1//===- HexagonBitTracker.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "HexagonBitTracker.h"
10#include "Hexagon.h"
11#include "HexagonInstrInfo.h"
12#include "HexagonRegisterInfo.h"
13#include "HexagonSubtarget.h"
14#include "llvm/CodeGen/MachineFrameInfo.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/MachineOperand.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/CodeGen/TargetRegisterInfo.h"
20#include "llvm/IR/Argument.h"
21#include "llvm/IR/Attributes.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/Type.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <cstdlib>
33#include <utility>
34#include <vector>
35
36using namespace llvm;
37
38using BT = BitTracker;
39
40HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
41                                   MachineRegisterInfo &mri,
42                                   const HexagonInstrInfo &tii,
43                                   MachineFunction &mf)
44    : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
45  // Populate the VRX map (VR to extension-type).
46  // Go over all the formal parameters of the function. If a given parameter
47  // P is sign- or zero-extended, locate the virtual register holding that
48  // parameter and create an entry in the VRX map indicating the type of ex-
49  // tension (and the source type).
50  // This is a bit complicated to do accurately, since the memory layout in-
51  // formation is necessary to precisely determine whether an aggregate para-
52  // meter will be passed in a register or in memory. What is given in MRI
53  // is the association between the physical register that is live-in (i.e.
54  // holds an argument), and the virtual register that this value will be
55  // copied into. This, by itself, is not sufficient to map back the virtual
56  // register to a formal parameter from Function (since consecutive live-ins
57  // from MRI may not correspond to consecutive formal parameters from Func-
58  // tion). To avoid the complications with in-memory arguments, only consi-
59  // der the initial sequence of formal parameters that are known to be
60  // passed via registers.
61  unsigned InVirtReg, InPhysReg = 0;
62
63  for (const Argument &Arg : MF.getFunction().args()) {
64    Type *ATy = Arg.getType();
65    unsigned Width = 0;
66    if (ATy->isIntegerTy())
67      Width = ATy->getIntegerBitWidth();
68    else if (ATy->isPointerTy())
69      Width = 32;
70    // If pointer size is not set through target data, it will default to
71    // Module::AnyPointerSize.
72    if (Width == 0 || Width > 64)
73      break;
74    if (Arg.hasAttribute(Attribute::ByVal))
75      continue;
76    InPhysReg = getNextPhysReg(InPhysReg, Width);
77    if (!InPhysReg)
78      break;
79    InVirtReg = getVirtRegFor(InPhysReg);
80    if (!InVirtReg)
81      continue;
82    if (Arg.hasAttribute(Attribute::SExt))
83      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
84    else if (Arg.hasAttribute(Attribute::ZExt))
85      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
86  }
87}
88
89BT::BitMask HexagonEvaluator::mask(Register Reg, unsigned Sub) const {
90  if (Sub == 0)
91    return MachineEvaluator::mask(Reg, 0);
92  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
93  unsigned ID = RC.getID();
94  uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
95  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
96  bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
97  switch (ID) {
98    case Hexagon::DoubleRegsRegClassID:
99    case Hexagon::HvxWRRegClassID:
100    case Hexagon::HvxVQRRegClassID:
101      return IsSubLo ? BT::BitMask(0, RW-1)
102                     : BT::BitMask(RW, 2*RW-1);
103    default:
104      break;
105  }
106#ifndef NDEBUG
107  dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
108         << TRI.getRegClassName(&RC) << '\n';
109#endif
110  llvm_unreachable("Unexpected register/subregister");
111}
112
113uint16_t HexagonEvaluator::getPhysRegBitWidth(MCRegister Reg) const {
114  using namespace Hexagon;
115  const auto &HST = MF.getSubtarget<HexagonSubtarget>();
116  if (HST.useHVXOps()) {
117    for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
118                     HvxVQRRegClass})
119      if (RC.contains(Reg))
120        return TRI.getRegSizeInBits(RC);
121  }
122  // Default treatment for other physical registers.
123  if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
124    return TRI.getRegSizeInBits(*RC);
125
126  llvm_unreachable(
127      (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
128}
129
130const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
131      const TargetRegisterClass &RC, unsigned Idx) const {
132  if (Idx == 0)
133    return RC;
134
135#ifndef NDEBUG
136  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
137  bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
138  bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
139  assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
140#endif
141
142  switch (RC.getID()) {
143    case Hexagon::DoubleRegsRegClassID:
144      return Hexagon::IntRegsRegClass;
145    case Hexagon::HvxWRRegClassID:
146      return Hexagon::HvxVRRegClass;
147    case Hexagon::HvxVQRRegClassID:
148      return Hexagon::HvxWRRegClass;
149    default:
150      break;
151  }
152#ifndef NDEBUG
153  dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
154#endif
155  llvm_unreachable("Unimplemented combination of reg class/subreg idx");
156}
157
158namespace {
159
160class RegisterRefs {
161  std::vector<BT::RegisterRef> Vector;
162
163public:
164  RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
165    for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
166      const MachineOperand &MO = MI.getOperand(i);
167      if (MO.isReg())
168        Vector[i] = BT::RegisterRef(MO);
169      // For indices that don't correspond to registers, the entry will
170      // remain constructed via the default constructor.
171    }
172  }
173
174  size_t size() const { return Vector.size(); }
175
176  const BT::RegisterRef &operator[](unsigned n) const {
177    // The main purpose of this operator is to assert with bad argument.
178    assert(n < Vector.size());
179    return Vector[n];
180  }
181};
182
183} // end anonymous namespace
184
185bool HexagonEvaluator::evaluate(const MachineInstr &MI,
186                                const CellMapType &Inputs,
187                                CellMapType &Outputs) const {
188  using namespace Hexagon;
189
190  unsigned NumDefs = 0;
191
192  // Basic correctness check: there should not be any defs with subregisters.
193  for (const MachineOperand &MO : MI.operands()) {
194    if (!MO.isReg() || !MO.isDef())
195      continue;
196    NumDefs++;
197    assert(MO.getSubReg() == 0);
198  }
199
200  if (NumDefs == 0)
201    return false;
202
203  unsigned Opc = MI.getOpcode();
204
205  if (MI.mayLoad()) {
206    switch (Opc) {
207      // These instructions may be marked as mayLoad, but they are generating
208      // immediate values, so skip them.
209      case CONST32:
210      case CONST64:
211        break;
212      default:
213        return evaluateLoad(MI, Inputs, Outputs);
214    }
215  }
216
217  // Check COPY instructions that copy formal parameters into virtual
218  // registers. Such parameters can be sign- or zero-extended at the
219  // call site, and we should take advantage of this knowledge. The MRI
220  // keeps a list of pairs of live-in physical and virtual registers,
221  // which provides information about which virtual registers will hold
222  // the argument values. The function will still contain instructions
223  // defining those virtual registers, and in practice those are COPY
224  // instructions from a physical to a virtual register. In such cases,
225  // applying the argument extension to the virtual register can be seen
226  // as simply mirroring the extension that had already been applied to
227  // the physical register at the call site. If the defining instruction
228  // was not a COPY, it would not be clear how to mirror that extension
229  // on the callee's side. For that reason, only check COPY instructions
230  // for potential extensions.
231  if (MI.isCopy()) {
232    if (evaluateFormalCopy(MI, Inputs, Outputs))
233      return true;
234  }
235
236  // Beyond this point, if any operand is a global, skip that instruction.
237  // The reason is that certain instructions that can take an immediate
238  // operand can also have a global symbol in that operand. To avoid
239  // checking what kind of operand a given instruction has individually
240  // for each instruction, do it here. Global symbols as operands gene-
241  // rally do not provide any useful information.
242  for (const MachineOperand &MO : MI.operands()) {
243    if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
244        MO.isCPI())
245      return false;
246  }
247
248  RegisterRefs Reg(MI);
249#define op(i) MI.getOperand(i)
250#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
251#define im(i) MI.getOperand(i).getImm()
252
253  // If the instruction has no register operands, skip it.
254  if (Reg.size() == 0)
255    return false;
256
257  // Record result for register in operand 0.
258  auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
259        -> bool {
260    putCell(Reg[0], Val, Outputs);
261    return true;
262  };
263  // Get the cell corresponding to the N-th operand.
264  auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
265                                        uint16_t W) -> BT::RegisterCell {
266    const MachineOperand &Op = MI.getOperand(N);
267    if (Op.isImm())
268      return eIMM(Op.getImm(), W);
269    if (!Op.isReg())
270      return RegisterCell::self(0, W);
271    assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
272    return rc(N);
273  };
274  // Extract RW low bits of the cell.
275  auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
276        -> BT::RegisterCell {
277    assert(RW <= RC.width());
278    return eXTR(RC, 0, RW);
279  };
280  // Extract RW high bits of the cell.
281  auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
282        -> BT::RegisterCell {
283    uint16_t W = RC.width();
284    assert(RW <= W);
285    return eXTR(RC, W-RW, W);
286  };
287  // Extract N-th halfword (counting from the least significant position).
288  auto half = [this] (const BT::RegisterCell &RC, unsigned N)
289        -> BT::RegisterCell {
290    assert(N*16+16 <= RC.width());
291    return eXTR(RC, N*16, N*16+16);
292  };
293  // Shuffle bits (pick even/odd from cells and merge into result).
294  auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
295                         uint16_t BW, bool Odd) -> BT::RegisterCell {
296    uint16_t I = Odd, Ws = Rs.width();
297    assert(Ws == Rt.width());
298    RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
299    I += 2;
300    while (I*BW < Ws) {
301      RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
302      I += 2;
303    }
304    return RC;
305  };
306
307  // The bitwidth of the 0th operand. In most (if not all) of the
308  // instructions below, the 0th operand is the defined register.
309  // Pre-compute the bitwidth here, because it is needed in many cases
310  // cases below.
311  uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
312
313  // Register id of the 0th operand. It can be 0.
314  unsigned Reg0 = Reg[0].Reg;
315
316  switch (Opc) {
317    // Transfer immediate:
318
319    case A2_tfrsi:
320    case A2_tfrpi:
321    case CONST32:
322    case CONST64:
323      return rr0(eIMM(im(1), W0), Outputs);
324    case PS_false:
325      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
326    case PS_true:
327      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
328    case PS_fi: {
329      int FI = op(1).getIndex();
330      int Off = op(2).getImm();
331      unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off);
332      unsigned L = countTrailingZeros(A);
333      RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
334      RC.fill(0, L, BT::BitValue::Zero);
335      return rr0(RC, Outputs);
336    }
337
338    // Transfer register:
339
340    case A2_tfr:
341    case A2_tfrp:
342    case C2_pxfer_map:
343      return rr0(rc(1), Outputs);
344    case C2_tfrpr: {
345      uint16_t RW = W0;
346      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
347      assert(PW <= RW);
348      RegisterCell PC = eXTR(rc(1), 0, PW);
349      RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
350      RC.fill(PW, RW, BT::BitValue::Zero);
351      return rr0(RC, Outputs);
352    }
353    case C2_tfrrp: {
354      uint16_t RW = W0;
355      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
356      RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
357      RC.fill(PW, RW, BT::BitValue::Zero);
358      return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
359    }
360
361    // Arithmetic:
362
363    case A2_abs:
364    case A2_absp:
365      // TODO
366      break;
367
368    case A2_addsp: {
369      uint16_t W1 = getRegBitWidth(Reg[1]);
370      assert(W0 == 64 && W1 == 32);
371      RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
372      RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
373      return rr0(RC, Outputs);
374    }
375    case A2_add:
376    case A2_addp:
377      return rr0(eADD(rc(1), rc(2)), Outputs);
378    case A2_addi:
379      return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
380    case S4_addi_asl_ri: {
381      RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
382      return rr0(RC, Outputs);
383    }
384    case S4_addi_lsr_ri: {
385      RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
386      return rr0(RC, Outputs);
387    }
388    case S4_addaddi: {
389      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
390      return rr0(RC, Outputs);
391    }
392    case M4_mpyri_addi: {
393      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
394      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
395      return rr0(RC, Outputs);
396    }
397    case M4_mpyrr_addi: {
398      RegisterCell M = eMLS(rc(2), rc(3));
399      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
400      return rr0(RC, Outputs);
401    }
402    case M4_mpyri_addr_u2: {
403      RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
404      RegisterCell RC = eADD(rc(1), lo(M, W0));
405      return rr0(RC, Outputs);
406    }
407    case M4_mpyri_addr: {
408      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
409      RegisterCell RC = eADD(rc(1), lo(M, W0));
410      return rr0(RC, Outputs);
411    }
412    case M4_mpyrr_addr: {
413      RegisterCell M = eMLS(rc(2), rc(3));
414      RegisterCell RC = eADD(rc(1), lo(M, W0));
415      return rr0(RC, Outputs);
416    }
417    case S4_subaddi: {
418      RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
419      return rr0(RC, Outputs);
420    }
421    case M2_accii: {
422      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
423      return rr0(RC, Outputs);
424    }
425    case M2_acci: {
426      RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
427      return rr0(RC, Outputs);
428    }
429    case M2_subacc: {
430      RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
431      return rr0(RC, Outputs);
432    }
433    case S2_addasl_rrri: {
434      RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
435      return rr0(RC, Outputs);
436    }
437    case C4_addipc: {
438      RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
439      RPC.fill(0, 2, BT::BitValue::Zero);
440      return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
441    }
442    case A2_sub:
443    case A2_subp:
444      return rr0(eSUB(rc(1), rc(2)), Outputs);
445    case A2_subri:
446      return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
447    case S4_subi_asl_ri: {
448      RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
449      return rr0(RC, Outputs);
450    }
451    case S4_subi_lsr_ri: {
452      RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
453      return rr0(RC, Outputs);
454    }
455    case M2_naccii: {
456      RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
457      return rr0(RC, Outputs);
458    }
459    case M2_nacci: {
460      RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
461      return rr0(RC, Outputs);
462    }
463    // 32-bit negation is done by "Rd = A2_subri 0, Rs"
464    case A2_negp:
465      return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
466
467    case M2_mpy_up: {
468      RegisterCell M = eMLS(rc(1), rc(2));
469      return rr0(hi(M, W0), Outputs);
470    }
471    case M2_dpmpyss_s0:
472      return rr0(eMLS(rc(1), rc(2)), Outputs);
473    case M2_dpmpyss_acc_s0:
474      return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
475    case M2_dpmpyss_nac_s0:
476      return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
477    case M2_mpyi: {
478      RegisterCell M = eMLS(rc(1), rc(2));
479      return rr0(lo(M, W0), Outputs);
480    }
481    case M2_macsip: {
482      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
483      RegisterCell RC = eADD(rc(1), lo(M, W0));
484      return rr0(RC, Outputs);
485    }
486    case M2_macsin: {
487      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
488      RegisterCell RC = eSUB(rc(1), lo(M, W0));
489      return rr0(RC, Outputs);
490    }
491    case M2_maci: {
492      RegisterCell M = eMLS(rc(2), rc(3));
493      RegisterCell RC = eADD(rc(1), lo(M, W0));
494      return rr0(RC, Outputs);
495    }
496    case M2_mnaci: {
497      RegisterCell M = eMLS(rc(2), rc(3));
498      RegisterCell RC = eSUB(rc(1), lo(M, W0));
499      return rr0(RC, Outputs);
500    }
501    case M2_mpysmi: {
502      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
503      return rr0(lo(M, 32), Outputs);
504    }
505    case M2_mpysin: {
506      RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
507      return rr0(lo(M, 32), Outputs);
508    }
509    case M2_mpysip: {
510      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
511      return rr0(lo(M, 32), Outputs);
512    }
513    case M2_mpyu_up: {
514      RegisterCell M = eMLU(rc(1), rc(2));
515      return rr0(hi(M, W0), Outputs);
516    }
517    case M2_dpmpyuu_s0:
518      return rr0(eMLU(rc(1), rc(2)), Outputs);
519    case M2_dpmpyuu_acc_s0:
520      return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
521    case M2_dpmpyuu_nac_s0:
522      return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
523    //case M2_mpysu_up:
524
525    // Logical/bitwise:
526
527    case A2_andir:
528      return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
529    case A2_and:
530    case A2_andp:
531      return rr0(eAND(rc(1), rc(2)), Outputs);
532    case A4_andn:
533    case A4_andnp:
534      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
535    case S4_andi_asl_ri: {
536      RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
537      return rr0(RC, Outputs);
538    }
539    case S4_andi_lsr_ri: {
540      RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
541      return rr0(RC, Outputs);
542    }
543    case M4_and_and:
544      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
545    case M4_and_andn:
546      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
547    case M4_and_or:
548      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
549    case M4_and_xor:
550      return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
551    case A2_orir:
552      return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
553    case A2_or:
554    case A2_orp:
555      return rr0(eORL(rc(1), rc(2)), Outputs);
556    case A4_orn:
557    case A4_ornp:
558      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
559    case S4_ori_asl_ri: {
560      RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
561      return rr0(RC, Outputs);
562    }
563    case S4_ori_lsr_ri: {
564      RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
565      return rr0(RC, Outputs);
566    }
567    case M4_or_and:
568      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
569    case M4_or_andn:
570      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
571    case S4_or_andi:
572    case S4_or_andix: {
573      RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
574      return rr0(RC, Outputs);
575    }
576    case S4_or_ori: {
577      RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
578      return rr0(RC, Outputs);
579    }
580    case M4_or_or:
581      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
582    case M4_or_xor:
583      return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
584    case A2_xor:
585    case A2_xorp:
586      return rr0(eXOR(rc(1), rc(2)), Outputs);
587    case M4_xor_and:
588      return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
589    case M4_xor_andn:
590      return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
591    case M4_xor_or:
592      return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
593    case M4_xor_xacc:
594      return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
595    case A2_not:
596    case A2_notp:
597      return rr0(eNOT(rc(1)), Outputs);
598
599    case S2_asl_i_r:
600    case S2_asl_i_p:
601      return rr0(eASL(rc(1), im(2)), Outputs);
602    case A2_aslh:
603      return rr0(eASL(rc(1), 16), Outputs);
604    case S2_asl_i_r_acc:
605    case S2_asl_i_p_acc:
606      return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
607    case S2_asl_i_r_nac:
608    case S2_asl_i_p_nac:
609      return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
610    case S2_asl_i_r_and:
611    case S2_asl_i_p_and:
612      return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
613    case S2_asl_i_r_or:
614    case S2_asl_i_p_or:
615      return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
616    case S2_asl_i_r_xacc:
617    case S2_asl_i_p_xacc:
618      return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
619    case S2_asl_i_vh:
620    case S2_asl_i_vw:
621      // TODO
622      break;
623
624    case S2_asr_i_r:
625    case S2_asr_i_p:
626      return rr0(eASR(rc(1), im(2)), Outputs);
627    case A2_asrh:
628      return rr0(eASR(rc(1), 16), Outputs);
629    case S2_asr_i_r_acc:
630    case S2_asr_i_p_acc:
631      return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
632    case S2_asr_i_r_nac:
633    case S2_asr_i_p_nac:
634      return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
635    case S2_asr_i_r_and:
636    case S2_asr_i_p_and:
637      return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
638    case S2_asr_i_r_or:
639    case S2_asr_i_p_or:
640      return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
641    case S2_asr_i_r_rnd: {
642      // The input is first sign-extended to 64 bits, then the output
643      // is truncated back to 32 bits.
644      assert(W0 == 32);
645      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
646      RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
647      return rr0(eXTR(RC, 0, W0), Outputs);
648    }
649    case S2_asr_i_r_rnd_goodsyntax: {
650      int64_t S = im(2);
651      if (S == 0)
652        return rr0(rc(1), Outputs);
653      // Result: S2_asr_i_r_rnd Rs, u5-1
654      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
655      RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
656      return rr0(eXTR(RC, 0, W0), Outputs);
657    }
658    case S2_asr_r_vh:
659    case S2_asr_i_vw:
660    case S2_asr_i_svw_trun:
661      // TODO
662      break;
663
664    case S2_lsr_i_r:
665    case S2_lsr_i_p:
666      return rr0(eLSR(rc(1), im(2)), Outputs);
667    case S2_lsr_i_r_acc:
668    case S2_lsr_i_p_acc:
669      return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
670    case S2_lsr_i_r_nac:
671    case S2_lsr_i_p_nac:
672      return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
673    case S2_lsr_i_r_and:
674    case S2_lsr_i_p_and:
675      return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
676    case S2_lsr_i_r_or:
677    case S2_lsr_i_p_or:
678      return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
679    case S2_lsr_i_r_xacc:
680    case S2_lsr_i_p_xacc:
681      return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
682
683    case S2_clrbit_i: {
684      RegisterCell RC = rc(1);
685      RC[im(2)] = BT::BitValue::Zero;
686      return rr0(RC, Outputs);
687    }
688    case S2_setbit_i: {
689      RegisterCell RC = rc(1);
690      RC[im(2)] = BT::BitValue::One;
691      return rr0(RC, Outputs);
692    }
693    case S2_togglebit_i: {
694      RegisterCell RC = rc(1);
695      uint16_t BX = im(2);
696      RC[BX] = RC[BX].is(0) ? BT::BitValue::One
697                            : RC[BX].is(1) ? BT::BitValue::Zero
698                                           : BT::BitValue::self();
699      return rr0(RC, Outputs);
700    }
701
702    case A4_bitspliti: {
703      uint16_t W1 = getRegBitWidth(Reg[1]);
704      uint16_t BX = im(2);
705      // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
706      const BT::BitValue Zero = BT::BitValue::Zero;
707      RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
708                                        .fill(W1+(W1-BX), W0, Zero);
709      RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
710      RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
711      return rr0(RC, Outputs);
712    }
713    case S4_extract:
714    case S4_extractp:
715    case S2_extractu:
716    case S2_extractup: {
717      uint16_t Wd = im(2), Of = im(3);
718      assert(Wd <= W0);
719      if (Wd == 0)
720        return rr0(eIMM(0, W0), Outputs);
721      // If the width extends beyond the register size, pad the register
722      // with 0 bits.
723      RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
724      RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
725      // Ext is short, need to extend it with 0s or sign bit.
726      RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
727      if (Opc == S2_extractu || Opc == S2_extractup)
728        return rr0(eZXT(RC, Wd), Outputs);
729      return rr0(eSXT(RC, Wd), Outputs);
730    }
731    case S2_insert:
732    case S2_insertp: {
733      uint16_t Wd = im(3), Of = im(4);
734      assert(Wd < W0 && Of < W0);
735      // If Wd+Of exceeds W0, the inserted bits are truncated.
736      if (Wd+Of > W0)
737        Wd = W0-Of;
738      if (Wd == 0)
739        return rr0(rc(1), Outputs);
740      return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
741    }
742
743    // Bit permutations:
744
745    case A2_combineii:
746    case A4_combineii:
747    case A4_combineir:
748    case A4_combineri:
749    case A2_combinew:
750    case V6_vcombine:
751      assert(W0 % 2 == 0);
752      return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
753    case A2_combine_ll:
754    case A2_combine_lh:
755    case A2_combine_hl:
756    case A2_combine_hh: {
757      assert(W0 == 32);
758      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
759      // Low half in the output is 0 for _ll and _hl, 1 otherwise:
760      unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
761      // High half in the output is 0 for _ll and _lh, 1 otherwise:
762      unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
763      RegisterCell R1 = rc(1);
764      RegisterCell R2 = rc(2);
765      RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
766      return rr0(RC, Outputs);
767    }
768    case S2_packhl: {
769      assert(W0 == 64);
770      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
771      RegisterCell R1 = rc(1);
772      RegisterCell R2 = rc(2);
773      RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
774                                   .cat(half(R1, 1));
775      return rr0(RC, Outputs);
776    }
777    case S2_shuffeb: {
778      RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
779      return rr0(RC, Outputs);
780    }
781    case S2_shuffeh: {
782      RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
783      return rr0(RC, Outputs);
784    }
785    case S2_shuffob: {
786      RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
787      return rr0(RC, Outputs);
788    }
789    case S2_shuffoh: {
790      RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
791      return rr0(RC, Outputs);
792    }
793    case C2_mask: {
794      uint16_t WR = W0;
795      uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
796      assert(WR == 64 && WP == 8);
797      RegisterCell R1 = rc(1);
798      RegisterCell RC(WR);
799      for (uint16_t i = 0; i < WP; ++i) {
800        const BT::BitValue &V = R1[i];
801        BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
802        RC.fill(i*8, i*8+8, F);
803      }
804      return rr0(RC, Outputs);
805    }
806
807    // Mux:
808
809    case C2_muxii:
810    case C2_muxir:
811    case C2_muxri:
812    case C2_mux: {
813      BT::BitValue PC0 = rc(1)[0];
814      RegisterCell R2 = cop(2, W0);
815      RegisterCell R3 = cop(3, W0);
816      if (PC0.is(0) || PC0.is(1))
817        return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
818      R2.meet(R3, Reg[0].Reg);
819      return rr0(R2, Outputs);
820    }
821    case C2_vmux:
822      // TODO
823      break;
824
825    // Sign- and zero-extension:
826
827    case A2_sxtb:
828      return rr0(eSXT(rc(1), 8), Outputs);
829    case A2_sxth:
830      return rr0(eSXT(rc(1), 16), Outputs);
831    case A2_sxtw: {
832      uint16_t W1 = getRegBitWidth(Reg[1]);
833      assert(W0 == 64 && W1 == 32);
834      RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
835      return rr0(RC, Outputs);
836    }
837    case A2_zxtb:
838      return rr0(eZXT(rc(1), 8), Outputs);
839    case A2_zxth:
840      return rr0(eZXT(rc(1), 16), Outputs);
841
842    // Saturations
843
844    case A2_satb:
845      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
846    case A2_sath:
847      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
848    case A2_satub:
849      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
850    case A2_satuh:
851      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
852
853    // Bit count:
854
855    case S2_cl0:
856    case S2_cl0p:
857      // Always produce a 32-bit result.
858      return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
859    case S2_cl1:
860    case S2_cl1p:
861      return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
862    case S2_clb:
863    case S2_clbp: {
864      uint16_t W1 = getRegBitWidth(Reg[1]);
865      RegisterCell R1 = rc(1);
866      BT::BitValue TV = R1[W1-1];
867      if (TV.is(0) || TV.is(1))
868        return rr0(eCLB(R1, TV, 32), Outputs);
869      break;
870    }
871    case S2_ct0:
872    case S2_ct0p:
873      return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
874    case S2_ct1:
875    case S2_ct1p:
876      return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
877    case S5_popcountp:
878      // TODO
879      break;
880
881    case C2_all8: {
882      RegisterCell P1 = rc(1);
883      bool Has0 = false, All1 = true;
884      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
885        if (!P1[i].is(1))
886          All1 = false;
887        if (!P1[i].is(0))
888          continue;
889        Has0 = true;
890        break;
891      }
892      if (!Has0 && !All1)
893        break;
894      RegisterCell RC(W0);
895      RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
896      return rr0(RC, Outputs);
897    }
898    case C2_any8: {
899      RegisterCell P1 = rc(1);
900      bool Has1 = false, All0 = true;
901      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
902        if (!P1[i].is(0))
903          All0 = false;
904        if (!P1[i].is(1))
905          continue;
906        Has1 = true;
907        break;
908      }
909      if (!Has1 && !All0)
910        break;
911      RegisterCell RC(W0);
912      RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
913      return rr0(RC, Outputs);
914    }
915    case C2_and:
916      return rr0(eAND(rc(1), rc(2)), Outputs);
917    case C2_andn:
918      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
919    case C2_not:
920      return rr0(eNOT(rc(1)), Outputs);
921    case C2_or:
922      return rr0(eORL(rc(1), rc(2)), Outputs);
923    case C2_orn:
924      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
925    case C2_xor:
926      return rr0(eXOR(rc(1), rc(2)), Outputs);
927    case C4_and_and:
928      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
929    case C4_and_andn:
930      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
931    case C4_and_or:
932      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
933    case C4_and_orn:
934      return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
935    case C4_or_and:
936      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
937    case C4_or_andn:
938      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
939    case C4_or_or:
940      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
941    case C4_or_orn:
942      return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
943    case C2_bitsclr:
944    case C2_bitsclri:
945    case C2_bitsset:
946    case C4_nbitsclr:
947    case C4_nbitsclri:
948    case C4_nbitsset:
949      // TODO
950      break;
951    case S2_tstbit_i:
952    case S4_ntstbit_i: {
953      BT::BitValue V = rc(1)[im(2)];
954      if (V.is(0) || V.is(1)) {
955        // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
956        bool TV = (Opc == S2_tstbit_i);
957        BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
958        return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
959      }
960      break;
961    }
962
963    default:
964      // For instructions that define a single predicate registers, store
965      // the low 8 bits of the register only.
966      if (unsigned DefR = getUniqueDefVReg(MI)) {
967        if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
968          BT::RegisterRef PD(DefR, 0);
969          uint16_t RW = getRegBitWidth(PD);
970          uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
971          RegisterCell RC = RegisterCell::self(DefR, RW);
972          RC.fill(PW, RW, BT::BitValue::Zero);
973          putCell(PD, RC, Outputs);
974          return true;
975        }
976      }
977      return MachineEvaluator::evaluate(MI, Inputs, Outputs);
978  }
979  #undef im
980  #undef rc
981  #undef op
982  return false;
983}
984
985bool HexagonEvaluator::evaluate(const MachineInstr &BI,
986                                const CellMapType &Inputs,
987                                BranchTargetList &Targets,
988                                bool &FallsThru) const {
989  // We need to evaluate one branch at a time. TII::analyzeBranch checks
990  // all the branches in a basic block at once, so we cannot use it.
991  unsigned Opc = BI.getOpcode();
992  bool SimpleBranch = false;
993  bool Negated = false;
994  switch (Opc) {
995    case Hexagon::J2_jumpf:
996    case Hexagon::J2_jumpfpt:
997    case Hexagon::J2_jumpfnew:
998    case Hexagon::J2_jumpfnewpt:
999      Negated = true;
1000      [[fallthrough]];
1001    case Hexagon::J2_jumpt:
1002    case Hexagon::J2_jumptpt:
1003    case Hexagon::J2_jumptnew:
1004    case Hexagon::J2_jumptnewpt:
1005      // Simple branch:  if([!]Pn) jump ...
1006      // i.e. Op0 = predicate, Op1 = branch target.
1007      SimpleBranch = true;
1008      break;
1009    case Hexagon::J2_jump:
1010      Targets.insert(BI.getOperand(0).getMBB());
1011      FallsThru = false;
1012      return true;
1013    default:
1014      // If the branch is of unknown type, assume that all successors are
1015      // executable.
1016      return false;
1017  }
1018
1019  if (!SimpleBranch)
1020    return false;
1021
1022  // BI is a conditional branch if we got here.
1023  RegisterRef PR = BI.getOperand(0);
1024  RegisterCell PC = getCell(PR, Inputs);
1025  const BT::BitValue &Test = PC[0];
1026
1027  // If the condition is neither true nor false, then it's unknown.
1028  if (!Test.is(0) && !Test.is(1))
1029    return false;
1030
1031  // "Test.is(!Negated)" means "branch condition is true".
1032  if (!Test.is(!Negated)) {
1033    // Condition known to be false.
1034    FallsThru = true;
1035    return true;
1036  }
1037
1038  Targets.insert(BI.getOperand(1).getMBB());
1039  FallsThru = false;
1040  return true;
1041}
1042
1043unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
1044  unsigned DefReg = 0;
1045  for (const MachineOperand &Op : MI.operands()) {
1046    if (!Op.isReg() || !Op.isDef())
1047      continue;
1048    Register R = Op.getReg();
1049    if (!R.isVirtual())
1050      continue;
1051    if (DefReg != 0)
1052      return 0;
1053    DefReg = R;
1054  }
1055  return DefReg;
1056}
1057
1058bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1059                                    const CellMapType &Inputs,
1060                                    CellMapType &Outputs) const {
1061  using namespace Hexagon;
1062
1063  if (TII.isPredicated(MI))
1064    return false;
1065  assert(MI.mayLoad() && "A load that mayn't?");
1066  unsigned Opc = MI.getOpcode();
1067
1068  uint16_t BitNum;
1069  bool SignEx;
1070
1071  switch (Opc) {
1072    default:
1073      return false;
1074
1075#if 0
1076    // memb_fifo
1077    case L2_loadalignb_pbr:
1078    case L2_loadalignb_pcr:
1079    case L2_loadalignb_pi:
1080    // memh_fifo
1081    case L2_loadalignh_pbr:
1082    case L2_loadalignh_pcr:
1083    case L2_loadalignh_pi:
1084    // membh
1085    case L2_loadbsw2_pbr:
1086    case L2_loadbsw2_pci:
1087    case L2_loadbsw2_pcr:
1088    case L2_loadbsw2_pi:
1089    case L2_loadbsw4_pbr:
1090    case L2_loadbsw4_pci:
1091    case L2_loadbsw4_pcr:
1092    case L2_loadbsw4_pi:
1093    // memubh
1094    case L2_loadbzw2_pbr:
1095    case L2_loadbzw2_pci:
1096    case L2_loadbzw2_pcr:
1097    case L2_loadbzw2_pi:
1098    case L2_loadbzw4_pbr:
1099    case L2_loadbzw4_pci:
1100    case L2_loadbzw4_pcr:
1101    case L2_loadbzw4_pi:
1102#endif
1103
1104    case L2_loadrbgp:
1105    case L2_loadrb_io:
1106    case L2_loadrb_pbr:
1107    case L2_loadrb_pci:
1108    case L2_loadrb_pcr:
1109    case L2_loadrb_pi:
1110    case PS_loadrbabs:
1111    case L4_loadrb_ap:
1112    case L4_loadrb_rr:
1113    case L4_loadrb_ur:
1114      BitNum = 8;
1115      SignEx = true;
1116      break;
1117
1118    case L2_loadrubgp:
1119    case L2_loadrub_io:
1120    case L2_loadrub_pbr:
1121    case L2_loadrub_pci:
1122    case L2_loadrub_pcr:
1123    case L2_loadrub_pi:
1124    case PS_loadrubabs:
1125    case L4_loadrub_ap:
1126    case L4_loadrub_rr:
1127    case L4_loadrub_ur:
1128      BitNum = 8;
1129      SignEx = false;
1130      break;
1131
1132    case L2_loadrhgp:
1133    case L2_loadrh_io:
1134    case L2_loadrh_pbr:
1135    case L2_loadrh_pci:
1136    case L2_loadrh_pcr:
1137    case L2_loadrh_pi:
1138    case PS_loadrhabs:
1139    case L4_loadrh_ap:
1140    case L4_loadrh_rr:
1141    case L4_loadrh_ur:
1142      BitNum = 16;
1143      SignEx = true;
1144      break;
1145
1146    case L2_loadruhgp:
1147    case L2_loadruh_io:
1148    case L2_loadruh_pbr:
1149    case L2_loadruh_pci:
1150    case L2_loadruh_pcr:
1151    case L2_loadruh_pi:
1152    case L4_loadruh_rr:
1153    case PS_loadruhabs:
1154    case L4_loadruh_ap:
1155    case L4_loadruh_ur:
1156      BitNum = 16;
1157      SignEx = false;
1158      break;
1159
1160    case L2_loadrigp:
1161    case L2_loadri_io:
1162    case L2_loadri_pbr:
1163    case L2_loadri_pci:
1164    case L2_loadri_pcr:
1165    case L2_loadri_pi:
1166    case L2_loadw_locked:
1167    case PS_loadriabs:
1168    case L4_loadri_ap:
1169    case L4_loadri_rr:
1170    case L4_loadri_ur:
1171    case LDriw_pred:
1172      BitNum = 32;
1173      SignEx = true;
1174      break;
1175
1176    case L2_loadrdgp:
1177    case L2_loadrd_io:
1178    case L2_loadrd_pbr:
1179    case L2_loadrd_pci:
1180    case L2_loadrd_pcr:
1181    case L2_loadrd_pi:
1182    case L4_loadd_locked:
1183    case PS_loadrdabs:
1184    case L4_loadrd_ap:
1185    case L4_loadrd_rr:
1186    case L4_loadrd_ur:
1187      BitNum = 64;
1188      SignEx = true;
1189      break;
1190  }
1191
1192  const MachineOperand &MD = MI.getOperand(0);
1193  assert(MD.isReg() && MD.isDef());
1194  RegisterRef RD = MD;
1195
1196  uint16_t W = getRegBitWidth(RD);
1197  assert(W >= BitNum && BitNum > 0);
1198  RegisterCell Res(W);
1199
1200  for (uint16_t i = 0; i < BitNum; ++i)
1201    Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1202
1203  if (SignEx) {
1204    const BT::BitValue &Sign = Res[BitNum-1];
1205    for (uint16_t i = BitNum; i < W; ++i)
1206      Res[i] = BT::BitValue::ref(Sign);
1207  } else {
1208    for (uint16_t i = BitNum; i < W; ++i)
1209      Res[i] = BT::BitValue::Zero;
1210  }
1211
1212  putCell(RD, Res, Outputs);
1213  return true;
1214}
1215
1216bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1217                                          const CellMapType &Inputs,
1218                                          CellMapType &Outputs) const {
1219  // If MI defines a formal parameter, but is not a copy (loads are handled
1220  // in evaluateLoad), then it's not clear what to do.
1221  assert(MI.isCopy());
1222
1223  RegisterRef RD = MI.getOperand(0);
1224  RegisterRef RS = MI.getOperand(1);
1225  assert(RD.Sub == 0);
1226  if (!RS.Reg.isPhysical())
1227    return false;
1228  RegExtMap::const_iterator F = VRX.find(RD.Reg);
1229  if (F == VRX.end())
1230    return false;
1231
1232  uint16_t EW = F->second.Width;
1233  // Store RD's cell into the map. This will associate the cell with a virtual
1234  // register, and make zero-/sign-extends possible (otherwise we would be ex-
1235  // tending "self" bit values, which will have no effect, since "self" values
1236  // cannot be references to anything).
1237  putCell(RD, getCell(RS, Inputs), Outputs);
1238
1239  RegisterCell Res;
1240  // Read RD's cell from the outputs instead of RS's cell from the inputs:
1241  if (F->second.Type == ExtType::SExt)
1242    Res = eSXT(getCell(RD, Outputs), EW);
1243  else if (F->second.Type == ExtType::ZExt)
1244    Res = eZXT(getCell(RD, Outputs), EW);
1245
1246  putCell(RD, Res, Outputs);
1247  return true;
1248}
1249
1250unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1251  using namespace Hexagon;
1252
1253  bool Is64 = DoubleRegsRegClass.contains(PReg);
1254  assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1255
1256  static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1257  static const unsigned Phys64[] = { D0, D1, D2 };
1258  const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1259  const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1260
1261  // Return the first parameter register of the required width.
1262  if (PReg == 0)
1263    return (Width <= 32) ? Phys32[0] : Phys64[0];
1264
1265  // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1266  // next register.
1267  unsigned Idx32 = 0, Idx64 = 0;
1268  if (!Is64) {
1269    while (Idx32 < Num32) {
1270      if (Phys32[Idx32] == PReg)
1271        break;
1272      Idx32++;
1273    }
1274    Idx64 = Idx32/2;
1275  } else {
1276    while (Idx64 < Num64) {
1277      if (Phys64[Idx64] == PReg)
1278        break;
1279      Idx64++;
1280    }
1281    Idx32 = Idx64*2+1;
1282  }
1283
1284  if (Width <= 32)
1285    return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1286  return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1287}
1288
1289unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1290  for (std::pair<unsigned,unsigned> P : MRI.liveins())
1291    if (P.first == PReg)
1292      return P.second;
1293  return 0;
1294}
1295