVN);
15015  bool IsLittleEndian = Subtarget.isLittleEndian();
15016
15017  // On big endian targets this is only useful for subtargets with direct moves.
15018  // On little endian targets it would be useful for all subtargets with VSX.
15019  // However adding special handling for LE subtargets without direct moves
15020  // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
15021  // which includes direct moves.
15022  if (!Subtarget.hasDirectMove())
15023    return Res;
15024
15025  // If this is not a shuffle of a shuffle and the first element comes from
15026  // the second vector, canonicalize to the commuted form. This will make it
15027  // more likely to match one of the single instruction patterns.
15028  if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15029      RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
15030    std::swap(LHS, RHS);
15031    Res = DAG.getCommutedVectorShuffle(*SVN);
15032    Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
15033  }
15034
15035  // Adjust the shuffle mask if either input vector comes from a
15036  // SCALAR_TO_VECTOR and keep the respective input vector in permuted
15037  // form (to prevent the need for a swap).
15038  SmallVector<int, 16> ShuffV(Mask);
15039  SDValue SToVLHS = isScalarToVec(LHS);
15040  SDValue SToVRHS = isScalarToVec(RHS);
15041  if (SToVLHS || SToVRHS) {
15042    // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the
15043    // same type and have differing element sizes, then do not perform
15044    // the following transformation. The current transformation for
15045    // SCALAR_TO_VECTOR assumes that both input vectors have the same
15046    // element size. This will be updated in the future to account for
15047    // differing sizes of the LHS and RHS.
15048    if (SToVLHS && SToVRHS &&
15049        (SToVLHS.getValueType().getScalarSizeInBits() !=
15050         SToVRHS.getValueType().getScalarSizeInBits()))
15051      return Res;
15052
15053    int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
15054                            : SToVRHS.getValueType().getVectorNumElements();
15055    int NumEltsOut = ShuffV.size();
15056    // The width of the "valid lane" (i.e. the lane that contains the value that
15057    // is vectorized) needs to be expressed in terms of the number of elements
15058    // of the shuffle. It is thereby the ratio of the values before and after
15059    // any bitcast.
15060    unsigned ValidLaneWidth =
15061        SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
15062                      LHS.getValueType().getScalarSizeInBits()
15063                : SToVRHS.getValueType().getScalarSizeInBits() /
15064                      RHS.getValueType().getScalarSizeInBits();
15065
15066    // Initially assume that neither input is permuted. These will be adjusted
15067    // accordingly if either input is.
15068    int LHSMaxIdx = -1;
15069    int RHSMinIdx = -1;
15070    int RHSMaxIdx = -1;
15071    int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
15072
15073    // Get the permuted scalar to vector nodes for the source(s) that come from
15074    // ISD::SCALAR_TO_VECTOR.
15075    // On big endian systems, this only makes sense for element sizes smaller
15076    // than 64 bits since for 64-bit elements, all instructions already put
15077    // the value into element zero. Since scalar size of LHS and RHS may differ
15078    // after isScalarToVec, this should be checked using their own sizes.
15079    if (SToVLHS) {
15080      if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
15081        return Res;
15082      // Set up the values for the shuffle vector fixup.
15083      LHSMaxIdx = NumEltsOut / NumEltsIn;
15084      SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
15085      if (SToVLHS.getValueType() != LHS.getValueType())
15086        SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
15087      LHS = SToVLHS;
15088    }
15089    if (SToVRHS) {
15090      if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
15091        return Res;
15092      RHSMinIdx = NumEltsOut;
15093      RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
15094      SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
15095      if (SToVRHS.getValueType() != RHS.getValueType())
15096        SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
15097      RHS = SToVRHS;
15098    }
15099
15100    // Fix up the shuffle mask to reflect where the desired element actually is.
15101    // The minimum and maximum indices that correspond to element zero for both
15102    // the LHS and RHS are computed and will control which shuffle mask entries
15103    // are to be changed. For example, if the RHS is permuted, any shuffle mask
15104    // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
15105    fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
15106                                    HalfVec, ValidLaneWidth, Subtarget);
15107    Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
15108
15109    // We may have simplified away the shuffle. We won't be able to do anything
15110    // further with it here.
15111    if (!isa<ShuffleVectorSDNode>(Res))
15112      return Res;
15113    Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
15114  }
15115
15116  SDValue TheSplat = IsLittleEndian ? RHS : LHS;
15117  // The common case after we commuted the shuffle is that the RHS is a splat
15118  // and we have elements coming in from the splat at indices that are not
15119  // conducive to using a merge.
15120  // Example:
15121  // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
15122  if (!isSplatBV(TheSplat))
15123    return Res;
15124
15125  // We are looking for a mask such that all even elements are from
15126  // one vector and all odd elements from the other.
15127  if (!isAlternatingShuffMask(Mask, NumElts))
15128    return Res;
15129
15130  // Adjust the mask so we are pulling in the same index from the splat
15131  // as the index from the interesting vector in consecutive elements.
15132  if (IsLittleEndian) {
15133    // Example (even elements from first vector):
15134    // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
15135    if (Mask[0] < NumElts)
15136      for (int i = 1, e = Mask.size(); i < e; i += 2) {
15137        if (ShuffV[i] < 0)
15138          continue;
15139        ShuffV[i] = (ShuffV[i - 1] + NumElts);
15140      }
15141    // Example (odd elements from first vector):
15142    // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
15143    else
15144      for (int i = 0, e = Mask.size(); i < e; i += 2) {
15145        if (ShuffV[i] < 0)
15146          continue;
15147        ShuffV[i] = (ShuffV[i + 1] + NumElts);
15148      }
15149  } else {
15150    // Example (even elements from first vector):
15151    // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
15152    if (Mask[0] < NumElts)
15153      for (int i = 0, e = Mask.size(); i < e; i += 2) {
15154        if (ShuffV[i] < 0)
15155          continue;
15156        ShuffV[i] = ShuffV[i + 1] - NumElts;
15157      }
15158    // Example (odd elements from first vector):
15159    // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
15160    else
15161      for (int i = 1, e = Mask.size(); i < e; i += 2) {
15162        if (ShuffV[i] < 0)
15163          continue;
15164        ShuffV[i] = ShuffV[i - 1] - NumElts;
15165      }
15166  }
15167
15168  // If the RHS has undefs, we need to remove them since we may have created
15169  // a shuffle that adds those instead of the splat value.
15170  SDValue SplatVal =
15171      cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
15172  TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
15173
15174  if (IsLittleEndian)
15175    RHS = TheSplat;
15176  else
15177    LHS = TheSplat;
15178  return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
15179}
15180
15181SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
15182                                                LSBaseSDNode *LSBase,
15183                                                DAGCombinerInfo &DCI) const {
15184  assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
15185        "Not a reverse memop pattern!");
15186
15187  auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
15188    auto Mask = SVN->getMask();
15189    int i = 0;
15190    auto I = Mask.rbegin();
15191    auto E = Mask.rend();
15192
15193    for (; I != E; ++I) {
15194      if (*I != i)
15195        return false;
15196      i++;
15197    }
15198    return true;
15199  };
15200
15201  SelectionDAG &DAG = DCI.DAG;
15202  EVT VT = SVN->getValueType(0);
15203
15204  if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
15205    return SDValue();
15206
15207  // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
15208  // See comment in PPCVSXSwapRemoval.cpp.
15209  // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
15210  if (!Subtarget.hasP9Vector())
15211    return SDValue();
15212
15213  if(!IsElementReverse(SVN))
15214    return SDValue();
15215
15216  if (LSBase->getOpcode() == ISD::LOAD) {
15217    // If the load return value 0 has more than one user except the
15218    // shufflevector instruction, it is not profitable to replace the
15219    // shufflevector with a reverse load.
15220    for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
15221         UI != UE; ++UI)
15222      if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
15223        return SDValue();
15224
15225    SDLoc dl(LSBase);
15226    SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
15227    return DAG.getMemIntrinsicNode(
15228        PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
15229        LSBase->getMemoryVT(), LSBase->getMemOperand());
15230  }
15231
15232  if (LSBase->getOpcode() == ISD::STORE) {
15233    // If there are other uses of the shuffle, the swap cannot be avoided.
15234    // Forcing the use of an X-Form (since swapped stores only have
15235    // X-Forms) without removing the swap is unprofitable.
15236    if (!SVN->hasOneUse())
15237      return SDValue();
15238
15239    SDLoc dl(LSBase);
15240    SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
15241                          LSBase->getBasePtr()};
15242    return DAG.getMemIntrinsicNode(
15243        PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
15244        LSBase->getMemoryVT(), LSBase->getMemOperand());
15245  }
15246
15247  llvm_unreachable("Expected a load or store node here");
15248}
15249
15250static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth) {
15251  unsigned IntrinsicID =
15252      cast<ConstantSDNode>(Intrin.getOperand(1))->getZExtValue();
15253  if (IntrinsicID == Intrinsic::ppc_stdcx)
15254    StoreWidth = 8;
15255  else if (IntrinsicID == Intrinsic::ppc_stwcx)
15256    StoreWidth = 4;
15257  else if (IntrinsicID == Intrinsic::ppc_sthcx)
15258    StoreWidth = 2;
15259  else if (IntrinsicID == Intrinsic::ppc_stbcx)
15260    StoreWidth = 1;
15261  else
15262    return false;
15263  return true;
15264}
15265
15266SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
15267                                             DAGCombinerInfo &DCI) const {
15268  SelectionDAG &DAG = DCI.DAG;
15269  SDLoc dl(N);
15270  switch (N->getOpcode()) {
15271  default: break;
15272  case ISD::ADD:
15273    return combineADD(N, DCI);
15274  case ISD::SHL:
15275    return combineSHL(N, DCI);
15276  case ISD::SRA:
15277    return combineSRA(N, DCI);
15278  case ISD::SRL:
15279    return combineSRL(N, DCI);
15280  case ISD::MUL:
15281    return combineMUL(N, DCI);
15282  case ISD::FMA:
15283  case PPCISD::FNMSUB:
15284    return combineFMALike(N, DCI);
15285  case PPCISD::SHL:
15286    if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
15287        return N->getOperand(0);
15288    break;
15289  case PPCISD::SRL:
15290    if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
15291        return N->getOperand(0);
15292    break;
15293  case PPCISD::SRA:
15294    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
15295      if (C->isZero() ||  //  0 >>s V -> 0.
15296          C->isAllOnes()) // -1 >>s V -> -1.
15297        return N->getOperand(0);
15298    }
15299    break;
15300  case ISD::SIGN_EXTEND:
15301  case ISD::ZERO_EXTEND:
15302  case ISD::ANY_EXTEND:
15303    return DAGCombineExtBoolTrunc(N, DCI);
15304  case ISD::TRUNCATE:
15305    return combineTRUNCATE(N, DCI);
15306  case ISD::SETCC:
15307    if (SDValue CSCC = combineSetCC(N, DCI))
15308      return CSCC;
15309    [[fallthrough]];
15310  case ISD::SELECT_CC:
15311    return DAGCombineTruncBoolExt(N, DCI);
15312  case ISD::SINT_TO_FP:
15313  case ISD::UINT_TO_FP:
15314    return combineFPToIntToFP(N, DCI);
15315  case ISD::VECTOR_SHUFFLE:
15316    if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15317      LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15318      return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15319    }
15320    return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15321  case ISD::STORE: {
15322
15323    EVT Op1VT = N->getOperand(1).getValueType();
15324    unsigned Opcode = N->getOperand(1).getOpcode();
15325
15326    if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
15327      SDValue Val= combineStoreFPToInt(N, DCI);
15328      if (Val)
15329        return Val;
15330    }
15331
15332    if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15333      ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15334      SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15335      if (Val)
15336        return Val;
15337    }
15338
15339    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15340    if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15341        N->getOperand(1).getNode()->hasOneUse() &&
15342        (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15343         (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15344
15345      // STBRX can only handle simple types and it makes no sense to store less
15346      // two bytes in byte-reversed order.
15347      EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15348      if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15349        break;
15350
15351      SDValue BSwapOp = N->getOperand(1).getOperand(0);
15352      // Do an any-extend to 32-bits if this is a half-word input.
15353      if (BSwapOp.getValueType() == MVT::i16)
15354        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15355
15356      // If the type of BSWAP operand is wider than stored memory width
15357      // it need to be shifted to the right side before STBRX.
15358      if (Op1VT.bitsGT(mVT)) {
15359        int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15360        BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15361                              DAG.getConstant(Shift, dl, MVT::i32));
15362        // Need to truncate if this is a bswap of i64 stored as i32/i16.
15363        if (Op1VT == MVT::i64)
15364          BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15365      }
15366
15367      SDValue Ops[] = {
15368        N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15369      };
15370      return
15371        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15372                                Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15373                                cast<StoreSDNode>(N)->getMemOperand());
15374    }
15375
15376    // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15377    // So it can increase the chance of CSE constant construction.
15378    if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15379        isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15380      // Need to sign-extended to 64-bits to handle negative values.
15381      EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15382      uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15383                                    MemVT.getSizeInBits());
15384      SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15385
15386      // DAG.getTruncStore() can't be used here because it doesn't accept
15387      // the general (base + offset) addressing mode.
15388      // So we use UpdateNodeOperands and setTruncatingStore instead.
15389      DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15390                             N->getOperand(3));
15391      cast<StoreSDNode>(N)->setTruncatingStore(true);
15392      return SDValue(N, 0);
15393    }
15394
15395    // For little endian, VSX stores require generating xxswapd/lxvd2x.
15396    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15397    if (Op1VT.isSimple()) {
15398      MVT StoreVT = Op1VT.getSimpleVT();
15399      if (Subtarget.needsSwapsForVSXMemOps() &&
15400          (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15401           StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15402        return expandVSXStoreForLE(N, DCI);
15403    }
15404    break;
15405  }
15406  case ISD::LOAD: {
15407    LoadSDNode *LD = cast<LoadSDNode>(N);
15408    EVT VT = LD->getValueType(0);
15409
15410    // For little endian, VSX loads require generating lxvd2x/xxswapd.
15411    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15412    if (VT.isSimple()) {
15413      MVT LoadVT = VT.getSimpleVT();
15414      if (Subtarget.needsSwapsForVSXMemOps() &&
15415          (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15416           LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15417        return expandVSXLoadForLE(N, DCI);
15418    }
15419
15420    // We sometimes end up with a 64-bit integer load, from which we extract
15421    // two single-precision floating-point numbers. This happens with
15422    // std::complex<float>, and other similar structures, because of the way we
15423    // canonicalize structure copies. However, if we lack direct moves,
15424    // then the final bitcasts from the extracted integer values to the
15425    // floating-point numbers turn into store/load pairs. Even with direct moves,
15426    // just loading the two floating-point numbers is likely better.
15427    auto ReplaceTwoFloatLoad = [&]() {
15428      if (VT != MVT::i64)
15429        return false;
15430
15431      if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15432          LD->isVolatile())
15433        return false;
15434
15435      //  We're looking for a sequence like this:
15436      //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15437      //      t16: i64 = srl t13, Constant:i32<32>
15438      //    t17: i32 = truncate t16
15439      //  t18: f32 = bitcast t17
15440      //    t19: i32 = truncate t13
15441      //  t20: f32 = bitcast t19
15442
15443      if (!LD->hasNUsesOfValue(2, 0))
15444        return false;
15445
15446      auto UI = LD->use_begin();
15447      while (UI.getUse().getResNo() != 0) ++UI;
15448      SDNode *Trunc = *UI++;
15449      while (UI.getUse().getResNo() != 0) ++UI;
15450      SDNode *RightShift = *UI;
15451      if (Trunc->getOpcode() != ISD::TRUNCATE)
15452        std::swap(Trunc, RightShift);
15453
15454      if (Trunc->getOpcode() != ISD::TRUNCATE ||
15455          Trunc->getValueType(0) != MVT::i32 ||
15456          !Trunc->hasOneUse())
15457        return false;
15458      if (RightShift->getOpcode() != ISD::SRL ||
15459          !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15460          RightShift->getConstantOperandVal(1) != 32 ||
15461          !RightShift->hasOneUse())
15462        return false;
15463
15464      SDNode *Trunc2 = *RightShift->use_begin();
15465      if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15466          Trunc2->getValueType(0) != MVT::i32 ||
15467          !Trunc2->hasOneUse())
15468        return false;
15469
15470      SDNode *Bitcast = *Trunc->use_begin();
15471      SDNode *Bitcast2 = *Trunc2->use_begin();
15472
15473      if (Bitcast->getOpcode() != ISD::BITCAST ||
15474          Bitcast->getValueType(0) != MVT::f32)
15475        return false;
15476      if (Bitcast2->getOpcode() != ISD::BITCAST ||
15477          Bitcast2->getValueType(0) != MVT::f32)
15478        return false;
15479
15480      if (Subtarget.isLittleEndian())
15481        std::swap(Bitcast, Bitcast2);
15482
15483      // Bitcast has the second float (in memory-layout order) and Bitcast2
15484      // has the first one.
15485
15486      SDValue BasePtr = LD->getBasePtr();
15487      if (LD->isIndexed()) {
15488        assert(LD->getAddressingMode() == ISD::PRE_INC &&
15489               "Non-pre-inc AM on PPC?");
15490        BasePtr =
15491          DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15492                      LD->getOffset());
15493      }
15494
15495      auto MMOFlags =
15496          LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15497      SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15498                                      LD->getPointerInfo(), LD->getAlign(),
15499                                      MMOFlags, LD->getAAInfo());
15500      SDValue AddPtr =
15501        DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15502                    BasePtr, DAG.getIntPtrConstant(4, dl));
15503      SDValue FloatLoad2 = DAG.getLoad(
15504          MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15505          LD->getPointerInfo().getWithOffset(4),
15506          commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo());
15507
15508      if (LD->isIndexed()) {
15509        // Note that DAGCombine should re-form any pre-increment load(s) from
15510        // what is produced here if that makes sense.
15511        DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15512      }
15513
15514      DCI.CombineTo(Bitcast2, FloatLoad);
15515      DCI.CombineTo(Bitcast, FloatLoad2);
15516
15517      DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15518                                    SDValue(FloatLoad2.getNode(), 1));
15519      return true;
15520    };
15521
15522    if (ReplaceTwoFloatLoad())
15523      return SDValue(N, 0);
15524
15525    EVT MemVT = LD->getMemoryVT();
15526    Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15527    Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15528    if (LD->isUnindexed() && VT.isVector() &&
15529        ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15530          // P8 and later hardware should just use LOAD.
15531          !Subtarget.hasP8Vector() &&
15532          (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15533           VT == MVT::v4f32))) &&
15534        LD->getAlign() < ABIAlignment) {
15535      // This is a type-legal unaligned Altivec load.
15536      SDValue Chain = LD->getChain();
15537      SDValue Ptr = LD->getBasePtr();
15538      bool isLittleEndian = Subtarget.isLittleEndian();
15539
15540      // This implements the loading of unaligned vectors as described in
15541      // the venerable Apple Velocity Engine overview. Specifically:
15542      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15543      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15544      //
15545      // The general idea is to expand a sequence of one or more unaligned
15546      // loads into an alignment-based permutation-control instruction (lvsl
15547      // or lvsr), a series of regular vector loads (which always truncate
15548      // their input address to an aligned address), and a series of
15549      // permutations.  The results of these permutations are the requested
15550      // loaded values.  The trick is that the last "extra" load is not taken
15551      // from the address you might suspect (sizeof(vector) bytes after the
15552      // last requested load), but rather sizeof(vector) - 1 bytes after the
15553      // last requested vector. The point of this is to avoid a page fault if
15554      // the base address happened to be aligned. This works because if the
15555      // base address is aligned, then adding less than a full vector length
15556      // will cause the last vector in the sequence to be (re)loaded.
15557      // Otherwise, the next vector will be fetched as you might suspect was
15558      // necessary.
15559
15560      // We might be able to reuse the permutation generation from
15561      // a different base address offset from this one by an aligned amount.
15562      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15563      // optimization later.
15564      Intrinsic::ID Intr, IntrLD, IntrPerm;
15565      MVT PermCntlTy, PermTy, LDTy;
15566      Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15567                            : Intrinsic::ppc_altivec_lvsl;
15568      IntrLD = Intrinsic::ppc_altivec_lvx;
15569      IntrPerm = Intrinsic::ppc_altivec_vperm;
15570      PermCntlTy = MVT::v16i8;
15571      PermTy = MVT::v4i32;
15572      LDTy = MVT::v4i32;
15573
15574      SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15575
15576      // Create the new MMO for the new base load. It is like the original MMO,
15577      // but represents an area in memory almost twice the vector size centered
15578      // on the original address. If the address is unaligned, we might start
15579      // reading up to (sizeof(vector)-1) bytes below the address of the
15580      // original unaligned load.
15581      MachineFunction &MF = DAG.getMachineFunction();
15582      MachineMemOperand *BaseMMO =
15583        MF.getMachineMemOperand(LD->getMemOperand(),
15584                                -(int64_t)MemVT.getStoreSize()+1,
15585                                2*MemVT.getStoreSize()-1);
15586
15587      // Create the new base load.
15588      SDValue LDXIntID =
15589          DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15590      SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15591      SDValue BaseLoad =
15592        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15593                                DAG.getVTList(PermTy, MVT::Other),
15594                                BaseLoadOps, LDTy, BaseMMO);
15595
15596      // Note that the value of IncOffset (which is provided to the next
15597      // load's pointer info offset value, and thus used to calculate the
15598      // alignment), and the value of IncValue (which is actually used to
15599      // increment the pointer value) are different! This is because we
15600      // require the next load to appear to be aligned, even though it
15601      // is actually offset from the base pointer by a lesser amount.
15602      int IncOffset = VT.getSizeInBits() / 8;
15603      int IncValue = IncOffset;
15604
15605      // Walk (both up and down) the chain looking for another load at the real
15606      // (aligned) offset (the alignment of the other load does not matter in
15607      // this case). If found, then do not use the offset reduction trick, as
15608      // that will prevent the loads from being later combined (as they would
15609      // otherwise be duplicates).
15610      if (!findConsecutiveLoad(LD, DAG))
15611        --IncValue;
15612
15613      SDValue Increment =
15614          DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15615      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15616
15617      MachineMemOperand *ExtraMMO =
15618        MF.getMachineMemOperand(LD->getMemOperand(),
15619                                1, 2*MemVT.getStoreSize()-1);
15620      SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15621      SDValue ExtraLoad =
15622        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15623                                DAG.getVTList(PermTy, MVT::Other),
15624                                ExtraLoadOps, LDTy, ExtraMMO);
15625
15626      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15627        BaseLoad.getValue(1), ExtraLoad.getValue(1));
15628
15629      // Because vperm has a big-endian bias, we must reverse the order
15630      // of the input vectors and complement the permute control vector
15631      // when generating little endian code.  We have already handled the
15632      // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15633      // and ExtraLoad here.
15634      SDValue Perm;
15635      if (isLittleEndian)
15636        Perm = BuildIntrinsicOp(IntrPerm,
15637                                ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15638      else
15639        Perm = BuildIntrinsicOp(IntrPerm,
15640                                BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15641
15642      if (VT != PermTy)
15643        Perm = Subtarget.hasAltivec()
15644                   ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15645                   : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15646                                 DAG.getTargetConstant(1, dl, MVT::i64));
15647                               // second argument is 1 because this rounding
15648                               // is always exact.
15649
15650      // The output of the permutation is our loaded result, the TokenFactor is
15651      // our new chain.
15652      DCI.CombineTo(N, Perm, TF);
15653      return SDValue(N, 0);
15654    }
15655    }
15656    break;
15657    case ISD::INTRINSIC_WO_CHAIN: {
15658      bool isLittleEndian = Subtarget.isLittleEndian();
15659      unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15660      Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15661                                           : Intrinsic::ppc_altivec_lvsl);
15662      if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15663        SDValue Add = N->getOperand(1);
15664
15665        int Bits = 4 /* 16 byte alignment */;
15666
15667        if (DAG.MaskedValueIsZero(Add->getOperand(1),
15668                                  APInt::getAllOnes(Bits /* alignment */)
15669                                      .zext(Add.getScalarValueSizeInBits()))) {
15670          SDNode *BasePtr = Add->getOperand(0).getNode();
15671          for (SDNode *U : BasePtr->uses()) {
15672            if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15673                cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) {
15674              // We've found another LVSL/LVSR, and this address is an aligned
15675              // multiple of that one. The results will be the same, so use the
15676              // one we've just found instead.
15677
15678              return SDValue(U, 0);
15679            }
15680          }
15681        }
15682
15683        if (isa<ConstantSDNode>(Add->getOperand(1))) {
15684          SDNode *BasePtr = Add->getOperand(0).getNode();
15685          for (SDNode *U : BasePtr->uses()) {
15686            if (U->getOpcode() == ISD::ADD &&
15687                isa<ConstantSDNode>(U->getOperand(1)) &&
15688                (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15689                 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) %
15690                        (1ULL << Bits) ==
15691                    0) {
15692              SDNode *OtherAdd = U;
15693              for (SDNode *V : OtherAdd->uses()) {
15694                if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15695                    cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() ==
15696                        IID) {
15697                  return SDValue(V, 0);
15698                }
15699              }
15700            }
15701          }
15702        }
15703      }
15704
15705      // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15706      // Expose the vabsduw/h/b opportunity for down stream
15707      if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15708          (IID == Intrinsic::ppc_altivec_vmaxsw ||
15709           IID == Intrinsic::ppc_altivec_vmaxsh ||
15710           IID == Intrinsic::ppc_altivec_vmaxsb)) {
15711        SDValue V1 = N->getOperand(1);
15712        SDValue V2 = N->getOperand(2);
15713        if ((V1.getSimpleValueType() == MVT::v4i32 ||
15714             V1.getSimpleValueType() == MVT::v8i16 ||
15715             V1.getSimpleValueType() == MVT::v16i8) &&
15716            V1.getSimpleValueType() == V2.getSimpleValueType()) {
15717          // (0-a, a)
15718          if (V1.getOpcode() == ISD::SUB &&
15719              ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15720              V1.getOperand(1) == V2) {
15721            return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15722          }
15723          // (a, 0-a)
15724          if (V2.getOpcode() == ISD::SUB &&
15725              ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15726              V2.getOperand(1) == V1) {
15727            return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15728          }
15729          // (x-y, y-x)
15730          if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15731              V1.getOperand(0) == V2.getOperand(1) &&
15732              V1.getOperand(1) == V2.getOperand(0)) {
15733            return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15734          }
15735        }
15736      }
15737    }
15738
15739    break;
15740  case ISD::INTRINSIC_W_CHAIN:
15741    // For little endian, VSX loads require generating lxvd2x/xxswapd.
15742    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15743    if (Subtarget.needsSwapsForVSXMemOps()) {
15744      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15745      default:
15746        break;
15747      case Intrinsic::ppc_vsx_lxvw4x:
15748      case Intrinsic::ppc_vsx_lxvd2x:
15749        return expandVSXLoadForLE(N, DCI);
15750      }
15751    }
15752    break;
15753  case ISD::INTRINSIC_VOID:
15754    // For little endian, VSX stores require generating xxswapd/stxvd2x.
15755    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15756    if (Subtarget.needsSwapsForVSXMemOps()) {
15757      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15758      default:
15759        break;
15760      case Intrinsic::ppc_vsx_stxvw4x:
15761      case Intrinsic::ppc_vsx_stxvd2x:
15762        return expandVSXStoreForLE(N, DCI);
15763      }
15764    }
15765    break;
15766  case ISD::BSWAP: {
15767    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15768    // For subtargets without LDBRX, we can still do better than the default
15769    // expansion even for 64-bit BSWAP (LOAD).
15770    bool Is64BitBswapOn64BitTgt =
15771        Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15772    bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15773                               N->getOperand(0).hasOneUse();
15774    if (IsSingleUseNormalLd &&
15775        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15776         (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15777      SDValue Load = N->getOperand(0);
15778      LoadSDNode *LD = cast<LoadSDNode>(Load);
15779      // Create the byte-swapping load.
15780      SDValue Ops[] = {
15781        LD->getChain(),    // Chain
15782        LD->getBasePtr(),  // Ptr
15783        DAG.getValueType(N->getValueType(0)) // VT
15784      };
15785      SDValue BSLoad =
15786        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15787                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15788                                              MVT::i64 : MVT::i32, MVT::Other),
15789                                Ops, LD->getMemoryVT(), LD->getMemOperand());
15790
15791      // If this is an i16 load, insert the truncate.
15792      SDValue ResVal = BSLoad;
15793      if (N->getValueType(0) == MVT::i16)
15794        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15795
15796      // First, combine the bswap away.  This makes the value produced by the
15797      // load dead.
15798      DCI.CombineTo(N, ResVal);
15799
15800      // Next, combine the load away, we give it a bogus result value but a real
15801      // chain result.  The result value is dead because the bswap is dead.
15802      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15803
15804      // Return N so it doesn't get rechecked!
15805      return SDValue(N, 0);
15806    }
15807    // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15808    // before legalization so that the BUILD_PAIR is handled correctly.
15809    if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15810        !IsSingleUseNormalLd)
15811      return SDValue();
15812    LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15813
15814    // Can't split volatile or atomic loads.
15815    if (!LD->isSimple())
15816      return SDValue();
15817    SDValue BasePtr = LD->getBasePtr();
15818    SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15819                             LD->getPointerInfo(), LD->getAlign());
15820    Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15821    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15822                          DAG.getIntPtrConstant(4, dl));
15823    MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15824        LD->getMemOperand(), 4, 4);
15825    SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15826    Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15827    SDValue Res;
15828    if (Subtarget.isLittleEndian())
15829      Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15830    else
15831      Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15832    SDValue TF =
15833        DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15834                    Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15835    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15836    return Res;
15837  }
15838  case PPCISD::VCMP:
15839    // If a VCMP_rec node already exists with exactly the same operands as this
15840    // node, use its result instead of this node (VCMP_rec computes both a CR6
15841    // and a normal output).
15842    //
15843    if (!N->getOperand(0).hasOneUse() &&
15844        !N->getOperand(1).hasOneUse() &&
15845        !N->getOperand(2).hasOneUse()) {
15846
15847      // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15848      SDNode *VCMPrecNode = nullptr;
15849
15850      SDNode *LHSN = N->getOperand(0).getNode();
15851      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15852           UI != E; ++UI)
15853        if (UI->getOpcode() == PPCISD::VCMP_rec &&
15854            UI->getOperand(1) == N->getOperand(1) &&
15855            UI->getOperand(2) == N->getOperand(2) &&
15856            UI->getOperand(0) == N->getOperand(0)) {
15857          VCMPrecNode = *UI;
15858          break;
15859        }
15860
15861      // If there is no VCMP_rec node, or if the flag value has a single use,
15862      // don't transform this.
15863      if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15864        break;
15865
15866      // Look at the (necessarily single) use of the flag value.  If it has a
15867      // chain, this transformation is more complex.  Note that multiple things
15868      // could use the value result, which we should ignore.
15869      SDNode *FlagUser = nullptr;
15870      for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15871           FlagUser == nullptr; ++UI) {
15872        assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15873        SDNode *User = *UI;
15874        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15875          if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15876            FlagUser = User;
15877            break;
15878          }
15879        }
15880      }
15881
15882      // If the user is a MFOCRF instruction, we know this is safe.
15883      // Otherwise we give up for right now.
15884      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15885        return SDValue(VCMPrecNode, 0);
15886    }
15887    break;
15888  case ISD::BR_CC: {
15889    // If this is a branch on an altivec predicate comparison, lower this so
15890    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15891    // lowering is done pre-legalize, because the legalizer lowers the predicate
15892    // compare down to code that is difficult to reassemble.
15893    // This code also handles branches that depend on the result of a store
15894    // conditional.
15895    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15896    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15897
15898    int CompareOpc;
15899    bool isDot;
15900
15901    if (!isa<ConstantSDNode>(RHS) || (CC != ISD::SETEQ && CC != ISD::SETNE))
15902      break;
15903
15904    // Since we are doing this pre-legalize, the RHS can be a constant of
15905    // arbitrary bitwidth which may cause issues when trying to get the value
15906    // from the underlying APInt.
15907    auto RHSAPInt = cast<ConstantSDNode>(RHS)->getAPIntValue();
15908    if (!RHSAPInt.isIntN(64))
15909      break;
15910
15911    unsigned Val = RHSAPInt.getZExtValue();
15912    auto isImpossibleCompare = [&]() {
15913      // If this is a comparison against something other than 0/1, then we know
15914      // that the condition is never/always true.
15915      if (Val != 0 && Val != 1) {
15916        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15917          return N->getOperand(0);
15918        // Always !=, turn it into an unconditional branch.
15919        return DAG.getNode(ISD::BR, dl, MVT::Other,
15920                           N->getOperand(0), N->getOperand(4));
15921      }
15922      return SDValue();
15923    };
15924    // Combine branches fed by store conditional instructions (st[bhwd]cx).
15925    unsigned StoreWidth = 0;
15926    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15927        isStoreConditional(LHS, StoreWidth)) {
15928      if (SDValue Impossible = isImpossibleCompare())
15929        return Impossible;
15930      PPC::Predicate CompOpc;
15931      // eq 0 => ne
15932      // ne 0 => eq
15933      // eq 1 => eq
15934      // ne 1 => ne
15935      if (Val == 0)
15936        CompOpc = CC == ISD::SETEQ ? PPC::PRED_NE : PPC::PRED_EQ;
15937      else
15938        CompOpc = CC == ISD::SETEQ ? PPC::PRED_EQ : PPC::PRED_NE;
15939
15940      SDValue Ops[] = {LHS.getOperand(0), LHS.getOperand(2), LHS.getOperand(3),
15941                       DAG.getConstant(StoreWidth, dl, MVT::i32)};
15942      auto *MemNode = cast<MemSDNode>(LHS);
15943      SDValue ConstSt = DAG.getMemIntrinsicNode(
15944          PPCISD::STORE_COND, dl,
15945          DAG.getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops,
15946          MemNode->getMemoryVT(), MemNode->getMemOperand());
15947
15948      SDValue InChain;
15949      // Unchain the branch from the original store conditional.
15950      if (N->getOperand(0) == LHS.getValue(1))
15951        InChain = LHS.getOperand(0);
15952      else if (N->getOperand(0).getOpcode() == ISD::TokenFactor) {
15953        SmallVector<SDValue, 4> InChains;
15954        SDValue InTF = N->getOperand(0);
15955        for (int i = 0, e = InTF.getNumOperands(); i < e; i++)
15956          if (InTF.getOperand(i) != LHS.getValue(1))
15957            InChains.push_back(InTF.getOperand(i));
15958        InChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, InChains);
15959      }
15960
15961      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, InChain,
15962                         DAG.getConstant(CompOpc, dl, MVT::i32),
15963                         DAG.getRegister(PPC::CR0, MVT::i32), N->getOperand(4),
15964                         ConstSt.getValue(2));
15965    }
15966
15967    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15968        getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15969      assert(isDot && "Can't compare against a vector result!");
15970
15971      if (SDValue Impossible = isImpossibleCompare())
15972        return Impossible;
15973
15974      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15975      // Create the PPCISD altivec 'dot' comparison node.
15976      SDValue Ops[] = {
15977        LHS.getOperand(2),  // LHS of compare
15978        LHS.getOperand(3),  // RHS of compare
15979        DAG.getConstant(CompareOpc, dl, MVT::i32)
15980      };
15981      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15982      SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15983
15984      // Unpack the result based on how the target uses it.
15985      PPC::Predicate CompOpc;
15986      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15987      default:  // Can't happen, don't crash on invalid number though.
15988      case 0:   // Branch on the value of the EQ bit of CR6.
15989        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15990        break;
15991      case 1:   // Branch on the inverted value of the EQ bit of CR6.
15992        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15993        break;
15994      case 2:   // Branch on the value of the LT bit of CR6.
15995        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15996        break;
15997      case 3:   // Branch on the inverted value of the LT bit of CR6.
15998        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15999        break;
16000      }
16001
16002      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
16003                         DAG.getConstant(CompOpc, dl, MVT::i32),
16004                         DAG.getRegister(PPC::CR6, MVT::i32),
16005                         N->getOperand(4), CompNode.getValue(1));
16006    }
16007    break;
16008  }
16009  case ISD::BUILD_VECTOR:
16010    return DAGCombineBuildVector(N, DCI);
16011  case ISD::ABS:
16012    return combineABS(N, DCI);
16013  case ISD::VSELECT:
16014    return combineVSelect(N, DCI);
16015  }
16016
16017  return SDValue();
16018}
16019
16020SDValue
16021PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
16022                                 SelectionDAG &DAG,
16023                                 SmallVectorImpl<SDNode *> &Created) const {
16024  // fold (sdiv X, pow2)
16025  EVT VT = N->getValueType(0);
16026  if (VT == MVT::i64 && !Subtarget.isPPC64())
16027    return SDValue();
16028  if ((VT != MVT::i32 && VT != MVT::i64) ||
16029      !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
16030    return SDValue();
16031
16032  SDLoc DL(N);
16033  SDValue N0 = N->getOperand(0);
16034
16035  bool IsNegPow2 = Divisor.isNegatedPowerOf2();
16036  unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
16037  SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
16038
16039  SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
16040  Created.push_back(Op.getNode());
16041
16042  if (IsNegPow2) {
16043    Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
16044    Created.push_back(Op.getNode());
16045  }
16046
16047  return Op;
16048}
16049
16050//===----------------------------------------------------------------------===//
16051// Inline Assembly Support
16052//===----------------------------------------------------------------------===//
16053
16054void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
16055                                                      KnownBits &Known,
16056                                                      const APInt &DemandedElts,
16057                                                      const SelectionDAG &DAG,
16058                                                      unsigned Depth) const {
16059  Known.resetAll();
16060  switch (Op.getOpcode()) {
16061  default: break;
16062  case PPCISD::LBRX: {
16063    // lhbrx is known to have the top bits cleared out.
16064    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
16065      Known.Zero = 0xFFFF0000;
16066    break;
16067  }
16068  case ISD::INTRINSIC_WO_CHAIN: {
16069    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
16070    default: break;
16071    case Intrinsic::ppc_altivec_vcmpbfp_p:
16072    case Intrinsic::ppc_altivec_vcmpeqfp_p:
16073    case Intrinsic::ppc_altivec_vcmpequb_p:
16074    case Intrinsic::ppc_altivec_vcmpequh_p:
16075    case Intrinsic::ppc_altivec_vcmpequw_p:
16076    case Intrinsic::ppc_altivec_vcmpequd_p:
16077    case Intrinsic::ppc_altivec_vcmpequq_p:
16078    case Intrinsic::ppc_altivec_vcmpgefp_p:
16079    case Intrinsic::ppc_altivec_vcmpgtfp_p:
16080    case Intrinsic::ppc_altivec_vcmpgtsb_p:
16081    case Intrinsic::ppc_altivec_vcmpgtsh_p:
16082    case Intrinsic::ppc_altivec_vcmpgtsw_p:
16083    case Intrinsic::ppc_altivec_vcmpgtsd_p:
16084    case Intrinsic::ppc_altivec_vcmpgtsq_p:
16085    case Intrinsic::ppc_altivec_vcmpgtub_p:
16086    case Intrinsic::ppc_altivec_vcmpgtuh_p:
16087    case Intrinsic::ppc_altivec_vcmpgtuw_p:
16088    case Intrinsic::ppc_altivec_vcmpgtud_p:
16089    case Intrinsic::ppc_altivec_vcmpgtuq_p:
16090      Known.Zero = ~1U;  // All bits but the low one are known to be zero.
16091      break;
16092    }
16093    break;
16094  }
16095  case ISD::INTRINSIC_W_CHAIN: {
16096    switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
16097    default:
16098      break;
16099    case Intrinsic::ppc_load2r:
16100      // Top bits are cleared for load2r (which is the same as lhbrx).
16101      Known.Zero = 0xFFFF0000;
16102      break;
16103    }
16104    break;
16105  }
16106  }
16107}
16108
16109Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
16110  switch (Subtarget.getCPUDirective()) {
16111  default: break;
16112  case PPC::DIR_970:
16113  case PPC::DIR_PWR4:
16114  case PPC::DIR_PWR5:
16115  case PPC::DIR_PWR5X:
16116  case PPC::DIR_PWR6:
16117  case PPC::DIR_PWR6X:
16118  case PPC::DIR_PWR7:
16119  case PPC::DIR_PWR8:
16120  case PPC::DIR_PWR9:
16121  case PPC::DIR_PWR10:
16122  case PPC::DIR_PWR_FUTURE: {
16123    if (!ML)
16124      break;
16125
16126    if (!DisableInnermostLoopAlign32) {
16127      // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
16128      // so that we can decrease cache misses and branch-prediction misses.
16129      // Actual alignment of the loop will depend on the hotness check and other
16130      // logic in alignBlocks.
16131      if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
16132        return Align(32);
16133    }
16134
16135    const PPCInstrInfo *TII = Subtarget.getInstrInfo();
16136
16137    // For small loops (between 5 and 8 instructions), align to a 32-byte
16138    // boundary so that the entire loop fits in one instruction-cache line.
16139    uint64_t LoopSize = 0;
16140    for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
16141      for (const MachineInstr &J : **I) {
16142        LoopSize += TII->getInstSizeInBytes(J);
16143        if (LoopSize > 32)
16144          break;
16145      }
16146
16147    if (LoopSize > 16 && LoopSize <= 32)
16148      return Align(32);
16149
16150    break;
16151  }
16152  }
16153
16154  return TargetLowering::getPrefLoopAlignment(ML);
16155}
16156
16157/// getConstraintType - Given a constraint, return the type of
16158/// constraint it is for this target.
16159PPCTargetLowering::ConstraintType
16160PPCTargetLowering::getConstraintType(StringRef Constraint) const {
16161  if (Constraint.size() == 1) {
16162    switch (Constraint[0]) {
16163    default: break;
16164    case 'b':
16165    case 'r':
16166    case 'f':
16167    case 'd':
16168    case 'v':
16169    case 'y':
16170      return C_RegisterClass;
16171    case 'Z':
16172      // FIXME: While Z does indicate a memory constraint, it specifically
16173      // indicates an r+r address (used in conjunction with the 'y' modifier
16174      // in the replacement string). Currently, we're forcing the base
16175      // register to be r0 in the asm printer (which is interpreted as zero)
16176      // and forming the complete address in the second register. This is
16177      // suboptimal.
16178      return C_Memory;
16179    }
16180  } else if (Constraint == "wc") { // individual CR bits.
16181    return C_RegisterClass;
16182  } else if (Constraint == "wa" || Constraint == "wd" ||
16183             Constraint == "wf" || Constraint == "ws" ||
16184             Constraint == "wi" || Constraint == "ww") {
16185    return C_RegisterClass; // VSX registers.
16186  }
16187  return TargetLowering::getConstraintType(Constraint);
16188}
16189
16190/// Examine constraint type and operand type and determine a weight value.
16191/// This object must already have been set up with the operand type
16192/// and the current alternative constraint selected.
16193TargetLowering::ConstraintWeight
16194PPCTargetLowering::getSingleConstraintMatchWeight(
16195    AsmOperandInfo &info, const char *constraint) const {
16196  ConstraintWeight weight = CW_Invalid;
16197  Value *CallOperandVal = info.CallOperandVal;
16198    // If we don't have a value, we can't do a match,
16199    // but allow it at the lowest weight.
16200  if (!CallOperandVal)
16201    return CW_Default;
16202  Type *type = CallOperandVal->getType();
16203
16204  // Look at the constraint type.
16205  if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
16206    return CW_Register; // an individual CR bit.
16207  else if ((StringRef(constraint) == "wa" ||
16208            StringRef(constraint) == "wd" ||
16209            StringRef(constraint) == "wf") &&
16210           type->isVectorTy())
16211    return CW_Register;
16212  else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
16213    return CW_Register; // just hold 64-bit integers data.
16214  else if (StringRef(constraint) == "ws" && type->isDoubleTy())
16215    return CW_Register;
16216  else if (StringRef(constraint) == "ww" && type->isFloatTy())
16217    return CW_Register;
16218
16219  switch (*constraint) {
16220  default:
16221    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16222    break;
16223  case 'b':
16224    if (type->isIntegerTy())
16225      weight = CW_Register;
16226    break;
16227  case 'f':
16228    if (type->isFloatTy())
16229      weight = CW_Register;
16230    break;
16231  case 'd':
16232    if (type->isDoubleTy())
16233      weight = CW_Register;
16234    break;
16235  case 'v':
16236    if (type->isVectorTy())
16237      weight = CW_Register;
16238    break;
16239  case 'y':
16240    weight = CW_Register;
16241    break;
16242  case 'Z':
16243    weight = CW_Memory;
16244    break;
16245  }
16246  return weight;
16247}
16248
16249std::pair<unsigned, const TargetRegisterClass *>
16250PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
16251                                                StringRef Constraint,
16252                                                MVT VT) const {
16253  if (Constraint.size() == 1) {
16254    // GCC RS6000 Constraint Letters
16255    switch (Constraint[0]) {
16256    case 'b':   // R1-R31
16257      if (VT == MVT::i64 && Subtarget.isPPC64())
16258        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
16259      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
16260    case 'r':   // R0-R31
16261      if (VT == MVT::i64 && Subtarget.isPPC64())
16262        return std::make_pair(0U, &PPC::G8RCRegClass);
16263      return std::make_pair(0U, &PPC::GPRCRegClass);
16264    // 'd' and 'f' constraints are both defined to be "the floating point
16265    // registers", where one is for 32-bit and the other for 64-bit. We don't
16266    // really care overly much here so just give them all the same reg classes.
16267    case 'd':
16268    case 'f':
16269      if (Subtarget.hasSPE()) {
16270        if (VT == MVT::f32 || VT == MVT::i32)
16271          return std::make_pair(0U, &PPC::GPRCRegClass);
16272        if (VT == MVT::f64 || VT == MVT::i64)
16273          return std::make_pair(0U, &PPC::SPERCRegClass);
16274      } else {
16275        if (VT == MVT::f32 || VT == MVT::i32)
16276          return std::make_pair(0U, &PPC::F4RCRegClass);
16277        if (VT == MVT::f64 || VT == MVT::i64)
16278          return std::make_pair(0U, &PPC::F8RCRegClass);
16279      }
16280      break;
16281    case 'v':
16282      if (Subtarget.hasAltivec() && VT.isVector())
16283        return std::make_pair(0U, &PPC::VRRCRegClass);
16284      else if (Subtarget.hasVSX())
16285        // Scalars in Altivec registers only make sense with VSX.
16286        return std::make_pair(0U, &PPC::VFRCRegClass);
16287      break;
16288    case 'y':   // crrc
16289      return std::make_pair(0U, &PPC::CRRCRegClass);
16290    }
16291  } else if (Constraint == "wc" && Subtarget.useCRBits()) {
16292    // An individual CR bit.
16293    return std::make_pair(0U, &PPC::CRBITRCRegClass);
16294  } else if ((Constraint == "wa" || Constraint == "wd" ||
16295             Constraint == "wf" || Constraint == "wi") &&
16296             Subtarget.hasVSX()) {
16297    // A VSX register for either a scalar (FP) or vector. There is no
16298    // support for single precision scalars on subtargets prior to Power8.
16299    if (VT.isVector())
16300      return std::make_pair(0U, &PPC::VSRCRegClass);
16301    if (VT == MVT::f32 && Subtarget.hasP8Vector())
16302      return std::make_pair(0U, &PPC::VSSRCRegClass);
16303    return std::make_pair(0U, &PPC::VSFRCRegClass);
16304  } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
16305    if (VT == MVT::f32 && Subtarget.hasP8Vector())
16306      return std::make_pair(0U, &PPC::VSSRCRegClass);
16307    else
16308      return std::make_pair(0U, &PPC::VSFRCRegClass);
16309  } else if (Constraint == "lr") {
16310    if (VT == MVT::i64)
16311      return std::make_pair(0U, &PPC::LR8RCRegClass);
16312    else
16313      return std::make_pair(0U, &PPC::LRRCRegClass);
16314  }
16315
16316  // Handle special cases of physical registers that are not properly handled
16317  // by the base class.
16318  if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16319    // If we name a VSX register, we can't defer to the base class because it
16320    // will not recognize the correct register (their names will be VSL{0-31}
16321    // and V{0-31} so they won't match). So we match them here.
16322    if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16323      int VSNum = atoi(Constraint.data() + 3);
16324      assert(VSNum >= 0 && VSNum <= 63 &&
16325             "Attempted to access a vsr out of range");
16326      if (VSNum < 32)
16327        return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16328      return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16329    }
16330
16331    // For float registers, we can't defer to the base class as it will match
16332    // the SPILLTOVSRRC class.
16333    if (Constraint.size() > 3 && Constraint[1] == 'f') {
16334      int RegNum = atoi(Constraint.data() + 2);
16335      if (RegNum > 31 || RegNum < 0)
16336        report_fatal_error("Invalid floating point register number");
16337      if (VT == MVT::f32 || VT == MVT::i32)
16338        return Subtarget.hasSPE()
16339                   ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16340                   : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16341      if (VT == MVT::f64 || VT == MVT::i64)
16342        return Subtarget.hasSPE()
16343                   ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16344                   : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16345    }
16346  }
16347
16348  std::pair<unsigned, const TargetRegisterClass *> R =
16349      TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16350
16351  // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16352  // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16353  // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16354  // register.
16355  // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16356  // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16357  if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16358      PPC::GPRCRegClass.contains(R.first))
16359    return std::make_pair(TRI->getMatchingSuperReg(R.first,
16360                            PPC::sub_32, &PPC::G8RCRegClass),
16361                          &PPC::G8RCRegClass);
16362
16363  // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16364  if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16365    R.first = PPC::CR0;
16366    R.second = &PPC::CRRCRegClass;
16367  }
16368  // FIXME: This warning should ideally be emitted in the front end.
16369  const auto &TM = getTargetMachine();
16370  if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16371    if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16372         (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16373        (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16374      errs() << "warning: vector registers 20 to 32 are reserved in the "
16375                "default AIX AltiVec ABI and cannot be used\n";
16376  }
16377
16378  return R;
16379}
16380
16381/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16382/// vector.  If it is invalid, don't add anything to Ops.
16383void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16384                                                     std::string &Constraint,
16385                                                     std::vector<SDValue>&Ops,
16386                                                     SelectionDAG &DAG) const {
16387  SDValue Result;
16388
16389  // Only support length 1 constraints.
16390  if (Constraint.length() > 1) return;
16391
16392  char Letter = Constraint[0];
16393  switch (Letter) {
16394  default: break;
16395  case 'I':
16396  case 'J':
16397  case 'K':
16398  case 'L':
16399  case 'M':
16400  case 'N':
16401  case 'O':
16402  case 'P': {
16403    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16404    if (!CST) return; // Must be an immediate to match.
16405    SDLoc dl(Op);
16406    int64_t Value = CST->getSExtValue();
16407    EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16408                         // numbers are printed as such.
16409    switch (Letter) {
16410    default: llvm_unreachable("Unknown constraint letter!");
16411    case 'I':  // "I" is a signed 16-bit constant.
16412      if (isInt<16>(Value))
16413        Result = DAG.getTargetConstant(Value, dl, TCVT);
16414      break;
16415    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16416      if (isShiftedUInt<16, 16>(Value))
16417        Result = DAG.getTargetConstant(Value, dl, TCVT);
16418      break;
16419    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16420      if (isShiftedInt<16, 16>(Value))
16421        Result = DAG.getTargetConstant(Value, dl, TCVT);
16422      break;
16423    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16424      if (isUInt<16>(Value))
16425        Result = DAG.getTargetConstant(Value, dl, TCVT);
16426      break;
16427    case 'M':  // "M" is a constant that is greater than 31.
16428      if (Value > 31)
16429        Result = DAG.getTargetConstant(Value, dl, TCVT);
16430      break;
16431    case 'N':  // "N" is a positive constant that is an exact power of two.
16432      if (Value > 0 && isPowerOf2_64(Value))
16433        Result = DAG.getTargetConstant(Value, dl, TCVT);
16434      break;
16435    case 'O':  // "O" is the constant zero.
16436      if (Value == 0)
16437        Result = DAG.getTargetConstant(Value, dl, TCVT);
16438      break;
16439    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16440      if (isInt<16>(-Value))
16441        Result = DAG.getTargetConstant(Value, dl, TCVT);
16442      break;
16443    }
16444    break;
16445  }
16446  }
16447
16448  if (Result.getNode()) {
16449    Ops.push_back(Result);
16450    return;
16451  }
16452
16453  // Handle standard constraint letters.
16454  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16455}
16456
16457void PPCTargetLowering::CollectTargetIntrinsicOperands(const CallInst &I,
16458                                              SmallVectorImpl<SDValue> &Ops,
16459                                              SelectionDAG &DAG) const {
16460  if (I.getNumOperands() <= 1)
16461    return;
16462  if (!isa<ConstantSDNode>(Ops[1].getNode()))
16463    return;
16464  auto IntrinsicID = cast<ConstantSDNode>(Ops[1].getNode())->getZExtValue();
16465  if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
16466      IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap)
16467    return;
16468
16469  if (I.hasMetadata("annotation")) {
16470    MDNode *MDN = I.getMetadata("annotation");
16471    Ops.push_back(DAG.getMDNode(MDN));
16472  }
16473}
16474
16475// isLegalAddressingMode - Return true if the addressing mode represented
16476// by AM is legal for this target, for a load/store of the specified type.
16477bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16478                                              const AddrMode &AM, Type *Ty,
16479                                              unsigned AS,
16480                                              Instruction *I) const {
16481  // Vector type r+i form is supported since power9 as DQ form. We don't check
16482  // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16483  // imm form is preferred and the offset can be adjusted to use imm form later
16484  // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16485  // max offset to check legal addressing mode, we should be a little aggressive
16486  // to contain other offsets for that LSRUse.
16487  if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16488    return false;
16489
16490  // PPC allows a sign-extended 16-bit immediate field.
16491  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16492    return false;
16493
16494  // No global is ever allowed as a base.
16495  if (AM.BaseGV)
16496    return false;
16497
16498  // PPC only support r+r,
16499  switch (AM.Scale) {
16500  case 0:  // "r+i" or just "i", depending on HasBaseReg.
16501    break;
16502  case 1:
16503    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16504      return false;
16505    // Otherwise we have r+r or r+i.
16506    break;
16507  case 2:
16508    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16509      return false;
16510    // Allow 2*r as r+r.
16511    break;
16512  default:
16513    // No other scales are supported.
16514    return false;
16515  }
16516
16517  return true;
16518}
16519
16520SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16521                                           SelectionDAG &DAG) const {
16522  MachineFunction &MF = DAG.getMachineFunction();
16523  MachineFrameInfo &MFI = MF.getFrameInfo();
16524  MFI.setReturnAddressIsTaken(true);
16525
16526  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16527    return SDValue();
16528
16529  SDLoc dl(Op);
16530  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16531
16532  // Make sure the function does not optimize away the store of the RA to
16533  // the stack.
16534  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16535  FuncInfo->setLRStoreRequired();
16536  bool isPPC64 = Subtarget.isPPC64();
16537  auto PtrVT = getPointerTy(MF.getDataLayout());
16538
16539  if (Depth > 0) {
16540    // The link register (return address) is saved in the caller's frame
16541    // not the callee's stack frame. So we must get the caller's frame
16542    // address and load the return address at the LR offset from there.
16543    SDValue FrameAddr =
16544        DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16545                    LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16546    SDValue Offset =
16547        DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16548                        isPPC64 ? MVT::i64 : MVT::i32);
16549    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16550                       DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16551                       MachinePointerInfo());
16552  }
16553
16554  // Just load the return address off the stack.
16555  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16556  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16557                     MachinePointerInfo());
16558}
16559
16560SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16561                                          SelectionDAG &DAG) const {
16562  SDLoc dl(Op);
16563  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16564
16565  MachineFunction &MF = DAG.getMachineFunction();
16566  MachineFrameInfo &MFI = MF.getFrameInfo();
16567  MFI.setFrameAddressIsTaken(true);
16568
16569  EVT PtrVT = getPointerTy(MF.getDataLayout());
16570  bool isPPC64 = PtrVT == MVT::i64;
16571
16572  // Naked functions never have a frame pointer, and so we use r1. For all
16573  // other functions, this decision must be delayed until during PEI.
16574  unsigned FrameReg;
16575  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16576    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16577  else
16578    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16579
16580  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16581                                         PtrVT);
16582  while (Depth--)
16583    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16584                            FrameAddr, MachinePointerInfo());
16585  return FrameAddr;
16586}
16587
16588// FIXME? Maybe this could be a TableGen attribute on some registers and
16589// this table could be generated automatically from RegInfo.
16590Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16591                                              const MachineFunction &MF) const {
16592  bool isPPC64 = Subtarget.isPPC64();
16593
16594  bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16595  if (!is64Bit && VT != LLT::scalar(32))
16596    report_fatal_error("Invalid register global variable type");
16597
16598  Register Reg = StringSwitch<Register>(RegName)
16599                     .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16600                     .Case("r2", isPPC64 ? Register() : PPC::R2)
16601                     .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16602                     .Default(Register());
16603
16604  if (Reg)
16605    return Reg;
16606  report_fatal_error("Invalid register name global variable");
16607}
16608
16609bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16610  // 32-bit SVR4 ABI access everything as got-indirect.
16611  if (Subtarget.is32BitELFABI())
16612    return true;
16613
16614  // AIX accesses everything indirectly through the TOC, which is similar to
16615  // the GOT.
16616  if (Subtarget.isAIXABI())
16617    return true;
16618
16619  CodeModel::Model CModel = getTargetMachine().getCodeModel();
16620  // If it is small or large code model, module locals are accessed
16621  // indirectly by loading their address from .toc/.got.
16622  if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16623    return true;
16624
16625  // JumpTable and BlockAddress are accessed as got-indirect.
16626  if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16627    return true;
16628
16629  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16630    return Subtarget.isGVIndirectSymbol(G->getGlobal());
16631
16632  return false;
16633}
16634
16635bool
16636PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16637  // The PowerPC target isn't yet aware of offsets.
16638  return false;
16639}
16640
16641bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16642                                           const CallInst &I,
16643                                           MachineFunction &MF,
16644                                           unsigned Intrinsic) const {
16645  switch (Intrinsic) {
16646  case Intrinsic::ppc_atomicrmw_xchg_i128:
16647  case Intrinsic::ppc_atomicrmw_add_i128:
16648  case Intrinsic::ppc_atomicrmw_sub_i128:
16649  case Intrinsic::ppc_atomicrmw_nand_i128:
16650  case Intrinsic::ppc_atomicrmw_and_i128:
16651  case Intrinsic::ppc_atomicrmw_or_i128:
16652  case Intrinsic::ppc_atomicrmw_xor_i128:
16653  case Intrinsic::ppc_cmpxchg_i128:
16654    Info.opc = ISD::INTRINSIC_W_CHAIN;
16655    Info.memVT = MVT::i128;
16656    Info.ptrVal = I.getArgOperand(0);
16657    Info.offset = 0;
16658    Info.align = Align(16);
16659    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16660                 MachineMemOperand::MOVolatile;
16661    return true;
16662  case Intrinsic::ppc_atomic_load_i128:
16663    Info.opc = ISD::INTRINSIC_W_CHAIN;
16664    Info.memVT = MVT::i128;
16665    Info.ptrVal = I.getArgOperand(0);
16666    Info.offset = 0;
16667    Info.align = Align(16);
16668    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16669    return true;
16670  case Intrinsic::ppc_atomic_store_i128:
16671    Info.opc = ISD::INTRINSIC_VOID;
16672    Info.memVT = MVT::i128;
16673    Info.ptrVal = I.getArgOperand(2);
16674    Info.offset = 0;
16675    Info.align = Align(16);
16676    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16677    return true;
16678  case Intrinsic::ppc_altivec_lvx:
16679  case Intrinsic::ppc_altivec_lvxl:
16680  case Intrinsic::ppc_altivec_lvebx:
16681  case Intrinsic::ppc_altivec_lvehx:
16682  case Intrinsic::ppc_altivec_lvewx:
16683  case Intrinsic::ppc_vsx_lxvd2x:
16684  case Intrinsic::ppc_vsx_lxvw4x:
16685  case Intrinsic::ppc_vsx_lxvd2x_be:
16686  case Intrinsic::ppc_vsx_lxvw4x_be:
16687  case Intrinsic::ppc_vsx_lxvl:
16688  case Intrinsic::ppc_vsx_lxvll: {
16689    EVT VT;
16690    switch (Intrinsic) {
16691    case Intrinsic::ppc_altivec_lvebx:
16692      VT = MVT::i8;
16693      break;
16694    case Intrinsic::ppc_altivec_lvehx:
16695      VT = MVT::i16;
16696      break;
16697    case Intrinsic::ppc_altivec_lvewx:
16698      VT = MVT::i32;
16699      break;
16700    case Intrinsic::ppc_vsx_lxvd2x:
16701    case Intrinsic::ppc_vsx_lxvd2x_be:
16702      VT = MVT::v2f64;
16703      break;
16704    default:
16705      VT = MVT::v4i32;
16706      break;
16707    }
16708
16709    Info.opc = ISD::INTRINSIC_W_CHAIN;
16710    Info.memVT = VT;
16711    Info.ptrVal = I.getArgOperand(0);
16712    Info.offset = -VT.getStoreSize()+1;
16713    Info.size = 2*VT.getStoreSize()-1;
16714    Info.align = Align(1);
16715    Info.flags = MachineMemOperand::MOLoad;
16716    return true;
16717  }
16718  case Intrinsic::ppc_altivec_stvx:
16719  case Intrinsic::ppc_altivec_stvxl:
16720  case Intrinsic::ppc_altivec_stvebx:
16721  case Intrinsic::ppc_altivec_stvehx:
16722  case Intrinsic::ppc_altivec_stvewx:
16723  case Intrinsic::ppc_vsx_stxvd2x:
16724  case Intrinsic::ppc_vsx_stxvw4x:
16725  case Intrinsic::ppc_vsx_stxvd2x_be:
16726  case Intrinsic::ppc_vsx_stxvw4x_be:
16727  case Intrinsic::ppc_vsx_stxvl:
16728  case Intrinsic::ppc_vsx_stxvll: {
16729    EVT VT;
16730    switch (Intrinsic) {
16731    case Intrinsic::ppc_altivec_stvebx:
16732      VT = MVT::i8;
16733      break;
16734    case Intrinsic::ppc_altivec_stvehx:
16735      VT = MVT::i16;
16736      break;
16737    case Intrinsic::ppc_altivec_stvewx:
16738      VT = MVT::i32;
16739      break;
16740    case Intrinsic::ppc_vsx_stxvd2x:
16741    case Intrinsic::ppc_vsx_stxvd2x_be:
16742      VT = MVT::v2f64;
16743      break;
16744    default:
16745      VT = MVT::v4i32;
16746      break;
16747    }
16748
16749    Info.opc = ISD::INTRINSIC_VOID;
16750    Info.memVT = VT;
16751    Info.ptrVal = I.getArgOperand(1);
16752    Info.offset = -VT.getStoreSize()+1;
16753    Info.size = 2*VT.getStoreSize()-1;
16754    Info.align = Align(1);
16755    Info.flags = MachineMemOperand::MOStore;
16756    return true;
16757  }
16758  case Intrinsic::ppc_stdcx:
16759  case Intrinsic::ppc_stwcx:
16760  case Intrinsic::ppc_sthcx:
16761  case Intrinsic::ppc_stbcx: {
16762    EVT VT;
16763    auto Alignment = Align(8);
16764    switch (Intrinsic) {
16765    case Intrinsic::ppc_stdcx:
16766      VT = MVT::i64;
16767      break;
16768    case Intrinsic::ppc_stwcx:
16769      VT = MVT::i32;
16770      Alignment = Align(4);
16771      break;
16772    case Intrinsic::ppc_sthcx:
16773      VT = MVT::i16;
16774      Alignment = Align(2);
16775      break;
16776    case Intrinsic::ppc_stbcx:
16777      VT = MVT::i8;
16778      Alignment = Align(1);
16779      break;
16780    }
16781    Info.opc = ISD::INTRINSIC_W_CHAIN;
16782    Info.memVT = VT;
16783    Info.ptrVal = I.getArgOperand(0);
16784    Info.offset = 0;
16785    Info.align = Alignment;
16786    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16787    return true;
16788  }
16789  default:
16790    break;
16791  }
16792
16793  return false;
16794}
16795
16796/// It returns EVT::Other if the type should be determined using generic
16797/// target-independent logic.
16798EVT PPCTargetLowering::getOptimalMemOpType(
16799    const MemOp &Op, const AttributeList &FuncAttributes) const {
16800  if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16801    // We should use Altivec/VSX loads and stores when available. For unaligned
16802    // addresses, unaligned VSX loads are only fast starting with the P8.
16803    if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16804        (Op.isAligned(Align(16)) ||
16805         ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16806      return MVT::v4i32;
16807  }
16808
16809  if (Subtarget.isPPC64()) {
16810    return MVT::i64;
16811  }
16812
16813  return MVT::i32;
16814}
16815
16816/// Returns true if it is beneficial to convert a load of a constant
16817/// to just the constant itself.
16818bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16819                                                          Type *Ty) const {
16820  assert(Ty->isIntegerTy());
16821
16822  unsigned BitSize = Ty->getPrimitiveSizeInBits();
16823  return !(BitSize == 0 || BitSize > 64);
16824}
16825
16826bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16827  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16828    return false;
16829  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16830  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16831  return NumBits1 == 64 && NumBits2 == 32;
16832}
16833
16834bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16835  if (!VT1.isInteger() || !VT2.isInteger())
16836    return false;
16837  unsigned NumBits1 = VT1.getSizeInBits();
16838  unsigned NumBits2 = VT2.getSizeInBits();
16839  return NumBits1 == 64 && NumBits2 == 32;
16840}
16841
16842bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16843  // Generally speaking, zexts are not free, but they are free when they can be
16844  // folded with other operations.
16845  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16846    EVT MemVT = LD->getMemoryVT();
16847    if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16848         (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16849        (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16850         LD->getExtensionType() == ISD::ZEXTLOAD))
16851      return true;
16852  }
16853
16854  // FIXME: Add other cases...
16855  //  - 32-bit shifts with a zext to i64
16856  //  - zext after ctlz, bswap, etc.
16857  //  - zext after and by a constant mask
16858
16859  return TargetLowering::isZExtFree(Val, VT2);
16860}
16861
16862bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16863  assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16864         "invalid fpext types");
16865  // Extending to float128 is not free.
16866  if (DestVT == MVT::f128)
16867    return false;
16868  return true;
16869}
16870
16871bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16872  return isInt<16>(Imm) || isUInt<16>(Imm);
16873}
16874
16875bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16876  return isInt<16>(Imm) || isUInt<16>(Imm);
16877}
16878
16879bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16880                                                       MachineMemOperand::Flags,
16881                                                       unsigned *Fast) const {
16882  if (DisablePPCUnaligned)
16883    return false;
16884
16885  // PowerPC supports unaligned memory access for simple non-vector types.
16886  // Although accessing unaligned addresses is not as efficient as accessing
16887  // aligned addresses, it is generally more efficient than manual expansion,
16888  // and generally only traps for software emulation when crossing page
16889  // boundaries.
16890
16891  if (!VT.isSimple())
16892    return false;
16893
16894  if (VT.isFloatingPoint() && !VT.isVector() &&
16895      !Subtarget.allowsUnalignedFPAccess())
16896    return false;
16897
16898  if (VT.getSimpleVT().isVector()) {
16899    if (Subtarget.hasVSX()) {
16900      if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16901          VT != MVT::v4f32 && VT != MVT::v4i32)
16902        return false;
16903    } else {
16904      return false;
16905    }
16906  }
16907
16908  if (VT == MVT::ppcf128)
16909    return false;
16910
16911  if (Fast)
16912    *Fast = 1;
16913
16914  return true;
16915}
16916
16917bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16918                                               SDValue C) const {
16919  // Check integral scalar types.
16920  if (!VT.isScalarInteger())
16921    return false;
16922  if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16923    if (!ConstNode->getAPIntValue().isSignedIntN(64))
16924      return false;
16925    // This transformation will generate >= 2 operations. But the following
16926    // cases will generate <= 2 instructions during ISEL. So exclude them.
16927    // 1. If the constant multiplier fits 16 bits, it can be handled by one
16928    // HW instruction, ie. MULLI
16929    // 2. If the multiplier after shifted fits 16 bits, an extra shift
16930    // instruction is needed than case 1, ie. MULLI and RLDICR
16931    int64_t Imm = ConstNode->getSExtValue();
16932    unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16933    Imm >>= Shift;
16934    if (isInt<16>(Imm))
16935      return false;
16936    uint64_t UImm = static_cast<uint64_t>(Imm);
16937    if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16938        isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16939      return true;
16940  }
16941  return false;
16942}
16943
16944bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16945                                                   EVT VT) const {
16946  return isFMAFasterThanFMulAndFAdd(
16947      MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16948}
16949
16950bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16951                                                   Type *Ty) const {
16952  if (Subtarget.hasSPE())
16953    return false;
16954  switch (Ty->getScalarType()->getTypeID()) {
16955  case Type::FloatTyID:
16956  case Type::DoubleTyID:
16957    return true;
16958  case Type::FP128TyID:
16959    return Subtarget.hasP9Vector();
16960  default:
16961    return false;
16962  }
16963}
16964
16965// FIXME: add more patterns which are not profitable to hoist.
16966bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16967  if (!I->hasOneUse())
16968    return true;
16969
16970  Instruction *User = I->user_back();
16971  assert(User && "A single use instruction with no uses.");
16972
16973  switch (I->getOpcode()) {
16974  case Instruction::FMul: {
16975    // Don't break FMA, PowerPC prefers FMA.
16976    if (User->getOpcode() != Instruction::FSub &&
16977        User->getOpcode() != Instruction::FAdd)
16978      return true;
16979
16980    const TargetOptions &Options = getTargetMachine().Options;
16981    const Function *F = I->getFunction();
16982    const DataLayout &DL = F->getParent()->getDataLayout();
16983    Type *Ty = User->getOperand(0)->getType();
16984
16985    return !(
16986        isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16987        isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16988        (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16989  }
16990  case Instruction::Load: {
16991    // Don't break "store (load float*)" pattern, this pattern will be combined
16992    // to "store (load int32)" in later InstCombine pass. See function
16993    // combineLoadToOperationType. On PowerPC, loading a float point takes more
16994    // cycles than loading a 32 bit integer.
16995    LoadInst *LI = cast<LoadInst>(I);
16996    // For the loads that combineLoadToOperationType does nothing, like
16997    // ordered load, it should be profitable to hoist them.
16998    // For swifterror load, it can only be used for pointer to pointer type, so
16999    // later type check should get rid of this case.
17000    if (!LI->isUnordered())
17001      return true;
17002
17003    if (User->getOpcode() != Instruction::Store)
17004      return true;
17005
17006    if (I->getType()->getTypeID() != Type::FloatTyID)
17007      return true;
17008
17009    return false;
17010  }
17011  default:
17012    return true;
17013  }
17014  return true;
17015}
17016
17017const MCPhysReg *
17018PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
17019  // LR is a callee-save register, but we must treat it as clobbered by any call
17020  // site. Hence we include LR in the scratch registers, which are in turn added
17021  // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
17022  // to CTR, which is used by any indirect call.
17023  static const MCPhysReg ScratchRegs[] = {
17024    PPC::X12, PPC::LR8, PPC::CTR8, 0
17025  };
17026
17027  return ScratchRegs;
17028}
17029
17030Register PPCTargetLowering::getExceptionPointerRegister(
17031    const Constant *PersonalityFn) const {
17032  return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
17033}
17034
17035Register PPCTargetLowering::getExceptionSelectorRegister(
17036    const Constant *PersonalityFn) const {
17037  return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
17038}
17039
17040bool
17041PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
17042                     EVT VT , unsigned DefinedValues) const {
17043  if (VT == MVT::v2i64)
17044    return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
17045
17046  if (Subtarget.hasVSX())
17047    return true;
17048
17049  return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
17050}
17051
17052Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
17053  if (DisableILPPref || Subtarget.enableMachineScheduler())
17054    return TargetLowering::getSchedulingPreference(N);
17055
17056  return Sched::ILP;
17057}
17058
17059// Create a fast isel object.
17060FastISel *
17061PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
17062                                  const TargetLibraryInfo *LibInfo) const {
17063  return PPC::createFastISel(FuncInfo, LibInfo);
17064}
17065
17066// 'Inverted' means the FMA opcode after negating one multiplicand.
17067// For example, (fma -a b c) = (fnmsub a b c)
17068static unsigned invertFMAOpcode(unsigned Opc) {
17069  switch (Opc) {
17070  default:
17071    llvm_unreachable("Invalid FMA opcode for PowerPC!");
17072  case ISD::FMA:
17073    return PPCISD::FNMSUB;
17074  case PPCISD::FNMSUB:
17075    return ISD::FMA;
17076  }
17077}
17078
17079SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
17080                                                bool LegalOps, bool OptForSize,
17081                                                NegatibleCost &Cost,
17082                                                unsigned Depth) const {
17083  if (Depth > SelectionDAG::MaxRecursionDepth)
17084    return SDValue();
17085
17086  unsigned Opc = Op.getOpcode();
17087  EVT VT = Op.getValueType();
17088  SDNodeFlags Flags = Op.getNode()->getFlags();
17089
17090  switch (Opc) {
17091  case PPCISD::FNMSUB:
17092    if (!Op.hasOneUse() || !isTypeLegal(VT))
17093      break;
17094
17095    const TargetOptions &Options = getTargetMachine().Options;
17096    SDValue N0 = Op.getOperand(0);
17097    SDValue N1 = Op.getOperand(1);
17098    SDValue N2 = Op.getOperand(2);
17099    SDLoc Loc(Op);
17100
17101    NegatibleCost N2Cost = NegatibleCost::Expensive;
17102    SDValue NegN2 =
17103        getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
17104
17105    if (!NegN2)
17106      return SDValue();
17107
17108    // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
17109    // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
17110    // These transformations may change sign of zeroes. For example,
17111    // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
17112    if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
17113      // Try and choose the cheaper one to negate.
17114      NegatibleCost N0Cost = NegatibleCost::Expensive;
17115      SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
17116                                           N0Cost, Depth + 1);
17117
17118      NegatibleCost N1Cost = NegatibleCost::Expensive;
17119      SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
17120                                           N1Cost, Depth + 1);
17121
17122      if (NegN0 && N0Cost <= N1Cost) {
17123        Cost = std::min(N0Cost, N2Cost);
17124        return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
17125      } else if (NegN1) {
17126        Cost = std::min(N1Cost, N2Cost);
17127        return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
17128      }
17129    }
17130
17131    // (fneg (fnmsub a b c)) => (fma a b (fneg c))
17132    if (isOperationLegal(ISD::FMA, VT)) {
17133      Cost = N2Cost;
17134      return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
17135    }
17136
17137    break;
17138  }
17139
17140  return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
17141                                              Cost, Depth);
17142}
17143
17144// Override to enable LOAD_STACK_GUARD lowering on Linux.
17145bool PPCTargetLowering::useLoadStackGuardNode() const {
17146  if (!Subtarget.isTargetLinux())
17147    return TargetLowering::useLoadStackGuardNode();
17148  return true;
17149}
17150
17151// Override to disable global variable loading on Linux and insert AIX canary
17152// word declaration.
17153void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
17154  if (Subtarget.isAIXABI()) {
17155    M.getOrInsertGlobal(AIXSSPCanaryWordName,
17156                        Type::getInt8PtrTy(M.getContext()));
17157    return;
17158  }
17159  if (!Subtarget.isTargetLinux())
17160    return TargetLowering::insertSSPDeclarations(M);
17161}
17162
17163Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
17164  if (Subtarget.isAIXABI())
17165    return M.getGlobalVariable(AIXSSPCanaryWordName);
17166  return TargetLowering::getSDagStackGuard(M);
17167}
17168
17169bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
17170                                     bool ForCodeSize) const {
17171  if (!VT.isSimple() || !Subtarget.hasVSX())
17172    return false;
17173
17174  switch(VT.getSimpleVT().SimpleTy) {
17175  default:
17176    // For FP types that are currently not supported by PPC backend, return
17177    // false. Examples: f16, f80.
17178    return false;
17179  case MVT::f32:
17180  case MVT::f64: {
17181    if (Subtarget.hasPrefixInstrs()) {
17182      // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
17183      return true;
17184    }
17185    bool IsExact;
17186    APSInt IntResult(16, false);
17187    // The rounding mode doesn't really matter because we only care about floats
17188    // that can be converted to integers exactly.
17189    Imm.convertToInteger(IntResult, APFloat::rmTowardZero, &IsExact);
17190    // For exact values in the range [-16, 15] we can materialize the float.
17191    if (IsExact && IntResult <= 15 && IntResult >= -16)
17192      return true;
17193    return Imm.isZero();
17194  }
17195  case MVT::ppcf128:
17196    return Imm.isPosZero();
17197  }
17198}
17199
17200// For vector shift operation op, fold
17201// (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
17202static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
17203                                  SelectionDAG &DAG) {
17204  SDValue N0 = N->getOperand(0);
17205  SDValue N1 = N->getOperand(1);
17206  EVT VT = N0.getValueType();
17207  unsigned OpSizeInBits = VT.getScalarSizeInBits();
17208  unsigned Opcode = N->getOpcode();
17209  unsigned TargetOpcode;
17210
17211  switch (Opcode) {
17212  default:
17213    llvm_unreachable("Unexpected shift operation");
17214  case ISD::SHL:
17215    TargetOpcode = PPCISD::SHL;
17216    break;
17217  case ISD::SRL:
17218    TargetOpcode = PPCISD::SRL;
17219    break;
17220  case ISD::SRA:
17221    TargetOpcode = PPCISD::SRA;
17222    break;
17223  }
17224
17225  if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
17226      N1->getOpcode() == ISD::AND)
17227    if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
17228      if (Mask->getZExtValue() == OpSizeInBits - 1)
17229        return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
17230
17231  return SDValue();
17232}
17233
17234SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
17235  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17236    return Value;
17237
17238  SDValue N0 = N->getOperand(0);
17239  ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
17240  if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
17241      N0.getOpcode() != ISD::SIGN_EXTEND ||
17242      N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
17243      N->getValueType(0) != MVT::i64)
17244    return SDValue();
17245
17246  // We can't save an operation here if the value is already extended, and
17247  // the existing shift is easier to combine.
17248  SDValue ExtsSrc = N0.getOperand(0);
17249  if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
17250      ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
17251    return SDValue();
17252
17253  SDLoc DL(N0);
17254  SDValue ShiftBy = SDValue(CN1, 0);
17255  // We want the shift amount to be i32 on the extswli, but the shift could
17256  // have an i64.
17257  if (ShiftBy.getValueType() == MVT::i64)
17258    ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
17259
17260  return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
17261                         ShiftBy);
17262}
17263
17264SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
17265  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17266    return Value;
17267
17268  return SDValue();
17269}
17270
17271SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
17272  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17273    return Value;
17274
17275  return SDValue();
17276}
17277
17278// Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
17279// Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
17280// When C is zero, the equation (addi Z, -C) can be simplified to Z
17281// Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
17282static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
17283                                 const PPCSubtarget &Subtarget) {
17284  if (!Subtarget.isPPC64())
17285    return SDValue();
17286
17287  SDValue LHS = N->getOperand(0);
17288  SDValue RHS = N->getOperand(1);
17289
17290  auto isZextOfCompareWithConstant = [](SDValue Op) {
17291    if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
17292        Op.getValueType() != MVT::i64)
17293      return false;
17294
17295    SDValue Cmp = Op.getOperand(0);
17296    if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
17297        Cmp.getOperand(0).getValueType() != MVT::i64)
17298      return false;
17299
17300    if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
17301      int64_t NegConstant = 0 - Constant->getSExtValue();
17302      // Due to the limitations of the addi instruction,
17303      // -C is required to be [-32768, 32767].
17304      return isInt<16>(NegConstant);
17305    }
17306
17307    return false;
17308  };
17309
17310  bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
17311  bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
17312
17313  // If there is a pattern, canonicalize a zext operand to the RHS.
17314  if (LHSHasPattern && !RHSHasPattern)
17315    std::swap(LHS, RHS);
17316  else if (!LHSHasPattern && !RHSHasPattern)
17317    return SDValue();
17318
17319  SDLoc DL(N);
17320  SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
17321  SDValue Cmp = RHS.getOperand(0);
17322  SDValue Z = Cmp.getOperand(0);
17323  auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
17324  int64_t NegConstant = 0 - Constant->getSExtValue();
17325
17326  switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
17327  default: break;
17328  case ISD::SETNE: {
17329    //                                 when C == 0
17330    //                             --> addze X, (addic Z, -1).carry
17331    //                            /
17332    // add X, (zext(setne Z, C))--
17333    //                            \    when -32768 <= -C <= 32767 && C != 0
17334    //                             --> addze X, (addic (addi Z, -C), -1).carry
17335    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17336                              DAG.getConstant(NegConstant, DL, MVT::i64));
17337    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17338    SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17339                               AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
17340    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17341                       SDValue(Addc.getNode(), 1));
17342    }
17343  case ISD::SETEQ: {
17344    //                                 when C == 0
17345    //                             --> addze X, (subfic Z, 0).carry
17346    //                            /
17347    // add X, (zext(sete  Z, C))--
17348    //                            \    when -32768 <= -C <= 32767 && C != 0
17349    //                             --> addze X, (subfic (addi Z, -C), 0).carry
17350    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17351                              DAG.getConstant(NegConstant, DL, MVT::i64));
17352    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17353    SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17354                               DAG.getConstant(0, DL, MVT::i64), AddOrZ);
17355    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17356                       SDValue(Subc.getNode(), 1));
17357    }
17358  }
17359
17360  return SDValue();
17361}
17362
17363// Transform
17364// (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
17365// (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
17366// In this case both C1 and C2 must be known constants.
17367// C1+C2 must fit into a 34 bit signed integer.
17368static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
17369                                          const PPCSubtarget &Subtarget) {
17370  if (!Subtarget.isUsingPCRelativeCalls())
17371    return SDValue();
17372
17373  // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17374  // If we find that node try to cast the Global Address and the Constant.
17375  SDValue LHS = N->getOperand(0);
17376  SDValue RHS = N->getOperand(1);
17377
17378  if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17379    std::swap(LHS, RHS);
17380
17381  if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17382    return SDValue();
17383
17384  // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17385  GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17386  ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17387
17388  // Check that both casts succeeded.
17389  if (!GSDN || !ConstNode)
17390    return SDValue();
17391
17392  int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17393  SDLoc DL(GSDN);
17394
17395  // The signed int offset needs to fit in 34 bits.
17396  if (!isInt<34>(NewOffset))
17397    return SDValue();
17398
17399  // The new global address is a copy of the old global address except
17400  // that it has the updated Offset.
17401  SDValue GA =
17402      DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17403                                 NewOffset, GSDN->getTargetFlags());
17404  SDValue MatPCRel =
17405      DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17406  return MatPCRel;
17407}
17408
17409SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17410  if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17411    return Value;
17412
17413  if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17414    return Value;
17415
17416  return SDValue();
17417}
17418
17419// Detect TRUNCATE operations on bitcasts of float128 values.
17420// What we are looking for here is the situtation where we extract a subset
17421// of bits from a 128 bit float.
17422// This can be of two forms:
17423// 1) BITCAST of f128 feeding TRUNCATE
17424// 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17425// The reason this is required is because we do not have a legal i128 type
17426// and so we want to prevent having to store the f128 and then reload part
17427// of it.
17428SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17429                                           DAGCombinerInfo &DCI) const {
17430  // If we are using CRBits then try that first.
17431  if (Subtarget.useCRBits()) {
17432    // Check if CRBits did anything and return that if it did.
17433    if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17434      return CRTruncValue;
17435  }
17436
17437  SDLoc dl(N);
17438  SDValue Op0 = N->getOperand(0);
17439
17440  // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
17441  if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
17442    EVT VT = N->getValueType(0);
17443    if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17444      return SDValue();
17445    SDValue Sub = Op0.getOperand(0);
17446    if (Sub.getOpcode() == ISD::SUB) {
17447      SDValue SubOp0 = Sub.getOperand(0);
17448      SDValue SubOp1 = Sub.getOperand(1);
17449      if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
17450          (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
17451        return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
17452                               SubOp1.getOperand(0),
17453                               DCI.DAG.getTargetConstant(0, dl, MVT::i32));
17454      }
17455    }
17456  }
17457
17458  // Looking for a truncate of i128 to i64.
17459  if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17460    return SDValue();
17461
17462  int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17463
17464  // SRL feeding TRUNCATE.
17465  if (Op0.getOpcode() == ISD::SRL) {
17466    ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17467    // The right shift has to be by 64 bits.
17468    if (!ConstNode || ConstNode->getZExtValue() != 64)
17469      return SDValue();
17470
17471    // Switch the element number to extract.
17472    EltToExtract = EltToExtract ? 0 : 1;
17473    // Update Op0 past the SRL.
17474    Op0 = Op0.getOperand(0);
17475  }
17476
17477  // BITCAST feeding a TRUNCATE possibly via SRL.
17478  if (Op0.getOpcode() == ISD::BITCAST &&
17479      Op0.getValueType() == MVT::i128 &&
17480      Op0.getOperand(0).getValueType() == MVT::f128) {
17481    SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17482    return DCI.DAG.getNode(
17483        ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17484        DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17485  }
17486  return SDValue();
17487}
17488
17489SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17490  SelectionDAG &DAG = DCI.DAG;
17491
17492  ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17493  if (!ConstOpOrElement)
17494    return SDValue();
17495
17496  // An imul is usually smaller than the alternative sequence for legal type.
17497  if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17498      isOperationLegal(ISD::MUL, N->getValueType(0)))
17499    return SDValue();
17500
17501  auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17502    switch (this->Subtarget.getCPUDirective()) {
17503    default:
17504      // TODO: enhance the condition for subtarget before pwr8
17505      return false;
17506    case PPC::DIR_PWR8:
17507      //  type        mul     add    shl
17508      // scalar        4       1      1
17509      // vector        7       2      2
17510      return true;
17511    case PPC::DIR_PWR9:
17512    case PPC::DIR_PWR10:
17513    case PPC::DIR_PWR_FUTURE:
17514      //  type        mul     add    shl
17515      // scalar        5       2      2
17516      // vector        7       2      2
17517
17518      // The cycle RATIO of related operations are showed as a table above.
17519      // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17520      // scalar and vector type. For 2 instrs patterns, add/sub + shl
17521      // are 4, it is always profitable; but for 3 instrs patterns
17522      // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17523      // So we should only do it for vector type.
17524      return IsAddOne && IsNeg ? VT.isVector() : true;
17525    }
17526  };
17527
17528  EVT VT = N->getValueType(0);
17529  SDLoc DL(N);
17530
17531  const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17532  bool IsNeg = MulAmt.isNegative();
17533  APInt MulAmtAbs = MulAmt.abs();
17534
17535  if ((MulAmtAbs - 1).isPowerOf2()) {
17536    // (mul x, 2^N + 1) => (add (shl x, N), x)
17537    // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17538
17539    if (!IsProfitable(IsNeg, true, VT))
17540      return SDValue();
17541
17542    SDValue Op0 = N->getOperand(0);
17543    SDValue Op1 =
17544        DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17545                    DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17546    SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17547
17548    if (!IsNeg)
17549      return Res;
17550
17551    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17552  } else if ((MulAmtAbs + 1).isPowerOf2()) {
17553    // (mul x, 2^N - 1) => (sub (shl x, N), x)
17554    // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17555
17556    if (!IsProfitable(IsNeg, false, VT))
17557      return SDValue();
17558
17559    SDValue Op0 = N->getOperand(0);
17560    SDValue Op1 =
17561        DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17562                    DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17563
17564    if (!IsNeg)
17565      return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17566    else
17567      return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17568
17569  } else {
17570    return SDValue();
17571  }
17572}
17573
17574// Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17575// in combiner since we need to check SD flags and other subtarget features.
17576SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17577                                          DAGCombinerInfo &DCI) const {
17578  SDValue N0 = N->getOperand(0);
17579  SDValue N1 = N->getOperand(1);
17580  SDValue N2 = N->getOperand(2);
17581  SDNodeFlags Flags = N->getFlags();
17582  EVT VT = N->getValueType(0);
17583  SelectionDAG &DAG = DCI.DAG;
17584  const TargetOptions &Options = getTargetMachine().Options;
17585  unsigned Opc = N->getOpcode();
17586  bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17587  bool LegalOps = !DCI.isBeforeLegalizeOps();
17588  SDLoc Loc(N);
17589
17590  if (!isOperationLegal(ISD::FMA, VT))
17591    return SDValue();
17592
17593  // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17594  // since (fnmsub a b c)=-0 while c-ab=+0.
17595  if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17596    return SDValue();
17597
17598  // (fma (fneg a) b c) => (fnmsub a b c)
17599  // (fnmsub (fneg a) b c) => (fma a b c)
17600  if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17601    return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17602
17603  // (fma a (fneg b) c) => (fnmsub a b c)
17604  // (fnmsub a (fneg b) c) => (fma a b c)
17605  if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17606    return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17607
17608  return SDValue();
17609}
17610
17611bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17612  // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17613  if (!Subtarget.is64BitELFABI())
17614    return false;
17615
17616  // If not a tail call then no need to proceed.
17617  if (!CI->isTailCall())
17618    return false;
17619
17620  // If sibling calls have been disabled and tail-calls aren't guaranteed
17621  // there is no reason to duplicate.
17622  auto &TM = getTargetMachine();
17623  if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17624    return false;
17625
17626  // Can't tail call a function called indirectly, or if it has variadic args.
17627  const Function *Callee = CI->getCalledFunction();
17628  if (!Callee || Callee->isVarArg())
17629    return false;
17630
17631  // Make sure the callee and caller calling conventions are eligible for tco.
17632  const Function *Caller = CI->getParent()->getParent();
17633  if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17634                                           CI->getCallingConv()))
17635      return false;
17636
17637  // If the function is local then we have a good chance at tail-calling it
17638  return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17639}
17640
17641bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17642  if (!Subtarget.hasVSX())
17643    return false;
17644  if (Subtarget.hasP9Vector() && VT == MVT::f128)
17645    return true;
17646  return VT == MVT::f32 || VT == MVT::f64 ||
17647    VT == MVT::v4f32 || VT == MVT::v2f64;
17648}
17649
17650bool PPCTargetLowering::
17651isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17652  const Value *Mask = AndI.getOperand(1);
17653  // If the mask is suitable for andi. or andis. we should sink the and.
17654  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17655    // Can't handle constants wider than 64-bits.
17656    if (CI->getBitWidth() > 64)
17657      return false;
17658    int64_t ConstVal = CI->getZExtValue();
17659    return isUInt<16>(ConstVal) ||
17660      (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17661  }
17662
17663  // For non-constant masks, we can always use the record-form and.
17664  return true;
17665}
17666
17667// Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17668// Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17669// Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17670// Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17671// Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17672SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17673  assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17674  assert(Subtarget.hasP9Altivec() &&
17675         "Only combine this when P9 altivec supported!");
17676  EVT VT = N->getValueType(0);
17677  if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17678    return SDValue();
17679
17680  SelectionDAG &DAG = DCI.DAG;
17681  SDLoc dl(N);
17682  if (N->getOperand(0).getOpcode() == ISD::SUB) {
17683    // Even for signed integers, if it's known to be positive (as signed
17684    // integer) due to zero-extended inputs.
17685    unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17686    unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17687    if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17688         SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17689        (SubOpcd1 == ISD::ZERO_EXTEND ||
17690         SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17691      return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17692                         N->getOperand(0)->getOperand(0),
17693                         N->getOperand(0)->getOperand(1),
17694                         DAG.getTargetConstant(0, dl, MVT::i32));
17695    }
17696
17697    // For type v4i32, it can be optimized with xvnegsp + vabsduw
17698    if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17699        N->getOperand(0).hasOneUse()) {
17700      return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17701                         N->getOperand(0)->getOperand(0),
17702                         N->getOperand(0)->getOperand(1),
17703                         DAG.getTargetConstant(1, dl, MVT::i32));
17704    }
17705  }
17706
17707  return SDValue();
17708}
17709
17710// For type v4i32/v8ii16/v16i8, transform
17711// from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17712// from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17713// from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17714// from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17715SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17716                                          DAGCombinerInfo &DCI) const {
17717  assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17718  assert(Subtarget.hasP9Altivec() &&
17719         "Only combine this when P9 altivec supported!");
17720
17721  SelectionDAG &DAG = DCI.DAG;
17722  SDLoc dl(N);
17723  SDValue Cond = N->getOperand(0);
17724  SDValue TrueOpnd = N->getOperand(1);
17725  SDValue FalseOpnd = N->getOperand(2);
17726  EVT VT = N->getOperand(1).getValueType();
17727
17728  if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17729      FalseOpnd.getOpcode() != ISD::SUB)
17730    return SDValue();
17731
17732  // ABSD only available for type v4i32/v8i16/v16i8
17733  if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17734    return SDValue();
17735
17736  // At least to save one more dependent computation
17737  if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17738    return SDValue();
17739
17740  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17741
17742  // Can only handle unsigned comparison here
17743  switch (CC) {
17744  default:
17745    return SDValue();
17746  case ISD::SETUGT:
17747  case ISD::SETUGE:
17748    break;
17749  case ISD::SETULT:
17750  case ISD::SETULE:
17751    std::swap(TrueOpnd, FalseOpnd);
17752    break;
17753  }
17754
17755  SDValue CmpOpnd1 = Cond.getOperand(0);
17756  SDValue CmpOpnd2 = Cond.getOperand(1);
17757
17758  // SETCC CmpOpnd1 CmpOpnd2 cond
17759  // TrueOpnd = CmpOpnd1 - CmpOpnd2
17760  // FalseOpnd = CmpOpnd2 - CmpOpnd1
17761  if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17762      TrueOpnd.getOperand(1) == CmpOpnd2 &&
17763      FalseOpnd.getOperand(0) == CmpOpnd2 &&
17764      FalseOpnd.getOperand(1) == CmpOpnd1) {
17765    return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17766                       CmpOpnd1, CmpOpnd2,
17767                       DAG.getTargetConstant(0, dl, MVT::i32));
17768  }
17769
17770  return SDValue();
17771}
17772
17773/// getAddrModeForFlags - Based on the set of address flags, select the most
17774/// optimal instruction format to match by.
17775PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17776  // This is not a node we should be handling here.
17777  if (Flags == PPC::MOF_None)
17778    return PPC::AM_None;
17779  // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17780  for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17781    if ((Flags & FlagSet) == FlagSet)
17782      return PPC::AM_DForm;
17783  for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17784    if ((Flags & FlagSet) == FlagSet)
17785      return PPC::AM_DSForm;
17786  for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17787    if ((Flags & FlagSet) == FlagSet)
17788      return PPC::AM_DQForm;
17789  for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
17790    if ((Flags & FlagSet) == FlagSet)
17791      return PPC::AM_PrefixDForm;
17792  // If no other forms are selected, return an X-Form as it is the most
17793  // general addressing mode.
17794  return PPC::AM_XForm;
17795}
17796
17797/// Set alignment flags based on whether or not the Frame Index is aligned.
17798/// Utilized when computing flags for address computation when selecting
17799/// load and store instructions.
17800static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17801                               SelectionDAG &DAG) {
17802  bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17803  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17804  if (!FI)
17805    return;
17806  const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17807  unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17808  // If this is (add $FI, $S16Imm), the alignment flags are already set
17809  // based on the immediate. We just need to clear the alignment flags
17810  // if the FI alignment is weaker.
17811  if ((FrameIndexAlign % 4) != 0)
17812    FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17813  if ((FrameIndexAlign % 16) != 0)
17814    FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17815  // If the address is a plain FrameIndex, set alignment flags based on
17816  // FI alignment.
17817  if (!IsAdd) {
17818    if ((FrameIndexAlign % 4) == 0)
17819      FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17820    if ((FrameIndexAlign % 16) == 0)
17821      FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17822  }
17823}
17824
17825/// Given a node, compute flags that are used for address computation when
17826/// selecting load and store instructions. The flags computed are stored in
17827/// FlagSet. This function takes into account whether the node is a constant,
17828/// an ADD, OR, or a constant, and computes the address flags accordingly.
17829static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17830                                              SelectionDAG &DAG) {
17831  // Set the alignment flags for the node depending on if the node is
17832  // 4-byte or 16-byte aligned.
17833  auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17834    if ((Imm & 0x3) == 0)
17835      FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17836    if ((Imm & 0xf) == 0)
17837      FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17838  };
17839
17840  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17841    // All 32-bit constants can be computed as LIS + Disp.
17842    const APInt &ConstImm = CN->getAPIntValue();
17843    if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17844      FlagSet |= PPC::MOF_AddrIsSImm32;
17845      SetAlignFlagsForImm(ConstImm.getZExtValue());
17846      setAlignFlagsForFI(N, FlagSet, DAG);
17847    }
17848    if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17849      FlagSet |= PPC::MOF_RPlusSImm34;
17850    else // Let constant materialization handle large constants.
17851      FlagSet |= PPC::MOF_NotAddNorCst;
17852  } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17853    // This address can be represented as an addition of:
17854    // - Register + Imm16 (possibly a multiple of 4/16)
17855    // - Register + Imm34
17856    // - Register + PPCISD::Lo
17857    // - Register + Register
17858    // In any case, we won't have to match this as Base + Zero.
17859    SDValue RHS = N.getOperand(1);
17860    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17861      const APInt &ConstImm = CN->getAPIntValue();
17862      if (ConstImm.isSignedIntN(16)) {
17863        FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17864        SetAlignFlagsForImm(ConstImm.getZExtValue());
17865        setAlignFlagsForFI(N, FlagSet, DAG);
17866      }
17867      if (ConstImm.isSignedIntN(34))
17868        FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17869      else
17870        FlagSet |= PPC::MOF_RPlusR; // Register.
17871    } else if (RHS.getOpcode() == PPCISD::Lo &&
17872               !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17873      FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17874    else
17875      FlagSet |= PPC::MOF_RPlusR;
17876  } else { // The address computation is not a constant or an addition.
17877    setAlignFlagsForFI(N, FlagSet, DAG);
17878    FlagSet |= PPC::MOF_NotAddNorCst;
17879  }
17880}
17881
17882static bool isPCRelNode(SDValue N) {
17883  return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
17884      isValidPCRelNode<ConstantPoolSDNode>(N) ||
17885      isValidPCRelNode<GlobalAddressSDNode>(N) ||
17886      isValidPCRelNode<JumpTableSDNode>(N) ||
17887      isValidPCRelNode<BlockAddressSDNode>(N));
17888}
17889
17890/// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17891/// the address flags of the load/store instruction that is to be matched.
17892unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17893                                           SelectionDAG &DAG) const {
17894  unsigned FlagSet = PPC::MOF_None;
17895
17896  // Compute subtarget flags.
17897  if (!Subtarget.hasP9Vector())
17898    FlagSet |= PPC::MOF_SubtargetBeforeP9;
17899  else {
17900    FlagSet |= PPC::MOF_SubtargetP9;
17901    if (Subtarget.hasPrefixInstrs())
17902      FlagSet |= PPC::MOF_SubtargetP10;
17903  }
17904  if (Subtarget.hasSPE())
17905    FlagSet |= PPC::MOF_SubtargetSPE;
17906
17907  // Check if we have a PCRel node and return early.
17908  if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
17909    return FlagSet;
17910
17911  // If the node is the paired load/store intrinsics, compute flags for
17912  // address computation and return early.
17913  unsigned ParentOp = Parent->getOpcode();
17914  if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
17915                               (ParentOp == ISD::INTRINSIC_VOID))) {
17916    unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
17917    if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
17918      SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
17919                             ? Parent->getOperand(2)
17920                             : Parent->getOperand(3);
17921      computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
17922      FlagSet |= PPC::MOF_Vector;
17923      return FlagSet;
17924    }
17925  }
17926
17927  // Mark this as something we don't want to handle here if it is atomic
17928  // or pre-increment instruction.
17929  if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17930    if (LSB->isIndexed())
17931      return PPC::MOF_None;
17932
17933  // Compute in-memory type flags. This is based on if there are scalars,
17934  // floats or vectors.
17935  const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17936  assert(MN && "Parent should be a MemSDNode!");
17937  EVT MemVT = MN->getMemoryVT();
17938  unsigned Size = MemVT.getSizeInBits();
17939  if (MemVT.isScalarInteger()) {
17940    assert(Size <= 128 &&
17941           "Not expecting scalar integers larger than 16 bytes!");
17942    if (Size < 32)
17943      FlagSet |= PPC::MOF_SubWordInt;
17944    else if (Size == 32)
17945      FlagSet |= PPC::MOF_WordInt;
17946    else
17947      FlagSet |= PPC::MOF_DoubleWordInt;
17948  } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17949    if (Size == 128)
17950      FlagSet |= PPC::MOF_Vector;
17951    else if (Size == 256) {
17952      assert(Subtarget.pairedVectorMemops() &&
17953             "256-bit vectors are only available when paired vector memops is "
17954             "enabled!");
17955      FlagSet |= PPC::MOF_Vector;
17956    } else
17957      llvm_unreachable("Not expecting illegal vectors!");
17958  } else { // Floating point type: can be scalar, f128 or vector types.
17959    if (Size == 32 || Size == 64)
17960      FlagSet |= PPC::MOF_ScalarFloat;
17961    else if (MemVT == MVT::f128 || MemVT.isVector())
17962      FlagSet |= PPC::MOF_Vector;
17963    else
17964      llvm_unreachable("Not expecting illegal scalar floats!");
17965  }
17966
17967  // Compute flags for address computation.
17968  computeFlagsForAddressComputation(N, FlagSet, DAG);
17969
17970  // Compute type extension flags.
17971  if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17972    switch (LN->getExtensionType()) {
17973    case ISD::SEXTLOAD:
17974      FlagSet |= PPC::MOF_SExt;
17975      break;
17976    case ISD::EXTLOAD:
17977    case ISD::ZEXTLOAD:
17978      FlagSet |= PPC::MOF_ZExt;
17979      break;
17980    case ISD::NON_EXTLOAD:
17981      FlagSet |= PPC::MOF_NoExt;
17982      break;
17983    }
17984  } else
17985    FlagSet |= PPC::MOF_NoExt;
17986
17987  // For integers, no extension is the same as zero extension.
17988  // We set the extension mode to zero extension so we don't have
17989  // to add separate entries in AddrModesMap for loads and stores.
17990  if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17991    FlagSet |= PPC::MOF_ZExt;
17992    FlagSet &= ~PPC::MOF_NoExt;
17993  }
17994
17995  // If we don't have prefixed instructions, 34-bit constants should be
17996  // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17997  bool IsNonP1034BitConst =
17998      ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17999       FlagSet) == PPC::MOF_RPlusSImm34;
18000  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
18001      IsNonP1034BitConst)
18002    FlagSet |= PPC::MOF_NotAddNorCst;
18003
18004  return FlagSet;
18005}
18006
18007/// SelectForceXFormMode - Given the specified address, force it to be
18008/// represented as an indexed [r+r] operation (an XForm instruction).
18009PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
18010                                                      SDValue &Base,
18011                                                      SelectionDAG &DAG) const {
18012
18013  PPC::AddrMode Mode = PPC::AM_XForm;
18014  int16_t ForceXFormImm = 0;
18015  if (provablyDisjointOr(DAG, N) &&
18016      !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
18017    Disp = N.getOperand(0);
18018    Base = N.getOperand(1);
18019    return Mode;
18020  }
18021
18022  // If the address is the result of an add, we will utilize the fact that the
18023  // address calculation includes an implicit add.  However, we can reduce
18024  // register pressure if we do not materialize a constant just for use as the
18025  // index register.  We only get rid of the add if it is not an add of a
18026  // value and a 16-bit signed constant and both have a single use.
18027  if (N.getOpcode() == ISD::ADD &&
18028      (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
18029       !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
18030    Disp = N.getOperand(0);
18031    Base = N.getOperand(1);
18032    return Mode;
18033  }
18034
18035  // Otherwise, use R0 as the base register.
18036  Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18037                         N.getValueType());
18038  Base = N;
18039
18040  return Mode;
18041}
18042
18043bool PPCTargetLowering::splitValueIntoRegisterParts(
18044    SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
18045    unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
18046  EVT ValVT = Val.getValueType();
18047  // If we are splitting a scalar integer into f64 parts (i.e. so they
18048  // can be placed into VFRC registers), we need to zero extend and
18049  // bitcast the values. This will ensure the value is placed into a
18050  // VSR using direct moves or stack operations as needed.
18051  if (PartVT == MVT::f64 &&
18052      (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
18053    Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
18054    Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
18055    Parts[0] = Val;
18056    return true;
18057  }
18058  return false;
18059}
18060
18061SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op,
18062                                          SelectionDAG &DAG) const {
18063  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18064  TargetLowering::CallLoweringInfo CLI(DAG);
18065  EVT RetVT = Op.getValueType();
18066  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
18067  SDValue Callee =
18068      DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout()));
18069  bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false);
18070  TargetLowering::ArgListTy Args;
18071  TargetLowering::ArgListEntry Entry;
18072  for (const SDValue &N : Op->op_values()) {
18073    EVT ArgVT = N.getValueType();
18074    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
18075    Entry.Node = N;
18076    Entry.Ty = ArgTy;
18077    Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend);
18078    Entry.IsZExt = !Entry.IsSExt;
18079    Args.push_back(Entry);
18080  }
18081
18082  SDValue InChain = DAG.getEntryNode();
18083  SDValue TCChain = InChain;
18084  const Function &F = DAG.getMachineFunction().getFunction();
18085  bool isTailCall =
18086      TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
18087      (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
18088  if (isTailCall)
18089    InChain = TCChain;
18090  CLI.setDebugLoc(SDLoc(Op))
18091      .setChain(InChain)
18092      .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args))
18093      .setTailCall(isTailCall)
18094      .setSExtResult(SignExtend)
18095      .setZExtResult(!SignExtend)
18096      .setIsPostTypeLegalization(true);
18097  return TLI.LowerCallTo(CLI).first;
18098}
18099
18100SDValue PPCTargetLowering::lowerLibCallBasedOnType(
18101    const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op,
18102    SelectionDAG &DAG) const {
18103  if (Op.getValueType() == MVT::f32)
18104    return lowerToLibCall(LibCallFloatName, Op, DAG);
18105
18106  if (Op.getValueType() == MVT::f64)
18107    return lowerToLibCall(LibCallDoubleName, Op, DAG);
18108
18109  return SDValue();
18110}
18111
18112bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const {
18113  SDNodeFlags Flags = Op.getNode()->getFlags();
18114  return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() &&
18115         Flags.hasNoNaNs() && Flags.hasNoInfs();
18116}
18117
18118bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const {
18119  return Op.getNode()->getFlags().hasApproximateFuncs();
18120}
18121
18122bool PPCTargetLowering::isScalarMASSConversionEnabled() const {
18123  return getTargetMachine().Options.PPCGenScalarMASSEntries;
18124}
18125
18126SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName,
18127                                            const char *LibCallFloatName,
18128                                            const char *LibCallDoubleNameFinite,
18129                                            const char *LibCallFloatNameFinite,
18130                                            SDValue Op,
18131                                            SelectionDAG &DAG) const {
18132  if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op))
18133    return SDValue();
18134
18135  if (!isLowringToMASSFiniteSafe(Op))
18136    return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op,
18137                                   DAG);
18138
18139  return lowerLibCallBasedOnType(LibCallFloatNameFinite,
18140                                 LibCallDoubleNameFinite, Op, DAG);
18141}
18142
18143SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const {
18144  return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite",
18145                          "__xl_powf_finite", Op, DAG);
18146}
18147
18148SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const {
18149  return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite",
18150                          "__xl_sinf_finite", Op, DAG);
18151}
18152
18153SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const {
18154  return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite",
18155                          "__xl_cosf_finite", Op, DAG);
18156}
18157
18158SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const {
18159  return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite",
18160                          "__xl_logf_finite", Op, DAG);
18161}
18162
18163SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const {
18164  return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite",
18165                          "__xl_log10f_finite", Op, DAG);
18166}
18167
18168SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const {
18169  return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite",
18170                          "__xl_expf_finite", Op, DAG);
18171}
18172
18173// If we happen to match to an aligned D-Form, check if the Frame Index is
18174// adequately aligned. If it is not, reset the mode to match to X-Form.
18175static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
18176                                   PPC::AddrMode &Mode) {
18177  if (!isa<FrameIndexSDNode>(N))
18178    return;
18179  if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
18180      (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
18181    Mode = PPC::AM_XForm;
18182}
18183
18184/// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
18185/// compute the address flags of the node, get the optimal address mode based
18186/// on the flags, and set the Base and Disp based on the address mode.
18187PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
18188                                                       SDValue N, SDValue &Disp,
18189                                                       SDValue &Base,
18190                                                       SelectionDAG &DAG,
18191                                                       MaybeAlign Align) const {
18192  SDLoc DL(Parent);
18193
18194  // Compute the address flags.
18195  unsigned Flags = computeMOFlags(Parent, N, DAG);
18196
18197  // Get the optimal address mode based on the Flags.
18198  PPC::AddrMode Mode = getAddrModeForFlags(Flags);
18199
18200  // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
18201  // Select an X-Form load if it is not.
18202  setXFormForUnalignedFI(N, Flags, Mode);
18203
18204  // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
18205  if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
18206    assert(Subtarget.isUsingPCRelativeCalls() &&
18207           "Must be using PC-Relative calls when a valid PC-Relative node is "
18208           "present!");
18209    Mode = PPC::AM_PCRel;
18210  }
18211
18212  // Set Base and Disp accordingly depending on the address mode.
18213  switch (Mode) {
18214  case PPC::AM_DForm:
18215  case PPC::AM_DSForm:
18216  case PPC::AM_DQForm: {
18217    // This is a register plus a 16-bit immediate. The base will be the
18218    // register and the displacement will be the immediate unless it
18219    // isn't sufficiently aligned.
18220    if (Flags & PPC::MOF_RPlusSImm16) {
18221      SDValue Op0 = N.getOperand(0);
18222      SDValue Op1 = N.getOperand(1);
18223      int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
18224      if (!Align || isAligned(*Align, Imm)) {
18225        Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
18226        Base = Op0;
18227        if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
18228          Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18229          fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
18230        }
18231        break;
18232      }
18233    }
18234    // This is a register plus the @lo relocation. The base is the register
18235    // and the displacement is the global address.
18236    else if (Flags & PPC::MOF_RPlusLo) {
18237      Disp = N.getOperand(1).getOperand(0); // The global address.
18238      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
18239             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
18240             Disp.getOpcode() == ISD::TargetConstantPool ||
18241             Disp.getOpcode() == ISD::TargetJumpTable);
18242      Base = N.getOperand(0);
18243      break;
18244    }
18245    // This is a constant address at most 32 bits. The base will be
18246    // zero or load-immediate-shifted and the displacement will be
18247    // the low 16 bits of the address.
18248    else if (Flags & PPC::MOF_AddrIsSImm32) {
18249      auto *CN = cast<ConstantSDNode>(N);
18250      EVT CNType = CN->getValueType(0);
18251      uint64_t CNImm = CN->getZExtValue();
18252      // If this address fits entirely in a 16-bit sext immediate field, codegen
18253      // this as "d, 0".
18254      int16_t Imm;
18255      if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
18256        Disp = DAG.getTargetConstant(Imm, DL, CNType);
18257        Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18258                               CNType);
18259        break;
18260      }
18261      // Handle 32-bit sext immediate with LIS + Addr mode.
18262      if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
18263          (!Align || isAligned(*Align, CNImm))) {
18264        int32_t Addr = (int32_t)CNImm;
18265        // Otherwise, break this down into LIS + Disp.
18266        Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
18267        Base =
18268            DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
18269        uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
18270        Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
18271        break;
18272      }
18273    }
18274    // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
18275    Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
18276    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
18277      Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18278      fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
18279    } else
18280      Base = N;
18281    break;
18282  }
18283  case PPC::AM_PrefixDForm: {
18284    int64_t Imm34 = 0;
18285    unsigned Opcode = N.getOpcode();
18286    if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
18287        (isIntS34Immediate(N.getOperand(1), Imm34))) {
18288      // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
18289      Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18290      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
18291        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18292      else
18293        Base = N.getOperand(0);
18294    } else if (isIntS34Immediate(N, Imm34)) {
18295      // The address is a 34-bit signed immediate.
18296      Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18297      Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
18298    }
18299    break;
18300  }
18301  case PPC::AM_PCRel: {
18302    // When selecting PC-Relative instructions, "Base" is not utilized as
18303    // we select the address as [PC+imm].
18304    Disp = N;
18305    break;
18306  }
18307  case PPC::AM_None:
18308    break;
18309  default: { // By default, X-Form is always available to be selected.
18310    // When a frame index is not aligned, we also match by XForm.
18311    FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
18312    Base = FI ? N : N.getOperand(1);
18313    Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18314                                N.getValueType())
18315              : N.getOperand(0);
18316    break;
18317  }
18318  }
18319  return Mode;
18320}
18321
18322CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
18323                                                 bool Return,
18324                                                 bool IsVarArg) const {
18325  switch (CC) {
18326  case CallingConv::Cold:
18327    return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
18328  default:
18329    return CC_PPC64_ELF_FIS;
18330  }
18331}
18332
18333bool PPCTargetLowering::shouldInlineQuadwordAtomics() const {
18334  // TODO: 16-byte atomic type support for AIX is in progress; we should be able
18335  // to inline 16-byte atomic ops on AIX too in the future.
18336  return Subtarget.isPPC64() &&
18337         (EnableQuadwordAtomics || !Subtarget.getTargetTriple().isOSAIX()) &&
18338         Subtarget.hasQuadwordAtomics();
18339}
18340
18341TargetLowering::AtomicExpansionKind
18342PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
18343  unsigned Size = AI->getType()->getPrimitiveSizeInBits();
18344  if (shouldInlineQuadwordAtomics() && Size == 128)
18345    return AtomicExpansionKind::MaskedIntrinsic;
18346
18347  switch (AI->getOperation()) {
18348  case AtomicRMWInst::UIncWrap:
18349  case AtomicRMWInst::UDecWrap:
18350    return AtomicExpansionKind::CmpXChg;
18351  default:
18352    return TargetLowering::shouldExpandAtomicRMWInIR(AI);
18353  }
18354
18355  llvm_unreachable("unreachable atomicrmw operation");
18356}
18357
18358TargetLowering::AtomicExpansionKind
18359PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
18360  unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
18361  if (shouldInlineQuadwordAtomics() && Size == 128)
18362    return AtomicExpansionKind::MaskedIntrinsic;
18363  return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
18364}
18365
18366static Intrinsic::ID
18367getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
18368  switch (BinOp) {
18369  default:
18370    llvm_unreachable("Unexpected AtomicRMW BinOp");
18371  case AtomicRMWInst::Xchg:
18372    return Intrinsic::ppc_atomicrmw_xchg_i128;
18373  case AtomicRMWInst::Add:
18374    return Intrinsic::ppc_atomicrmw_add_i128;
18375  case AtomicRMWInst::Sub:
18376    return Intrinsic::ppc_atomicrmw_sub_i128;
18377  case AtomicRMWInst::And:
18378    return Intrinsic::ppc_atomicrmw_and_i128;
18379  case AtomicRMWInst::Or:
18380    return Intrinsic::ppc_atomicrmw_or_i128;
18381  case AtomicRMWInst::Xor:
18382    return Intrinsic::ppc_atomicrmw_xor_i128;
18383  case AtomicRMWInst::Nand:
18384    return Intrinsic::ppc_atomicrmw_nand_i128;
18385  }
18386}
18387
18388Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
18389    IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
18390    Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
18391  assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18392  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18393  Type *ValTy = Incr->getType();
18394  assert(ValTy->getPrimitiveSizeInBits() == 128);
18395  Function *RMW = Intrinsic::getDeclaration(
18396      M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
18397  Type *Int64Ty = Type::getInt64Ty(M->getContext());
18398  Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
18399  Value *IncrHi =
18400      Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
18401  Value *Addr =
18402      Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18403  Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
18404  Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18405  Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18406  Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18407  Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18408  return Builder.CreateOr(
18409      Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18410}
18411
18412Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
18413    IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
18414    Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
18415  assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18416  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18417  Type *ValTy = CmpVal->getType();
18418  assert(ValTy->getPrimitiveSizeInBits() == 128);
18419  Function *IntCmpXchg =
18420      Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
18421  Type *Int64Ty = Type::getInt64Ty(M->getContext());
18422  Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
18423  Value *CmpHi =
18424      Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
18425  Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
18426  Value *NewHi =
18427      Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
18428  Value *Addr =
18429      Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18430  emitLeadingFence(Builder, CI, Ord);
18431  Value *LoHi =
18432      Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
18433  emitTrailingFence(Builder, CI, Ord);
18434  Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18435  Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18436  Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18437  Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18438  return Builder.CreateOr(
18439      Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18440}
18441