1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// basic correctness checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15//  * Both of a binary operator's parameters are of the same type
16//  * Verify that the indices of mem access instructions match other operands
17//  * Verify that arithmetic and other things are only performed on first-class
18//    types.  Verify that shifts & logicals only happen on integrals f.e.
19//  * All of the constants in a switch statement are of the correct type
20//  * The code is in valid SSA form
21//  * It should be illegal to put a label into any other type (like a structure)
22//    or to return one. [except constant arrays!]
23//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24//  * PHI nodes must have an entry for each predecessor, with no extras.
25//  * PHI nodes must be the first thing in a basic block, all grouped together
26//  * All basic blocks should only end with terminator insts, not contain them
27//  * The entry node to a function must not have predecessors
28//  * All Instructions must be embedded into a basic block
29//  * Functions cannot take a void-typed parameter
30//  * Verify that a function's argument list agrees with it's declared type.
31//  * It is illegal to specify a name for a void value.
32//  * It is illegal to have a internal global value with no initializer
33//  * It is illegal to have a ret instruction that returns a value that does not
34//    agree with the function return value type.
35//  * Function call argument types match the function prototype
36//  * A landing pad is defined by a landingpad instruction, and can be jumped to
37//    only by the unwind edge of an invoke instruction.
38//  * A landingpad instruction must be the first non-PHI instruction in the
39//    block.
40//  * Landingpad instructions must be in a function with a personality function.
41//  * All other things that are tested by asserts spread about the code...
42//
43//===----------------------------------------------------------------------===//
44
45#include "llvm/IR/Verifier.h"
46#include "llvm/ADT/APFloat.h"
47#include "llvm/ADT/APInt.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/MapVector.h"
51#include "llvm/ADT/STLExtras.h"
52#include "llvm/ADT/SmallPtrSet.h"
53#include "llvm/ADT/SmallSet.h"
54#include "llvm/ADT/SmallVector.h"
55#include "llvm/ADT/StringExtras.h"
56#include "llvm/ADT/StringMap.h"
57#include "llvm/ADT/StringRef.h"
58#include "llvm/ADT/Twine.h"
59#include "llvm/BinaryFormat/Dwarf.h"
60#include "llvm/IR/Argument.h"
61#include "llvm/IR/Attributes.h"
62#include "llvm/IR/BasicBlock.h"
63#include "llvm/IR/CFG.h"
64#include "llvm/IR/CallingConv.h"
65#include "llvm/IR/Comdat.h"
66#include "llvm/IR/Constant.h"
67#include "llvm/IR/ConstantRange.h"
68#include "llvm/IR/Constants.h"
69#include "llvm/IR/DataLayout.h"
70#include "llvm/IR/DebugInfo.h"
71#include "llvm/IR/DebugInfoMetadata.h"
72#include "llvm/IR/DebugLoc.h"
73#include "llvm/IR/DerivedTypes.h"
74#include "llvm/IR/Dominators.h"
75#include "llvm/IR/Function.h"
76#include "llvm/IR/GCStrategy.h"
77#include "llvm/IR/GlobalAlias.h"
78#include "llvm/IR/GlobalValue.h"
79#include "llvm/IR/GlobalVariable.h"
80#include "llvm/IR/InlineAsm.h"
81#include "llvm/IR/InstVisitor.h"
82#include "llvm/IR/InstrTypes.h"
83#include "llvm/IR/Instruction.h"
84#include "llvm/IR/Instructions.h"
85#include "llvm/IR/IntrinsicInst.h"
86#include "llvm/IR/Intrinsics.h"
87#include "llvm/IR/IntrinsicsAArch64.h"
88#include "llvm/IR/IntrinsicsARM.h"
89#include "llvm/IR/IntrinsicsWebAssembly.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/InitializePasses.h"
101#include "llvm/Pass.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/ErrorHandling.h"
106#include "llvm/Support/MathExtras.h"
107#include "llvm/Support/raw_ostream.h"
108#include <algorithm>
109#include <cassert>
110#include <cstdint>
111#include <memory>
112#include <optional>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyNoAliasScopeDomination(
119    "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120    cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121             "scopes are not dominating"));
122
123namespace llvm {
124
125struct VerifierSupport {
126  raw_ostream *OS;
127  const Module &M;
128  ModuleSlotTracker MST;
129  Triple TT;
130  const DataLayout &DL;
131  LLVMContext &Context;
132
133  /// Track the brokenness of the module while recursively visiting.
134  bool Broken = false;
135  /// Broken debug info can be "recovered" from by stripping the debug info.
136  bool BrokenDebugInfo = false;
137  /// Whether to treat broken debug info as an error.
138  bool TreatBrokenDebugInfoAsError = true;
139
140  explicit VerifierSupport(raw_ostream *OS, const Module &M)
141      : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142        Context(M.getContext()) {}
143
144private:
145  void Write(const Module *M) {
146    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147  }
148
149  void Write(const Value *V) {
150    if (V)
151      Write(*V);
152  }
153
154  void Write(const Value &V) {
155    if (isa<Instruction>(V)) {
156      V.print(*OS, MST);
157      *OS << '\n';
158    } else {
159      V.printAsOperand(*OS, true, MST);
160      *OS << '\n';
161    }
162  }
163
164  void Write(const Metadata *MD) {
165    if (!MD)
166      return;
167    MD->print(*OS, MST, &M);
168    *OS << '\n';
169  }
170
171  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172    Write(MD.get());
173  }
174
175  void Write(const NamedMDNode *NMD) {
176    if (!NMD)
177      return;
178    NMD->print(*OS, MST);
179    *OS << '\n';
180  }
181
182  void Write(Type *T) {
183    if (!T)
184      return;
185    *OS << ' ' << *T;
186  }
187
188  void Write(const Comdat *C) {
189    if (!C)
190      return;
191    *OS << *C;
192  }
193
194  void Write(const APInt *AI) {
195    if (!AI)
196      return;
197    *OS << *AI << '\n';
198  }
199
200  void Write(const unsigned i) { *OS << i << '\n'; }
201
202  // NOLINTNEXTLINE(readability-identifier-naming)
203  void Write(const Attribute *A) {
204    if (!A)
205      return;
206    *OS << A->getAsString() << '\n';
207  }
208
209  // NOLINTNEXTLINE(readability-identifier-naming)
210  void Write(const AttributeSet *AS) {
211    if (!AS)
212      return;
213    *OS << AS->getAsString() << '\n';
214  }
215
216  // NOLINTNEXTLINE(readability-identifier-naming)
217  void Write(const AttributeList *AL) {
218    if (!AL)
219      return;
220    AL->print(*OS);
221  }
222
223  template <typename T> void Write(ArrayRef<T> Vs) {
224    for (const T &V : Vs)
225      Write(V);
226  }
227
228  template <typename T1, typename... Ts>
229  void WriteTs(const T1 &V1, const Ts &... Vs) {
230    Write(V1);
231    WriteTs(Vs...);
232  }
233
234  template <typename... Ts> void WriteTs() {}
235
236public:
237  /// A check failed, so printout out the condition and the message.
238  ///
239  /// This provides a nice place to put a breakpoint if you want to see why
240  /// something is not correct.
241  void CheckFailed(const Twine &Message) {
242    if (OS)
243      *OS << Message << '\n';
244    Broken = true;
245  }
246
247  /// A check failed (with values to print).
248  ///
249  /// This calls the Message-only version so that the above is easier to set a
250  /// breakpoint on.
251  template <typename T1, typename... Ts>
252  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253    CheckFailed(Message);
254    if (OS)
255      WriteTs(V1, Vs...);
256  }
257
258  /// A debug info check failed.
259  void DebugInfoCheckFailed(const Twine &Message) {
260    if (OS)
261      *OS << Message << '\n';
262    Broken |= TreatBrokenDebugInfoAsError;
263    BrokenDebugInfo = true;
264  }
265
266  /// A debug info check failed (with values to print).
267  template <typename T1, typename... Ts>
268  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269                            const Ts &... Vs) {
270    DebugInfoCheckFailed(Message);
271    if (OS)
272      WriteTs(V1, Vs...);
273  }
274};
275
276} // namespace llvm
277
278namespace {
279
280class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281  friend class InstVisitor<Verifier>;
282
283  // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
284  // the alignment size should not exceed 2^15. Since encode(Align)
285  // would plus the shift value by 1, the alignment size should
286  // not exceed 2^14, otherwise it can NOT be properly lowered
287  // in backend.
288  static constexpr unsigned ParamMaxAlignment = 1 << 14;
289  DominatorTree DT;
290
291  /// When verifying a basic block, keep track of all of the
292  /// instructions we have seen so far.
293  ///
294  /// This allows us to do efficient dominance checks for the case when an
295  /// instruction has an operand that is an instruction in the same block.
296  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
297
298  /// Keep track of the metadata nodes that have been checked already.
299  SmallPtrSet<const Metadata *, 32> MDNodes;
300
301  /// Keep track which DISubprogram is attached to which function.
302  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
303
304  /// Track all DICompileUnits visited.
305  SmallPtrSet<const Metadata *, 2> CUVisited;
306
307  /// The result type for a landingpad.
308  Type *LandingPadResultTy;
309
310  /// Whether we've seen a call to @llvm.localescape in this function
311  /// already.
312  bool SawFrameEscape;
313
314  /// Whether the current function has a DISubprogram attached to it.
315  bool HasDebugInfo = false;
316
317  /// The current source language.
318  dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
319
320  /// Whether source was present on the first DIFile encountered in each CU.
321  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
322
323  /// Stores the count of how many objects were passed to llvm.localescape for a
324  /// given function and the largest index passed to llvm.localrecover.
325  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
326
327  // Maps catchswitches and cleanuppads that unwind to siblings to the
328  // terminators that indicate the unwind, used to detect cycles therein.
329  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
330
331  /// Cache of constants visited in search of ConstantExprs.
332  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
333
334  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
335  SmallVector<const Function *, 4> DeoptimizeDeclarations;
336
337  /// Cache of attribute lists verified.
338  SmallPtrSet<const void *, 32> AttributeListsVisited;
339
340  // Verify that this GlobalValue is only used in this module.
341  // This map is used to avoid visiting uses twice. We can arrive at a user
342  // twice, if they have multiple operands. In particular for very large
343  // constant expressions, we can arrive at a particular user many times.
344  SmallPtrSet<const Value *, 32> GlobalValueVisited;
345
346  // Keeps track of duplicate function argument debug info.
347  SmallVector<const DILocalVariable *, 16> DebugFnArgs;
348
349  TBAAVerifier TBAAVerifyHelper;
350
351  SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
352
353  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
354
355public:
356  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
357                    const Module &M)
358      : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
359        SawFrameEscape(false), TBAAVerifyHelper(this) {
360    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
361  }
362
363  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
364
365  bool verify(const Function &F) {
366    assert(F.getParent() == &M &&
367           "An instance of this class only works with a specific module!");
368
369    // First ensure the function is well-enough formed to compute dominance
370    // information, and directly compute a dominance tree. We don't rely on the
371    // pass manager to provide this as it isolates us from a potentially
372    // out-of-date dominator tree and makes it significantly more complex to run
373    // this code outside of a pass manager.
374    // FIXME: It's really gross that we have to cast away constness here.
375    if (!F.empty())
376      DT.recalculate(const_cast<Function &>(F));
377
378    for (const BasicBlock &BB : F) {
379      if (!BB.empty() && BB.back().isTerminator())
380        continue;
381
382      if (OS) {
383        *OS << "Basic Block in function '" << F.getName()
384            << "' does not have terminator!\n";
385        BB.printAsOperand(*OS, true, MST);
386        *OS << "\n";
387      }
388      return false;
389    }
390
391    Broken = false;
392    // FIXME: We strip const here because the inst visitor strips const.
393    visit(const_cast<Function &>(F));
394    verifySiblingFuncletUnwinds();
395    InstsInThisBlock.clear();
396    DebugFnArgs.clear();
397    LandingPadResultTy = nullptr;
398    SawFrameEscape = false;
399    SiblingFuncletInfo.clear();
400    verifyNoAliasScopeDecl();
401    NoAliasScopeDecls.clear();
402
403    return !Broken;
404  }
405
406  /// Verify the module that this instance of \c Verifier was initialized with.
407  bool verify() {
408    Broken = false;
409
410    // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
411    for (const Function &F : M)
412      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
413        DeoptimizeDeclarations.push_back(&F);
414
415    // Now that we've visited every function, verify that we never asked to
416    // recover a frame index that wasn't escaped.
417    verifyFrameRecoverIndices();
418    for (const GlobalVariable &GV : M.globals())
419      visitGlobalVariable(GV);
420
421    for (const GlobalAlias &GA : M.aliases())
422      visitGlobalAlias(GA);
423
424    for (const GlobalIFunc &GI : M.ifuncs())
425      visitGlobalIFunc(GI);
426
427    for (const NamedMDNode &NMD : M.named_metadata())
428      visitNamedMDNode(NMD);
429
430    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
431      visitComdat(SMEC.getValue());
432
433    visitModuleFlags();
434    visitModuleIdents();
435    visitModuleCommandLines();
436
437    verifyCompileUnits();
438
439    verifyDeoptimizeCallingConvs();
440    DISubprogramAttachments.clear();
441    return !Broken;
442  }
443
444private:
445  /// Whether a metadata node is allowed to be, or contain, a DILocation.
446  enum class AreDebugLocsAllowed { No, Yes };
447
448  // Verification methods...
449  void visitGlobalValue(const GlobalValue &GV);
450  void visitGlobalVariable(const GlobalVariable &GV);
451  void visitGlobalAlias(const GlobalAlias &GA);
452  void visitGlobalIFunc(const GlobalIFunc &GI);
453  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
454  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
455                           const GlobalAlias &A, const Constant &C);
456  void visitNamedMDNode(const NamedMDNode &NMD);
457  void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
458  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
459  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
460  void visitComdat(const Comdat &C);
461  void visitModuleIdents();
462  void visitModuleCommandLines();
463  void visitModuleFlags();
464  void visitModuleFlag(const MDNode *Op,
465                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
466                       SmallVectorImpl<const MDNode *> &Requirements);
467  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
468  void visitFunction(const Function &F);
469  void visitBasicBlock(BasicBlock &BB);
470  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
471  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
472  void visitProfMetadata(Instruction &I, MDNode *MD);
473  void visitCallStackMetadata(MDNode *MD);
474  void visitMemProfMetadata(Instruction &I, MDNode *MD);
475  void visitCallsiteMetadata(Instruction &I, MDNode *MD);
476  void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
477  void visitAnnotationMetadata(MDNode *Annotation);
478  void visitAliasScopeMetadata(const MDNode *MD);
479  void visitAliasScopeListMetadata(const MDNode *MD);
480  void visitAccessGroupMetadata(const MDNode *MD);
481
482  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
483#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
484#include "llvm/IR/Metadata.def"
485  void visitDIScope(const DIScope &N);
486  void visitDIVariable(const DIVariable &N);
487  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
488  void visitDITemplateParameter(const DITemplateParameter &N);
489
490  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
491
492  // InstVisitor overrides...
493  using InstVisitor<Verifier>::visit;
494  void visit(Instruction &I);
495
496  void visitTruncInst(TruncInst &I);
497  void visitZExtInst(ZExtInst &I);
498  void visitSExtInst(SExtInst &I);
499  void visitFPTruncInst(FPTruncInst &I);
500  void visitFPExtInst(FPExtInst &I);
501  void visitFPToUIInst(FPToUIInst &I);
502  void visitFPToSIInst(FPToSIInst &I);
503  void visitUIToFPInst(UIToFPInst &I);
504  void visitSIToFPInst(SIToFPInst &I);
505  void visitIntToPtrInst(IntToPtrInst &I);
506  void visitPtrToIntInst(PtrToIntInst &I);
507  void visitBitCastInst(BitCastInst &I);
508  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
509  void visitPHINode(PHINode &PN);
510  void visitCallBase(CallBase &Call);
511  void visitUnaryOperator(UnaryOperator &U);
512  void visitBinaryOperator(BinaryOperator &B);
513  void visitICmpInst(ICmpInst &IC);
514  void visitFCmpInst(FCmpInst &FC);
515  void visitExtractElementInst(ExtractElementInst &EI);
516  void visitInsertElementInst(InsertElementInst &EI);
517  void visitShuffleVectorInst(ShuffleVectorInst &EI);
518  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
519  void visitCallInst(CallInst &CI);
520  void visitInvokeInst(InvokeInst &II);
521  void visitGetElementPtrInst(GetElementPtrInst &GEP);
522  void visitLoadInst(LoadInst &LI);
523  void visitStoreInst(StoreInst &SI);
524  void verifyDominatesUse(Instruction &I, unsigned i);
525  void visitInstruction(Instruction &I);
526  void visitTerminator(Instruction &I);
527  void visitBranchInst(BranchInst &BI);
528  void visitReturnInst(ReturnInst &RI);
529  void visitSwitchInst(SwitchInst &SI);
530  void visitIndirectBrInst(IndirectBrInst &BI);
531  void visitCallBrInst(CallBrInst &CBI);
532  void visitSelectInst(SelectInst &SI);
533  void visitUserOp1(Instruction &I);
534  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
535  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
536  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
537  void visitVPIntrinsic(VPIntrinsic &VPI);
538  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
539  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
540  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
541  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
542  void visitFenceInst(FenceInst &FI);
543  void visitAllocaInst(AllocaInst &AI);
544  void visitExtractValueInst(ExtractValueInst &EVI);
545  void visitInsertValueInst(InsertValueInst &IVI);
546  void visitEHPadPredecessors(Instruction &I);
547  void visitLandingPadInst(LandingPadInst &LPI);
548  void visitResumeInst(ResumeInst &RI);
549  void visitCatchPadInst(CatchPadInst &CPI);
550  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
551  void visitCleanupPadInst(CleanupPadInst &CPI);
552  void visitFuncletPadInst(FuncletPadInst &FPI);
553  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
554  void visitCleanupReturnInst(CleanupReturnInst &CRI);
555
556  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
557  void verifySwiftErrorValue(const Value *SwiftErrorVal);
558  void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
559  void verifyMustTailCall(CallInst &CI);
560  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
561  void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
562  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
563  void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
564                                    const Value *V);
565  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
566                           const Value *V, bool IsIntrinsic, bool IsInlineAsm);
567  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
568
569  void visitConstantExprsRecursively(const Constant *EntryC);
570  void visitConstantExpr(const ConstantExpr *CE);
571  void verifyInlineAsmCall(const CallBase &Call);
572  void verifyStatepoint(const CallBase &Call);
573  void verifyFrameRecoverIndices();
574  void verifySiblingFuncletUnwinds();
575
576  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
577  template <typename ValueOrMetadata>
578  void verifyFragmentExpression(const DIVariable &V,
579                                DIExpression::FragmentInfo Fragment,
580                                ValueOrMetadata *Desc);
581  void verifyFnArgs(const DbgVariableIntrinsic &I);
582  void verifyNotEntryValue(const DbgVariableIntrinsic &I);
583
584  /// Module-level debug info verification...
585  void verifyCompileUnits();
586
587  /// Module-level verification that all @llvm.experimental.deoptimize
588  /// declarations share the same calling convention.
589  void verifyDeoptimizeCallingConvs();
590
591  void verifyAttachedCallBundle(const CallBase &Call,
592                                const OperandBundleUse &BU);
593
594  /// Verify all-or-nothing property of DIFile source attribute within a CU.
595  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
596
597  /// Verify the llvm.experimental.noalias.scope.decl declarations
598  void verifyNoAliasScopeDecl();
599};
600
601} // end anonymous namespace
602
603/// We know that cond should be true, if not print an error message.
604#define Check(C, ...)                                                          \
605  do {                                                                         \
606    if (!(C)) {                                                                \
607      CheckFailed(__VA_ARGS__);                                                \
608      return;                                                                  \
609    }                                                                          \
610  } while (false)
611
612/// We know that a debug info condition should be true, if not print
613/// an error message.
614#define CheckDI(C, ...)                                                        \
615  do {                                                                         \
616    if (!(C)) {                                                                \
617      DebugInfoCheckFailed(__VA_ARGS__);                                       \
618      return;                                                                  \
619    }                                                                          \
620  } while (false)
621
622void Verifier::visit(Instruction &I) {
623  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
624    Check(I.getOperand(i) != nullptr, "Operand is null", &I);
625  InstVisitor<Verifier>::visit(I);
626}
627
628// Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
629static void forEachUser(const Value *User,
630                        SmallPtrSet<const Value *, 32> &Visited,
631                        llvm::function_ref<bool(const Value *)> Callback) {
632  if (!Visited.insert(User).second)
633    return;
634
635  SmallVector<const Value *> WorkList;
636  append_range(WorkList, User->materialized_users());
637  while (!WorkList.empty()) {
638   const Value *Cur = WorkList.pop_back_val();
639    if (!Visited.insert(Cur).second)
640      continue;
641    if (Callback(Cur))
642      append_range(WorkList, Cur->materialized_users());
643  }
644}
645
646void Verifier::visitGlobalValue(const GlobalValue &GV) {
647  Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
648        "Global is external, but doesn't have external or weak linkage!", &GV);
649
650  if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
651
652    if (MaybeAlign A = GO->getAlign()) {
653      Check(A->value() <= Value::MaximumAlignment,
654            "huge alignment values are unsupported", GO);
655    }
656  }
657  Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
658        "Only global variables can have appending linkage!", &GV);
659
660  if (GV.hasAppendingLinkage()) {
661    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
662    Check(GVar && GVar->getValueType()->isArrayTy(),
663          "Only global arrays can have appending linkage!", GVar);
664  }
665
666  if (GV.isDeclarationForLinker())
667    Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
668
669  if (GV.hasDLLExportStorageClass()) {
670    Check(!GV.hasHiddenVisibility(),
671          "dllexport GlobalValue must have default or protected visibility",
672          &GV);
673  }
674  if (GV.hasDLLImportStorageClass()) {
675    Check(GV.hasDefaultVisibility(),
676          "dllimport GlobalValue must have default visibility", &GV);
677    Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
678          &GV);
679
680    Check((GV.isDeclaration() &&
681           (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
682              GV.hasAvailableExternallyLinkage(),
683          "Global is marked as dllimport, but not external", &GV);
684  }
685
686  if (GV.isImplicitDSOLocal())
687    Check(GV.isDSOLocal(),
688          "GlobalValue with local linkage or non-default "
689          "visibility must be dso_local!",
690          &GV);
691
692  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
693    if (const Instruction *I = dyn_cast<Instruction>(V)) {
694      if (!I->getParent() || !I->getParent()->getParent())
695        CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
696                    I);
697      else if (I->getParent()->getParent()->getParent() != &M)
698        CheckFailed("Global is referenced in a different module!", &GV, &M, I,
699                    I->getParent()->getParent(),
700                    I->getParent()->getParent()->getParent());
701      return false;
702    } else if (const Function *F = dyn_cast<Function>(V)) {
703      if (F->getParent() != &M)
704        CheckFailed("Global is used by function in a different module", &GV, &M,
705                    F, F->getParent());
706      return false;
707    }
708    return true;
709  });
710}
711
712void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
713  if (GV.hasInitializer()) {
714    Check(GV.getInitializer()->getType() == GV.getValueType(),
715          "Global variable initializer type does not match global "
716          "variable type!",
717          &GV);
718    // If the global has common linkage, it must have a zero initializer and
719    // cannot be constant.
720    if (GV.hasCommonLinkage()) {
721      Check(GV.getInitializer()->isNullValue(),
722            "'common' global must have a zero initializer!", &GV);
723      Check(!GV.isConstant(), "'common' global may not be marked constant!",
724            &GV);
725      Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
726    }
727  }
728
729  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
730                       GV.getName() == "llvm.global_dtors")) {
731    Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
732          "invalid linkage for intrinsic global variable", &GV);
733    // Don't worry about emitting an error for it not being an array,
734    // visitGlobalValue will complain on appending non-array.
735    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
736      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
737      PointerType *FuncPtrTy =
738          FunctionType::get(Type::getVoidTy(Context), false)->
739          getPointerTo(DL.getProgramAddressSpace());
740      Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
741                STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
742                STy->getTypeAtIndex(1) == FuncPtrTy,
743            "wrong type for intrinsic global variable", &GV);
744      Check(STy->getNumElements() == 3,
745            "the third field of the element type is mandatory, "
746            "specify ptr null to migrate from the obsoleted 2-field form");
747      Type *ETy = STy->getTypeAtIndex(2);
748      Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
749      Check(ETy->isPointerTy() &&
750                cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
751            "wrong type for intrinsic global variable", &GV);
752    }
753  }
754
755  if (GV.hasName() && (GV.getName() == "llvm.used" ||
756                       GV.getName() == "llvm.compiler.used")) {
757    Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
758          "invalid linkage for intrinsic global variable", &GV);
759    Type *GVType = GV.getValueType();
760    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
761      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
762      Check(PTy, "wrong type for intrinsic global variable", &GV);
763      if (GV.hasInitializer()) {
764        const Constant *Init = GV.getInitializer();
765        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
766        Check(InitArray, "wrong initalizer for intrinsic global variable",
767              Init);
768        for (Value *Op : InitArray->operands()) {
769          Value *V = Op->stripPointerCasts();
770          Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
771                    isa<GlobalAlias>(V),
772                Twine("invalid ") + GV.getName() + " member", V);
773          Check(V->hasName(),
774                Twine("members of ") + GV.getName() + " must be named", V);
775        }
776      }
777    }
778  }
779
780  // Visit any debug info attachments.
781  SmallVector<MDNode *, 1> MDs;
782  GV.getMetadata(LLVMContext::MD_dbg, MDs);
783  for (auto *MD : MDs) {
784    if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
785      visitDIGlobalVariableExpression(*GVE);
786    else
787      CheckDI(false, "!dbg attachment of global variable must be a "
788                     "DIGlobalVariableExpression");
789  }
790
791  // Scalable vectors cannot be global variables, since we don't know
792  // the runtime size. If the global is an array containing scalable vectors,
793  // that will be caught by the isValidElementType methods in StructType or
794  // ArrayType instead.
795  Check(!isa<ScalableVectorType>(GV.getValueType()),
796        "Globals cannot contain scalable vectors", &GV);
797
798  if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
799    Check(!STy->containsScalableVectorType(),
800          "Globals cannot contain scalable vectors", &GV);
801
802  // Check if it's a target extension type that disallows being used as a
803  // global.
804  if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
805    Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
806          "Global @" + GV.getName() + " has illegal target extension type",
807          TTy);
808
809  if (!GV.hasInitializer()) {
810    visitGlobalValue(GV);
811    return;
812  }
813
814  // Walk any aggregate initializers looking for bitcasts between address spaces
815  visitConstantExprsRecursively(GV.getInitializer());
816
817  visitGlobalValue(GV);
818}
819
820void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
821  SmallPtrSet<const GlobalAlias*, 4> Visited;
822  Visited.insert(&GA);
823  visitAliaseeSubExpr(Visited, GA, C);
824}
825
826void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
827                                   const GlobalAlias &GA, const Constant &C) {
828  if (GA.hasAvailableExternallyLinkage()) {
829    Check(isa<GlobalValue>(C) &&
830              cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
831          "available_externally alias must point to available_externally "
832          "global value",
833          &GA);
834  }
835  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
836    if (!GA.hasAvailableExternallyLinkage()) {
837      Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
838            &GA);
839    }
840
841    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
842      Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
843
844      Check(!GA2->isInterposable(),
845            "Alias cannot point to an interposable alias", &GA);
846    } else {
847      // Only continue verifying subexpressions of GlobalAliases.
848      // Do not recurse into global initializers.
849      return;
850    }
851  }
852
853  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
854    visitConstantExprsRecursively(CE);
855
856  for (const Use &U : C.operands()) {
857    Value *V = &*U;
858    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
859      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
860    else if (const auto *C2 = dyn_cast<Constant>(V))
861      visitAliaseeSubExpr(Visited, GA, *C2);
862  }
863}
864
865void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
866  Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
867        "Alias should have private, internal, linkonce, weak, linkonce_odr, "
868        "weak_odr, external, or available_externally linkage!",
869        &GA);
870  const Constant *Aliasee = GA.getAliasee();
871  Check(Aliasee, "Aliasee cannot be NULL!", &GA);
872  Check(GA.getType() == Aliasee->getType(),
873        "Alias and aliasee types should match!", &GA);
874
875  Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
876        "Aliasee should be either GlobalValue or ConstantExpr", &GA);
877
878  visitAliaseeSubExpr(GA, *Aliasee);
879
880  visitGlobalValue(GA);
881}
882
883void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
884  Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
885        "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
886        "weak_odr, or external linkage!",
887        &GI);
888  // Pierce through ConstantExprs and GlobalAliases and check that the resolver
889  // is a Function definition.
890  const Function *Resolver = GI.getResolverFunction();
891  Check(Resolver, "IFunc must have a Function resolver", &GI);
892  Check(!Resolver->isDeclarationForLinker(),
893        "IFunc resolver must be a definition", &GI);
894
895  // Check that the immediate resolver operand (prior to any bitcasts) has the
896  // correct type.
897  const Type *ResolverTy = GI.getResolver()->getType();
898
899  Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
900        "IFunc resolver must return a pointer", &GI);
901
902  const Type *ResolverFuncTy =
903      GlobalIFunc::getResolverFunctionType(GI.getValueType());
904  Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
905        "IFunc resolver has incorrect type", &GI);
906}
907
908void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
909  // There used to be various other llvm.dbg.* nodes, but we don't support
910  // upgrading them and we want to reserve the namespace for future uses.
911  if (NMD.getName().startswith("llvm.dbg."))
912    CheckDI(NMD.getName() == "llvm.dbg.cu",
913            "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
914  for (const MDNode *MD : NMD.operands()) {
915    if (NMD.getName() == "llvm.dbg.cu")
916      CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
917
918    if (!MD)
919      continue;
920
921    visitMDNode(*MD, AreDebugLocsAllowed::Yes);
922  }
923}
924
925void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
926  // Only visit each node once.  Metadata can be mutually recursive, so this
927  // avoids infinite recursion here, as well as being an optimization.
928  if (!MDNodes.insert(&MD).second)
929    return;
930
931  Check(&MD.getContext() == &Context,
932        "MDNode context does not match Module context!", &MD);
933
934  switch (MD.getMetadataID()) {
935  default:
936    llvm_unreachable("Invalid MDNode subclass");
937  case Metadata::MDTupleKind:
938    break;
939#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
940  case Metadata::CLASS##Kind:                                                  \
941    visit##CLASS(cast<CLASS>(MD));                                             \
942    break;
943#include "llvm/IR/Metadata.def"
944  }
945
946  for (const Metadata *Op : MD.operands()) {
947    if (!Op)
948      continue;
949    Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
950          &MD, Op);
951    CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
952            "DILocation not allowed within this metadata node", &MD, Op);
953    if (auto *N = dyn_cast<MDNode>(Op)) {
954      visitMDNode(*N, AllowLocs);
955      continue;
956    }
957    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
958      visitValueAsMetadata(*V, nullptr);
959      continue;
960    }
961  }
962
963  // Check these last, so we diagnose problems in operands first.
964  Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
965  Check(MD.isResolved(), "All nodes should be resolved!", &MD);
966}
967
968void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
969  Check(MD.getValue(), "Expected valid value", &MD);
970  Check(!MD.getValue()->getType()->isMetadataTy(),
971        "Unexpected metadata round-trip through values", &MD, MD.getValue());
972
973  auto *L = dyn_cast<LocalAsMetadata>(&MD);
974  if (!L)
975    return;
976
977  Check(F, "function-local metadata used outside a function", L);
978
979  // If this was an instruction, bb, or argument, verify that it is in the
980  // function that we expect.
981  Function *ActualF = nullptr;
982  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
983    Check(I->getParent(), "function-local metadata not in basic block", L, I);
984    ActualF = I->getParent()->getParent();
985  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
986    ActualF = BB->getParent();
987  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
988    ActualF = A->getParent();
989  assert(ActualF && "Unimplemented function local metadata case!");
990
991  Check(ActualF == F, "function-local metadata used in wrong function", L);
992}
993
994void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
995  Metadata *MD = MDV.getMetadata();
996  if (auto *N = dyn_cast<MDNode>(MD)) {
997    visitMDNode(*N, AreDebugLocsAllowed::No);
998    return;
999  }
1000
1001  // Only visit each node once.  Metadata can be mutually recursive, so this
1002  // avoids infinite recursion here, as well as being an optimization.
1003  if (!MDNodes.insert(MD).second)
1004    return;
1005
1006  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1007    visitValueAsMetadata(*V, F);
1008}
1009
1010static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1011static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1012static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1013
1014void Verifier::visitDILocation(const DILocation &N) {
1015  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1016          "location requires a valid scope", &N, N.getRawScope());
1017  if (auto *IA = N.getRawInlinedAt())
1018    CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1019  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1020    CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1021}
1022
1023void Verifier::visitGenericDINode(const GenericDINode &N) {
1024  CheckDI(N.getTag(), "invalid tag", &N);
1025}
1026
1027void Verifier::visitDIScope(const DIScope &N) {
1028  if (auto *F = N.getRawFile())
1029    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1030}
1031
1032void Verifier::visitDISubrange(const DISubrange &N) {
1033  CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1034  bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1035  CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1036              N.getRawUpperBound(),
1037          "Subrange must contain count or upperBound", &N);
1038  CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1039          "Subrange can have any one of count or upperBound", &N);
1040  auto *CBound = N.getRawCountNode();
1041  CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1042              isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1043          "Count must be signed constant or DIVariable or DIExpression", &N);
1044  auto Count = N.getCount();
1045  CheckDI(!Count || !Count.is<ConstantInt *>() ||
1046              Count.get<ConstantInt *>()->getSExtValue() >= -1,
1047          "invalid subrange count", &N);
1048  auto *LBound = N.getRawLowerBound();
1049  CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1050              isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1051          "LowerBound must be signed constant or DIVariable or DIExpression",
1052          &N);
1053  auto *UBound = N.getRawUpperBound();
1054  CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1055              isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1056          "UpperBound must be signed constant or DIVariable or DIExpression",
1057          &N);
1058  auto *Stride = N.getRawStride();
1059  CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1060              isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1061          "Stride must be signed constant or DIVariable or DIExpression", &N);
1062}
1063
1064void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1065  CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1066  CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1067          "GenericSubrange must contain count or upperBound", &N);
1068  CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1069          "GenericSubrange can have any one of count or upperBound", &N);
1070  auto *CBound = N.getRawCountNode();
1071  CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1072          "Count must be signed constant or DIVariable or DIExpression", &N);
1073  auto *LBound = N.getRawLowerBound();
1074  CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1075  CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1076          "LowerBound must be signed constant or DIVariable or DIExpression",
1077          &N);
1078  auto *UBound = N.getRawUpperBound();
1079  CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1080          "UpperBound must be signed constant or DIVariable or DIExpression",
1081          &N);
1082  auto *Stride = N.getRawStride();
1083  CheckDI(Stride, "GenericSubrange must contain stride", &N);
1084  CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1085          "Stride must be signed constant or DIVariable or DIExpression", &N);
1086}
1087
1088void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1089  CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1090}
1091
1092void Verifier::visitDIBasicType(const DIBasicType &N) {
1093  CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1094              N.getTag() == dwarf::DW_TAG_unspecified_type ||
1095              N.getTag() == dwarf::DW_TAG_string_type,
1096          "invalid tag", &N);
1097}
1098
1099void Verifier::visitDIStringType(const DIStringType &N) {
1100  CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1101  CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1102          &N);
1103}
1104
1105void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1106  // Common scope checks.
1107  visitDIScope(N);
1108
1109  CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1110              N.getTag() == dwarf::DW_TAG_pointer_type ||
1111              N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1112              N.getTag() == dwarf::DW_TAG_reference_type ||
1113              N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1114              N.getTag() == dwarf::DW_TAG_const_type ||
1115              N.getTag() == dwarf::DW_TAG_immutable_type ||
1116              N.getTag() == dwarf::DW_TAG_volatile_type ||
1117              N.getTag() == dwarf::DW_TAG_restrict_type ||
1118              N.getTag() == dwarf::DW_TAG_atomic_type ||
1119              N.getTag() == dwarf::DW_TAG_member ||
1120              N.getTag() == dwarf::DW_TAG_inheritance ||
1121              N.getTag() == dwarf::DW_TAG_friend ||
1122              N.getTag() == dwarf::DW_TAG_set_type,
1123          "invalid tag", &N);
1124  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1125    CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1126            N.getRawExtraData());
1127  }
1128
1129  if (N.getTag() == dwarf::DW_TAG_set_type) {
1130    if (auto *T = N.getRawBaseType()) {
1131      auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1132      auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1133      CheckDI(
1134          (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1135              (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1136                         Basic->getEncoding() == dwarf::DW_ATE_signed ||
1137                         Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1138                         Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1139                         Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1140          "invalid set base type", &N, T);
1141    }
1142  }
1143
1144  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1145  CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1146          N.getRawBaseType());
1147
1148  if (N.getDWARFAddressSpace()) {
1149    CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1150                N.getTag() == dwarf::DW_TAG_reference_type ||
1151                N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1152            "DWARF address space only applies to pointer or reference types",
1153            &N);
1154  }
1155}
1156
1157/// Detect mutually exclusive flags.
1158static bool hasConflictingReferenceFlags(unsigned Flags) {
1159  return ((Flags & DINode::FlagLValueReference) &&
1160          (Flags & DINode::FlagRValueReference)) ||
1161         ((Flags & DINode::FlagTypePassByValue) &&
1162          (Flags & DINode::FlagTypePassByReference));
1163}
1164
1165void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1166  auto *Params = dyn_cast<MDTuple>(&RawParams);
1167  CheckDI(Params, "invalid template params", &N, &RawParams);
1168  for (Metadata *Op : Params->operands()) {
1169    CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1170            &N, Params, Op);
1171  }
1172}
1173
1174void Verifier::visitDICompositeType(const DICompositeType &N) {
1175  // Common scope checks.
1176  visitDIScope(N);
1177
1178  CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1179              N.getTag() == dwarf::DW_TAG_structure_type ||
1180              N.getTag() == dwarf::DW_TAG_union_type ||
1181              N.getTag() == dwarf::DW_TAG_enumeration_type ||
1182              N.getTag() == dwarf::DW_TAG_class_type ||
1183              N.getTag() == dwarf::DW_TAG_variant_part ||
1184              N.getTag() == dwarf::DW_TAG_namelist,
1185          "invalid tag", &N);
1186
1187  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1188  CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1189          N.getRawBaseType());
1190
1191  CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1192          "invalid composite elements", &N, N.getRawElements());
1193  CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1194          N.getRawVTableHolder());
1195  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1196          "invalid reference flags", &N);
1197  unsigned DIBlockByRefStruct = 1 << 4;
1198  CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1199          "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1200
1201  if (N.isVector()) {
1202    const DINodeArray Elements = N.getElements();
1203    CheckDI(Elements.size() == 1 &&
1204                Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1205            "invalid vector, expected one element of type subrange", &N);
1206  }
1207
1208  if (auto *Params = N.getRawTemplateParams())
1209    visitTemplateParams(N, *Params);
1210
1211  if (auto *D = N.getRawDiscriminator()) {
1212    CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1213            "discriminator can only appear on variant part");
1214  }
1215
1216  if (N.getRawDataLocation()) {
1217    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1218            "dataLocation can only appear in array type");
1219  }
1220
1221  if (N.getRawAssociated()) {
1222    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1223            "associated can only appear in array type");
1224  }
1225
1226  if (N.getRawAllocated()) {
1227    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1228            "allocated can only appear in array type");
1229  }
1230
1231  if (N.getRawRank()) {
1232    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1233            "rank can only appear in array type");
1234  }
1235}
1236
1237void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1238  CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1239  if (auto *Types = N.getRawTypeArray()) {
1240    CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1241    for (Metadata *Ty : N.getTypeArray()->operands()) {
1242      CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1243    }
1244  }
1245  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1246          "invalid reference flags", &N);
1247}
1248
1249void Verifier::visitDIFile(const DIFile &N) {
1250  CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1251  std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1252  if (Checksum) {
1253    CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1254            "invalid checksum kind", &N);
1255    size_t Size;
1256    switch (Checksum->Kind) {
1257    case DIFile::CSK_MD5:
1258      Size = 32;
1259      break;
1260    case DIFile::CSK_SHA1:
1261      Size = 40;
1262      break;
1263    case DIFile::CSK_SHA256:
1264      Size = 64;
1265      break;
1266    }
1267    CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1268    CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1269            "invalid checksum", &N);
1270  }
1271}
1272
1273void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1274  CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1275  CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1276
1277  // Don't bother verifying the compilation directory or producer string
1278  // as those could be empty.
1279  CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1280          N.getRawFile());
1281  CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1282          N.getFile());
1283
1284  CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1285
1286  verifySourceDebugInfo(N, *N.getFile());
1287
1288  CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1289          "invalid emission kind", &N);
1290
1291  if (auto *Array = N.getRawEnumTypes()) {
1292    CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1293    for (Metadata *Op : N.getEnumTypes()->operands()) {
1294      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1295      CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1296              "invalid enum type", &N, N.getEnumTypes(), Op);
1297    }
1298  }
1299  if (auto *Array = N.getRawRetainedTypes()) {
1300    CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1301    for (Metadata *Op : N.getRetainedTypes()->operands()) {
1302      CheckDI(
1303          Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1304                                     !cast<DISubprogram>(Op)->isDefinition())),
1305          "invalid retained type", &N, Op);
1306    }
1307  }
1308  if (auto *Array = N.getRawGlobalVariables()) {
1309    CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1310    for (Metadata *Op : N.getGlobalVariables()->operands()) {
1311      CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1312              "invalid global variable ref", &N, Op);
1313    }
1314  }
1315  if (auto *Array = N.getRawImportedEntities()) {
1316    CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1317    for (Metadata *Op : N.getImportedEntities()->operands()) {
1318      CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1319              &N, Op);
1320    }
1321  }
1322  if (auto *Array = N.getRawMacros()) {
1323    CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1324    for (Metadata *Op : N.getMacros()->operands()) {
1325      CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1326    }
1327  }
1328  CUVisited.insert(&N);
1329}
1330
1331void Verifier::visitDISubprogram(const DISubprogram &N) {
1332  CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1333  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1334  if (auto *F = N.getRawFile())
1335    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1336  else
1337    CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1338  if (auto *T = N.getRawType())
1339    CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1340  CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1341          N.getRawContainingType());
1342  if (auto *Params = N.getRawTemplateParams())
1343    visitTemplateParams(N, *Params);
1344  if (auto *S = N.getRawDeclaration())
1345    CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1346            "invalid subprogram declaration", &N, S);
1347  if (auto *RawNode = N.getRawRetainedNodes()) {
1348    auto *Node = dyn_cast<MDTuple>(RawNode);
1349    CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1350    for (Metadata *Op : Node->operands()) {
1351      CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1352              "invalid retained nodes, expected DILocalVariable or DILabel", &N,
1353              Node, Op);
1354    }
1355  }
1356  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1357          "invalid reference flags", &N);
1358
1359  auto *Unit = N.getRawUnit();
1360  if (N.isDefinition()) {
1361    // Subprogram definitions (not part of the type hierarchy).
1362    CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1363    CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1364    CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1365    if (N.getFile())
1366      verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1367  } else {
1368    // Subprogram declarations (part of the type hierarchy).
1369    CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1370  }
1371
1372  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1373    auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1374    CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1375    for (Metadata *Op : ThrownTypes->operands())
1376      CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1377              Op);
1378  }
1379
1380  if (N.areAllCallsDescribed())
1381    CheckDI(N.isDefinition(),
1382            "DIFlagAllCallsDescribed must be attached to a definition");
1383}
1384
1385void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1386  CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1387  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1388          "invalid local scope", &N, N.getRawScope());
1389  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1390    CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1391}
1392
1393void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1394  visitDILexicalBlockBase(N);
1395
1396  CheckDI(N.getLine() || !N.getColumn(),
1397          "cannot have column info without line info", &N);
1398}
1399
1400void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1401  visitDILexicalBlockBase(N);
1402}
1403
1404void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1405  CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1406  if (auto *S = N.getRawScope())
1407    CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1408  if (auto *S = N.getRawDecl())
1409    CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1410}
1411
1412void Verifier::visitDINamespace(const DINamespace &N) {
1413  CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1414  if (auto *S = N.getRawScope())
1415    CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1416}
1417
1418void Verifier::visitDIMacro(const DIMacro &N) {
1419  CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1420              N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1421          "invalid macinfo type", &N);
1422  CheckDI(!N.getName().empty(), "anonymous macro", &N);
1423  if (!N.getValue().empty()) {
1424    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1425  }
1426}
1427
1428void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1429  CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1430          "invalid macinfo type", &N);
1431  if (auto *F = N.getRawFile())
1432    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1433
1434  if (auto *Array = N.getRawElements()) {
1435    CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1436    for (Metadata *Op : N.getElements()->operands()) {
1437      CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1438    }
1439  }
1440}
1441
1442void Verifier::visitDIArgList(const DIArgList &N) {
1443  CheckDI(!N.getNumOperands(),
1444          "DIArgList should have no operands other than a list of "
1445          "ValueAsMetadata",
1446          &N);
1447}
1448
1449void Verifier::visitDIModule(const DIModule &N) {
1450  CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1451  CheckDI(!N.getName().empty(), "anonymous module", &N);
1452}
1453
1454void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1455  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1456}
1457
1458void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1459  visitDITemplateParameter(N);
1460
1461  CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1462          &N);
1463}
1464
1465void Verifier::visitDITemplateValueParameter(
1466    const DITemplateValueParameter &N) {
1467  visitDITemplateParameter(N);
1468
1469  CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1470              N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1471              N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1472          "invalid tag", &N);
1473}
1474
1475void Verifier::visitDIVariable(const DIVariable &N) {
1476  if (auto *S = N.getRawScope())
1477    CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1478  if (auto *F = N.getRawFile())
1479    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1480}
1481
1482void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1483  // Checks common to all variables.
1484  visitDIVariable(N);
1485
1486  CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1487  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1488  // Check only if the global variable is not an extern
1489  if (N.isDefinition())
1490    CheckDI(N.getType(), "missing global variable type", &N);
1491  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1492    CheckDI(isa<DIDerivedType>(Member),
1493            "invalid static data member declaration", &N, Member);
1494  }
1495}
1496
1497void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1498  // Checks common to all variables.
1499  visitDIVariable(N);
1500
1501  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1502  CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1503  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1504          "local variable requires a valid scope", &N, N.getRawScope());
1505  if (auto Ty = N.getType())
1506    CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1507}
1508
1509void Verifier::visitDIAssignID(const DIAssignID &N) {
1510  CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1511  CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1512}
1513
1514void Verifier::visitDILabel(const DILabel &N) {
1515  if (auto *S = N.getRawScope())
1516    CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1517  if (auto *F = N.getRawFile())
1518    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1519
1520  CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1521  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1522          "label requires a valid scope", &N, N.getRawScope());
1523}
1524
1525void Verifier::visitDIExpression(const DIExpression &N) {
1526  CheckDI(N.isValid(), "invalid expression", &N);
1527}
1528
1529void Verifier::visitDIGlobalVariableExpression(
1530    const DIGlobalVariableExpression &GVE) {
1531  CheckDI(GVE.getVariable(), "missing variable");
1532  if (auto *Var = GVE.getVariable())
1533    visitDIGlobalVariable(*Var);
1534  if (auto *Expr = GVE.getExpression()) {
1535    visitDIExpression(*Expr);
1536    if (auto Fragment = Expr->getFragmentInfo())
1537      verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1538  }
1539}
1540
1541void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1542  CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1543  if (auto *T = N.getRawType())
1544    CheckDI(isType(T), "invalid type ref", &N, T);
1545  if (auto *F = N.getRawFile())
1546    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1547}
1548
1549void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1550  CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1551              N.getTag() == dwarf::DW_TAG_imported_declaration,
1552          "invalid tag", &N);
1553  if (auto *S = N.getRawScope())
1554    CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1555  CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1556          N.getRawEntity());
1557}
1558
1559void Verifier::visitComdat(const Comdat &C) {
1560  // In COFF the Module is invalid if the GlobalValue has private linkage.
1561  // Entities with private linkage don't have entries in the symbol table.
1562  if (TT.isOSBinFormatCOFF())
1563    if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1564      Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1565            GV);
1566}
1567
1568void Verifier::visitModuleIdents() {
1569  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1570  if (!Idents)
1571    return;
1572
1573  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1574  // Scan each llvm.ident entry and make sure that this requirement is met.
1575  for (const MDNode *N : Idents->operands()) {
1576    Check(N->getNumOperands() == 1,
1577          "incorrect number of operands in llvm.ident metadata", N);
1578    Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1579          ("invalid value for llvm.ident metadata entry operand"
1580           "(the operand should be a string)"),
1581          N->getOperand(0));
1582  }
1583}
1584
1585void Verifier::visitModuleCommandLines() {
1586  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1587  if (!CommandLines)
1588    return;
1589
1590  // llvm.commandline takes a list of metadata entry. Each entry has only one
1591  // string. Scan each llvm.commandline entry and make sure that this
1592  // requirement is met.
1593  for (const MDNode *N : CommandLines->operands()) {
1594    Check(N->getNumOperands() == 1,
1595          "incorrect number of operands in llvm.commandline metadata", N);
1596    Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1597          ("invalid value for llvm.commandline metadata entry operand"
1598           "(the operand should be a string)"),
1599          N->getOperand(0));
1600  }
1601}
1602
1603void Verifier::visitModuleFlags() {
1604  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1605  if (!Flags) return;
1606
1607  // Scan each flag, and track the flags and requirements.
1608  DenseMap<const MDString*, const MDNode*> SeenIDs;
1609  SmallVector<const MDNode*, 16> Requirements;
1610  for (const MDNode *MDN : Flags->operands())
1611    visitModuleFlag(MDN, SeenIDs, Requirements);
1612
1613  // Validate that the requirements in the module are valid.
1614  for (const MDNode *Requirement : Requirements) {
1615    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1616    const Metadata *ReqValue = Requirement->getOperand(1);
1617
1618    const MDNode *Op = SeenIDs.lookup(Flag);
1619    if (!Op) {
1620      CheckFailed("invalid requirement on flag, flag is not present in module",
1621                  Flag);
1622      continue;
1623    }
1624
1625    if (Op->getOperand(2) != ReqValue) {
1626      CheckFailed(("invalid requirement on flag, "
1627                   "flag does not have the required value"),
1628                  Flag);
1629      continue;
1630    }
1631  }
1632}
1633
1634void
1635Verifier::visitModuleFlag(const MDNode *Op,
1636                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
1637                          SmallVectorImpl<const MDNode *> &Requirements) {
1638  // Each module flag should have three arguments, the merge behavior (a
1639  // constant int), the flag ID (an MDString), and the value.
1640  Check(Op->getNumOperands() == 3,
1641        "incorrect number of operands in module flag", Op);
1642  Module::ModFlagBehavior MFB;
1643  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1644    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1645          "invalid behavior operand in module flag (expected constant integer)",
1646          Op->getOperand(0));
1647    Check(false,
1648          "invalid behavior operand in module flag (unexpected constant)",
1649          Op->getOperand(0));
1650  }
1651  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1652  Check(ID, "invalid ID operand in module flag (expected metadata string)",
1653        Op->getOperand(1));
1654
1655  // Check the values for behaviors with additional requirements.
1656  switch (MFB) {
1657  case Module::Error:
1658  case Module::Warning:
1659  case Module::Override:
1660    // These behavior types accept any value.
1661    break;
1662
1663  case Module::Min: {
1664    auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1665    Check(V && V->getValue().isNonNegative(),
1666          "invalid value for 'min' module flag (expected constant non-negative "
1667          "integer)",
1668          Op->getOperand(2));
1669    break;
1670  }
1671
1672  case Module::Max: {
1673    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1674          "invalid value for 'max' module flag (expected constant integer)",
1675          Op->getOperand(2));
1676    break;
1677  }
1678
1679  case Module::Require: {
1680    // The value should itself be an MDNode with two operands, a flag ID (an
1681    // MDString), and a value.
1682    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1683    Check(Value && Value->getNumOperands() == 2,
1684          "invalid value for 'require' module flag (expected metadata pair)",
1685          Op->getOperand(2));
1686    Check(isa<MDString>(Value->getOperand(0)),
1687          ("invalid value for 'require' module flag "
1688           "(first value operand should be a string)"),
1689          Value->getOperand(0));
1690
1691    // Append it to the list of requirements, to check once all module flags are
1692    // scanned.
1693    Requirements.push_back(Value);
1694    break;
1695  }
1696
1697  case Module::Append:
1698  case Module::AppendUnique: {
1699    // These behavior types require the operand be an MDNode.
1700    Check(isa<MDNode>(Op->getOperand(2)),
1701          "invalid value for 'append'-type module flag "
1702          "(expected a metadata node)",
1703          Op->getOperand(2));
1704    break;
1705  }
1706  }
1707
1708  // Unless this is a "requires" flag, check the ID is unique.
1709  if (MFB != Module::Require) {
1710    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1711    Check(Inserted,
1712          "module flag identifiers must be unique (or of 'require' type)", ID);
1713  }
1714
1715  if (ID->getString() == "wchar_size") {
1716    ConstantInt *Value
1717      = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1718    Check(Value, "wchar_size metadata requires constant integer argument");
1719  }
1720
1721  if (ID->getString() == "Linker Options") {
1722    // If the llvm.linker.options named metadata exists, we assume that the
1723    // bitcode reader has upgraded the module flag. Otherwise the flag might
1724    // have been created by a client directly.
1725    Check(M.getNamedMetadata("llvm.linker.options"),
1726          "'Linker Options' named metadata no longer supported");
1727  }
1728
1729  if (ID->getString() == "SemanticInterposition") {
1730    ConstantInt *Value =
1731        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1732    Check(Value,
1733          "SemanticInterposition metadata requires constant integer argument");
1734  }
1735
1736  if (ID->getString() == "CG Profile") {
1737    for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1738      visitModuleFlagCGProfileEntry(MDO);
1739  }
1740}
1741
1742void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1743  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1744    if (!FuncMDO)
1745      return;
1746    auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1747    Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1748          "expected a Function or null", FuncMDO);
1749  };
1750  auto Node = dyn_cast_or_null<MDNode>(MDO);
1751  Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1752  CheckFunction(Node->getOperand(0));
1753  CheckFunction(Node->getOperand(1));
1754  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1755  Check(Count && Count->getType()->isIntegerTy(),
1756        "expected an integer constant", Node->getOperand(2));
1757}
1758
1759void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1760  for (Attribute A : Attrs) {
1761
1762    if (A.isStringAttribute()) {
1763#define GET_ATTR_NAMES
1764#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1765#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1766  if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1767    auto V = A.getValueAsString();                                             \
1768    if (!(V.empty() || V == "true" || V == "false"))                           \
1769      CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1770                  "");                                                         \
1771  }
1772
1773#include "llvm/IR/Attributes.inc"
1774      continue;
1775    }
1776
1777    if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1778      CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1779                  V);
1780      return;
1781    }
1782  }
1783}
1784
1785// VerifyParameterAttrs - Check the given attributes for an argument or return
1786// value of the specified type.  The value V is printed in error messages.
1787void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1788                                    const Value *V) {
1789  if (!Attrs.hasAttributes())
1790    return;
1791
1792  verifyAttributeTypes(Attrs, V);
1793
1794  for (Attribute Attr : Attrs)
1795    Check(Attr.isStringAttribute() ||
1796              Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1797          "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1798          V);
1799
1800  if (Attrs.hasAttribute(Attribute::ImmArg)) {
1801    Check(Attrs.getNumAttributes() == 1,
1802          "Attribute 'immarg' is incompatible with other attributes", V);
1803  }
1804
1805  // Check for mutually incompatible attributes.  Only inreg is compatible with
1806  // sret.
1807  unsigned AttrCount = 0;
1808  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1809  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1810  AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1811  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1812               Attrs.hasAttribute(Attribute::InReg);
1813  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1814  AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1815  Check(AttrCount <= 1,
1816        "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1817        "'byref', and 'sret' are incompatible!",
1818        V);
1819
1820  Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1821          Attrs.hasAttribute(Attribute::ReadOnly)),
1822        "Attributes "
1823        "'inalloca and readonly' are incompatible!",
1824        V);
1825
1826  Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1827          Attrs.hasAttribute(Attribute::Returned)),
1828        "Attributes "
1829        "'sret and returned' are incompatible!",
1830        V);
1831
1832  Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1833          Attrs.hasAttribute(Attribute::SExt)),
1834        "Attributes "
1835        "'zeroext and signext' are incompatible!",
1836        V);
1837
1838  Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1839          Attrs.hasAttribute(Attribute::ReadOnly)),
1840        "Attributes "
1841        "'readnone and readonly' are incompatible!",
1842        V);
1843
1844  Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1845          Attrs.hasAttribute(Attribute::WriteOnly)),
1846        "Attributes "
1847        "'readnone and writeonly' are incompatible!",
1848        V);
1849
1850  Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1851          Attrs.hasAttribute(Attribute::WriteOnly)),
1852        "Attributes "
1853        "'readonly and writeonly' are incompatible!",
1854        V);
1855
1856  Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1857          Attrs.hasAttribute(Attribute::AlwaysInline)),
1858        "Attributes "
1859        "'noinline and alwaysinline' are incompatible!",
1860        V);
1861
1862  AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1863  for (Attribute Attr : Attrs) {
1864    if (!Attr.isStringAttribute() &&
1865        IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1866      CheckFailed("Attribute '" + Attr.getAsString() +
1867                  "' applied to incompatible type!", V);
1868      return;
1869    }
1870  }
1871
1872  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1873    if (Attrs.hasAttribute(Attribute::ByVal)) {
1874      if (Attrs.hasAttribute(Attribute::Alignment)) {
1875        Align AttrAlign = Attrs.getAlignment().valueOrOne();
1876        Align MaxAlign(ParamMaxAlignment);
1877        Check(AttrAlign <= MaxAlign,
1878              "Attribute 'align' exceed the max size 2^14", V);
1879      }
1880      SmallPtrSet<Type *, 4> Visited;
1881      Check(Attrs.getByValType()->isSized(&Visited),
1882            "Attribute 'byval' does not support unsized types!", V);
1883    }
1884    if (Attrs.hasAttribute(Attribute::ByRef)) {
1885      SmallPtrSet<Type *, 4> Visited;
1886      Check(Attrs.getByRefType()->isSized(&Visited),
1887            "Attribute 'byref' does not support unsized types!", V);
1888    }
1889    if (Attrs.hasAttribute(Attribute::InAlloca)) {
1890      SmallPtrSet<Type *, 4> Visited;
1891      Check(Attrs.getInAllocaType()->isSized(&Visited),
1892            "Attribute 'inalloca' does not support unsized types!", V);
1893    }
1894    if (Attrs.hasAttribute(Attribute::Preallocated)) {
1895      SmallPtrSet<Type *, 4> Visited;
1896      Check(Attrs.getPreallocatedType()->isSized(&Visited),
1897            "Attribute 'preallocated' does not support unsized types!", V);
1898    }
1899    if (!PTy->isOpaque()) {
1900      if (!isa<PointerType>(PTy->getNonOpaquePointerElementType()))
1901        Check(!Attrs.hasAttribute(Attribute::SwiftError),
1902              "Attribute 'swifterror' only applies to parameters "
1903              "with pointer to pointer type!",
1904              V);
1905      if (Attrs.hasAttribute(Attribute::ByRef)) {
1906        Check(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(),
1907              "Attribute 'byref' type does not match parameter!", V);
1908      }
1909
1910      if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1911        Check(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(),
1912              "Attribute 'byval' type does not match parameter!", V);
1913      }
1914
1915      if (Attrs.hasAttribute(Attribute::Preallocated)) {
1916        Check(Attrs.getPreallocatedType() ==
1917                  PTy->getNonOpaquePointerElementType(),
1918              "Attribute 'preallocated' type does not match parameter!", V);
1919      }
1920
1921      if (Attrs.hasAttribute(Attribute::InAlloca)) {
1922        Check(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(),
1923              "Attribute 'inalloca' type does not match parameter!", V);
1924      }
1925
1926      if (Attrs.hasAttribute(Attribute::ElementType)) {
1927        Check(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(),
1928              "Attribute 'elementtype' type does not match parameter!", V);
1929      }
1930    }
1931  }
1932}
1933
1934void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1935                                            const Value *V) {
1936  if (Attrs.hasFnAttr(Attr)) {
1937    StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1938    unsigned N;
1939    if (S.getAsInteger(10, N))
1940      CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1941  }
1942}
1943
1944// Check parameter attributes against a function type.
1945// The value V is printed in error messages.
1946void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1947                                   const Value *V, bool IsIntrinsic,
1948                                   bool IsInlineAsm) {
1949  if (Attrs.isEmpty())
1950    return;
1951
1952  if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1953    Check(Attrs.hasParentContext(Context),
1954          "Attribute list does not match Module context!", &Attrs, V);
1955    for (const auto &AttrSet : Attrs) {
1956      Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1957            "Attribute set does not match Module context!", &AttrSet, V);
1958      for (const auto &A : AttrSet) {
1959        Check(A.hasParentContext(Context),
1960              "Attribute does not match Module context!", &A, V);
1961      }
1962    }
1963  }
1964
1965  bool SawNest = false;
1966  bool SawReturned = false;
1967  bool SawSRet = false;
1968  bool SawSwiftSelf = false;
1969  bool SawSwiftAsync = false;
1970  bool SawSwiftError = false;
1971
1972  // Verify return value attributes.
1973  AttributeSet RetAttrs = Attrs.getRetAttrs();
1974  for (Attribute RetAttr : RetAttrs)
1975    Check(RetAttr.isStringAttribute() ||
1976              Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1977          "Attribute '" + RetAttr.getAsString() +
1978              "' does not apply to function return values",
1979          V);
1980
1981  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1982
1983  // Verify parameter attributes.
1984  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1985    Type *Ty = FT->getParamType(i);
1986    AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1987
1988    if (!IsIntrinsic) {
1989      Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1990            "immarg attribute only applies to intrinsics", V);
1991      if (!IsInlineAsm)
1992        Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
1993              "Attribute 'elementtype' can only be applied to intrinsics"
1994              " and inline asm.",
1995              V);
1996    }
1997
1998    verifyParameterAttrs(ArgAttrs, Ty, V);
1999
2000    if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2001      Check(!SawNest, "More than one parameter has attribute nest!", V);
2002      SawNest = true;
2003    }
2004
2005    if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2006      Check(!SawReturned, "More than one parameter has attribute returned!", V);
2007      Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2008            "Incompatible argument and return types for 'returned' attribute",
2009            V);
2010      SawReturned = true;
2011    }
2012
2013    if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2014      Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2015      Check(i == 0 || i == 1,
2016            "Attribute 'sret' is not on first or second parameter!", V);
2017      SawSRet = true;
2018    }
2019
2020    if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2021      Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2022      SawSwiftSelf = true;
2023    }
2024
2025    if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2026      Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2027      SawSwiftAsync = true;
2028    }
2029
2030    if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2031      Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2032      SawSwiftError = true;
2033    }
2034
2035    if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2036      Check(i == FT->getNumParams() - 1,
2037            "inalloca isn't on the last parameter!", V);
2038    }
2039  }
2040
2041  if (!Attrs.hasFnAttrs())
2042    return;
2043
2044  verifyAttributeTypes(Attrs.getFnAttrs(), V);
2045  for (Attribute FnAttr : Attrs.getFnAttrs())
2046    Check(FnAttr.isStringAttribute() ||
2047              Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2048          "Attribute '" + FnAttr.getAsString() +
2049              "' does not apply to functions!",
2050          V);
2051
2052  Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2053          Attrs.hasFnAttr(Attribute::AlwaysInline)),
2054        "Attributes 'noinline and alwaysinline' are incompatible!", V);
2055
2056  if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2057    Check(Attrs.hasFnAttr(Attribute::NoInline),
2058          "Attribute 'optnone' requires 'noinline'!", V);
2059
2060    Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2061          "Attributes 'optsize and optnone' are incompatible!", V);
2062
2063    Check(!Attrs.hasFnAttr(Attribute::MinSize),
2064          "Attributes 'minsize and optnone' are incompatible!", V);
2065  }
2066
2067  if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2068    Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2069           "Attributes 'aarch64_pstate_sm_enabled and "
2070           "aarch64_pstate_sm_compatible' are incompatible!",
2071           V);
2072  }
2073
2074  if (Attrs.hasFnAttr("aarch64_pstate_za_new")) {
2075    Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"),
2076           "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' "
2077           "are incompatible!",
2078           V);
2079
2080    Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"),
2081           "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' "
2082           "are incompatible!",
2083           V);
2084  }
2085
2086  if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2087    const GlobalValue *GV = cast<GlobalValue>(V);
2088    Check(GV->hasGlobalUnnamedAddr(),
2089          "Attribute 'jumptable' requires 'unnamed_addr'", V);
2090  }
2091
2092  if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2093    auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2094      if (ParamNo >= FT->getNumParams()) {
2095        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2096        return false;
2097      }
2098
2099      if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2100        CheckFailed("'allocsize' " + Name +
2101                        " argument must refer to an integer parameter",
2102                    V);
2103        return false;
2104      }
2105
2106      return true;
2107    };
2108
2109    if (!CheckParam("element size", Args->first))
2110      return;
2111
2112    if (Args->second && !CheckParam("number of elements", *Args->second))
2113      return;
2114  }
2115
2116  if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2117    AllocFnKind K = Attrs.getAllocKind();
2118    AllocFnKind Type =
2119        K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2120    if (!is_contained(
2121            {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2122            Type))
2123      CheckFailed(
2124          "'allockind()' requires exactly one of alloc, realloc, and free");
2125    if ((Type == AllocFnKind::Free) &&
2126        ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2127               AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2128      CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2129                  "or aligned modifiers.");
2130    AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2131    if ((K & ZeroedUninit) == ZeroedUninit)
2132      CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2133  }
2134
2135  if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2136    unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2137    if (VScaleMin == 0)
2138      CheckFailed("'vscale_range' minimum must be greater than 0", V);
2139
2140    std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2141    if (VScaleMax && VScaleMin > VScaleMax)
2142      CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2143  }
2144
2145  if (Attrs.hasFnAttr("frame-pointer")) {
2146    StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2147    if (FP != "all" && FP != "non-leaf" && FP != "none")
2148      CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2149  }
2150
2151  checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2152  checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2153  checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2154}
2155
2156void Verifier::verifyFunctionMetadata(
2157    ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2158  for (const auto &Pair : MDs) {
2159    if (Pair.first == LLVMContext::MD_prof) {
2160      MDNode *MD = Pair.second;
2161      Check(MD->getNumOperands() >= 2,
2162            "!prof annotations should have no less than 2 operands", MD);
2163
2164      // Check first operand.
2165      Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2166            MD);
2167      Check(isa<MDString>(MD->getOperand(0)),
2168            "expected string with name of the !prof annotation", MD);
2169      MDString *MDS = cast<MDString>(MD->getOperand(0));
2170      StringRef ProfName = MDS->getString();
2171      Check(ProfName.equals("function_entry_count") ||
2172                ProfName.equals("synthetic_function_entry_count"),
2173            "first operand should be 'function_entry_count'"
2174            " or 'synthetic_function_entry_count'",
2175            MD);
2176
2177      // Check second operand.
2178      Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2179            MD);
2180      Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2181            "expected integer argument to function_entry_count", MD);
2182    } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2183      MDNode *MD = Pair.second;
2184      Check(MD->getNumOperands() == 1,
2185            "!kcfi_type must have exactly one operand", MD);
2186      Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2187            MD);
2188      Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2189            "expected a constant operand for !kcfi_type", MD);
2190      Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2191      Check(isa<ConstantInt>(C),
2192            "expected a constant integer operand for !kcfi_type", MD);
2193      IntegerType *Type = cast<ConstantInt>(C)->getType();
2194      Check(Type->getBitWidth() == 32,
2195            "expected a 32-bit integer constant operand for !kcfi_type", MD);
2196    }
2197  }
2198}
2199
2200void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2201  if (!ConstantExprVisited.insert(EntryC).second)
2202    return;
2203
2204  SmallVector<const Constant *, 16> Stack;
2205  Stack.push_back(EntryC);
2206
2207  while (!Stack.empty()) {
2208    const Constant *C = Stack.pop_back_val();
2209
2210    // Check this constant expression.
2211    if (const auto *CE = dyn_cast<ConstantExpr>(C))
2212      visitConstantExpr(CE);
2213
2214    if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2215      // Global Values get visited separately, but we do need to make sure
2216      // that the global value is in the correct module
2217      Check(GV->getParent() == &M, "Referencing global in another module!",
2218            EntryC, &M, GV, GV->getParent());
2219      continue;
2220    }
2221
2222    // Visit all sub-expressions.
2223    for (const Use &U : C->operands()) {
2224      const auto *OpC = dyn_cast<Constant>(U);
2225      if (!OpC)
2226        continue;
2227      if (!ConstantExprVisited.insert(OpC).second)
2228        continue;
2229      Stack.push_back(OpC);
2230    }
2231  }
2232}
2233
2234void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2235  if (CE->getOpcode() == Instruction::BitCast)
2236    Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2237                                CE->getType()),
2238          "Invalid bitcast", CE);
2239}
2240
2241bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2242  // There shouldn't be more attribute sets than there are parameters plus the
2243  // function and return value.
2244  return Attrs.getNumAttrSets() <= Params + 2;
2245}
2246
2247void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2248  const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2249  unsigned ArgNo = 0;
2250  unsigned LabelNo = 0;
2251  for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2252    if (CI.Type == InlineAsm::isLabel) {
2253      ++LabelNo;
2254      continue;
2255    }
2256
2257    // Only deal with constraints that correspond to call arguments.
2258    if (!CI.hasArg())
2259      continue;
2260
2261    if (CI.isIndirect) {
2262      const Value *Arg = Call.getArgOperand(ArgNo);
2263      Check(Arg->getType()->isPointerTy(),
2264            "Operand for indirect constraint must have pointer type", &Call);
2265
2266      Check(Call.getParamElementType(ArgNo),
2267            "Operand for indirect constraint must have elementtype attribute",
2268            &Call);
2269    } else {
2270      Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2271            "Elementtype attribute can only be applied for indirect "
2272            "constraints",
2273            &Call);
2274    }
2275
2276    ArgNo++;
2277  }
2278
2279  if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2280    Check(LabelNo == CallBr->getNumIndirectDests(),
2281          "Number of label constraints does not match number of callbr dests",
2282          &Call);
2283  } else {
2284    Check(LabelNo == 0, "Label constraints can only be used with callbr",
2285          &Call);
2286  }
2287}
2288
2289/// Verify that statepoint intrinsic is well formed.
2290void Verifier::verifyStatepoint(const CallBase &Call) {
2291  assert(Call.getCalledFunction() &&
2292         Call.getCalledFunction()->getIntrinsicID() ==
2293             Intrinsic::experimental_gc_statepoint);
2294
2295  Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2296            !Call.onlyAccessesArgMemory(),
2297        "gc.statepoint must read and write all memory to preserve "
2298        "reordering restrictions required by safepoint semantics",
2299        Call);
2300
2301  const int64_t NumPatchBytes =
2302      cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2303  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2304  Check(NumPatchBytes >= 0,
2305        "gc.statepoint number of patchable bytes must be "
2306        "positive",
2307        Call);
2308
2309  Type *TargetElemType = Call.getParamElementType(2);
2310  Check(TargetElemType,
2311        "gc.statepoint callee argument must have elementtype attribute", Call);
2312  FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2313  Check(TargetFuncType,
2314        "gc.statepoint callee elementtype must be function type", Call);
2315
2316  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2317  Check(NumCallArgs >= 0,
2318        "gc.statepoint number of arguments to underlying call "
2319        "must be positive",
2320        Call);
2321  const int NumParams = (int)TargetFuncType->getNumParams();
2322  if (TargetFuncType->isVarArg()) {
2323    Check(NumCallArgs >= NumParams,
2324          "gc.statepoint mismatch in number of vararg call args", Call);
2325
2326    // TODO: Remove this limitation
2327    Check(TargetFuncType->getReturnType()->isVoidTy(),
2328          "gc.statepoint doesn't support wrapping non-void "
2329          "vararg functions yet",
2330          Call);
2331  } else
2332    Check(NumCallArgs == NumParams,
2333          "gc.statepoint mismatch in number of call args", Call);
2334
2335  const uint64_t Flags
2336    = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2337  Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2338        "unknown flag used in gc.statepoint flags argument", Call);
2339
2340  // Verify that the types of the call parameter arguments match
2341  // the type of the wrapped callee.
2342  AttributeList Attrs = Call.getAttributes();
2343  for (int i = 0; i < NumParams; i++) {
2344    Type *ParamType = TargetFuncType->getParamType(i);
2345    Type *ArgType = Call.getArgOperand(5 + i)->getType();
2346    Check(ArgType == ParamType,
2347          "gc.statepoint call argument does not match wrapped "
2348          "function type",
2349          Call);
2350
2351    if (TargetFuncType->isVarArg()) {
2352      AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2353      Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2354            "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2355    }
2356  }
2357
2358  const int EndCallArgsInx = 4 + NumCallArgs;
2359
2360  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2361  Check(isa<ConstantInt>(NumTransitionArgsV),
2362        "gc.statepoint number of transition arguments "
2363        "must be constant integer",
2364        Call);
2365  const int NumTransitionArgs =
2366      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2367  Check(NumTransitionArgs == 0,
2368        "gc.statepoint w/inline transition bundle is deprecated", Call);
2369  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2370
2371  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2372  Check(isa<ConstantInt>(NumDeoptArgsV),
2373        "gc.statepoint number of deoptimization arguments "
2374        "must be constant integer",
2375        Call);
2376  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2377  Check(NumDeoptArgs == 0,
2378        "gc.statepoint w/inline deopt operands is deprecated", Call);
2379
2380  const int ExpectedNumArgs = 7 + NumCallArgs;
2381  Check(ExpectedNumArgs == (int)Call.arg_size(),
2382        "gc.statepoint too many arguments", Call);
2383
2384  // Check that the only uses of this gc.statepoint are gc.result or
2385  // gc.relocate calls which are tied to this statepoint and thus part
2386  // of the same statepoint sequence
2387  for (const User *U : Call.users()) {
2388    const CallInst *UserCall = dyn_cast<const CallInst>(U);
2389    Check(UserCall, "illegal use of statepoint token", Call, U);
2390    if (!UserCall)
2391      continue;
2392    Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2393          "gc.result or gc.relocate are the only value uses "
2394          "of a gc.statepoint",
2395          Call, U);
2396    if (isa<GCResultInst>(UserCall)) {
2397      Check(UserCall->getArgOperand(0) == &Call,
2398            "gc.result connected to wrong gc.statepoint", Call, UserCall);
2399    } else if (isa<GCRelocateInst>(Call)) {
2400      Check(UserCall->getArgOperand(0) == &Call,
2401            "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2402    }
2403  }
2404
2405  // Note: It is legal for a single derived pointer to be listed multiple
2406  // times.  It's non-optimal, but it is legal.  It can also happen after
2407  // insertion if we strip a bitcast away.
2408  // Note: It is really tempting to check that each base is relocated and
2409  // that a derived pointer is never reused as a base pointer.  This turns
2410  // out to be problematic since optimizations run after safepoint insertion
2411  // can recognize equality properties that the insertion logic doesn't know
2412  // about.  See example statepoint.ll in the verifier subdirectory
2413}
2414
2415void Verifier::verifyFrameRecoverIndices() {
2416  for (auto &Counts : FrameEscapeInfo) {
2417    Function *F = Counts.first;
2418    unsigned EscapedObjectCount = Counts.second.first;
2419    unsigned MaxRecoveredIndex = Counts.second.second;
2420    Check(MaxRecoveredIndex <= EscapedObjectCount,
2421          "all indices passed to llvm.localrecover must be less than the "
2422          "number of arguments passed to llvm.localescape in the parent "
2423          "function",
2424          F);
2425  }
2426}
2427
2428static Instruction *getSuccPad(Instruction *Terminator) {
2429  BasicBlock *UnwindDest;
2430  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2431    UnwindDest = II->getUnwindDest();
2432  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2433    UnwindDest = CSI->getUnwindDest();
2434  else
2435    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2436  return UnwindDest->getFirstNonPHI();
2437}
2438
2439void Verifier::verifySiblingFuncletUnwinds() {
2440  SmallPtrSet<Instruction *, 8> Visited;
2441  SmallPtrSet<Instruction *, 8> Active;
2442  for (const auto &Pair : SiblingFuncletInfo) {
2443    Instruction *PredPad = Pair.first;
2444    if (Visited.count(PredPad))
2445      continue;
2446    Active.insert(PredPad);
2447    Instruction *Terminator = Pair.second;
2448    do {
2449      Instruction *SuccPad = getSuccPad(Terminator);
2450      if (Active.count(SuccPad)) {
2451        // Found a cycle; report error
2452        Instruction *CyclePad = SuccPad;
2453        SmallVector<Instruction *, 8> CycleNodes;
2454        do {
2455          CycleNodes.push_back(CyclePad);
2456          Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2457          if (CycleTerminator != CyclePad)
2458            CycleNodes.push_back(CycleTerminator);
2459          CyclePad = getSuccPad(CycleTerminator);
2460        } while (CyclePad != SuccPad);
2461        Check(false, "EH pads can't handle each other's exceptions",
2462              ArrayRef<Instruction *>(CycleNodes));
2463      }
2464      // Don't re-walk a node we've already checked
2465      if (!Visited.insert(SuccPad).second)
2466        break;
2467      // Walk to this successor if it has a map entry.
2468      PredPad = SuccPad;
2469      auto TermI = SiblingFuncletInfo.find(PredPad);
2470      if (TermI == SiblingFuncletInfo.end())
2471        break;
2472      Terminator = TermI->second;
2473      Active.insert(PredPad);
2474    } while (true);
2475    // Each node only has one successor, so we've walked all the active
2476    // nodes' successors.
2477    Active.clear();
2478  }
2479}
2480
2481// visitFunction - Verify that a function is ok.
2482//
2483void Verifier::visitFunction(const Function &F) {
2484  visitGlobalValue(F);
2485
2486  // Check function arguments.
2487  FunctionType *FT = F.getFunctionType();
2488  unsigned NumArgs = F.arg_size();
2489
2490  Check(&Context == &F.getContext(),
2491        "Function context does not match Module context!", &F);
2492
2493  Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2494  Check(FT->getNumParams() == NumArgs,
2495        "# formal arguments must match # of arguments for function type!", &F,
2496        FT);
2497  Check(F.getReturnType()->isFirstClassType() ||
2498            F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2499        "Functions cannot return aggregate values!", &F);
2500
2501  Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2502        "Invalid struct return type!", &F);
2503
2504  AttributeList Attrs = F.getAttributes();
2505
2506  Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2507        "Attribute after last parameter!", &F);
2508
2509  bool IsIntrinsic = F.isIntrinsic();
2510
2511  // Check function attributes.
2512  verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2513
2514  // On function declarations/definitions, we do not support the builtin
2515  // attribute. We do not check this in VerifyFunctionAttrs since that is
2516  // checking for Attributes that can/can not ever be on functions.
2517  Check(!Attrs.hasFnAttr(Attribute::Builtin),
2518        "Attribute 'builtin' can only be applied to a callsite.", &F);
2519
2520  Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2521        "Attribute 'elementtype' can only be applied to a callsite.", &F);
2522
2523  // Check that this function meets the restrictions on this calling convention.
2524  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2525  // restrictions can be lifted.
2526  switch (F.getCallingConv()) {
2527  default:
2528  case CallingConv::C:
2529    break;
2530  case CallingConv::X86_INTR: {
2531    Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2532          "Calling convention parameter requires byval", &F);
2533    break;
2534  }
2535  case CallingConv::AMDGPU_KERNEL:
2536  case CallingConv::SPIR_KERNEL:
2537    Check(F.getReturnType()->isVoidTy(),
2538          "Calling convention requires void return type", &F);
2539    [[fallthrough]];
2540  case CallingConv::AMDGPU_VS:
2541  case CallingConv::AMDGPU_HS:
2542  case CallingConv::AMDGPU_GS:
2543  case CallingConv::AMDGPU_PS:
2544  case CallingConv::AMDGPU_CS:
2545    Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2546    if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2547      const unsigned StackAS = DL.getAllocaAddrSpace();
2548      unsigned i = 0;
2549      for (const Argument &Arg : F.args()) {
2550        Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2551              "Calling convention disallows byval", &F);
2552        Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2553              "Calling convention disallows preallocated", &F);
2554        Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2555              "Calling convention disallows inalloca", &F);
2556
2557        if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2558          // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2559          // value here.
2560          Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2561                "Calling convention disallows stack byref", &F);
2562        }
2563
2564        ++i;
2565      }
2566    }
2567
2568    [[fallthrough]];
2569  case CallingConv::Fast:
2570  case CallingConv::Cold:
2571  case CallingConv::Intel_OCL_BI:
2572  case CallingConv::PTX_Kernel:
2573  case CallingConv::PTX_Device:
2574    Check(!F.isVarArg(),
2575          "Calling convention does not support varargs or "
2576          "perfect forwarding!",
2577          &F);
2578    break;
2579  }
2580
2581  // Check that the argument values match the function type for this function...
2582  unsigned i = 0;
2583  for (const Argument &Arg : F.args()) {
2584    Check(Arg.getType() == FT->getParamType(i),
2585          "Argument value does not match function argument type!", &Arg,
2586          FT->getParamType(i));
2587    Check(Arg.getType()->isFirstClassType(),
2588          "Function arguments must have first-class types!", &Arg);
2589    if (!IsIntrinsic) {
2590      Check(!Arg.getType()->isMetadataTy(),
2591            "Function takes metadata but isn't an intrinsic", &Arg, &F);
2592      Check(!Arg.getType()->isTokenTy(),
2593            "Function takes token but isn't an intrinsic", &Arg, &F);
2594      Check(!Arg.getType()->isX86_AMXTy(),
2595            "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2596    }
2597
2598    // Check that swifterror argument is only used by loads and stores.
2599    if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2600      verifySwiftErrorValue(&Arg);
2601    }
2602    ++i;
2603  }
2604
2605  if (!IsIntrinsic) {
2606    Check(!F.getReturnType()->isTokenTy(),
2607          "Function returns a token but isn't an intrinsic", &F);
2608    Check(!F.getReturnType()->isX86_AMXTy(),
2609          "Function returns a x86_amx but isn't an intrinsic", &F);
2610  }
2611
2612  // Get the function metadata attachments.
2613  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2614  F.getAllMetadata(MDs);
2615  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2616  verifyFunctionMetadata(MDs);
2617
2618  // Check validity of the personality function
2619  if (F.hasPersonalityFn()) {
2620    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2621    if (Per)
2622      Check(Per->getParent() == F.getParent(),
2623            "Referencing personality function in another module!", &F,
2624            F.getParent(), Per, Per->getParent());
2625  }
2626
2627  if (F.isMaterializable()) {
2628    // Function has a body somewhere we can't see.
2629    Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2630          MDs.empty() ? nullptr : MDs.front().second);
2631  } else if (F.isDeclaration()) {
2632    for (const auto &I : MDs) {
2633      // This is used for call site debug information.
2634      CheckDI(I.first != LLVMContext::MD_dbg ||
2635                  !cast<DISubprogram>(I.second)->isDistinct(),
2636              "function declaration may only have a unique !dbg attachment",
2637              &F);
2638      Check(I.first != LLVMContext::MD_prof,
2639            "function declaration may not have a !prof attachment", &F);
2640
2641      // Verify the metadata itself.
2642      visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2643    }
2644    Check(!F.hasPersonalityFn(),
2645          "Function declaration shouldn't have a personality routine", &F);
2646  } else {
2647    // Verify that this function (which has a body) is not named "llvm.*".  It
2648    // is not legal to define intrinsics.
2649    Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2650
2651    // Check the entry node
2652    const BasicBlock *Entry = &F.getEntryBlock();
2653    Check(pred_empty(Entry),
2654          "Entry block to function must not have predecessors!", Entry);
2655
2656    // The address of the entry block cannot be taken, unless it is dead.
2657    if (Entry->hasAddressTaken()) {
2658      Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2659            "blockaddress may not be used with the entry block!", Entry);
2660    }
2661
2662    unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2663             NumKCFIAttachments = 0;
2664    // Visit metadata attachments.
2665    for (const auto &I : MDs) {
2666      // Verify that the attachment is legal.
2667      auto AllowLocs = AreDebugLocsAllowed::No;
2668      switch (I.first) {
2669      default:
2670        break;
2671      case LLVMContext::MD_dbg: {
2672        ++NumDebugAttachments;
2673        CheckDI(NumDebugAttachments == 1,
2674                "function must have a single !dbg attachment", &F, I.second);
2675        CheckDI(isa<DISubprogram>(I.second),
2676                "function !dbg attachment must be a subprogram", &F, I.second);
2677        CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2678                "function definition may only have a distinct !dbg attachment",
2679                &F);
2680
2681        auto *SP = cast<DISubprogram>(I.second);
2682        const Function *&AttachedTo = DISubprogramAttachments[SP];
2683        CheckDI(!AttachedTo || AttachedTo == &F,
2684                "DISubprogram attached to more than one function", SP, &F);
2685        AttachedTo = &F;
2686        AllowLocs = AreDebugLocsAllowed::Yes;
2687        break;
2688      }
2689      case LLVMContext::MD_prof:
2690        ++NumProfAttachments;
2691        Check(NumProfAttachments == 1,
2692              "function must have a single !prof attachment", &F, I.second);
2693        break;
2694      case LLVMContext::MD_kcfi_type:
2695        ++NumKCFIAttachments;
2696        Check(NumKCFIAttachments == 1,
2697              "function must have a single !kcfi_type attachment", &F,
2698              I.second);
2699        break;
2700      }
2701
2702      // Verify the metadata itself.
2703      visitMDNode(*I.second, AllowLocs);
2704    }
2705  }
2706
2707  // If this function is actually an intrinsic, verify that it is only used in
2708  // direct call/invokes, never having its "address taken".
2709  // Only do this if the module is materialized, otherwise we don't have all the
2710  // uses.
2711  if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2712    const User *U;
2713    if (F.hasAddressTaken(&U, false, true, false,
2714                          /*IgnoreARCAttachedCall=*/true))
2715      Check(false, "Invalid user of intrinsic instruction!", U);
2716  }
2717
2718  // Check intrinsics' signatures.
2719  switch (F.getIntrinsicID()) {
2720  case Intrinsic::experimental_gc_get_pointer_base: {
2721    FunctionType *FT = F.getFunctionType();
2722    Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2723    Check(isa<PointerType>(F.getReturnType()),
2724          "gc.get.pointer.base must return a pointer", F);
2725    Check(FT->getParamType(0) == F.getReturnType(),
2726          "gc.get.pointer.base operand and result must be of the same type", F);
2727    break;
2728  }
2729  case Intrinsic::experimental_gc_get_pointer_offset: {
2730    FunctionType *FT = F.getFunctionType();
2731    Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2732    Check(isa<PointerType>(FT->getParamType(0)),
2733          "gc.get.pointer.offset operand must be a pointer", F);
2734    Check(F.getReturnType()->isIntegerTy(),
2735          "gc.get.pointer.offset must return integer", F);
2736    break;
2737  }
2738  }
2739
2740  auto *N = F.getSubprogram();
2741  HasDebugInfo = (N != nullptr);
2742  if (!HasDebugInfo)
2743    return;
2744
2745  // Check that all !dbg attachments lead to back to N.
2746  //
2747  // FIXME: Check this incrementally while visiting !dbg attachments.
2748  // FIXME: Only check when N is the canonical subprogram for F.
2749  SmallPtrSet<const MDNode *, 32> Seen;
2750  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2751    // Be careful about using DILocation here since we might be dealing with
2752    // broken code (this is the Verifier after all).
2753    const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2754    if (!DL)
2755      return;
2756    if (!Seen.insert(DL).second)
2757      return;
2758
2759    Metadata *Parent = DL->getRawScope();
2760    CheckDI(Parent && isa<DILocalScope>(Parent),
2761            "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2762
2763    DILocalScope *Scope = DL->getInlinedAtScope();
2764    Check(Scope, "Failed to find DILocalScope", DL);
2765
2766    if (!Seen.insert(Scope).second)
2767      return;
2768
2769    DISubprogram *SP = Scope->getSubprogram();
2770
2771    // Scope and SP could be the same MDNode and we don't want to skip
2772    // validation in that case
2773    if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2774      return;
2775
2776    CheckDI(SP->describes(&F),
2777            "!dbg attachment points at wrong subprogram for function", N, &F,
2778            &I, DL, Scope, SP);
2779  };
2780  for (auto &BB : F)
2781    for (auto &I : BB) {
2782      VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2783      // The llvm.loop annotations also contain two DILocations.
2784      if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2785        for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2786          VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2787      if (BrokenDebugInfo)
2788        return;
2789    }
2790}
2791
2792// verifyBasicBlock - Verify that a basic block is well formed...
2793//
2794void Verifier::visitBasicBlock(BasicBlock &BB) {
2795  InstsInThisBlock.clear();
2796
2797  // Ensure that basic blocks have terminators!
2798  Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2799
2800  // Check constraints that this basic block imposes on all of the PHI nodes in
2801  // it.
2802  if (isa<PHINode>(BB.front())) {
2803    SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2804    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2805    llvm::sort(Preds);
2806    for (const PHINode &PN : BB.phis()) {
2807      Check(PN.getNumIncomingValues() == Preds.size(),
2808            "PHINode should have one entry for each predecessor of its "
2809            "parent basic block!",
2810            &PN);
2811
2812      // Get and sort all incoming values in the PHI node...
2813      Values.clear();
2814      Values.reserve(PN.getNumIncomingValues());
2815      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2816        Values.push_back(
2817            std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2818      llvm::sort(Values);
2819
2820      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2821        // Check to make sure that if there is more than one entry for a
2822        // particular basic block in this PHI node, that the incoming values are
2823        // all identical.
2824        //
2825        Check(i == 0 || Values[i].first != Values[i - 1].first ||
2826                  Values[i].second == Values[i - 1].second,
2827              "PHI node has multiple entries for the same basic block with "
2828              "different incoming values!",
2829              &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2830
2831        // Check to make sure that the predecessors and PHI node entries are
2832        // matched up.
2833        Check(Values[i].first == Preds[i],
2834              "PHI node entries do not match predecessors!", &PN,
2835              Values[i].first, Preds[i]);
2836      }
2837    }
2838  }
2839
2840  // Check that all instructions have their parent pointers set up correctly.
2841  for (auto &I : BB)
2842  {
2843    Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2844  }
2845}
2846
2847void Verifier::visitTerminator(Instruction &I) {
2848  // Ensure that terminators only exist at the end of the basic block.
2849  Check(&I == I.getParent()->getTerminator(),
2850        "Terminator found in the middle of a basic block!", I.getParent());
2851  visitInstruction(I);
2852}
2853
2854void Verifier::visitBranchInst(BranchInst &BI) {
2855  if (BI.isConditional()) {
2856    Check(BI.getCondition()->getType()->isIntegerTy(1),
2857          "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2858  }
2859  visitTerminator(BI);
2860}
2861
2862void Verifier::visitReturnInst(ReturnInst &RI) {
2863  Function *F = RI.getParent()->getParent();
2864  unsigned N = RI.getNumOperands();
2865  if (F->getReturnType()->isVoidTy())
2866    Check(N == 0,
2867          "Found return instr that returns non-void in Function of void "
2868          "return type!",
2869          &RI, F->getReturnType());
2870  else
2871    Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2872          "Function return type does not match operand "
2873          "type of return inst!",
2874          &RI, F->getReturnType());
2875
2876  // Check to make sure that the return value has necessary properties for
2877  // terminators...
2878  visitTerminator(RI);
2879}
2880
2881void Verifier::visitSwitchInst(SwitchInst &SI) {
2882  Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2883  // Check to make sure that all of the constants in the switch instruction
2884  // have the same type as the switched-on value.
2885  Type *SwitchTy = SI.getCondition()->getType();
2886  SmallPtrSet<ConstantInt*, 32> Constants;
2887  for (auto &Case : SI.cases()) {
2888    Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
2889          "Case value is not a constant integer.", &SI);
2890    Check(Case.getCaseValue()->getType() == SwitchTy,
2891          "Switch constants must all be same type as switch value!", &SI);
2892    Check(Constants.insert(Case.getCaseValue()).second,
2893          "Duplicate integer as switch case", &SI, Case.getCaseValue());
2894  }
2895
2896  visitTerminator(SI);
2897}
2898
2899void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2900  Check(BI.getAddress()->getType()->isPointerTy(),
2901        "Indirectbr operand must have pointer type!", &BI);
2902  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2903    Check(BI.getDestination(i)->getType()->isLabelTy(),
2904          "Indirectbr destinations must all have pointer type!", &BI);
2905
2906  visitTerminator(BI);
2907}
2908
2909void Verifier::visitCallBrInst(CallBrInst &CBI) {
2910  Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
2911  const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2912  Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2913
2914  verifyInlineAsmCall(CBI);
2915  visitTerminator(CBI);
2916}
2917
2918void Verifier::visitSelectInst(SelectInst &SI) {
2919  Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2920                                        SI.getOperand(2)),
2921        "Invalid operands for select instruction!", &SI);
2922
2923  Check(SI.getTrueValue()->getType() == SI.getType(),
2924        "Select values must have same type as select instruction!", &SI);
2925  visitInstruction(SI);
2926}
2927
2928/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2929/// a pass, if any exist, it's an error.
2930///
2931void Verifier::visitUserOp1(Instruction &I) {
2932  Check(false, "User-defined operators should not live outside of a pass!", &I);
2933}
2934
2935void Verifier::visitTruncInst(TruncInst &I) {
2936  // Get the source and destination types
2937  Type *SrcTy = I.getOperand(0)->getType();
2938  Type *DestTy = I.getType();
2939
2940  // Get the size of the types in bits, we'll need this later
2941  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2942  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2943
2944  Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2945  Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2946  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2947        "trunc source and destination must both be a vector or neither", &I);
2948  Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2949
2950  visitInstruction(I);
2951}
2952
2953void Verifier::visitZExtInst(ZExtInst &I) {
2954  // Get the source and destination types
2955  Type *SrcTy = I.getOperand(0)->getType();
2956  Type *DestTy = I.getType();
2957
2958  // Get the size of the types in bits, we'll need this later
2959  Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2960  Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2961  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2962        "zext source and destination must both be a vector or neither", &I);
2963  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2964  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2965
2966  Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2967
2968  visitInstruction(I);
2969}
2970
2971void Verifier::visitSExtInst(SExtInst &I) {
2972  // Get the source and destination types
2973  Type *SrcTy = I.getOperand(0)->getType();
2974  Type *DestTy = I.getType();
2975
2976  // Get the size of the types in bits, we'll need this later
2977  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2978  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2979
2980  Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2981  Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2982  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2983        "sext source and destination must both be a vector or neither", &I);
2984  Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2985
2986  visitInstruction(I);
2987}
2988
2989void Verifier::visitFPTruncInst(FPTruncInst &I) {
2990  // Get the source and destination types
2991  Type *SrcTy = I.getOperand(0)->getType();
2992  Type *DestTy = I.getType();
2993  // Get the size of the types in bits, we'll need this later
2994  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2995  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2996
2997  Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2998  Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2999  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3000        "fptrunc source and destination must both be a vector or neither", &I);
3001  Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3002
3003  visitInstruction(I);
3004}
3005
3006void Verifier::visitFPExtInst(FPExtInst &I) {
3007  // Get the source and destination types
3008  Type *SrcTy = I.getOperand(0)->getType();
3009  Type *DestTy = I.getType();
3010
3011  // Get the size of the types in bits, we'll need this later
3012  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3013  unsigned DestBitSize = DestTy->getScalarSizeInBits();
3014
3015  Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3016  Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3017  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3018        "fpext source and destination must both be a vector or neither", &I);
3019  Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3020
3021  visitInstruction(I);
3022}
3023
3024void Verifier::visitUIToFPInst(UIToFPInst &I) {
3025  // Get the source and destination types
3026  Type *SrcTy = I.getOperand(0)->getType();
3027  Type *DestTy = I.getType();
3028
3029  bool SrcVec = SrcTy->isVectorTy();
3030  bool DstVec = DestTy->isVectorTy();
3031
3032  Check(SrcVec == DstVec,
3033        "UIToFP source and dest must both be vector or scalar", &I);
3034  Check(SrcTy->isIntOrIntVectorTy(),
3035        "UIToFP source must be integer or integer vector", &I);
3036  Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3037        &I);
3038
3039  if (SrcVec && DstVec)
3040    Check(cast<VectorType>(SrcTy)->getElementCount() ==
3041              cast<VectorType>(DestTy)->getElementCount(),
3042          "UIToFP source and dest vector length mismatch", &I);
3043
3044  visitInstruction(I);
3045}
3046
3047void Verifier::visitSIToFPInst(SIToFPInst &I) {
3048  // Get the source and destination types
3049  Type *SrcTy = I.getOperand(0)->getType();
3050  Type *DestTy = I.getType();
3051
3052  bool SrcVec = SrcTy->isVectorTy();
3053  bool DstVec = DestTy->isVectorTy();
3054
3055  Check(SrcVec == DstVec,
3056        "SIToFP source and dest must both be vector or scalar", &I);
3057  Check(SrcTy->isIntOrIntVectorTy(),
3058        "SIToFP source must be integer or integer vector", &I);
3059  Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3060        &I);
3061
3062  if (SrcVec && DstVec)
3063    Check(cast<VectorType>(SrcTy)->getElementCount() ==
3064              cast<VectorType>(DestTy)->getElementCount(),
3065          "SIToFP source and dest vector length mismatch", &I);
3066
3067  visitInstruction(I);
3068}
3069
3070void Verifier::visitFPToUIInst(FPToUIInst &I) {
3071  // Get the source and destination types
3072  Type *SrcTy = I.getOperand(0)->getType();
3073  Type *DestTy = I.getType();
3074
3075  bool SrcVec = SrcTy->isVectorTy();
3076  bool DstVec = DestTy->isVectorTy();
3077
3078  Check(SrcVec == DstVec,
3079        "FPToUI source and dest must both be vector or scalar", &I);
3080  Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3081  Check(DestTy->isIntOrIntVectorTy(),
3082        "FPToUI result must be integer or integer vector", &I);
3083
3084  if (SrcVec && DstVec)
3085    Check(cast<VectorType>(SrcTy)->getElementCount() ==
3086              cast<VectorType>(DestTy)->getElementCount(),
3087          "FPToUI source and dest vector length mismatch", &I);
3088
3089  visitInstruction(I);
3090}
3091
3092void Verifier::visitFPToSIInst(FPToSIInst &I) {
3093  // Get the source and destination types
3094  Type *SrcTy = I.getOperand(0)->getType();
3095  Type *DestTy = I.getType();
3096
3097  bool SrcVec = SrcTy->isVectorTy();
3098  bool DstVec = DestTy->isVectorTy();
3099
3100  Check(SrcVec == DstVec,
3101        "FPToSI source and dest must both be vector or scalar", &I);
3102  Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3103  Check(DestTy->isIntOrIntVectorTy(),
3104        "FPToSI result must be integer or integer vector", &I);
3105
3106  if (SrcVec && DstVec)
3107    Check(cast<VectorType>(SrcTy)->getElementCount() ==
3108              cast<VectorType>(DestTy)->getElementCount(),
3109          "FPToSI source and dest vector length mismatch", &I);
3110
3111  visitInstruction(I);
3112}
3113
3114void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3115  // Get the source and destination types
3116  Type *SrcTy = I.getOperand(0)->getType();
3117  Type *DestTy = I.getType();
3118
3119  Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3120
3121  Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3122  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3123        &I);
3124
3125  if (SrcTy->isVectorTy()) {
3126    auto *VSrc = cast<VectorType>(SrcTy);
3127    auto *VDest = cast<VectorType>(DestTy);
3128    Check(VSrc->getElementCount() == VDest->getElementCount(),
3129          "PtrToInt Vector width mismatch", &I);
3130  }
3131
3132  visitInstruction(I);
3133}
3134
3135void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3136  // Get the source and destination types
3137  Type *SrcTy = I.getOperand(0)->getType();
3138  Type *DestTy = I.getType();
3139
3140  Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3141  Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3142
3143  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3144        &I);
3145  if (SrcTy->isVectorTy()) {
3146    auto *VSrc = cast<VectorType>(SrcTy);
3147    auto *VDest = cast<VectorType>(DestTy);
3148    Check(VSrc->getElementCount() == VDest->getElementCount(),
3149          "IntToPtr Vector width mismatch", &I);
3150  }
3151  visitInstruction(I);
3152}
3153
3154void Verifier::visitBitCastInst(BitCastInst &I) {
3155  Check(
3156      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3157      "Invalid bitcast", &I);
3158  visitInstruction(I);
3159}
3160
3161void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3162  Type *SrcTy = I.getOperand(0)->getType();
3163  Type *DestTy = I.getType();
3164
3165  Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3166        &I);
3167  Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3168        &I);
3169  Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3170        "AddrSpaceCast must be between different address spaces", &I);
3171  if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3172    Check(SrcVTy->getElementCount() ==
3173              cast<VectorType>(DestTy)->getElementCount(),
3174          "AddrSpaceCast vector pointer number of elements mismatch", &I);
3175  visitInstruction(I);
3176}
3177
3178/// visitPHINode - Ensure that a PHI node is well formed.
3179///
3180void Verifier::visitPHINode(PHINode &PN) {
3181  // Ensure that the PHI nodes are all grouped together at the top of the block.
3182  // This can be tested by checking whether the instruction before this is
3183  // either nonexistent (because this is begin()) or is a PHI node.  If not,
3184  // then there is some other instruction before a PHI.
3185  Check(&PN == &PN.getParent()->front() ||
3186            isa<PHINode>(--BasicBlock::iterator(&PN)),
3187        "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3188
3189  // Check that a PHI doesn't yield a Token.
3190  Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3191
3192  // Check that all of the values of the PHI node have the same type as the
3193  // result, and that the incoming blocks are really basic blocks.
3194  for (Value *IncValue : PN.incoming_values()) {
3195    Check(PN.getType() == IncValue->getType(),
3196          "PHI node operands are not the same type as the result!", &PN);
3197  }
3198
3199  // All other PHI node constraints are checked in the visitBasicBlock method.
3200
3201  visitInstruction(PN);
3202}
3203
3204void Verifier::visitCallBase(CallBase &Call) {
3205  Check(Call.getCalledOperand()->getType()->isPointerTy(),
3206        "Called function must be a pointer!", Call);
3207  PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3208
3209  Check(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3210        "Called function is not the same type as the call!", Call);
3211
3212  FunctionType *FTy = Call.getFunctionType();
3213
3214  // Verify that the correct number of arguments are being passed
3215  if (FTy->isVarArg())
3216    Check(Call.arg_size() >= FTy->getNumParams(),
3217          "Called function requires more parameters than were provided!", Call);
3218  else
3219    Check(Call.arg_size() == FTy->getNumParams(),
3220          "Incorrect number of arguments passed to called function!", Call);
3221
3222  // Verify that all arguments to the call match the function type.
3223  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3224    Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3225          "Call parameter type does not match function signature!",
3226          Call.getArgOperand(i), FTy->getParamType(i), Call);
3227
3228  AttributeList Attrs = Call.getAttributes();
3229
3230  Check(verifyAttributeCount(Attrs, Call.arg_size()),
3231        "Attribute after last parameter!", Call);
3232
3233  Function *Callee =
3234      dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3235  bool IsIntrinsic = Callee && Callee->isIntrinsic();
3236  if (IsIntrinsic)
3237    Check(Callee->getValueType() == FTy,
3238          "Intrinsic called with incompatible signature", Call);
3239
3240  auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3241    if (!Ty->isSized())
3242      return;
3243    Align ABIAlign = DL.getABITypeAlign(Ty);
3244    Align MaxAlign(ParamMaxAlignment);
3245    Check(ABIAlign <= MaxAlign,
3246          "Incorrect alignment of " + Message + " to called function!", Call);
3247  };
3248
3249  if (!IsIntrinsic) {
3250    VerifyTypeAlign(FTy->getReturnType(), "return type");
3251    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3252      Type *Ty = FTy->getParamType(i);
3253      VerifyTypeAlign(Ty, "argument passed");
3254    }
3255  }
3256
3257  if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3258    // Don't allow speculatable on call sites, unless the underlying function
3259    // declaration is also speculatable.
3260    Check(Callee && Callee->isSpeculatable(),
3261          "speculatable attribute may not apply to call sites", Call);
3262  }
3263
3264  if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3265    Check(Call.getCalledFunction()->getIntrinsicID() ==
3266              Intrinsic::call_preallocated_arg,
3267          "preallocated as a call site attribute can only be on "
3268          "llvm.call.preallocated.arg");
3269  }
3270
3271  // Verify call attributes.
3272  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3273
3274  // Conservatively check the inalloca argument.
3275  // We have a bug if we can find that there is an underlying alloca without
3276  // inalloca.
3277  if (Call.hasInAllocaArgument()) {
3278    Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3279    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3280      Check(AI->isUsedWithInAlloca(),
3281            "inalloca argument for call has mismatched alloca", AI, Call);
3282  }
3283
3284  // For each argument of the callsite, if it has the swifterror argument,
3285  // make sure the underlying alloca/parameter it comes from has a swifterror as
3286  // well.
3287  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3288    if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3289      Value *SwiftErrorArg = Call.getArgOperand(i);
3290      if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3291        Check(AI->isSwiftError(),
3292              "swifterror argument for call has mismatched alloca", AI, Call);
3293        continue;
3294      }
3295      auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3296      Check(ArgI, "swifterror argument should come from an alloca or parameter",
3297            SwiftErrorArg, Call);
3298      Check(ArgI->hasSwiftErrorAttr(),
3299            "swifterror argument for call has mismatched parameter", ArgI,
3300            Call);
3301    }
3302
3303    if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3304      // Don't allow immarg on call sites, unless the underlying declaration
3305      // also has the matching immarg.
3306      Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3307            "immarg may not apply only to call sites", Call.getArgOperand(i),
3308            Call);
3309    }
3310
3311    if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3312      Value *ArgVal = Call.getArgOperand(i);
3313      Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3314            "immarg operand has non-immediate parameter", ArgVal, Call);
3315    }
3316
3317    if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3318      Value *ArgVal = Call.getArgOperand(i);
3319      bool hasOB =
3320          Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3321      bool isMustTail = Call.isMustTailCall();
3322      Check(hasOB != isMustTail,
3323            "preallocated operand either requires a preallocated bundle or "
3324            "the call to be musttail (but not both)",
3325            ArgVal, Call);
3326    }
3327  }
3328
3329  if (FTy->isVarArg()) {
3330    // FIXME? is 'nest' even legal here?
3331    bool SawNest = false;
3332    bool SawReturned = false;
3333
3334    for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3335      if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3336        SawNest = true;
3337      if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3338        SawReturned = true;
3339    }
3340
3341    // Check attributes on the varargs part.
3342    for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3343      Type *Ty = Call.getArgOperand(Idx)->getType();
3344      AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3345      verifyParameterAttrs(ArgAttrs, Ty, &Call);
3346
3347      if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3348        Check(!SawNest, "More than one parameter has attribute nest!", Call);
3349        SawNest = true;
3350      }
3351
3352      if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3353        Check(!SawReturned, "More than one parameter has attribute returned!",
3354              Call);
3355        Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3356              "Incompatible argument and return types for 'returned' "
3357              "attribute",
3358              Call);
3359        SawReturned = true;
3360      }
3361
3362      // Statepoint intrinsic is vararg but the wrapped function may be not.
3363      // Allow sret here and check the wrapped function in verifyStatepoint.
3364      if (!Call.getCalledFunction() ||
3365          Call.getCalledFunction()->getIntrinsicID() !=
3366              Intrinsic::experimental_gc_statepoint)
3367        Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3368              "Attribute 'sret' cannot be used for vararg call arguments!",
3369              Call);
3370
3371      if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3372        Check(Idx == Call.arg_size() - 1,
3373              "inalloca isn't on the last argument!", Call);
3374    }
3375  }
3376
3377  // Verify that there's no metadata unless it's a direct call to an intrinsic.
3378  if (!IsIntrinsic) {
3379    for (Type *ParamTy : FTy->params()) {
3380      Check(!ParamTy->isMetadataTy(),
3381            "Function has metadata parameter but isn't an intrinsic", Call);
3382      Check(!ParamTy->isTokenTy(),
3383            "Function has token parameter but isn't an intrinsic", Call);
3384    }
3385  }
3386
3387  // Verify that indirect calls don't return tokens.
3388  if (!Call.getCalledFunction()) {
3389    Check(!FTy->getReturnType()->isTokenTy(),
3390          "Return type cannot be token for indirect call!");
3391    Check(!FTy->getReturnType()->isX86_AMXTy(),
3392          "Return type cannot be x86_amx for indirect call!");
3393  }
3394
3395  if (Function *F = Call.getCalledFunction())
3396    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3397      visitIntrinsicCall(ID, Call);
3398
3399  // Verify that a callsite has at most one "deopt", at most one "funclet", at
3400  // most one "gc-transition", at most one "cfguardtarget", at most one
3401  // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3402  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3403       FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3404       FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3405       FoundPtrauthBundle = false, FoundKCFIBundle = false,
3406       FoundAttachedCallBundle = false;
3407  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3408    OperandBundleUse BU = Call.getOperandBundleAt(i);
3409    uint32_t Tag = BU.getTagID();
3410    if (Tag == LLVMContext::OB_deopt) {
3411      Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3412      FoundDeoptBundle = true;
3413    } else if (Tag == LLVMContext::OB_gc_transition) {
3414      Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3415            Call);
3416      FoundGCTransitionBundle = true;
3417    } else if (Tag == LLVMContext::OB_funclet) {
3418      Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3419      FoundFuncletBundle = true;
3420      Check(BU.Inputs.size() == 1,
3421            "Expected exactly one funclet bundle operand", Call);
3422      Check(isa<FuncletPadInst>(BU.Inputs.front()),
3423            "Funclet bundle operands should correspond to a FuncletPadInst",
3424            Call);
3425    } else if (Tag == LLVMContext::OB_cfguardtarget) {
3426      Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3427            Call);
3428      FoundCFGuardTargetBundle = true;
3429      Check(BU.Inputs.size() == 1,
3430            "Expected exactly one cfguardtarget bundle operand", Call);
3431    } else if (Tag == LLVMContext::OB_ptrauth) {
3432      Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3433      FoundPtrauthBundle = true;
3434      Check(BU.Inputs.size() == 2,
3435            "Expected exactly two ptrauth bundle operands", Call);
3436      Check(isa<ConstantInt>(BU.Inputs[0]) &&
3437                BU.Inputs[0]->getType()->isIntegerTy(32),
3438            "Ptrauth bundle key operand must be an i32 constant", Call);
3439      Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3440            "Ptrauth bundle discriminator operand must be an i64", Call);
3441    } else if (Tag == LLVMContext::OB_kcfi) {
3442      Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3443      FoundKCFIBundle = true;
3444      Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3445            Call);
3446      Check(isa<ConstantInt>(BU.Inputs[0]) &&
3447                BU.Inputs[0]->getType()->isIntegerTy(32),
3448            "Kcfi bundle operand must be an i32 constant", Call);
3449    } else if (Tag == LLVMContext::OB_preallocated) {
3450      Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3451            Call);
3452      FoundPreallocatedBundle = true;
3453      Check(BU.Inputs.size() == 1,
3454            "Expected exactly one preallocated bundle operand", Call);
3455      auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3456      Check(Input &&
3457                Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3458            "\"preallocated\" argument must be a token from "
3459            "llvm.call.preallocated.setup",
3460            Call);
3461    } else if (Tag == LLVMContext::OB_gc_live) {
3462      Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3463      FoundGCLiveBundle = true;
3464    } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3465      Check(!FoundAttachedCallBundle,
3466            "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3467      FoundAttachedCallBundle = true;
3468      verifyAttachedCallBundle(Call, BU);
3469    }
3470  }
3471
3472  // Verify that callee and callsite agree on whether to use pointer auth.
3473  Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3474        "Direct call cannot have a ptrauth bundle", Call);
3475
3476  // Verify that each inlinable callsite of a debug-info-bearing function in a
3477  // debug-info-bearing function has a debug location attached to it. Failure to
3478  // do so causes assertion failures when the inliner sets up inline scope info
3479  // (Interposable functions are not inlinable, neither are functions without
3480  //  definitions.)
3481  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3482      !Call.getCalledFunction()->isInterposable() &&
3483      !Call.getCalledFunction()->isDeclaration() &&
3484      Call.getCalledFunction()->getSubprogram())
3485    CheckDI(Call.getDebugLoc(),
3486            "inlinable function call in a function with "
3487            "debug info must have a !dbg location",
3488            Call);
3489
3490  if (Call.isInlineAsm())
3491    verifyInlineAsmCall(Call);
3492
3493  visitInstruction(Call);
3494}
3495
3496void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3497                                         StringRef Context) {
3498  Check(!Attrs.contains(Attribute::InAlloca),
3499        Twine("inalloca attribute not allowed in ") + Context);
3500  Check(!Attrs.contains(Attribute::InReg),
3501        Twine("inreg attribute not allowed in ") + Context);
3502  Check(!Attrs.contains(Attribute::SwiftError),
3503        Twine("swifterror attribute not allowed in ") + Context);
3504  Check(!Attrs.contains(Attribute::Preallocated),
3505        Twine("preallocated attribute not allowed in ") + Context);
3506  Check(!Attrs.contains(Attribute::ByRef),
3507        Twine("byref attribute not allowed in ") + Context);
3508}
3509
3510/// Two types are "congruent" if they are identical, or if they are both pointer
3511/// types with different pointee types and the same address space.
3512static bool isTypeCongruent(Type *L, Type *R) {
3513  if (L == R)
3514    return true;
3515  PointerType *PL = dyn_cast<PointerType>(L);
3516  PointerType *PR = dyn_cast<PointerType>(R);
3517  if (!PL || !PR)
3518    return false;
3519  return PL->getAddressSpace() == PR->getAddressSpace();
3520}
3521
3522static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3523  static const Attribute::AttrKind ABIAttrs[] = {
3524      Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3525      Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3526      Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3527      Attribute::ByRef};
3528  AttrBuilder Copy(C);
3529  for (auto AK : ABIAttrs) {
3530    Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3531    if (Attr.isValid())
3532      Copy.addAttribute(Attr);
3533  }
3534
3535  // `align` is ABI-affecting only in combination with `byval` or `byref`.
3536  if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3537      (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3538       Attrs.hasParamAttr(I, Attribute::ByRef)))
3539    Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3540  return Copy;
3541}
3542
3543void Verifier::verifyMustTailCall(CallInst &CI) {
3544  Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3545
3546  Function *F = CI.getParent()->getParent();
3547  FunctionType *CallerTy = F->getFunctionType();
3548  FunctionType *CalleeTy = CI.getFunctionType();
3549  Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3550        "cannot guarantee tail call due to mismatched varargs", &CI);
3551  Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3552        "cannot guarantee tail call due to mismatched return types", &CI);
3553
3554  // - The calling conventions of the caller and callee must match.
3555  Check(F->getCallingConv() == CI.getCallingConv(),
3556        "cannot guarantee tail call due to mismatched calling conv", &CI);
3557
3558  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3559  //   or a pointer bitcast followed by a ret instruction.
3560  // - The ret instruction must return the (possibly bitcasted) value
3561  //   produced by the call or void.
3562  Value *RetVal = &CI;
3563  Instruction *Next = CI.getNextNode();
3564
3565  // Handle the optional bitcast.
3566  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3567    Check(BI->getOperand(0) == RetVal,
3568          "bitcast following musttail call must use the call", BI);
3569    RetVal = BI;
3570    Next = BI->getNextNode();
3571  }
3572
3573  // Check the return.
3574  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3575  Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3576  Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3577            isa<UndefValue>(Ret->getReturnValue()),
3578        "musttail call result must be returned", Ret);
3579
3580  AttributeList CallerAttrs = F->getAttributes();
3581  AttributeList CalleeAttrs = CI.getAttributes();
3582  if (CI.getCallingConv() == CallingConv::SwiftTail ||
3583      CI.getCallingConv() == CallingConv::Tail) {
3584    StringRef CCName =
3585        CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3586
3587    // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3588    //   are allowed in swifttailcc call
3589    for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3590      AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3591      SmallString<32> Context{CCName, StringRef(" musttail caller")};
3592      verifyTailCCMustTailAttrs(ABIAttrs, Context);
3593    }
3594    for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3595      AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3596      SmallString<32> Context{CCName, StringRef(" musttail callee")};
3597      verifyTailCCMustTailAttrs(ABIAttrs, Context);
3598    }
3599    // - Varargs functions are not allowed
3600    Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3601                                     " tail call for varargs function");
3602    return;
3603  }
3604
3605  // - The caller and callee prototypes must match.  Pointer types of
3606  //   parameters or return types may differ in pointee type, but not
3607  //   address space.
3608  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3609    Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3610          "cannot guarantee tail call due to mismatched parameter counts", &CI);
3611    for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3612      Check(
3613          isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3614          "cannot guarantee tail call due to mismatched parameter types", &CI);
3615    }
3616  }
3617
3618  // - All ABI-impacting function attributes, such as sret, byval, inreg,
3619  //   returned, preallocated, and inalloca, must match.
3620  for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3621    AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3622    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3623    Check(CallerABIAttrs == CalleeABIAttrs,
3624          "cannot guarantee tail call due to mismatched ABI impacting "
3625          "function attributes",
3626          &CI, CI.getOperand(I));
3627  }
3628}
3629
3630void Verifier::visitCallInst(CallInst &CI) {
3631  visitCallBase(CI);
3632
3633  if (CI.isMustTailCall())
3634    verifyMustTailCall(CI);
3635}
3636
3637void Verifier::visitInvokeInst(InvokeInst &II) {
3638  visitCallBase(II);
3639
3640  // Verify that the first non-PHI instruction of the unwind destination is an
3641  // exception handling instruction.
3642  Check(
3643      II.getUnwindDest()->isEHPad(),
3644      "The unwind destination does not have an exception handling instruction!",
3645      &II);
3646
3647  visitTerminator(II);
3648}
3649
3650/// visitUnaryOperator - Check the argument to the unary operator.
3651///
3652void Verifier::visitUnaryOperator(UnaryOperator &U) {
3653  Check(U.getType() == U.getOperand(0)->getType(),
3654        "Unary operators must have same type for"
3655        "operands and result!",
3656        &U);
3657
3658  switch (U.getOpcode()) {
3659  // Check that floating-point arithmetic operators are only used with
3660  // floating-point operands.
3661  case Instruction::FNeg:
3662    Check(U.getType()->isFPOrFPVectorTy(),
3663          "FNeg operator only works with float types!", &U);
3664    break;
3665  default:
3666    llvm_unreachable("Unknown UnaryOperator opcode!");
3667  }
3668
3669  visitInstruction(U);
3670}
3671
3672/// visitBinaryOperator - Check that both arguments to the binary operator are
3673/// of the same type!
3674///
3675void Verifier::visitBinaryOperator(BinaryOperator &B) {
3676  Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3677        "Both operands to a binary operator are not of the same type!", &B);
3678
3679  switch (B.getOpcode()) {
3680  // Check that integer arithmetic operators are only used with
3681  // integral operands.
3682  case Instruction::Add:
3683  case Instruction::Sub:
3684  case Instruction::Mul:
3685  case Instruction::SDiv:
3686  case Instruction::UDiv:
3687  case Instruction::SRem:
3688  case Instruction::URem:
3689    Check(B.getType()->isIntOrIntVectorTy(),
3690          "Integer arithmetic operators only work with integral types!", &B);
3691    Check(B.getType() == B.getOperand(0)->getType(),
3692          "Integer arithmetic operators must have same type "
3693          "for operands and result!",
3694          &B);
3695    break;
3696  // Check that floating-point arithmetic operators are only used with
3697  // floating-point operands.
3698  case Instruction::FAdd:
3699  case Instruction::FSub:
3700  case Instruction::FMul:
3701  case Instruction::FDiv:
3702  case Instruction::FRem:
3703    Check(B.getType()->isFPOrFPVectorTy(),
3704          "Floating-point arithmetic operators only work with "
3705          "floating-point types!",
3706          &B);
3707    Check(B.getType() == B.getOperand(0)->getType(),
3708          "Floating-point arithmetic operators must have same type "
3709          "for operands and result!",
3710          &B);
3711    break;
3712  // Check that logical operators are only used with integral operands.
3713  case Instruction::And:
3714  case Instruction::Or:
3715  case Instruction::Xor:
3716    Check(B.getType()->isIntOrIntVectorTy(),
3717          "Logical operators only work with integral types!", &B);
3718    Check(B.getType() == B.getOperand(0)->getType(),
3719          "Logical operators must have same type for operands and result!", &B);
3720    break;
3721  case Instruction::Shl:
3722  case Instruction::LShr:
3723  case Instruction::AShr:
3724    Check(B.getType()->isIntOrIntVectorTy(),
3725          "Shifts only work with integral types!", &B);
3726    Check(B.getType() == B.getOperand(0)->getType(),
3727          "Shift return type must be same as operands!", &B);
3728    break;
3729  default:
3730    llvm_unreachable("Unknown BinaryOperator opcode!");
3731  }
3732
3733  visitInstruction(B);
3734}
3735
3736void Verifier::visitICmpInst(ICmpInst &IC) {
3737  // Check that the operands are the same type
3738  Type *Op0Ty = IC.getOperand(0)->getType();
3739  Type *Op1Ty = IC.getOperand(1)->getType();
3740  Check(Op0Ty == Op1Ty,
3741        "Both operands to ICmp instruction are not of the same type!", &IC);
3742  // Check that the operands are the right type
3743  Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3744        "Invalid operand types for ICmp instruction", &IC);
3745  // Check that the predicate is valid.
3746  Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3747
3748  visitInstruction(IC);
3749}
3750
3751void Verifier::visitFCmpInst(FCmpInst &FC) {
3752  // Check that the operands are the same type
3753  Type *Op0Ty = FC.getOperand(0)->getType();
3754  Type *Op1Ty = FC.getOperand(1)->getType();
3755  Check(Op0Ty == Op1Ty,
3756        "Both operands to FCmp instruction are not of the same type!", &FC);
3757  // Check that the operands are the right type
3758  Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3759        &FC);
3760  // Check that the predicate is valid.
3761  Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3762
3763  visitInstruction(FC);
3764}
3765
3766void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3767  Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3768        "Invalid extractelement operands!", &EI);
3769  visitInstruction(EI);
3770}
3771
3772void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3773  Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3774                                           IE.getOperand(2)),
3775        "Invalid insertelement operands!", &IE);
3776  visitInstruction(IE);
3777}
3778
3779void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3780  Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3781                                           SV.getShuffleMask()),
3782        "Invalid shufflevector operands!", &SV);
3783  visitInstruction(SV);
3784}
3785
3786void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3787  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3788
3789  Check(isa<PointerType>(TargetTy),
3790        "GEP base pointer is not a vector or a vector of pointers", &GEP);
3791  Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3792
3793  SmallVector<Value *, 16> Idxs(GEP.indices());
3794  Check(
3795      all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3796      "GEP indexes must be integers", &GEP);
3797  Type *ElTy =
3798      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3799  Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3800
3801  Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3802            GEP.getResultElementType() == ElTy,
3803        "GEP is not of right type for indices!", &GEP, ElTy);
3804
3805  if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3806    // Additional checks for vector GEPs.
3807    ElementCount GEPWidth = GEPVTy->getElementCount();
3808    if (GEP.getPointerOperandType()->isVectorTy())
3809      Check(
3810          GEPWidth ==
3811              cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3812          "Vector GEP result width doesn't match operand's", &GEP);
3813    for (Value *Idx : Idxs) {
3814      Type *IndexTy = Idx->getType();
3815      if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3816        ElementCount IndexWidth = IndexVTy->getElementCount();
3817        Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3818      }
3819      Check(IndexTy->isIntOrIntVectorTy(),
3820            "All GEP indices should be of integer type");
3821    }
3822  }
3823
3824  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3825    Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3826          "GEP address space doesn't match type", &GEP);
3827  }
3828
3829  visitInstruction(GEP);
3830}
3831
3832static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3833  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3834}
3835
3836void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3837  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3838         "precondition violation");
3839
3840  unsigned NumOperands = Range->getNumOperands();
3841  Check(NumOperands % 2 == 0, "Unfinished range!", Range);
3842  unsigned NumRanges = NumOperands / 2;
3843  Check(NumRanges >= 1, "It should have at least one range!", Range);
3844
3845  ConstantRange LastRange(1, true); // Dummy initial value
3846  for (unsigned i = 0; i < NumRanges; ++i) {
3847    ConstantInt *Low =
3848        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3849    Check(Low, "The lower limit must be an integer!", Low);
3850    ConstantInt *High =
3851        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3852    Check(High, "The upper limit must be an integer!", High);
3853    Check(High->getType() == Low->getType() && High->getType() == Ty,
3854          "Range types must match instruction type!", &I);
3855
3856    APInt HighV = High->getValue();
3857    APInt LowV = Low->getValue();
3858    ConstantRange CurRange(LowV, HighV);
3859    Check(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3860          "Range must not be empty!", Range);
3861    if (i != 0) {
3862      Check(CurRange.intersectWith(LastRange).isEmptySet(),
3863            "Intervals are overlapping", Range);
3864      Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3865            Range);
3866      Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3867            Range);
3868    }
3869    LastRange = ConstantRange(LowV, HighV);
3870  }
3871  if (NumRanges > 2) {
3872    APInt FirstLow =
3873        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3874    APInt FirstHigh =
3875        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3876    ConstantRange FirstRange(FirstLow, FirstHigh);
3877    Check(FirstRange.intersectWith(LastRange).isEmptySet(),
3878          "Intervals are overlapping", Range);
3879    Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3880          Range);
3881  }
3882}
3883
3884void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3885  unsigned Size = DL.getTypeSizeInBits(Ty);
3886  Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3887  Check(!(Size & (Size - 1)),
3888        "atomic memory access' operand must have a power-of-two size", Ty, I);
3889}
3890
3891void Verifier::visitLoadInst(LoadInst &LI) {
3892  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3893  Check(PTy, "Load operand must be a pointer.", &LI);
3894  Type *ElTy = LI.getType();
3895  if (MaybeAlign A = LI.getAlign()) {
3896    Check(A->value() <= Value::MaximumAlignment,
3897          "huge alignment values are unsupported", &LI);
3898  }
3899  Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3900  if (LI.isAtomic()) {
3901    Check(LI.getOrdering() != AtomicOrdering::Release &&
3902              LI.getOrdering() != AtomicOrdering::AcquireRelease,
3903          "Load cannot have Release ordering", &LI);
3904    Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3905          "atomic load operand must have integer, pointer, or floating point "
3906          "type!",
3907          ElTy, &LI);
3908    checkAtomicMemAccessSize(ElTy, &LI);
3909  } else {
3910    Check(LI.getSyncScopeID() == SyncScope::System,
3911          "Non-atomic load cannot have SynchronizationScope specified", &LI);
3912  }
3913
3914  visitInstruction(LI);
3915}
3916
3917void Verifier::visitStoreInst(StoreInst &SI) {
3918  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3919  Check(PTy, "Store operand must be a pointer.", &SI);
3920  Type *ElTy = SI.getOperand(0)->getType();
3921  Check(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3922        "Stored value type does not match pointer operand type!", &SI, ElTy);
3923  if (MaybeAlign A = SI.getAlign()) {
3924    Check(A->value() <= Value::MaximumAlignment,
3925          "huge alignment values are unsupported", &SI);
3926  }
3927  Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3928  if (SI.isAtomic()) {
3929    Check(SI.getOrdering() != AtomicOrdering::Acquire &&
3930              SI.getOrdering() != AtomicOrdering::AcquireRelease,
3931          "Store cannot have Acquire ordering", &SI);
3932    Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3933          "atomic store operand must have integer, pointer, or floating point "
3934          "type!",
3935          ElTy, &SI);
3936    checkAtomicMemAccessSize(ElTy, &SI);
3937  } else {
3938    Check(SI.getSyncScopeID() == SyncScope::System,
3939          "Non-atomic store cannot have SynchronizationScope specified", &SI);
3940  }
3941  visitInstruction(SI);
3942}
3943
3944/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3945void Verifier::verifySwiftErrorCall(CallBase &Call,
3946                                    const Value *SwiftErrorVal) {
3947  for (const auto &I : llvm::enumerate(Call.args())) {
3948    if (I.value() == SwiftErrorVal) {
3949      Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3950            "swifterror value when used in a callsite should be marked "
3951            "with swifterror attribute",
3952            SwiftErrorVal, Call);
3953    }
3954  }
3955}
3956
3957void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3958  // Check that swifterror value is only used by loads, stores, or as
3959  // a swifterror argument.
3960  for (const User *U : SwiftErrorVal->users()) {
3961    Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3962              isa<InvokeInst>(U),
3963          "swifterror value can only be loaded and stored from, or "
3964          "as a swifterror argument!",
3965          SwiftErrorVal, U);
3966    // If it is used by a store, check it is the second operand.
3967    if (auto StoreI = dyn_cast<StoreInst>(U))
3968      Check(StoreI->getOperand(1) == SwiftErrorVal,
3969            "swifterror value should be the second operand when used "
3970            "by stores",
3971            SwiftErrorVal, U);
3972    if (auto *Call = dyn_cast<CallBase>(U))
3973      verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3974  }
3975}
3976
3977void Verifier::visitAllocaInst(AllocaInst &AI) {
3978  SmallPtrSet<Type*, 4> Visited;
3979  Check(AI.getAllocatedType()->isSized(&Visited),
3980        "Cannot allocate unsized type", &AI);
3981  Check(AI.getArraySize()->getType()->isIntegerTy(),
3982        "Alloca array size must have integer type", &AI);
3983  if (MaybeAlign A = AI.getAlign()) {
3984    Check(A->value() <= Value::MaximumAlignment,
3985          "huge alignment values are unsupported", &AI);
3986  }
3987
3988  if (AI.isSwiftError()) {
3989    Check(AI.getAllocatedType()->isPointerTy(),
3990          "swifterror alloca must have pointer type", &AI);
3991    Check(!AI.isArrayAllocation(),
3992          "swifterror alloca must not be array allocation", &AI);
3993    verifySwiftErrorValue(&AI);
3994  }
3995
3996  visitInstruction(AI);
3997}
3998
3999void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4000  Type *ElTy = CXI.getOperand(1)->getType();
4001  Check(ElTy->isIntOrPtrTy(),
4002        "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4003  checkAtomicMemAccessSize(ElTy, &CXI);
4004  visitInstruction(CXI);
4005}
4006
4007void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4008  Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4009        "atomicrmw instructions cannot be unordered.", &RMWI);
4010  auto Op = RMWI.getOperation();
4011  Type *ElTy = RMWI.getOperand(1)->getType();
4012  if (Op == AtomicRMWInst::Xchg) {
4013    Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4014              ElTy->isPointerTy(),
4015          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4016              " operand must have integer or floating point type!",
4017          &RMWI, ElTy);
4018  } else if (AtomicRMWInst::isFPOperation(Op)) {
4019    Check(ElTy->isFloatingPointTy(),
4020          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4021              " operand must have floating point type!",
4022          &RMWI, ElTy);
4023  } else {
4024    Check(ElTy->isIntegerTy(),
4025          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4026              " operand must have integer type!",
4027          &RMWI, ElTy);
4028  }
4029  checkAtomicMemAccessSize(ElTy, &RMWI);
4030  Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4031        "Invalid binary operation!", &RMWI);
4032  visitInstruction(RMWI);
4033}
4034
4035void Verifier::visitFenceInst(FenceInst &FI) {
4036  const AtomicOrdering Ordering = FI.getOrdering();
4037  Check(Ordering == AtomicOrdering::Acquire ||
4038            Ordering == AtomicOrdering::Release ||
4039            Ordering == AtomicOrdering::AcquireRelease ||
4040            Ordering == AtomicOrdering::SequentiallyConsistent,
4041        "fence instructions may only have acquire, release, acq_rel, or "
4042        "seq_cst ordering.",
4043        &FI);
4044  visitInstruction(FI);
4045}
4046
4047void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4048  Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4049                                         EVI.getIndices()) == EVI.getType(),
4050        "Invalid ExtractValueInst operands!", &EVI);
4051
4052  visitInstruction(EVI);
4053}
4054
4055void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4056  Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4057                                         IVI.getIndices()) ==
4058            IVI.getOperand(1)->getType(),
4059        "Invalid InsertValueInst operands!", &IVI);
4060
4061  visitInstruction(IVI);
4062}
4063
4064static Value *getParentPad(Value *EHPad) {
4065  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4066    return FPI->getParentPad();
4067
4068  return cast<CatchSwitchInst>(EHPad)->getParentPad();
4069}
4070
4071void Verifier::visitEHPadPredecessors(Instruction &I) {
4072  assert(I.isEHPad());
4073
4074  BasicBlock *BB = I.getParent();
4075  Function *F = BB->getParent();
4076
4077  Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4078
4079  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4080    // The landingpad instruction defines its parent as a landing pad block. The
4081    // landing pad block may be branched to only by the unwind edge of an
4082    // invoke.
4083    for (BasicBlock *PredBB : predecessors(BB)) {
4084      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4085      Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4086            "Block containing LandingPadInst must be jumped to "
4087            "only by the unwind edge of an invoke.",
4088            LPI);
4089    }
4090    return;
4091  }
4092  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4093    if (!pred_empty(BB))
4094      Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4095            "Block containg CatchPadInst must be jumped to "
4096            "only by its catchswitch.",
4097            CPI);
4098    Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4099          "Catchswitch cannot unwind to one of its catchpads",
4100          CPI->getCatchSwitch(), CPI);
4101    return;
4102  }
4103
4104  // Verify that each pred has a legal terminator with a legal to/from EH
4105  // pad relationship.
4106  Instruction *ToPad = &I;
4107  Value *ToPadParent = getParentPad(ToPad);
4108  for (BasicBlock *PredBB : predecessors(BB)) {
4109    Instruction *TI = PredBB->getTerminator();
4110    Value *FromPad;
4111    if (auto *II = dyn_cast<InvokeInst>(TI)) {
4112      Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4113            "EH pad must be jumped to via an unwind edge", ToPad, II);
4114      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4115        FromPad = Bundle->Inputs[0];
4116      else
4117        FromPad = ConstantTokenNone::get(II->getContext());
4118    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4119      FromPad = CRI->getOperand(0);
4120      Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4121    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4122      FromPad = CSI;
4123    } else {
4124      Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4125    }
4126
4127    // The edge may exit from zero or more nested pads.
4128    SmallSet<Value *, 8> Seen;
4129    for (;; FromPad = getParentPad(FromPad)) {
4130      Check(FromPad != ToPad,
4131            "EH pad cannot handle exceptions raised within it", FromPad, TI);
4132      if (FromPad == ToPadParent) {
4133        // This is a legal unwind edge.
4134        break;
4135      }
4136      Check(!isa<ConstantTokenNone>(FromPad),
4137            "A single unwind edge may only enter one EH pad", TI);
4138      Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4139            FromPad);
4140
4141      // This will be diagnosed on the corresponding instruction already. We
4142      // need the extra check here to make sure getParentPad() works.
4143      Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4144            "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4145    }
4146  }
4147}
4148
4149void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4150  // The landingpad instruction is ill-formed if it doesn't have any clauses and
4151  // isn't a cleanup.
4152  Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4153        "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4154
4155  visitEHPadPredecessors(LPI);
4156
4157  if (!LandingPadResultTy)
4158    LandingPadResultTy = LPI.getType();
4159  else
4160    Check(LandingPadResultTy == LPI.getType(),
4161          "The landingpad instruction should have a consistent result type "
4162          "inside a function.",
4163          &LPI);
4164
4165  Function *F = LPI.getParent()->getParent();
4166  Check(F->hasPersonalityFn(),
4167        "LandingPadInst needs to be in a function with a personality.", &LPI);
4168
4169  // The landingpad instruction must be the first non-PHI instruction in the
4170  // block.
4171  Check(LPI.getParent()->getLandingPadInst() == &LPI,
4172        "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4173
4174  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4175    Constant *Clause = LPI.getClause(i);
4176    if (LPI.isCatch(i)) {
4177      Check(isa<PointerType>(Clause->getType()),
4178            "Catch operand does not have pointer type!", &LPI);
4179    } else {
4180      Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4181      Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4182            "Filter operand is not an array of constants!", &LPI);
4183    }
4184  }
4185
4186  visitInstruction(LPI);
4187}
4188
4189void Verifier::visitResumeInst(ResumeInst &RI) {
4190  Check(RI.getFunction()->hasPersonalityFn(),
4191        "ResumeInst needs to be in a function with a personality.", &RI);
4192
4193  if (!LandingPadResultTy)
4194    LandingPadResultTy = RI.getValue()->getType();
4195  else
4196    Check(LandingPadResultTy == RI.getValue()->getType(),
4197          "The resume instruction should have a consistent result type "
4198          "inside a function.",
4199          &RI);
4200
4201  visitTerminator(RI);
4202}
4203
4204void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4205  BasicBlock *BB = CPI.getParent();
4206
4207  Function *F = BB->getParent();
4208  Check(F->hasPersonalityFn(),
4209        "CatchPadInst needs to be in a function with a personality.", &CPI);
4210
4211  Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4212        "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4213        CPI.getParentPad());
4214
4215  // The catchpad instruction must be the first non-PHI instruction in the
4216  // block.
4217  Check(BB->getFirstNonPHI() == &CPI,
4218        "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4219
4220  visitEHPadPredecessors(CPI);
4221  visitFuncletPadInst(CPI);
4222}
4223
4224void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4225  Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4226        "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4227        CatchReturn.getOperand(0));
4228
4229  visitTerminator(CatchReturn);
4230}
4231
4232void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4233  BasicBlock *BB = CPI.getParent();
4234
4235  Function *F = BB->getParent();
4236  Check(F->hasPersonalityFn(),
4237        "CleanupPadInst needs to be in a function with a personality.", &CPI);
4238
4239  // The cleanuppad instruction must be the first non-PHI instruction in the
4240  // block.
4241  Check(BB->getFirstNonPHI() == &CPI,
4242        "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4243
4244  auto *ParentPad = CPI.getParentPad();
4245  Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4246        "CleanupPadInst has an invalid parent.", &CPI);
4247
4248  visitEHPadPredecessors(CPI);
4249  visitFuncletPadInst(CPI);
4250}
4251
4252void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4253  User *FirstUser = nullptr;
4254  Value *FirstUnwindPad = nullptr;
4255  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4256  SmallSet<FuncletPadInst *, 8> Seen;
4257
4258  while (!Worklist.empty()) {
4259    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4260    Check(Seen.insert(CurrentPad).second,
4261          "FuncletPadInst must not be nested within itself", CurrentPad);
4262    Value *UnresolvedAncestorPad = nullptr;
4263    for (User *U : CurrentPad->users()) {
4264      BasicBlock *UnwindDest;
4265      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4266        UnwindDest = CRI->getUnwindDest();
4267      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4268        // We allow catchswitch unwind to caller to nest
4269        // within an outer pad that unwinds somewhere else,
4270        // because catchswitch doesn't have a nounwind variant.
4271        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4272        if (CSI->unwindsToCaller())
4273          continue;
4274        UnwindDest = CSI->getUnwindDest();
4275      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4276        UnwindDest = II->getUnwindDest();
4277      } else if (isa<CallInst>(U)) {
4278        // Calls which don't unwind may be found inside funclet
4279        // pads that unwind somewhere else.  We don't *require*
4280        // such calls to be annotated nounwind.
4281        continue;
4282      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4283        // The unwind dest for a cleanup can only be found by
4284        // recursive search.  Add it to the worklist, and we'll
4285        // search for its first use that determines where it unwinds.
4286        Worklist.push_back(CPI);
4287        continue;
4288      } else {
4289        Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4290        continue;
4291      }
4292
4293      Value *UnwindPad;
4294      bool ExitsFPI;
4295      if (UnwindDest) {
4296        UnwindPad = UnwindDest->getFirstNonPHI();
4297        if (!cast<Instruction>(UnwindPad)->isEHPad())
4298          continue;
4299        Value *UnwindParent = getParentPad(UnwindPad);
4300        // Ignore unwind edges that don't exit CurrentPad.
4301        if (UnwindParent == CurrentPad)
4302          continue;
4303        // Determine whether the original funclet pad is exited,
4304        // and if we are scanning nested pads determine how many
4305        // of them are exited so we can stop searching their
4306        // children.
4307        Value *ExitedPad = CurrentPad;
4308        ExitsFPI = false;
4309        do {
4310          if (ExitedPad == &FPI) {
4311            ExitsFPI = true;
4312            // Now we can resolve any ancestors of CurrentPad up to
4313            // FPI, but not including FPI since we need to make sure
4314            // to check all direct users of FPI for consistency.
4315            UnresolvedAncestorPad = &FPI;
4316            break;
4317          }
4318          Value *ExitedParent = getParentPad(ExitedPad);
4319          if (ExitedParent == UnwindParent) {
4320            // ExitedPad is the ancestor-most pad which this unwind
4321            // edge exits, so we can resolve up to it, meaning that
4322            // ExitedParent is the first ancestor still unresolved.
4323            UnresolvedAncestorPad = ExitedParent;
4324            break;
4325          }
4326          ExitedPad = ExitedParent;
4327        } while (!isa<ConstantTokenNone>(ExitedPad));
4328      } else {
4329        // Unwinding to caller exits all pads.
4330        UnwindPad = ConstantTokenNone::get(FPI.getContext());
4331        ExitsFPI = true;
4332        UnresolvedAncestorPad = &FPI;
4333      }
4334
4335      if (ExitsFPI) {
4336        // This unwind edge exits FPI.  Make sure it agrees with other
4337        // such edges.
4338        if (FirstUser) {
4339          Check(UnwindPad == FirstUnwindPad,
4340                "Unwind edges out of a funclet "
4341                "pad must have the same unwind "
4342                "dest",
4343                &FPI, U, FirstUser);
4344        } else {
4345          FirstUser = U;
4346          FirstUnwindPad = UnwindPad;
4347          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4348          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4349              getParentPad(UnwindPad) == getParentPad(&FPI))
4350            SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4351        }
4352      }
4353      // Make sure we visit all uses of FPI, but for nested pads stop as
4354      // soon as we know where they unwind to.
4355      if (CurrentPad != &FPI)
4356        break;
4357    }
4358    if (UnresolvedAncestorPad) {
4359      if (CurrentPad == UnresolvedAncestorPad) {
4360        // When CurrentPad is FPI itself, we don't mark it as resolved even if
4361        // we've found an unwind edge that exits it, because we need to verify
4362        // all direct uses of FPI.
4363        assert(CurrentPad == &FPI);
4364        continue;
4365      }
4366      // Pop off the worklist any nested pads that we've found an unwind
4367      // destination for.  The pads on the worklist are the uncles,
4368      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4369      // for all ancestors of CurrentPad up to but not including
4370      // UnresolvedAncestorPad.
4371      Value *ResolvedPad = CurrentPad;
4372      while (!Worklist.empty()) {
4373        Value *UnclePad = Worklist.back();
4374        Value *AncestorPad = getParentPad(UnclePad);
4375        // Walk ResolvedPad up the ancestor list until we either find the
4376        // uncle's parent or the last resolved ancestor.
4377        while (ResolvedPad != AncestorPad) {
4378          Value *ResolvedParent = getParentPad(ResolvedPad);
4379          if (ResolvedParent == UnresolvedAncestorPad) {
4380            break;
4381          }
4382          ResolvedPad = ResolvedParent;
4383        }
4384        // If the resolved ancestor search didn't find the uncle's parent,
4385        // then the uncle is not yet resolved.
4386        if (ResolvedPad != AncestorPad)
4387          break;
4388        // This uncle is resolved, so pop it from the worklist.
4389        Worklist.pop_back();
4390      }
4391    }
4392  }
4393
4394  if (FirstUnwindPad) {
4395    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4396      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4397      Value *SwitchUnwindPad;
4398      if (SwitchUnwindDest)
4399        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4400      else
4401        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4402      Check(SwitchUnwindPad == FirstUnwindPad,
4403            "Unwind edges out of a catch must have the same unwind dest as "
4404            "the parent catchswitch",
4405            &FPI, FirstUser, CatchSwitch);
4406    }
4407  }
4408
4409  visitInstruction(FPI);
4410}
4411
4412void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4413  BasicBlock *BB = CatchSwitch.getParent();
4414
4415  Function *F = BB->getParent();
4416  Check(F->hasPersonalityFn(),
4417        "CatchSwitchInst needs to be in a function with a personality.",
4418        &CatchSwitch);
4419
4420  // The catchswitch instruction must be the first non-PHI instruction in the
4421  // block.
4422  Check(BB->getFirstNonPHI() == &CatchSwitch,
4423        "CatchSwitchInst not the first non-PHI instruction in the block.",
4424        &CatchSwitch);
4425
4426  auto *ParentPad = CatchSwitch.getParentPad();
4427  Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4428        "CatchSwitchInst has an invalid parent.", ParentPad);
4429
4430  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4431    Instruction *I = UnwindDest->getFirstNonPHI();
4432    Check(I->isEHPad() && !isa<LandingPadInst>(I),
4433          "CatchSwitchInst must unwind to an EH block which is not a "
4434          "landingpad.",
4435          &CatchSwitch);
4436
4437    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4438    if (getParentPad(I) == ParentPad)
4439      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4440  }
4441
4442  Check(CatchSwitch.getNumHandlers() != 0,
4443        "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4444
4445  for (BasicBlock *Handler : CatchSwitch.handlers()) {
4446    Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4447          "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4448  }
4449
4450  visitEHPadPredecessors(CatchSwitch);
4451  visitTerminator(CatchSwitch);
4452}
4453
4454void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4455  Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4456        "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4457        CRI.getOperand(0));
4458
4459  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4460    Instruction *I = UnwindDest->getFirstNonPHI();
4461    Check(I->isEHPad() && !isa<LandingPadInst>(I),
4462          "CleanupReturnInst must unwind to an EH block which is not a "
4463          "landingpad.",
4464          &CRI);
4465  }
4466
4467  visitTerminator(CRI);
4468}
4469
4470void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4471  Instruction *Op = cast<Instruction>(I.getOperand(i));
4472  // If the we have an invalid invoke, don't try to compute the dominance.
4473  // We already reject it in the invoke specific checks and the dominance
4474  // computation doesn't handle multiple edges.
4475  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4476    if (II->getNormalDest() == II->getUnwindDest())
4477      return;
4478  }
4479
4480  // Quick check whether the def has already been encountered in the same block.
4481  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4482  // uses are defined to happen on the incoming edge, not at the instruction.
4483  //
4484  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4485  // wrapping an SSA value, assert that we've already encountered it.  See
4486  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4487  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4488    return;
4489
4490  const Use &U = I.getOperandUse(i);
4491  Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4492}
4493
4494void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4495  Check(I.getType()->isPointerTy(),
4496        "dereferenceable, dereferenceable_or_null "
4497        "apply only to pointer types",
4498        &I);
4499  Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4500        "dereferenceable, dereferenceable_or_null apply only to load"
4501        " and inttoptr instructions, use attributes for calls or invokes",
4502        &I);
4503  Check(MD->getNumOperands() == 1,
4504        "dereferenceable, dereferenceable_or_null "
4505        "take one operand!",
4506        &I);
4507  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4508  Check(CI && CI->getType()->isIntegerTy(64),
4509        "dereferenceable, "
4510        "dereferenceable_or_null metadata value must be an i64!",
4511        &I);
4512}
4513
4514void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4515  Check(MD->getNumOperands() >= 2,
4516        "!prof annotations should have no less than 2 operands", MD);
4517
4518  // Check first operand.
4519  Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4520  Check(isa<MDString>(MD->getOperand(0)),
4521        "expected string with name of the !prof annotation", MD);
4522  MDString *MDS = cast<MDString>(MD->getOperand(0));
4523  StringRef ProfName = MDS->getString();
4524
4525  // Check consistency of !prof branch_weights metadata.
4526  if (ProfName.equals("branch_weights")) {
4527    if (isa<InvokeInst>(&I)) {
4528      Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4529            "Wrong number of InvokeInst branch_weights operands", MD);
4530    } else {
4531      unsigned ExpectedNumOperands = 0;
4532      if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4533        ExpectedNumOperands = BI->getNumSuccessors();
4534      else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4535        ExpectedNumOperands = SI->getNumSuccessors();
4536      else if (isa<CallInst>(&I))
4537        ExpectedNumOperands = 1;
4538      else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4539        ExpectedNumOperands = IBI->getNumDestinations();
4540      else if (isa<SelectInst>(&I))
4541        ExpectedNumOperands = 2;
4542      else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4543        ExpectedNumOperands = CI->getNumSuccessors();
4544      else
4545        CheckFailed("!prof branch_weights are not allowed for this instruction",
4546                    MD);
4547
4548      Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4549            "Wrong number of operands", MD);
4550    }
4551    for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4552      auto &MDO = MD->getOperand(i);
4553      Check(MDO, "second operand should not be null", MD);
4554      Check(mdconst::dyn_extract<ConstantInt>(MDO),
4555            "!prof brunch_weights operand is not a const int");
4556    }
4557  }
4558}
4559
4560void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4561  assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4562  bool ExpectedInstTy =
4563      isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4564  CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4565          I, MD);
4566  // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4567  // only be found as DbgAssignIntrinsic operands.
4568  if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4569    for (auto *User : AsValue->users()) {
4570      CheckDI(isa<DbgAssignIntrinsic>(User),
4571              "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4572              MD, User);
4573      // All of the dbg.assign intrinsics should be in the same function as I.
4574      if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4575        CheckDI(DAI->getFunction() == I.getFunction(),
4576                "dbg.assign not in same function as inst", DAI, &I);
4577    }
4578  }
4579}
4580
4581void Verifier::visitCallStackMetadata(MDNode *MD) {
4582  // Call stack metadata should consist of a list of at least 1 constant int
4583  // (representing a hash of the location).
4584  Check(MD->getNumOperands() >= 1,
4585        "call stack metadata should have at least 1 operand", MD);
4586
4587  for (const auto &Op : MD->operands())
4588    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4589          "call stack metadata operand should be constant integer", Op);
4590}
4591
4592void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4593  Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4594  Check(MD->getNumOperands() >= 1,
4595        "!memprof annotations should have at least 1 metadata operand "
4596        "(MemInfoBlock)",
4597        MD);
4598
4599  // Check each MIB
4600  for (auto &MIBOp : MD->operands()) {
4601    MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4602    // The first operand of an MIB should be the call stack metadata.
4603    // There rest of the operands should be MDString tags, and there should be
4604    // at least one.
4605    Check(MIB->getNumOperands() >= 2,
4606          "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4607
4608    // Check call stack metadata (first operand).
4609    Check(MIB->getOperand(0) != nullptr,
4610          "!memprof MemInfoBlock first operand should not be null", MIB);
4611    Check(isa<MDNode>(MIB->getOperand(0)),
4612          "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4613    MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4614    visitCallStackMetadata(StackMD);
4615
4616    // Check that remaining operands are MDString.
4617    Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
4618                       [](const MDOperand &Op) { return isa<MDString>(Op); }),
4619          "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4620  }
4621}
4622
4623void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4624  Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4625  // Verify the partial callstack annotated from memprof profiles. This callsite
4626  // is a part of a profiled allocation callstack.
4627  visitCallStackMetadata(MD);
4628}
4629
4630void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4631  Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4632  Check(Annotation->getNumOperands() >= 1,
4633        "annotation must have at least one operand");
4634  for (const MDOperand &Op : Annotation->operands())
4635    Check(isa<MDString>(Op.get()), "operands must be strings");
4636}
4637
4638void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4639  unsigned NumOps = MD->getNumOperands();
4640  Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4641        MD);
4642  Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4643        "first scope operand must be self-referential or string", MD);
4644  if (NumOps == 3)
4645    Check(isa<MDString>(MD->getOperand(2)),
4646          "third scope operand must be string (if used)", MD);
4647
4648  MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4649  Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4650
4651  unsigned NumDomainOps = Domain->getNumOperands();
4652  Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4653        "domain must have one or two operands", Domain);
4654  Check(Domain->getOperand(0).get() == Domain ||
4655            isa<MDString>(Domain->getOperand(0)),
4656        "first domain operand must be self-referential or string", Domain);
4657  if (NumDomainOps == 2)
4658    Check(isa<MDString>(Domain->getOperand(1)),
4659          "second domain operand must be string (if used)", Domain);
4660}
4661
4662void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4663  for (const MDOperand &Op : MD->operands()) {
4664    const MDNode *OpMD = dyn_cast<MDNode>(Op);
4665    Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4666    visitAliasScopeMetadata(OpMD);
4667  }
4668}
4669
4670void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4671  auto IsValidAccessScope = [](const MDNode *MD) {
4672    return MD->getNumOperands() == 0 && MD->isDistinct();
4673  };
4674
4675  // It must be either an access scope itself...
4676  if (IsValidAccessScope(MD))
4677    return;
4678
4679  // ...or a list of access scopes.
4680  for (const MDOperand &Op : MD->operands()) {
4681    const MDNode *OpMD = dyn_cast<MDNode>(Op);
4682    Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4683    Check(IsValidAccessScope(OpMD),
4684          "Access scope list contains invalid access scope", MD);
4685  }
4686}
4687
4688/// verifyInstruction - Verify that an instruction is well formed.
4689///
4690void Verifier::visitInstruction(Instruction &I) {
4691  BasicBlock *BB = I.getParent();
4692  Check(BB, "Instruction not embedded in basic block!", &I);
4693
4694  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4695    for (User *U : I.users()) {
4696      Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4697            "Only PHI nodes may reference their own value!", &I);
4698    }
4699  }
4700
4701  // Check that void typed values don't have names
4702  Check(!I.getType()->isVoidTy() || !I.hasName(),
4703        "Instruction has a name, but provides a void value!", &I);
4704
4705  // Check that the return value of the instruction is either void or a legal
4706  // value type.
4707  Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4708        "Instruction returns a non-scalar type!", &I);
4709
4710  // Check that the instruction doesn't produce metadata. Calls are already
4711  // checked against the callee type.
4712  Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4713        "Invalid use of metadata!", &I);
4714
4715  // Check that all uses of the instruction, if they are instructions
4716  // themselves, actually have parent basic blocks.  If the use is not an
4717  // instruction, it is an error!
4718  for (Use &U : I.uses()) {
4719    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4720      Check(Used->getParent() != nullptr,
4721            "Instruction referencing"
4722            " instruction not embedded in a basic block!",
4723            &I, Used);
4724    else {
4725      CheckFailed("Use of instruction is not an instruction!", U);
4726      return;
4727    }
4728  }
4729
4730  // Get a pointer to the call base of the instruction if it is some form of
4731  // call.
4732  const CallBase *CBI = dyn_cast<CallBase>(&I);
4733
4734  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4735    Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4736
4737    // Check to make sure that only first-class-values are operands to
4738    // instructions.
4739    if (!I.getOperand(i)->getType()->isFirstClassType()) {
4740      Check(false, "Instruction operands must be first-class values!", &I);
4741    }
4742
4743    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4744      // This code checks whether the function is used as the operand of a
4745      // clang_arc_attachedcall operand bundle.
4746      auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4747                                      int Idx) {
4748        return CBI && CBI->isOperandBundleOfType(
4749                          LLVMContext::OB_clang_arc_attachedcall, Idx);
4750      };
4751
4752      // Check to make sure that the "address of" an intrinsic function is never
4753      // taken. Ignore cases where the address of the intrinsic function is used
4754      // as the argument of operand bundle "clang.arc.attachedcall" as those
4755      // cases are handled in verifyAttachedCallBundle.
4756      Check((!F->isIntrinsic() ||
4757             (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4758             IsAttachedCallOperand(F, CBI, i)),
4759            "Cannot take the address of an intrinsic!", &I);
4760      Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4761                F->getIntrinsicID() == Intrinsic::donothing ||
4762                F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4763                F->getIntrinsicID() == Intrinsic::seh_try_end ||
4764                F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4765                F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4766                F->getIntrinsicID() == Intrinsic::coro_resume ||
4767                F->getIntrinsicID() == Intrinsic::coro_destroy ||
4768                F->getIntrinsicID() ==
4769                    Intrinsic::experimental_patchpoint_void ||
4770                F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4771                F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4772                F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4773                IsAttachedCallOperand(F, CBI, i),
4774            "Cannot invoke an intrinsic other than donothing, patchpoint, "
4775            "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4776            &I);
4777      Check(F->getParent() == &M, "Referencing function in another module!", &I,
4778            &M, F, F->getParent());
4779    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4780      Check(OpBB->getParent() == BB->getParent(),
4781            "Referring to a basic block in another function!", &I);
4782    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4783      Check(OpArg->getParent() == BB->getParent(),
4784            "Referring to an argument in another function!", &I);
4785    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4786      Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4787            &M, GV, GV->getParent());
4788    } else if (isa<Instruction>(I.getOperand(i))) {
4789      verifyDominatesUse(I, i);
4790    } else if (isa<InlineAsm>(I.getOperand(i))) {
4791      Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4792            "Cannot take the address of an inline asm!", &I);
4793    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4794      if (CE->getType()->isPtrOrPtrVectorTy()) {
4795        // If we have a ConstantExpr pointer, we need to see if it came from an
4796        // illegal bitcast.
4797        visitConstantExprsRecursively(CE);
4798      }
4799    }
4800  }
4801
4802  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4803    Check(I.getType()->isFPOrFPVectorTy(),
4804          "fpmath requires a floating point result!", &I);
4805    Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4806    if (ConstantFP *CFP0 =
4807            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4808      const APFloat &Accuracy = CFP0->getValueAPF();
4809      Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4810            "fpmath accuracy must have float type", &I);
4811      Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4812            "fpmath accuracy not a positive number!", &I);
4813    } else {
4814      Check(false, "invalid fpmath accuracy!", &I);
4815    }
4816  }
4817
4818  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4819    Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4820          "Ranges are only for loads, calls and invokes!", &I);
4821    visitRangeMetadata(I, Range, I.getType());
4822  }
4823
4824  if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4825    Check(isa<LoadInst>(I) || isa<StoreInst>(I),
4826          "invariant.group metadata is only for loads and stores", &I);
4827  }
4828
4829  if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
4830    Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4831          &I);
4832    Check(isa<LoadInst>(I),
4833          "nonnull applies only to load instructions, use attributes"
4834          " for calls or invokes",
4835          &I);
4836    Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
4837  }
4838
4839  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4840    visitDereferenceableMetadata(I, MD);
4841
4842  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4843    visitDereferenceableMetadata(I, MD);
4844
4845  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4846    TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4847
4848  if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4849    visitAliasScopeListMetadata(MD);
4850  if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4851    visitAliasScopeListMetadata(MD);
4852
4853  if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
4854    visitAccessGroupMetadata(MD);
4855
4856  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4857    Check(I.getType()->isPointerTy(), "align applies only to pointer types",
4858          &I);
4859    Check(isa<LoadInst>(I),
4860          "align applies only to load instructions, "
4861          "use attributes for calls or invokes",
4862          &I);
4863    Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4864    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4865    Check(CI && CI->getType()->isIntegerTy(64),
4866          "align metadata value must be an i64!", &I);
4867    uint64_t Align = CI->getZExtValue();
4868    Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
4869          &I);
4870    Check(Align <= Value::MaximumAlignment,
4871          "alignment is larger that implementation defined limit", &I);
4872  }
4873
4874  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4875    visitProfMetadata(I, MD);
4876
4877  if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
4878    visitMemProfMetadata(I, MD);
4879
4880  if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
4881    visitCallsiteMetadata(I, MD);
4882
4883  if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
4884    visitDIAssignIDMetadata(I, MD);
4885
4886  if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4887    visitAnnotationMetadata(Annotation);
4888
4889  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4890    CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4891    visitMDNode(*N, AreDebugLocsAllowed::Yes);
4892  }
4893
4894  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4895    verifyFragmentExpression(*DII);
4896    verifyNotEntryValue(*DII);
4897  }
4898
4899  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4900  I.getAllMetadata(MDs);
4901  for (auto Attachment : MDs) {
4902    unsigned Kind = Attachment.first;
4903    auto AllowLocs =
4904        (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4905            ? AreDebugLocsAllowed::Yes
4906            : AreDebugLocsAllowed::No;
4907    visitMDNode(*Attachment.second, AllowLocs);
4908  }
4909
4910  InstsInThisBlock.insert(&I);
4911}
4912
4913/// Allow intrinsics to be verified in different ways.
4914void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4915  Function *IF = Call.getCalledFunction();
4916  Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4917        IF);
4918
4919  // Verify that the intrinsic prototype lines up with what the .td files
4920  // describe.
4921  FunctionType *IFTy = IF->getFunctionType();
4922  bool IsVarArg = IFTy->isVarArg();
4923
4924  SmallVector<Intrinsic::IITDescriptor, 8> Table;
4925  getIntrinsicInfoTableEntries(ID, Table);
4926  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4927
4928  // Walk the descriptors to extract overloaded types.
4929  SmallVector<Type *, 4> ArgTys;
4930  Intrinsic::MatchIntrinsicTypesResult Res =
4931      Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4932  Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4933        "Intrinsic has incorrect return type!", IF);
4934  Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4935        "Intrinsic has incorrect argument type!", IF);
4936
4937  // Verify if the intrinsic call matches the vararg property.
4938  if (IsVarArg)
4939    Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4940          "Intrinsic was not defined with variable arguments!", IF);
4941  else
4942    Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4943          "Callsite was not defined with variable arguments!", IF);
4944
4945  // All descriptors should be absorbed by now.
4946  Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4947
4948  // Now that we have the intrinsic ID and the actual argument types (and we
4949  // know they are legal for the intrinsic!) get the intrinsic name through the
4950  // usual means.  This allows us to verify the mangling of argument types into
4951  // the name.
4952  const std::string ExpectedName =
4953      Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4954  Check(ExpectedName == IF->getName(),
4955        "Intrinsic name not mangled correctly for type arguments! "
4956        "Should be: " +
4957            ExpectedName,
4958        IF);
4959
4960  // If the intrinsic takes MDNode arguments, verify that they are either global
4961  // or are local to *this* function.
4962  for (Value *V : Call.args()) {
4963    if (auto *MD = dyn_cast<MetadataAsValue>(V))
4964      visitMetadataAsValue(*MD, Call.getCaller());
4965    if (auto *Const = dyn_cast<Constant>(V))
4966      Check(!Const->getType()->isX86_AMXTy(),
4967            "const x86_amx is not allowed in argument!");
4968  }
4969
4970  switch (ID) {
4971  default:
4972    break;
4973  case Intrinsic::assume: {
4974    for (auto &Elem : Call.bundle_op_infos()) {
4975      unsigned ArgCount = Elem.End - Elem.Begin;
4976      // Separate storage assumptions are special insofar as they're the only
4977      // operand bundles allowed on assumes that aren't parameter attributes.
4978      if (Elem.Tag->getKey() == "separate_storage") {
4979        Check(ArgCount == 2,
4980              "separate_storage assumptions should have 2 arguments", Call);
4981        Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
4982                  Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
4983              "arguments to separate_storage assumptions should be pointers",
4984              Call);
4985        return;
4986      }
4987      Check(Elem.Tag->getKey() == "ignore" ||
4988                Attribute::isExistingAttribute(Elem.Tag->getKey()),
4989            "tags must be valid attribute names", Call);
4990      Attribute::AttrKind Kind =
4991          Attribute::getAttrKindFromName(Elem.Tag->getKey());
4992      if (Kind == Attribute::Alignment) {
4993        Check(ArgCount <= 3 && ArgCount >= 2,
4994              "alignment assumptions should have 2 or 3 arguments", Call);
4995        Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4996              "first argument should be a pointer", Call);
4997        Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4998              "second argument should be an integer", Call);
4999        if (ArgCount == 3)
5000          Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5001                "third argument should be an integer if present", Call);
5002        return;
5003      }
5004      Check(ArgCount <= 2, "too many arguments", Call);
5005      if (Kind == Attribute::None)
5006        break;
5007      if (Attribute::isIntAttrKind(Kind)) {
5008        Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5009        Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5010              "the second argument should be a constant integral value", Call);
5011      } else if (Attribute::canUseAsParamAttr(Kind)) {
5012        Check((ArgCount) == 1, "this attribute should have one argument", Call);
5013      } else if (Attribute::canUseAsFnAttr(Kind)) {
5014        Check((ArgCount) == 0, "this attribute has no argument", Call);
5015      }
5016    }
5017    break;
5018  }
5019  case Intrinsic::coro_id: {
5020    auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5021    if (isa<ConstantPointerNull>(InfoArg))
5022      break;
5023    auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5024    Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5025          "info argument of llvm.coro.id must refer to an initialized "
5026          "constant");
5027    Constant *Init = GV->getInitializer();
5028    Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5029          "info argument of llvm.coro.id must refer to either a struct or "
5030          "an array");
5031    break;
5032  }
5033  case Intrinsic::is_fpclass: {
5034    const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5035    Check((TestMask->getZExtValue() & ~fcAllFlags) == 0,
5036          "unsupported bits for llvm.is.fpclass test mask");
5037    break;
5038  }
5039  case Intrinsic::fptrunc_round: {
5040    // Check the rounding mode
5041    Metadata *MD = nullptr;
5042    auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5043    if (MAV)
5044      MD = MAV->getMetadata();
5045
5046    Check(MD != nullptr, "missing rounding mode argument", Call);
5047
5048    Check(isa<MDString>(MD),
5049          ("invalid value for llvm.fptrunc.round metadata operand"
5050           " (the operand should be a string)"),
5051          MD);
5052
5053    std::optional<RoundingMode> RoundMode =
5054        convertStrToRoundingMode(cast<MDString>(MD)->getString());
5055    Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5056          "unsupported rounding mode argument", Call);
5057    break;
5058  }
5059#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5060#include "llvm/IR/VPIntrinsics.def"
5061    visitVPIntrinsic(cast<VPIntrinsic>(Call));
5062    break;
5063#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
5064  case Intrinsic::INTRINSIC:
5065#include "llvm/IR/ConstrainedOps.def"
5066    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5067    break;
5068  case Intrinsic::dbg_declare: // llvm.dbg.declare
5069    Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5070          "invalid llvm.dbg.declare intrinsic call 1", Call);
5071    visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5072    break;
5073  case Intrinsic::dbg_addr: // llvm.dbg.addr
5074    visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
5075    break;
5076  case Intrinsic::dbg_value: // llvm.dbg.value
5077    visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5078    break;
5079  case Intrinsic::dbg_assign: // llvm.dbg.assign
5080    visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5081    break;
5082  case Intrinsic::dbg_label: // llvm.dbg.label
5083    visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5084    break;
5085  case Intrinsic::memcpy:
5086  case Intrinsic::memcpy_inline:
5087  case Intrinsic::memmove:
5088  case Intrinsic::memset:
5089  case Intrinsic::memset_inline: {
5090    break;
5091  }
5092  case Intrinsic::memcpy_element_unordered_atomic:
5093  case Intrinsic::memmove_element_unordered_atomic:
5094  case Intrinsic::memset_element_unordered_atomic: {
5095    const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5096
5097    ConstantInt *ElementSizeCI =
5098        cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5099    const APInt &ElementSizeVal = ElementSizeCI->getValue();
5100    Check(ElementSizeVal.isPowerOf2(),
5101          "element size of the element-wise atomic memory intrinsic "
5102          "must be a power of 2",
5103          Call);
5104
5105    auto IsValidAlignment = [&](MaybeAlign Alignment) {
5106      return Alignment && ElementSizeVal.ule(Alignment->value());
5107    };
5108    Check(IsValidAlignment(AMI->getDestAlign()),
5109          "incorrect alignment of the destination argument", Call);
5110    if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5111      Check(IsValidAlignment(AMT->getSourceAlign()),
5112            "incorrect alignment of the source argument", Call);
5113    }
5114    break;
5115  }
5116  case Intrinsic::call_preallocated_setup: {
5117    auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5118    Check(NumArgs != nullptr,
5119          "llvm.call.preallocated.setup argument must be a constant");
5120    bool FoundCall = false;
5121    for (User *U : Call.users()) {
5122      auto *UseCall = dyn_cast<CallBase>(U);
5123      Check(UseCall != nullptr,
5124            "Uses of llvm.call.preallocated.setup must be calls");
5125      const Function *Fn = UseCall->getCalledFunction();
5126      if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5127        auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5128        Check(AllocArgIndex != nullptr,
5129              "llvm.call.preallocated.alloc arg index must be a constant");
5130        auto AllocArgIndexInt = AllocArgIndex->getValue();
5131        Check(AllocArgIndexInt.sge(0) &&
5132                  AllocArgIndexInt.slt(NumArgs->getValue()),
5133              "llvm.call.preallocated.alloc arg index must be between 0 and "
5134              "corresponding "
5135              "llvm.call.preallocated.setup's argument count");
5136      } else if (Fn && Fn->getIntrinsicID() ==
5137                           Intrinsic::call_preallocated_teardown) {
5138        // nothing to do
5139      } else {
5140        Check(!FoundCall, "Can have at most one call corresponding to a "
5141                          "llvm.call.preallocated.setup");
5142        FoundCall = true;
5143        size_t NumPreallocatedArgs = 0;
5144        for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5145          if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5146            ++NumPreallocatedArgs;
5147          }
5148        }
5149        Check(NumPreallocatedArgs != 0,
5150              "cannot use preallocated intrinsics on a call without "
5151              "preallocated arguments");
5152        Check(NumArgs->equalsInt(NumPreallocatedArgs),
5153              "llvm.call.preallocated.setup arg size must be equal to number "
5154              "of preallocated arguments "
5155              "at call site",
5156              Call, *UseCall);
5157        // getOperandBundle() cannot be called if more than one of the operand
5158        // bundle exists. There is already a check elsewhere for this, so skip
5159        // here if we see more than one.
5160        if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5161            1) {
5162          return;
5163        }
5164        auto PreallocatedBundle =
5165            UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5166        Check(PreallocatedBundle,
5167              "Use of llvm.call.preallocated.setup outside intrinsics "
5168              "must be in \"preallocated\" operand bundle");
5169        Check(PreallocatedBundle->Inputs.front().get() == &Call,
5170              "preallocated bundle must have token from corresponding "
5171              "llvm.call.preallocated.setup");
5172      }
5173    }
5174    break;
5175  }
5176  case Intrinsic::call_preallocated_arg: {
5177    auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5178    Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5179                       Intrinsic::call_preallocated_setup,
5180          "llvm.call.preallocated.arg token argument must be a "
5181          "llvm.call.preallocated.setup");
5182    Check(Call.hasFnAttr(Attribute::Preallocated),
5183          "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5184          "call site attribute");
5185    break;
5186  }
5187  case Intrinsic::call_preallocated_teardown: {
5188    auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5189    Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5190                       Intrinsic::call_preallocated_setup,
5191          "llvm.call.preallocated.teardown token argument must be a "
5192          "llvm.call.preallocated.setup");
5193    break;
5194  }
5195  case Intrinsic::gcroot:
5196  case Intrinsic::gcwrite:
5197  case Intrinsic::gcread:
5198    if (ID == Intrinsic::gcroot) {
5199      AllocaInst *AI =
5200          dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5201      Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5202      Check(isa<Constant>(Call.getArgOperand(1)),
5203            "llvm.gcroot parameter #2 must be a constant.", Call);
5204      if (!AI->getAllocatedType()->isPointerTy()) {
5205        Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5206              "llvm.gcroot parameter #1 must either be a pointer alloca, "
5207              "or argument #2 must be a non-null constant.",
5208              Call);
5209      }
5210    }
5211
5212    Check(Call.getParent()->getParent()->hasGC(),
5213          "Enclosing function does not use GC.", Call);
5214    break;
5215  case Intrinsic::init_trampoline:
5216    Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5217          "llvm.init_trampoline parameter #2 must resolve to a function.",
5218          Call);
5219    break;
5220  case Intrinsic::prefetch:
5221    Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5222          "rw argument to llvm.prefetch must be 0-1", Call);
5223    Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5224          "locality argument to llvm.prefetch must be 0-4", Call);
5225    Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5226          "cache type argument to llvm.prefetch must be 0-1", Call);
5227    break;
5228  case Intrinsic::stackprotector:
5229    Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5230          "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5231    break;
5232  case Intrinsic::localescape: {
5233    BasicBlock *BB = Call.getParent();
5234    Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5235          Call);
5236    Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5237          Call);
5238    for (Value *Arg : Call.args()) {
5239      if (isa<ConstantPointerNull>(Arg))
5240        continue; // Null values are allowed as placeholders.
5241      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5242      Check(AI && AI->isStaticAlloca(),
5243            "llvm.localescape only accepts static allocas", Call);
5244    }
5245    FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5246    SawFrameEscape = true;
5247    break;
5248  }
5249  case Intrinsic::localrecover: {
5250    Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5251    Function *Fn = dyn_cast<Function>(FnArg);
5252    Check(Fn && !Fn->isDeclaration(),
5253          "llvm.localrecover first "
5254          "argument must be function defined in this module",
5255          Call);
5256    auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5257    auto &Entry = FrameEscapeInfo[Fn];
5258    Entry.second = unsigned(
5259        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5260    break;
5261  }
5262
5263  case Intrinsic::experimental_gc_statepoint:
5264    if (auto *CI = dyn_cast<CallInst>(&Call))
5265      Check(!CI->isInlineAsm(),
5266            "gc.statepoint support for inline assembly unimplemented", CI);
5267    Check(Call.getParent()->getParent()->hasGC(),
5268          "Enclosing function does not use GC.", Call);
5269
5270    verifyStatepoint(Call);
5271    break;
5272  case Intrinsic::experimental_gc_result: {
5273    Check(Call.getParent()->getParent()->hasGC(),
5274          "Enclosing function does not use GC.", Call);
5275
5276    auto *Statepoint = Call.getArgOperand(0);
5277    if (isa<UndefValue>(Statepoint))
5278      break;
5279
5280    // Are we tied to a statepoint properly?
5281    const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5282    const Function *StatepointFn =
5283        StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5284    Check(StatepointFn && StatepointFn->isDeclaration() &&
5285              StatepointFn->getIntrinsicID() ==
5286                  Intrinsic::experimental_gc_statepoint,
5287          "gc.result operand #1 must be from a statepoint", Call,
5288          Call.getArgOperand(0));
5289
5290    // Check that result type matches wrapped callee.
5291    auto *TargetFuncType =
5292        cast<FunctionType>(StatepointCall->getParamElementType(2));
5293    Check(Call.getType() == TargetFuncType->getReturnType(),
5294          "gc.result result type does not match wrapped callee", Call);
5295    break;
5296  }
5297  case Intrinsic::experimental_gc_relocate: {
5298    Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5299
5300    Check(isa<PointerType>(Call.getType()->getScalarType()),
5301          "gc.relocate must return a pointer or a vector of pointers", Call);
5302
5303    // Check that this relocate is correctly tied to the statepoint
5304
5305    // This is case for relocate on the unwinding path of an invoke statepoint
5306    if (LandingPadInst *LandingPad =
5307            dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5308
5309      const BasicBlock *InvokeBB =
5310          LandingPad->getParent()->getUniquePredecessor();
5311
5312      // Landingpad relocates should have only one predecessor with invoke
5313      // statepoint terminator
5314      Check(InvokeBB, "safepoints should have unique landingpads",
5315            LandingPad->getParent());
5316      Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5317            InvokeBB);
5318      Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5319            "gc relocate should be linked to a statepoint", InvokeBB);
5320    } else {
5321      // In all other cases relocate should be tied to the statepoint directly.
5322      // This covers relocates on a normal return path of invoke statepoint and
5323      // relocates of a call statepoint.
5324      auto *Token = Call.getArgOperand(0);
5325      Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5326            "gc relocate is incorrectly tied to the statepoint", Call, Token);
5327    }
5328
5329    // Verify rest of the relocate arguments.
5330    const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5331
5332    // Both the base and derived must be piped through the safepoint.
5333    Value *Base = Call.getArgOperand(1);
5334    Check(isa<ConstantInt>(Base),
5335          "gc.relocate operand #2 must be integer offset", Call);
5336
5337    Value *Derived = Call.getArgOperand(2);
5338    Check(isa<ConstantInt>(Derived),
5339          "gc.relocate operand #3 must be integer offset", Call);
5340
5341    const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5342    const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5343
5344    // Check the bounds
5345    if (isa<UndefValue>(StatepointCall))
5346      break;
5347    if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5348                       .getOperandBundle(LLVMContext::OB_gc_live)) {
5349      Check(BaseIndex < Opt->Inputs.size(),
5350            "gc.relocate: statepoint base index out of bounds", Call);
5351      Check(DerivedIndex < Opt->Inputs.size(),
5352            "gc.relocate: statepoint derived index out of bounds", Call);
5353    }
5354
5355    // Relocated value must be either a pointer type or vector-of-pointer type,
5356    // but gc_relocate does not need to return the same pointer type as the
5357    // relocated pointer. It can be casted to the correct type later if it's
5358    // desired. However, they must have the same address space and 'vectorness'
5359    GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5360    auto *ResultType = Call.getType();
5361    auto *DerivedType = Relocate.getDerivedPtr()->getType();
5362    auto *BaseType = Relocate.getBasePtr()->getType();
5363
5364    Check(BaseType->isPtrOrPtrVectorTy(),
5365          "gc.relocate: relocated value must be a pointer", Call);
5366    Check(DerivedType->isPtrOrPtrVectorTy(),
5367          "gc.relocate: relocated value must be a pointer", Call);
5368
5369    Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5370          "gc.relocate: vector relocates to vector and pointer to pointer",
5371          Call);
5372    Check(
5373        ResultType->getPointerAddressSpace() ==
5374            DerivedType->getPointerAddressSpace(),
5375        "gc.relocate: relocating a pointer shouldn't change its address space",
5376        Call);
5377
5378    auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5379    Check(GC, "gc.relocate: calling function must have GCStrategy",
5380          Call.getFunction());
5381    if (GC) {
5382      auto isGCPtr = [&GC](Type *PTy) {
5383        return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5384      };
5385      Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5386      Check(isGCPtr(BaseType),
5387            "gc.relocate: relocated value must be a gc pointer", Call);
5388      Check(isGCPtr(DerivedType),
5389            "gc.relocate: relocated value must be a gc pointer", Call);
5390    }
5391    break;
5392  }
5393  case Intrinsic::eh_exceptioncode:
5394  case Intrinsic::eh_exceptionpointer: {
5395    Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5396          "eh.exceptionpointer argument must be a catchpad", Call);
5397    break;
5398  }
5399  case Intrinsic::get_active_lane_mask: {
5400    Check(Call.getType()->isVectorTy(),
5401          "get_active_lane_mask: must return a "
5402          "vector",
5403          Call);
5404    auto *ElemTy = Call.getType()->getScalarType();
5405    Check(ElemTy->isIntegerTy(1),
5406          "get_active_lane_mask: element type is not "
5407          "i1",
5408          Call);
5409    break;
5410  }
5411  case Intrinsic::masked_load: {
5412    Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5413          Call);
5414
5415    Value *Ptr = Call.getArgOperand(0);
5416    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5417    Value *Mask = Call.getArgOperand(2);
5418    Value *PassThru = Call.getArgOperand(3);
5419    Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5420          Call);
5421    Check(Alignment->getValue().isPowerOf2(),
5422          "masked_load: alignment must be a power of 2", Call);
5423
5424    PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5425    Check(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
5426          "masked_load: return must match pointer type", Call);
5427    Check(PassThru->getType() == Call.getType(),
5428          "masked_load: pass through and return type must match", Call);
5429    Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5430              cast<VectorType>(Call.getType())->getElementCount(),
5431          "masked_load: vector mask must be same length as return", Call);
5432    break;
5433  }
5434  case Intrinsic::masked_store: {
5435    Value *Val = Call.getArgOperand(0);
5436    Value *Ptr = Call.getArgOperand(1);
5437    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5438    Value *Mask = Call.getArgOperand(3);
5439    Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5440          Call);
5441    Check(Alignment->getValue().isPowerOf2(),
5442          "masked_store: alignment must be a power of 2", Call);
5443
5444    PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5445    Check(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5446          "masked_store: storee must match pointer type", Call);
5447    Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5448              cast<VectorType>(Val->getType())->getElementCount(),
5449          "masked_store: vector mask must be same length as value", Call);
5450    break;
5451  }
5452
5453  case Intrinsic::masked_gather: {
5454    const APInt &Alignment =
5455        cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5456    Check(Alignment.isZero() || Alignment.isPowerOf2(),
5457          "masked_gather: alignment must be 0 or a power of 2", Call);
5458    break;
5459  }
5460  case Intrinsic::masked_scatter: {
5461    const APInt &Alignment =
5462        cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5463    Check(Alignment.isZero() || Alignment.isPowerOf2(),
5464          "masked_scatter: alignment must be 0 or a power of 2", Call);
5465    break;
5466  }
5467
5468  case Intrinsic::experimental_guard: {
5469    Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5470    Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5471          "experimental_guard must have exactly one "
5472          "\"deopt\" operand bundle");
5473    break;
5474  }
5475
5476  case Intrinsic::experimental_deoptimize: {
5477    Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5478          Call);
5479    Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5480          "experimental_deoptimize must have exactly one "
5481          "\"deopt\" operand bundle");
5482    Check(Call.getType() == Call.getFunction()->getReturnType(),
5483          "experimental_deoptimize return type must match caller return type");
5484
5485    if (isa<CallInst>(Call)) {
5486      auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5487      Check(RI,
5488            "calls to experimental_deoptimize must be followed by a return");
5489
5490      if (!Call.getType()->isVoidTy() && RI)
5491        Check(RI->getReturnValue() == &Call,
5492              "calls to experimental_deoptimize must be followed by a return "
5493              "of the value computed by experimental_deoptimize");
5494    }
5495
5496    break;
5497  }
5498  case Intrinsic::vector_reduce_and:
5499  case Intrinsic::vector_reduce_or:
5500  case Intrinsic::vector_reduce_xor:
5501  case Intrinsic::vector_reduce_add:
5502  case Intrinsic::vector_reduce_mul:
5503  case Intrinsic::vector_reduce_smax:
5504  case Intrinsic::vector_reduce_smin:
5505  case Intrinsic::vector_reduce_umax:
5506  case Intrinsic::vector_reduce_umin: {
5507    Type *ArgTy = Call.getArgOperand(0)->getType();
5508    Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5509          "Intrinsic has incorrect argument type!");
5510    break;
5511  }
5512  case Intrinsic::vector_reduce_fmax:
5513  case Intrinsic::vector_reduce_fmin: {
5514    Type *ArgTy = Call.getArgOperand(0)->getType();
5515    Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5516          "Intrinsic has incorrect argument type!");
5517    break;
5518  }
5519  case Intrinsic::vector_reduce_fadd:
5520  case Intrinsic::vector_reduce_fmul: {
5521    // Unlike the other reductions, the first argument is a start value. The
5522    // second argument is the vector to be reduced.
5523    Type *ArgTy = Call.getArgOperand(1)->getType();
5524    Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5525          "Intrinsic has incorrect argument type!");
5526    break;
5527  }
5528  case Intrinsic::smul_fix:
5529  case Intrinsic::smul_fix_sat:
5530  case Intrinsic::umul_fix:
5531  case Intrinsic::umul_fix_sat:
5532  case Intrinsic::sdiv_fix:
5533  case Intrinsic::sdiv_fix_sat:
5534  case Intrinsic::udiv_fix:
5535  case Intrinsic::udiv_fix_sat: {
5536    Value *Op1 = Call.getArgOperand(0);
5537    Value *Op2 = Call.getArgOperand(1);
5538    Check(Op1->getType()->isIntOrIntVectorTy(),
5539          "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5540          "vector of ints");
5541    Check(Op2->getType()->isIntOrIntVectorTy(),
5542          "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5543          "vector of ints");
5544
5545    auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5546    Check(Op3->getType()->getBitWidth() <= 32,
5547          "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5548
5549    if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5550        ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5551      Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5552            "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5553            "the operands");
5554    } else {
5555      Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5556            "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5557            "to the width of the operands");
5558    }
5559    break;
5560  }
5561  case Intrinsic::lround:
5562  case Intrinsic::llround:
5563  case Intrinsic::lrint:
5564  case Intrinsic::llrint: {
5565    Type *ValTy = Call.getArgOperand(0)->getType();
5566    Type *ResultTy = Call.getType();
5567    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5568          "Intrinsic does not support vectors", &Call);
5569    break;
5570  }
5571  case Intrinsic::bswap: {
5572    Type *Ty = Call.getType();
5573    unsigned Size = Ty->getScalarSizeInBits();
5574    Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5575    break;
5576  }
5577  case Intrinsic::invariant_start: {
5578    ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5579    Check(InvariantSize &&
5580              (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5581          "invariant_start parameter must be -1, 0 or a positive number",
5582          &Call);
5583    break;
5584  }
5585  case Intrinsic::matrix_multiply:
5586  case Intrinsic::matrix_transpose:
5587  case Intrinsic::matrix_column_major_load:
5588  case Intrinsic::matrix_column_major_store: {
5589    Function *IF = Call.getCalledFunction();
5590    ConstantInt *Stride = nullptr;
5591    ConstantInt *NumRows;
5592    ConstantInt *NumColumns;
5593    VectorType *ResultTy;
5594    Type *Op0ElemTy = nullptr;
5595    Type *Op1ElemTy = nullptr;
5596    switch (ID) {
5597    case Intrinsic::matrix_multiply:
5598      NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5599      NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5600      ResultTy = cast<VectorType>(Call.getType());
5601      Op0ElemTy =
5602          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5603      Op1ElemTy =
5604          cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5605      break;
5606    case Intrinsic::matrix_transpose:
5607      NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5608      NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5609      ResultTy = cast<VectorType>(Call.getType());
5610      Op0ElemTy =
5611          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5612      break;
5613    case Intrinsic::matrix_column_major_load: {
5614      Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5615      NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5616      NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5617      ResultTy = cast<VectorType>(Call.getType());
5618
5619      PointerType *Op0PtrTy =
5620          cast<PointerType>(Call.getArgOperand(0)->getType());
5621      if (!Op0PtrTy->isOpaque())
5622        Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType();
5623      break;
5624    }
5625    case Intrinsic::matrix_column_major_store: {
5626      Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5627      NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5628      NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5629      ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5630      Op0ElemTy =
5631          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5632
5633      PointerType *Op1PtrTy =
5634          cast<PointerType>(Call.getArgOperand(1)->getType());
5635      if (!Op1PtrTy->isOpaque())
5636        Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType();
5637      break;
5638    }
5639    default:
5640      llvm_unreachable("unexpected intrinsic");
5641    }
5642
5643    Check(ResultTy->getElementType()->isIntegerTy() ||
5644              ResultTy->getElementType()->isFloatingPointTy(),
5645          "Result type must be an integer or floating-point type!", IF);
5646
5647    if (Op0ElemTy)
5648      Check(ResultTy->getElementType() == Op0ElemTy,
5649            "Vector element type mismatch of the result and first operand "
5650            "vector!",
5651            IF);
5652
5653    if (Op1ElemTy)
5654      Check(ResultTy->getElementType() == Op1ElemTy,
5655            "Vector element type mismatch of the result and second operand "
5656            "vector!",
5657            IF);
5658
5659    Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5660              NumRows->getZExtValue() * NumColumns->getZExtValue(),
5661          "Result of a matrix operation does not fit in the returned vector!");
5662
5663    if (Stride)
5664      Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5665            "Stride must be greater or equal than the number of rows!", IF);
5666
5667    break;
5668  }
5669  case Intrinsic::experimental_vector_splice: {
5670    VectorType *VecTy = cast<VectorType>(Call.getType());
5671    int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5672    int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5673    if (Call.getParent() && Call.getParent()->getParent()) {
5674      AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5675      if (Attrs.hasFnAttr(Attribute::VScaleRange))
5676        KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5677    }
5678    Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5679              (Idx >= 0 && Idx < KnownMinNumElements),
5680          "The splice index exceeds the range [-VL, VL-1] where VL is the "
5681          "known minimum number of elements in the vector. For scalable "
5682          "vectors the minimum number of elements is determined from "
5683          "vscale_range.",
5684          &Call);
5685    break;
5686  }
5687  case Intrinsic::experimental_stepvector: {
5688    VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5689    Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5690              VecTy->getScalarSizeInBits() >= 8,
5691          "experimental_stepvector only supported for vectors of integers "
5692          "with a bitwidth of at least 8.",
5693          &Call);
5694    break;
5695  }
5696  case Intrinsic::vector_insert: {
5697    Value *Vec = Call.getArgOperand(0);
5698    Value *SubVec = Call.getArgOperand(1);
5699    Value *Idx = Call.getArgOperand(2);
5700    unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5701
5702    VectorType *VecTy = cast<VectorType>(Vec->getType());
5703    VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5704
5705    ElementCount VecEC = VecTy->getElementCount();
5706    ElementCount SubVecEC = SubVecTy->getElementCount();
5707    Check(VecTy->getElementType() == SubVecTy->getElementType(),
5708          "vector_insert parameters must have the same element "
5709          "type.",
5710          &Call);
5711    Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5712          "vector_insert index must be a constant multiple of "
5713          "the subvector's known minimum vector length.");
5714
5715    // If this insertion is not the 'mixed' case where a fixed vector is
5716    // inserted into a scalable vector, ensure that the insertion of the
5717    // subvector does not overrun the parent vector.
5718    if (VecEC.isScalable() == SubVecEC.isScalable()) {
5719      Check(IdxN < VecEC.getKnownMinValue() &&
5720                IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5721            "subvector operand of vector_insert would overrun the "
5722            "vector being inserted into.");
5723    }
5724    break;
5725  }
5726  case Intrinsic::vector_extract: {
5727    Value *Vec = Call.getArgOperand(0);
5728    Value *Idx = Call.getArgOperand(1);
5729    unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5730
5731    VectorType *ResultTy = cast<VectorType>(Call.getType());
5732    VectorType *VecTy = cast<VectorType>(Vec->getType());
5733
5734    ElementCount VecEC = VecTy->getElementCount();
5735    ElementCount ResultEC = ResultTy->getElementCount();
5736
5737    Check(ResultTy->getElementType() == VecTy->getElementType(),
5738          "vector_extract result must have the same element "
5739          "type as the input vector.",
5740          &Call);
5741    Check(IdxN % ResultEC.getKnownMinValue() == 0,
5742          "vector_extract index must be a constant multiple of "
5743          "the result type's known minimum vector length.");
5744
5745    // If this extraction is not the 'mixed' case where a fixed vector is is
5746    // extracted from a scalable vector, ensure that the extraction does not
5747    // overrun the parent vector.
5748    if (VecEC.isScalable() == ResultEC.isScalable()) {
5749      Check(IdxN < VecEC.getKnownMinValue() &&
5750                IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5751            "vector_extract would overrun.");
5752    }
5753    break;
5754  }
5755  case Intrinsic::experimental_noalias_scope_decl: {
5756    NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5757    break;
5758  }
5759  case Intrinsic::preserve_array_access_index:
5760  case Intrinsic::preserve_struct_access_index:
5761  case Intrinsic::aarch64_ldaxr:
5762  case Intrinsic::aarch64_ldxr:
5763  case Intrinsic::arm_ldaex:
5764  case Intrinsic::arm_ldrex: {
5765    Type *ElemTy = Call.getParamElementType(0);
5766    Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5767          &Call);
5768    break;
5769  }
5770  case Intrinsic::aarch64_stlxr:
5771  case Intrinsic::aarch64_stxr:
5772  case Intrinsic::arm_stlex:
5773  case Intrinsic::arm_strex: {
5774    Type *ElemTy = Call.getAttributes().getParamElementType(1);
5775    Check(ElemTy,
5776          "Intrinsic requires elementtype attribute on second argument.",
5777          &Call);
5778    break;
5779  }
5780  case Intrinsic::aarch64_prefetch: {
5781    Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5782          "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5783    Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5784          "target argument to llvm.aarch64.prefetch must be 0-3", Call);
5785    Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5786          "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5787    Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
5788          "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5789    break;
5790  }
5791  };
5792}
5793
5794/// Carefully grab the subprogram from a local scope.
5795///
5796/// This carefully grabs the subprogram from a local scope, avoiding the
5797/// built-in assertions that would typically fire.
5798static DISubprogram *getSubprogram(Metadata *LocalScope) {
5799  if (!LocalScope)
5800    return nullptr;
5801
5802  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5803    return SP;
5804
5805  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5806    return getSubprogram(LB->getRawScope());
5807
5808  // Just return null; broken scope chains are checked elsewhere.
5809  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5810  return nullptr;
5811}
5812
5813void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
5814  if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
5815    auto *RetTy = cast<VectorType>(VPCast->getType());
5816    auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
5817    Check(RetTy->getElementCount() == ValTy->getElementCount(),
5818          "VP cast intrinsic first argument and result vector lengths must be "
5819          "equal",
5820          *VPCast);
5821
5822    switch (VPCast->getIntrinsicID()) {
5823    default:
5824      llvm_unreachable("Unknown VP cast intrinsic");
5825    case Intrinsic::vp_trunc:
5826      Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
5827            "llvm.vp.trunc intrinsic first argument and result element type "
5828            "must be integer",
5829            *VPCast);
5830      Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
5831            "llvm.vp.trunc intrinsic the bit size of first argument must be "
5832            "larger than the bit size of the return type",
5833            *VPCast);
5834      break;
5835    case Intrinsic::vp_zext:
5836    case Intrinsic::vp_sext:
5837      Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
5838            "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
5839            "element type must be integer",
5840            *VPCast);
5841      Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
5842            "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
5843            "argument must be smaller than the bit size of the return type",
5844            *VPCast);
5845      break;
5846    case Intrinsic::vp_fptoui:
5847    case Intrinsic::vp_fptosi:
5848      Check(
5849          RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
5850          "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
5851          "type must be floating-point and result element type must be integer",
5852          *VPCast);
5853      break;
5854    case Intrinsic::vp_uitofp:
5855    case Intrinsic::vp_sitofp:
5856      Check(
5857          RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
5858          "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
5859          "type must be integer and result element type must be floating-point",
5860          *VPCast);
5861      break;
5862    case Intrinsic::vp_fptrunc:
5863      Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
5864            "llvm.vp.fptrunc intrinsic first argument and result element type "
5865            "must be floating-point",
5866            *VPCast);
5867      Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
5868            "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
5869            "larger than the bit size of the return type",
5870            *VPCast);
5871      break;
5872    case Intrinsic::vp_fpext:
5873      Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
5874            "llvm.vp.fpext intrinsic first argument and result element type "
5875            "must be floating-point",
5876            *VPCast);
5877      Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
5878            "llvm.vp.fpext intrinsic the bit size of first argument must be "
5879            "smaller than the bit size of the return type",
5880            *VPCast);
5881      break;
5882    case Intrinsic::vp_ptrtoint:
5883      Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
5884            "llvm.vp.ptrtoint intrinsic first argument element type must be "
5885            "pointer and result element type must be integer",
5886            *VPCast);
5887      break;
5888    case Intrinsic::vp_inttoptr:
5889      Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
5890            "llvm.vp.inttoptr intrinsic first argument element type must be "
5891            "integer and result element type must be pointer",
5892            *VPCast);
5893      break;
5894    }
5895  }
5896  if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
5897    auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
5898    Check(CmpInst::isFPPredicate(Pred),
5899          "invalid predicate for VP FP comparison intrinsic", &VPI);
5900  }
5901  if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
5902    auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
5903    Check(CmpInst::isIntPredicate(Pred),
5904          "invalid predicate for VP integer comparison intrinsic", &VPI);
5905  }
5906}
5907
5908void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5909  unsigned NumOperands;
5910  bool HasRoundingMD;
5911  switch (FPI.getIntrinsicID()) {
5912#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5913  case Intrinsic::INTRINSIC:                                                   \
5914    NumOperands = NARG;                                                        \
5915    HasRoundingMD = ROUND_MODE;                                                \
5916    break;
5917#include "llvm/IR/ConstrainedOps.def"
5918  default:
5919    llvm_unreachable("Invalid constrained FP intrinsic!");
5920  }
5921  NumOperands += (1 + HasRoundingMD);
5922  // Compare intrinsics carry an extra predicate metadata operand.
5923  if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5924    NumOperands += 1;
5925  Check((FPI.arg_size() == NumOperands),
5926        "invalid arguments for constrained FP intrinsic", &FPI);
5927
5928  switch (FPI.getIntrinsicID()) {
5929  case Intrinsic::experimental_constrained_lrint:
5930  case Intrinsic::experimental_constrained_llrint: {
5931    Type *ValTy = FPI.getArgOperand(0)->getType();
5932    Type *ResultTy = FPI.getType();
5933    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5934          "Intrinsic does not support vectors", &FPI);
5935  }
5936    break;
5937
5938  case Intrinsic::experimental_constrained_lround:
5939  case Intrinsic::experimental_constrained_llround: {
5940    Type *ValTy = FPI.getArgOperand(0)->getType();
5941    Type *ResultTy = FPI.getType();
5942    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5943          "Intrinsic does not support vectors", &FPI);
5944    break;
5945  }
5946
5947  case Intrinsic::experimental_constrained_fcmp:
5948  case Intrinsic::experimental_constrained_fcmps: {
5949    auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5950    Check(CmpInst::isFPPredicate(Pred),
5951          "invalid predicate for constrained FP comparison intrinsic", &FPI);
5952    break;
5953  }
5954
5955  case Intrinsic::experimental_constrained_fptosi:
5956  case Intrinsic::experimental_constrained_fptoui: {
5957    Value *Operand = FPI.getArgOperand(0);
5958    uint64_t NumSrcElem = 0;
5959    Check(Operand->getType()->isFPOrFPVectorTy(),
5960          "Intrinsic first argument must be floating point", &FPI);
5961    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5962      NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5963    }
5964
5965    Operand = &FPI;
5966    Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5967          "Intrinsic first argument and result disagree on vector use", &FPI);
5968    Check(Operand->getType()->isIntOrIntVectorTy(),
5969          "Intrinsic result must be an integer", &FPI);
5970    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5971      Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5972            "Intrinsic first argument and result vector lengths must be equal",
5973            &FPI);
5974    }
5975  }
5976    break;
5977
5978  case Intrinsic::experimental_constrained_sitofp:
5979  case Intrinsic::experimental_constrained_uitofp: {
5980    Value *Operand = FPI.getArgOperand(0);
5981    uint64_t NumSrcElem = 0;
5982    Check(Operand->getType()->isIntOrIntVectorTy(),
5983          "Intrinsic first argument must be integer", &FPI);
5984    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5985      NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5986    }
5987
5988    Operand = &FPI;
5989    Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5990          "Intrinsic first argument and result disagree on vector use", &FPI);
5991    Check(Operand->getType()->isFPOrFPVectorTy(),
5992          "Intrinsic result must be a floating point", &FPI);
5993    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5994      Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5995            "Intrinsic first argument and result vector lengths must be equal",
5996            &FPI);
5997    }
5998  } break;
5999
6000  case Intrinsic::experimental_constrained_fptrunc:
6001  case Intrinsic::experimental_constrained_fpext: {
6002    Value *Operand = FPI.getArgOperand(0);
6003    Type *OperandTy = Operand->getType();
6004    Value *Result = &FPI;
6005    Type *ResultTy = Result->getType();
6006    Check(OperandTy->isFPOrFPVectorTy(),
6007          "Intrinsic first argument must be FP or FP vector", &FPI);
6008    Check(ResultTy->isFPOrFPVectorTy(),
6009          "Intrinsic result must be FP or FP vector", &FPI);
6010    Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6011          "Intrinsic first argument and result disagree on vector use", &FPI);
6012    if (OperandTy->isVectorTy()) {
6013      Check(cast<FixedVectorType>(OperandTy)->getNumElements() ==
6014                cast<FixedVectorType>(ResultTy)->getNumElements(),
6015            "Intrinsic first argument and result vector lengths must be equal",
6016            &FPI);
6017    }
6018    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6019      Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6020            "Intrinsic first argument's type must be larger than result type",
6021            &FPI);
6022    } else {
6023      Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6024            "Intrinsic first argument's type must be smaller than result type",
6025            &FPI);
6026    }
6027  }
6028    break;
6029
6030  default:
6031    break;
6032  }
6033
6034  // If a non-metadata argument is passed in a metadata slot then the
6035  // error will be caught earlier when the incorrect argument doesn't
6036  // match the specification in the intrinsic call table. Thus, no
6037  // argument type check is needed here.
6038
6039  Check(FPI.getExceptionBehavior().has_value(),
6040        "invalid exception behavior argument", &FPI);
6041  if (HasRoundingMD) {
6042    Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6043          &FPI);
6044  }
6045}
6046
6047void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6048  auto *MD = DII.getRawLocation();
6049  CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6050              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6051          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6052  CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6053          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6054          DII.getRawVariable());
6055  CheckDI(isa<DIExpression>(DII.getRawExpression()),
6056          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6057          DII.getRawExpression());
6058
6059  if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6060    CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6061            "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6062            DAI->getRawAssignID());
6063    const auto *RawAddr = DAI->getRawAddress();
6064    CheckDI(
6065        isa<ValueAsMetadata>(RawAddr) ||
6066            (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6067        "invalid llvm.dbg.assign intrinsic address", &DII,
6068        DAI->getRawAddress());
6069    CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6070            "invalid llvm.dbg.assign intrinsic address expression", &DII,
6071            DAI->getRawAddressExpression());
6072    // All of the linked instructions should be in the same function as DII.
6073    for (Instruction *I : at::getAssignmentInsts(DAI))
6074      CheckDI(DAI->getFunction() == I->getFunction(),
6075              "inst not in same function as dbg.assign", I, DAI);
6076  }
6077
6078  // Ignore broken !dbg attachments; they're checked elsewhere.
6079  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6080    if (!isa<DILocation>(N))
6081      return;
6082
6083  BasicBlock *BB = DII.getParent();
6084  Function *F = BB ? BB->getParent() : nullptr;
6085
6086  // The scopes for variables and !dbg attachments must agree.
6087  DILocalVariable *Var = DII.getVariable();
6088  DILocation *Loc = DII.getDebugLoc();
6089  CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6090          &DII, BB, F);
6091
6092  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6093  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6094  if (!VarSP || !LocSP)
6095    return; // Broken scope chains are checked elsewhere.
6096
6097  CheckDI(VarSP == LocSP,
6098          "mismatched subprogram between llvm.dbg." + Kind +
6099              " variable and !dbg attachment",
6100          &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6101          Loc->getScope()->getSubprogram());
6102
6103  // This check is redundant with one in visitLocalVariable().
6104  CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6105          Var->getRawType());
6106  verifyFnArgs(DII);
6107}
6108
6109void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6110  CheckDI(isa<DILabel>(DLI.getRawLabel()),
6111          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6112          DLI.getRawLabel());
6113
6114  // Ignore broken !dbg attachments; they're checked elsewhere.
6115  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6116    if (!isa<DILocation>(N))
6117      return;
6118
6119  BasicBlock *BB = DLI.getParent();
6120  Function *F = BB ? BB->getParent() : nullptr;
6121
6122  // The scopes for variables and !dbg attachments must agree.
6123  DILabel *Label = DLI.getLabel();
6124  DILocation *Loc = DLI.getDebugLoc();
6125  Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6126        BB, F);
6127
6128  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6129  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6130  if (!LabelSP || !LocSP)
6131    return;
6132
6133  CheckDI(LabelSP == LocSP,
6134          "mismatched subprogram between llvm.dbg." + Kind +
6135              " label and !dbg attachment",
6136          &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6137          Loc->getScope()->getSubprogram());
6138}
6139
6140void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6141  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6142  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6143
6144  // We don't know whether this intrinsic verified correctly.
6145  if (!V || !E || !E->isValid())
6146    return;
6147
6148  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6149  auto Fragment = E->getFragmentInfo();
6150  if (!Fragment)
6151    return;
6152
6153  // The frontend helps out GDB by emitting the members of local anonymous
6154  // unions as artificial local variables with shared storage. When SROA splits
6155  // the storage for artificial local variables that are smaller than the entire
6156  // union, the overhang piece will be outside of the allotted space for the
6157  // variable and this check fails.
6158  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6159  if (V->isArtificial())
6160    return;
6161
6162  verifyFragmentExpression(*V, *Fragment, &I);
6163}
6164
6165template <typename ValueOrMetadata>
6166void Verifier::verifyFragmentExpression(const DIVariable &V,
6167                                        DIExpression::FragmentInfo Fragment,
6168                                        ValueOrMetadata *Desc) {
6169  // If there's no size, the type is broken, but that should be checked
6170  // elsewhere.
6171  auto VarSize = V.getSizeInBits();
6172  if (!VarSize)
6173    return;
6174
6175  unsigned FragSize = Fragment.SizeInBits;
6176  unsigned FragOffset = Fragment.OffsetInBits;
6177  CheckDI(FragSize + FragOffset <= *VarSize,
6178          "fragment is larger than or outside of variable", Desc, &V);
6179  CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6180}
6181
6182void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6183  // This function does not take the scope of noninlined function arguments into
6184  // account. Don't run it if current function is nodebug, because it may
6185  // contain inlined debug intrinsics.
6186  if (!HasDebugInfo)
6187    return;
6188
6189  // For performance reasons only check non-inlined ones.
6190  if (I.getDebugLoc()->getInlinedAt())
6191    return;
6192
6193  DILocalVariable *Var = I.getVariable();
6194  CheckDI(Var, "dbg intrinsic without variable");
6195
6196  unsigned ArgNo = Var->getArg();
6197  if (!ArgNo)
6198    return;
6199
6200  // Verify there are no duplicate function argument debug info entries.
6201  // These will cause hard-to-debug assertions in the DWARF backend.
6202  if (DebugFnArgs.size() < ArgNo)
6203    DebugFnArgs.resize(ArgNo, nullptr);
6204
6205  auto *Prev = DebugFnArgs[ArgNo - 1];
6206  DebugFnArgs[ArgNo - 1] = Var;
6207  CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6208          Prev, Var);
6209}
6210
6211void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6212  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6213
6214  // We don't know whether this intrinsic verified correctly.
6215  if (!E || !E->isValid())
6216    return;
6217
6218  CheckDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
6219}
6220
6221void Verifier::verifyCompileUnits() {
6222  // When more than one Module is imported into the same context, such as during
6223  // an LTO build before linking the modules, ODR type uniquing may cause types
6224  // to point to a different CU. This check does not make sense in this case.
6225  if (M.getContext().isODRUniquingDebugTypes())
6226    return;
6227  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
6228  SmallPtrSet<const Metadata *, 2> Listed;
6229  if (CUs)
6230    Listed.insert(CUs->op_begin(), CUs->op_end());
6231  for (const auto *CU : CUVisited)
6232    CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6233  CUVisited.clear();
6234}
6235
6236void Verifier::verifyDeoptimizeCallingConvs() {
6237  if (DeoptimizeDeclarations.empty())
6238    return;
6239
6240  const Function *First = DeoptimizeDeclarations[0];
6241  for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
6242    Check(First->getCallingConv() == F->getCallingConv(),
6243          "All llvm.experimental.deoptimize declarations must have the same "
6244          "calling convention",
6245          First, F);
6246  }
6247}
6248
6249void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6250                                        const OperandBundleUse &BU) {
6251  FunctionType *FTy = Call.getFunctionType();
6252
6253  Check((FTy->getReturnType()->isPointerTy() ||
6254         (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6255        "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6256        "function returning a pointer or a non-returning function that has a "
6257        "void return type",
6258        Call);
6259
6260  Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6261        "operand bundle \"clang.arc.attachedcall\" requires one function as "
6262        "an argument",
6263        Call);
6264
6265  auto *Fn = cast<Function>(BU.Inputs.front());
6266  Intrinsic::ID IID = Fn->getIntrinsicID();
6267
6268  if (IID) {
6269    Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6270           IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6271          "invalid function argument", Call);
6272  } else {
6273    StringRef FnName = Fn->getName();
6274    Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6275           FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6276          "invalid function argument", Call);
6277  }
6278}
6279
6280void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
6281  bool HasSource = F.getSource().has_value();
6282  if (!HasSourceDebugInfo.count(&U))
6283    HasSourceDebugInfo[&U] = HasSource;
6284  CheckDI(HasSource == HasSourceDebugInfo[&U],
6285          "inconsistent use of embedded source");
6286}
6287
6288void Verifier::verifyNoAliasScopeDecl() {
6289  if (NoAliasScopeDecls.empty())
6290    return;
6291
6292  // only a single scope must be declared at a time.
6293  for (auto *II : NoAliasScopeDecls) {
6294    assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6295           "Not a llvm.experimental.noalias.scope.decl ?");
6296    const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6297        II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6298    Check(ScopeListMV != nullptr,
6299          "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6300          "argument",
6301          II);
6302
6303    const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6304    Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6305    Check(ScopeListMD->getNumOperands() == 1,
6306          "!id.scope.list must point to a list with a single scope", II);
6307    visitAliasScopeListMetadata(ScopeListMD);
6308  }
6309
6310  // Only check the domination rule when requested. Once all passes have been
6311  // adapted this option can go away.
6312  if (!VerifyNoAliasScopeDomination)
6313    return;
6314
6315  // Now sort the intrinsics based on the scope MDNode so that declarations of
6316  // the same scopes are next to each other.
6317  auto GetScope = [](IntrinsicInst *II) {
6318    const auto *ScopeListMV = cast<MetadataAsValue>(
6319        II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6320    return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6321  };
6322
6323  // We are sorting on MDNode pointers here. For valid input IR this is ok.
6324  // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6325  auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6326    return GetScope(Lhs) < GetScope(Rhs);
6327  };
6328
6329  llvm::sort(NoAliasScopeDecls, Compare);
6330
6331  // Go over the intrinsics and check that for the same scope, they are not
6332  // dominating each other.
6333  auto ItCurrent = NoAliasScopeDecls.begin();
6334  while (ItCurrent != NoAliasScopeDecls.end()) {
6335    auto CurScope = GetScope(*ItCurrent);
6336    auto ItNext = ItCurrent;
6337    do {
6338      ++ItNext;
6339    } while (ItNext != NoAliasScopeDecls.end() &&
6340             GetScope(*ItNext) == CurScope);
6341
6342    // [ItCurrent, ItNext) represents the declarations for the same scope.
6343    // Ensure they are not dominating each other.. but only if it is not too
6344    // expensive.
6345    if (ItNext - ItCurrent < 32)
6346      for (auto *I : llvm::make_range(ItCurrent, ItNext))
6347        for (auto *J : llvm::make_range(ItCurrent, ItNext))
6348          if (I != J)
6349            Check(!DT.dominates(I, J),
6350                  "llvm.experimental.noalias.scope.decl dominates another one "
6351                  "with the same scope",
6352                  I);
6353    ItCurrent = ItNext;
6354  }
6355}
6356
6357//===----------------------------------------------------------------------===//
6358//  Implement the public interfaces to this file...
6359//===----------------------------------------------------------------------===//
6360
6361bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6362  Function &F = const_cast<Function &>(f);
6363
6364  // Don't use a raw_null_ostream.  Printing IR is expensive.
6365  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6366
6367  // Note that this function's return value is inverted from what you would
6368  // expect of a function called "verify".
6369  return !V.verify(F);
6370}
6371
6372bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6373                        bool *BrokenDebugInfo) {
6374  // Don't use a raw_null_ostream.  Printing IR is expensive.
6375  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6376
6377  bool Broken = false;
6378  for (const Function &F : M)
6379    Broken |= !V.verify(F);
6380
6381  Broken |= !V.verify();
6382  if (BrokenDebugInfo)
6383    *BrokenDebugInfo = V.hasBrokenDebugInfo();
6384  // Note that this function's return value is inverted from what you would
6385  // expect of a function called "verify".
6386  return Broken;
6387}
6388
6389namespace {
6390
6391struct VerifierLegacyPass : public FunctionPass {
6392  static char ID;
6393
6394  std::unique_ptr<Verifier> V;
6395  bool FatalErrors = true;
6396
6397  VerifierLegacyPass() : FunctionPass(ID) {
6398    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6399  }
6400  explicit VerifierLegacyPass(bool FatalErrors)
6401      : FunctionPass(ID),
6402        FatalErrors(FatalErrors) {
6403    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6404  }
6405
6406  bool doInitialization(Module &M) override {
6407    V = std::make_unique<Verifier>(
6408        &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6409    return false;
6410  }
6411
6412  bool runOnFunction(Function &F) override {
6413    if (!V->verify(F) && FatalErrors) {
6414      errs() << "in function " << F.getName() << '\n';
6415      report_fatal_error("Broken function found, compilation aborted!");
6416    }
6417    return false;
6418  }
6419
6420  bool doFinalization(Module &M) override {
6421    bool HasErrors = false;
6422    for (Function &F : M)
6423      if (F.isDeclaration())
6424        HasErrors |= !V->verify(F);
6425
6426    HasErrors |= !V->verify();
6427    if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6428      report_fatal_error("Broken module found, compilation aborted!");
6429    return false;
6430  }
6431
6432  void getAnalysisUsage(AnalysisUsage &AU) const override {
6433    AU.setPreservesAll();
6434  }
6435};
6436
6437} // end anonymous namespace
6438
6439/// Helper to issue failure from the TBAA verification
6440template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6441  if (Diagnostic)
6442    return Diagnostic->CheckFailed(Args...);
6443}
6444
6445#define CheckTBAA(C, ...)                                                      \
6446  do {                                                                         \
6447    if (!(C)) {                                                                \
6448      CheckFailed(__VA_ARGS__);                                                \
6449      return false;                                                            \
6450    }                                                                          \
6451  } while (false)
6452
6453/// Verify that \p BaseNode can be used as the "base type" in the struct-path
6454/// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
6455/// struct-type node describing an aggregate data structure (like a struct).
6456TBAAVerifier::TBAABaseNodeSummary
6457TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6458                                 bool IsNewFormat) {
6459  if (BaseNode->getNumOperands() < 2) {
6460    CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6461    return {true, ~0u};
6462  }
6463
6464  auto Itr = TBAABaseNodes.find(BaseNode);
6465  if (Itr != TBAABaseNodes.end())
6466    return Itr->second;
6467
6468  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6469  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6470  (void)InsertResult;
6471  assert(InsertResult.second && "We just checked!");
6472  return Result;
6473}
6474
6475TBAAVerifier::TBAABaseNodeSummary
6476TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6477                                     bool IsNewFormat) {
6478  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6479
6480  if (BaseNode->getNumOperands() == 2) {
6481    // Scalar nodes can only be accessed at offset 0.
6482    return isValidScalarTBAANode(BaseNode)
6483               ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6484               : InvalidNode;
6485  }
6486
6487  if (IsNewFormat) {
6488    if (BaseNode->getNumOperands() % 3 != 0) {
6489      CheckFailed("Access tag nodes must have the number of operands that is a "
6490                  "multiple of 3!", BaseNode);
6491      return InvalidNode;
6492    }
6493  } else {
6494    if (BaseNode->getNumOperands() % 2 != 1) {
6495      CheckFailed("Struct tag nodes must have an odd number of operands!",
6496                  BaseNode);
6497      return InvalidNode;
6498    }
6499  }
6500
6501  // Check the type size field.
6502  if (IsNewFormat) {
6503    auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6504        BaseNode->getOperand(1));
6505    if (!TypeSizeNode) {
6506      CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6507      return InvalidNode;
6508    }
6509  }
6510
6511  // Check the type name field. In the new format it can be anything.
6512  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6513    CheckFailed("Struct tag nodes have a string as their first operand",
6514                BaseNode);
6515    return InvalidNode;
6516  }
6517
6518  bool Failed = false;
6519
6520  std::optional<APInt> PrevOffset;
6521  unsigned BitWidth = ~0u;
6522
6523  // We've already checked that BaseNode is not a degenerate root node with one
6524  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6525  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6526  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6527  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6528           Idx += NumOpsPerField) {
6529    const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6530    const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6531    if (!isa<MDNode>(FieldTy)) {
6532      CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6533      Failed = true;
6534      continue;
6535    }
6536
6537    auto *OffsetEntryCI =
6538        mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6539    if (!OffsetEntryCI) {
6540      CheckFailed("Offset entries must be constants!", &I, BaseNode);
6541      Failed = true;
6542      continue;
6543    }
6544
6545    if (BitWidth == ~0u)
6546      BitWidth = OffsetEntryCI->getBitWidth();
6547
6548    if (OffsetEntryCI->getBitWidth() != BitWidth) {
6549      CheckFailed(
6550          "Bitwidth between the offsets and struct type entries must match", &I,
6551          BaseNode);
6552      Failed = true;
6553      continue;
6554    }
6555
6556    // NB! As far as I can tell, we generate a non-strictly increasing offset
6557    // sequence only from structs that have zero size bit fields.  When
6558    // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6559    // pick the field lexically the latest in struct type metadata node.  This
6560    // mirrors the actual behavior of the alias analysis implementation.
6561    bool IsAscending =
6562        !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6563
6564    if (!IsAscending) {
6565      CheckFailed("Offsets must be increasing!", &I, BaseNode);
6566      Failed = true;
6567    }
6568
6569    PrevOffset = OffsetEntryCI->getValue();
6570
6571    if (IsNewFormat) {
6572      auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6573          BaseNode->getOperand(Idx + 2));
6574      if (!MemberSizeNode) {
6575        CheckFailed("Member size entries must be constants!", &I, BaseNode);
6576        Failed = true;
6577        continue;
6578      }
6579    }
6580  }
6581
6582  return Failed ? InvalidNode
6583                : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6584}
6585
6586static bool IsRootTBAANode(const MDNode *MD) {
6587  return MD->getNumOperands() < 2;
6588}
6589
6590static bool IsScalarTBAANodeImpl(const MDNode *MD,
6591                                 SmallPtrSetImpl<const MDNode *> &Visited) {
6592  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6593    return false;
6594
6595  if (!isa<MDString>(MD->getOperand(0)))
6596    return false;
6597
6598  if (MD->getNumOperands() == 3) {
6599    auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6600    if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6601      return false;
6602  }
6603
6604  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6605  return Parent && Visited.insert(Parent).second &&
6606         (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6607}
6608
6609bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6610  auto ResultIt = TBAAScalarNodes.find(MD);
6611  if (ResultIt != TBAAScalarNodes.end())
6612    return ResultIt->second;
6613
6614  SmallPtrSet<const MDNode *, 4> Visited;
6615  bool Result = IsScalarTBAANodeImpl(MD, Visited);
6616  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6617  (void)InsertResult;
6618  assert(InsertResult.second && "Just checked!");
6619
6620  return Result;
6621}
6622
6623/// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6624/// Offset in place to be the offset within the field node returned.
6625///
6626/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6627MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6628                                                   const MDNode *BaseNode,
6629                                                   APInt &Offset,
6630                                                   bool IsNewFormat) {
6631  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6632
6633  // Scalar nodes have only one possible "field" -- their parent in the access
6634  // hierarchy.  Offset must be zero at this point, but our caller is supposed
6635  // to check that.
6636  if (BaseNode->getNumOperands() == 2)
6637    return cast<MDNode>(BaseNode->getOperand(1));
6638
6639  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6640  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6641  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6642           Idx += NumOpsPerField) {
6643    auto *OffsetEntryCI =
6644        mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6645    if (OffsetEntryCI->getValue().ugt(Offset)) {
6646      if (Idx == FirstFieldOpNo) {
6647        CheckFailed("Could not find TBAA parent in struct type node", &I,
6648                    BaseNode, &Offset);
6649        return nullptr;
6650      }
6651
6652      unsigned PrevIdx = Idx - NumOpsPerField;
6653      auto *PrevOffsetEntryCI =
6654          mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6655      Offset -= PrevOffsetEntryCI->getValue();
6656      return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6657    }
6658  }
6659
6660  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6661  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6662      BaseNode->getOperand(LastIdx + 1));
6663  Offset -= LastOffsetEntryCI->getValue();
6664  return cast<MDNode>(BaseNode->getOperand(LastIdx));
6665}
6666
6667static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6668  if (!Type || Type->getNumOperands() < 3)
6669    return false;
6670
6671  // In the new format type nodes shall have a reference to the parent type as
6672  // its first operand.
6673  return isa_and_nonnull<MDNode>(Type->getOperand(0));
6674}
6675
6676bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6677  CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6678                isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6679                isa<AtomicCmpXchgInst>(I),
6680            "This instruction shall not have a TBAA access tag!", &I);
6681
6682  bool IsStructPathTBAA =
6683      isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6684
6685  CheckTBAA(IsStructPathTBAA,
6686            "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
6687            &I);
6688
6689  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6690  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6691
6692  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6693
6694  if (IsNewFormat) {
6695    CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6696              "Access tag metadata must have either 4 or 5 operands", &I, MD);
6697  } else {
6698    CheckTBAA(MD->getNumOperands() < 5,
6699              "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6700  }
6701
6702  // Check the access size field.
6703  if (IsNewFormat) {
6704    auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6705        MD->getOperand(3));
6706    CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6707  }
6708
6709  // Check the immutability flag.
6710  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6711  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6712    auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6713        MD->getOperand(ImmutabilityFlagOpNo));
6714    CheckTBAA(IsImmutableCI,
6715              "Immutability tag on struct tag metadata must be a constant", &I,
6716              MD);
6717    CheckTBAA(
6718        IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6719        "Immutability part of the struct tag metadata must be either 0 or 1",
6720        &I, MD);
6721  }
6722
6723  CheckTBAA(BaseNode && AccessType,
6724            "Malformed struct tag metadata: base and access-type "
6725            "should be non-null and point to Metadata nodes",
6726            &I, MD, BaseNode, AccessType);
6727
6728  if (!IsNewFormat) {
6729    CheckTBAA(isValidScalarTBAANode(AccessType),
6730              "Access type node must be a valid scalar type", &I, MD,
6731              AccessType);
6732  }
6733
6734  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6735  CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6736
6737  APInt Offset = OffsetCI->getValue();
6738  bool SeenAccessTypeInPath = false;
6739
6740  SmallPtrSet<MDNode *, 4> StructPath;
6741
6742  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6743       BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6744                                               IsNewFormat)) {
6745    if (!StructPath.insert(BaseNode).second) {
6746      CheckFailed("Cycle detected in struct path", &I, MD);
6747      return false;
6748    }
6749
6750    bool Invalid;
6751    unsigned BaseNodeBitWidth;
6752    std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6753                                                             IsNewFormat);
6754
6755    // If the base node is invalid in itself, then we've already printed all the
6756    // errors we wanted to print.
6757    if (Invalid)
6758      return false;
6759
6760    SeenAccessTypeInPath |= BaseNode == AccessType;
6761
6762    if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6763      CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6764                &I, MD, &Offset);
6765
6766    CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6767                  (BaseNodeBitWidth == 0 && Offset == 0) ||
6768                  (IsNewFormat && BaseNodeBitWidth == ~0u),
6769              "Access bit-width not the same as description bit-width", &I, MD,
6770              BaseNodeBitWidth, Offset.getBitWidth());
6771
6772    if (IsNewFormat && SeenAccessTypeInPath)
6773      break;
6774  }
6775
6776  CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
6777            MD);
6778  return true;
6779}
6780
6781char VerifierLegacyPass::ID = 0;
6782INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6783
6784FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6785  return new VerifierLegacyPass(FatalErrors);
6786}
6787
6788AnalysisKey VerifierAnalysis::Key;
6789VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6790                                               ModuleAnalysisManager &) {
6791  Result Res;
6792  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6793  return Res;
6794}
6795
6796VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6797                                               FunctionAnalysisManager &) {
6798  return { llvm::verifyFunction(F, &dbgs()), false };
6799}
6800
6801PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6802  auto Res = AM.getResult<VerifierAnalysis>(M);
6803  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6804    report_fatal_error("Broken module found, compilation aborted!");
6805
6806  return PreservedAnalyses::all();
6807}
6808
6809PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6810  auto res = AM.getResult<VerifierAnalysis>(F);
6811  if (res.IRBroken && FatalErrors)
6812    report_fatal_error("Broken function found, compilation aborted!");
6813
6814  return PreservedAnalyses::all();
6815}
6816