1//===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file implements the OpenMPIRBuilder class, which is used as a
11/// convenient way to create LLVM instructions for OpenMP directives.
12///
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/CodeMetrics.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/OptimizationRemarkEmitter.h"
22#include "llvm/Analysis/ScalarEvolution.h"
23#include "llvm/Analysis/TargetLibraryInfo.h"
24#include "llvm/IR/CFG.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DebugInfoMetadata.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/MDBuilder.h"
31#include "llvm/IR/PassManager.h"
32#include "llvm/IR/Value.h"
33#include "llvm/MC/TargetRegistry.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/Transforms/Utils/Cloning.h"
39#include "llvm/Transforms/Utils/CodeExtractor.h"
40#include "llvm/Transforms/Utils/LoopPeel.h"
41#include "llvm/Transforms/Utils/UnrollLoop.h"
42
43#include <cstdint>
44#include <optional>
45
46#define DEBUG_TYPE "openmp-ir-builder"
47
48using namespace llvm;
49using namespace omp;
50
51static cl::opt<bool>
52    OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden,
53                         cl::desc("Use optimistic attributes describing "
54                                  "'as-if' properties of runtime calls."),
55                         cl::init(false));
56
57static cl::opt<double> UnrollThresholdFactor(
58    "openmp-ir-builder-unroll-threshold-factor", cl::Hidden,
59    cl::desc("Factor for the unroll threshold to account for code "
60             "simplifications still taking place"),
61    cl::init(1.5));
62
63#ifndef NDEBUG
64/// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions
65/// at position IP1 may change the meaning of IP2 or vice-versa. This is because
66/// an InsertPoint stores the instruction before something is inserted. For
67/// instance, if both point to the same instruction, two IRBuilders alternating
68/// creating instruction will cause the instructions to be interleaved.
69static bool isConflictIP(IRBuilder<>::InsertPoint IP1,
70                         IRBuilder<>::InsertPoint IP2) {
71  if (!IP1.isSet() || !IP2.isSet())
72    return false;
73  return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint();
74}
75
76static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) {
77  // Valid ordered/unordered and base algorithm combinations.
78  switch (SchedType & ~OMPScheduleType::MonotonicityMask) {
79  case OMPScheduleType::UnorderedStaticChunked:
80  case OMPScheduleType::UnorderedStatic:
81  case OMPScheduleType::UnorderedDynamicChunked:
82  case OMPScheduleType::UnorderedGuidedChunked:
83  case OMPScheduleType::UnorderedRuntime:
84  case OMPScheduleType::UnorderedAuto:
85  case OMPScheduleType::UnorderedTrapezoidal:
86  case OMPScheduleType::UnorderedGreedy:
87  case OMPScheduleType::UnorderedBalanced:
88  case OMPScheduleType::UnorderedGuidedIterativeChunked:
89  case OMPScheduleType::UnorderedGuidedAnalyticalChunked:
90  case OMPScheduleType::UnorderedSteal:
91  case OMPScheduleType::UnorderedStaticBalancedChunked:
92  case OMPScheduleType::UnorderedGuidedSimd:
93  case OMPScheduleType::UnorderedRuntimeSimd:
94  case OMPScheduleType::OrderedStaticChunked:
95  case OMPScheduleType::OrderedStatic:
96  case OMPScheduleType::OrderedDynamicChunked:
97  case OMPScheduleType::OrderedGuidedChunked:
98  case OMPScheduleType::OrderedRuntime:
99  case OMPScheduleType::OrderedAuto:
100  case OMPScheduleType::OrderdTrapezoidal:
101  case OMPScheduleType::NomergeUnorderedStaticChunked:
102  case OMPScheduleType::NomergeUnorderedStatic:
103  case OMPScheduleType::NomergeUnorderedDynamicChunked:
104  case OMPScheduleType::NomergeUnorderedGuidedChunked:
105  case OMPScheduleType::NomergeUnorderedRuntime:
106  case OMPScheduleType::NomergeUnorderedAuto:
107  case OMPScheduleType::NomergeUnorderedTrapezoidal:
108  case OMPScheduleType::NomergeUnorderedGreedy:
109  case OMPScheduleType::NomergeUnorderedBalanced:
110  case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked:
111  case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked:
112  case OMPScheduleType::NomergeUnorderedSteal:
113  case OMPScheduleType::NomergeOrderedStaticChunked:
114  case OMPScheduleType::NomergeOrderedStatic:
115  case OMPScheduleType::NomergeOrderedDynamicChunked:
116  case OMPScheduleType::NomergeOrderedGuidedChunked:
117  case OMPScheduleType::NomergeOrderedRuntime:
118  case OMPScheduleType::NomergeOrderedAuto:
119  case OMPScheduleType::NomergeOrderedTrapezoidal:
120    break;
121  default:
122    return false;
123  }
124
125  // Must not set both monotonicity modifiers at the same time.
126  OMPScheduleType MonotonicityFlags =
127      SchedType & OMPScheduleType::MonotonicityMask;
128  if (MonotonicityFlags == OMPScheduleType::MonotonicityMask)
129    return false;
130
131  return true;
132}
133#endif
134
135/// Determine which scheduling algorithm to use, determined from schedule clause
136/// arguments.
137static OMPScheduleType
138getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks,
139                          bool HasSimdModifier) {
140  // Currently, the default schedule it static.
141  switch (ClauseKind) {
142  case OMP_SCHEDULE_Default:
143  case OMP_SCHEDULE_Static:
144    return HasChunks ? OMPScheduleType::BaseStaticChunked
145                     : OMPScheduleType::BaseStatic;
146  case OMP_SCHEDULE_Dynamic:
147    return OMPScheduleType::BaseDynamicChunked;
148  case OMP_SCHEDULE_Guided:
149    return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd
150                           : OMPScheduleType::BaseGuidedChunked;
151  case OMP_SCHEDULE_Auto:
152    return llvm::omp::OMPScheduleType::BaseAuto;
153  case OMP_SCHEDULE_Runtime:
154    return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd
155                           : OMPScheduleType::BaseRuntime;
156  }
157  llvm_unreachable("unhandled schedule clause argument");
158}
159
160/// Adds ordering modifier flags to schedule type.
161static OMPScheduleType
162getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType,
163                              bool HasOrderedClause) {
164  assert((BaseScheduleType & OMPScheduleType::ModifierMask) ==
165             OMPScheduleType::None &&
166         "Must not have ordering nor monotonicity flags already set");
167
168  OMPScheduleType OrderingModifier = HasOrderedClause
169                                         ? OMPScheduleType::ModifierOrdered
170                                         : OMPScheduleType::ModifierUnordered;
171  OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier;
172
173  // Unsupported combinations
174  if (OrderingScheduleType ==
175      (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered))
176    return OMPScheduleType::OrderedGuidedChunked;
177  else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd |
178                                    OMPScheduleType::ModifierOrdered))
179    return OMPScheduleType::OrderedRuntime;
180
181  return OrderingScheduleType;
182}
183
184/// Adds monotonicity modifier flags to schedule type.
185static OMPScheduleType
186getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType,
187                                  bool HasSimdModifier, bool HasMonotonic,
188                                  bool HasNonmonotonic, bool HasOrderedClause) {
189  assert((ScheduleType & OMPScheduleType::MonotonicityMask) ==
190             OMPScheduleType::None &&
191         "Must not have monotonicity flags already set");
192  assert((!HasMonotonic || !HasNonmonotonic) &&
193         "Monotonic and Nonmonotonic are contradicting each other");
194
195  if (HasMonotonic) {
196    return ScheduleType | OMPScheduleType::ModifierMonotonic;
197  } else if (HasNonmonotonic) {
198    return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
199  } else {
200    // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description.
201    // If the static schedule kind is specified or if the ordered clause is
202    // specified, and if the nonmonotonic modifier is not specified, the
203    // effect is as if the monotonic modifier is specified. Otherwise, unless
204    // the monotonic modifier is specified, the effect is as if the
205    // nonmonotonic modifier is specified.
206    OMPScheduleType BaseScheduleType =
207        ScheduleType & ~OMPScheduleType::ModifierMask;
208    if ((BaseScheduleType == OMPScheduleType::BaseStatic) ||
209        (BaseScheduleType == OMPScheduleType::BaseStaticChunked) ||
210        HasOrderedClause) {
211      // The monotonic is used by default in openmp runtime library, so no need
212      // to set it.
213      return ScheduleType;
214    } else {
215      return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
216    }
217  }
218}
219
220/// Determine the schedule type using schedule and ordering clause arguments.
221static OMPScheduleType
222computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks,
223                          bool HasSimdModifier, bool HasMonotonicModifier,
224                          bool HasNonmonotonicModifier, bool HasOrderedClause) {
225  OMPScheduleType BaseSchedule =
226      getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier);
227  OMPScheduleType OrderedSchedule =
228      getOpenMPOrderingScheduleType(BaseSchedule, HasOrderedClause);
229  OMPScheduleType Result = getOpenMPMonotonicityScheduleType(
230      OrderedSchedule, HasSimdModifier, HasMonotonicModifier,
231      HasNonmonotonicModifier, HasOrderedClause);
232
233  assert(isValidWorkshareLoopScheduleType(Result));
234  return Result;
235}
236
237/// Make \p Source branch to \p Target.
238///
239/// Handles two situations:
240/// * \p Source already has an unconditional branch.
241/// * \p Source is a degenerate block (no terminator because the BB is
242///             the current head of the IR construction).
243static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) {
244  if (Instruction *Term = Source->getTerminator()) {
245    auto *Br = cast<BranchInst>(Term);
246    assert(!Br->isConditional() &&
247           "BB's terminator must be an unconditional branch (or degenerate)");
248    BasicBlock *Succ = Br->getSuccessor(0);
249    Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true);
250    Br->setSuccessor(0, Target);
251    return;
252  }
253
254  auto *NewBr = BranchInst::Create(Target, Source);
255  NewBr->setDebugLoc(DL);
256}
257
258void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New,
259                    bool CreateBranch) {
260  assert(New->getFirstInsertionPt() == New->begin() &&
261         "Target BB must not have PHI nodes");
262
263  // Move instructions to new block.
264  BasicBlock *Old = IP.getBlock();
265  New->splice(New->begin(), Old, IP.getPoint(), Old->end());
266
267  if (CreateBranch)
268    BranchInst::Create(New, Old);
269}
270
271void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) {
272  DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
273  BasicBlock *Old = Builder.GetInsertBlock();
274
275  spliceBB(Builder.saveIP(), New, CreateBranch);
276  if (CreateBranch)
277    Builder.SetInsertPoint(Old->getTerminator());
278  else
279    Builder.SetInsertPoint(Old);
280
281  // SetInsertPoint also updates the Builder's debug location, but we want to
282  // keep the one the Builder was configured to use.
283  Builder.SetCurrentDebugLocation(DebugLoc);
284}
285
286BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch,
287                          llvm::Twine Name) {
288  BasicBlock *Old = IP.getBlock();
289  BasicBlock *New = BasicBlock::Create(
290      Old->getContext(), Name.isTriviallyEmpty() ? Old->getName() : Name,
291      Old->getParent(), Old->getNextNode());
292  spliceBB(IP, New, CreateBranch);
293  New->replaceSuccessorsPhiUsesWith(Old, New);
294  return New;
295}
296
297BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch,
298                          llvm::Twine Name) {
299  DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
300  BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name);
301  if (CreateBranch)
302    Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
303  else
304    Builder.SetInsertPoint(Builder.GetInsertBlock());
305  // SetInsertPoint also updates the Builder's debug location, but we want to
306  // keep the one the Builder was configured to use.
307  Builder.SetCurrentDebugLocation(DebugLoc);
308  return New;
309}
310
311BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch,
312                          llvm::Twine Name) {
313  DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
314  BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name);
315  if (CreateBranch)
316    Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
317  else
318    Builder.SetInsertPoint(Builder.GetInsertBlock());
319  // SetInsertPoint also updates the Builder's debug location, but we want to
320  // keep the one the Builder was configured to use.
321  Builder.SetCurrentDebugLocation(DebugLoc);
322  return New;
323}
324
325BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch,
326                                    llvm::Twine Suffix) {
327  BasicBlock *Old = Builder.GetInsertBlock();
328  return splitBB(Builder, CreateBranch, Old->getName() + Suffix);
329}
330
331void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) {
332  LLVMContext &Ctx = Fn.getContext();
333  Triple T(M.getTargetTriple());
334
335  // Get the function's current attributes.
336  auto Attrs = Fn.getAttributes();
337  auto FnAttrs = Attrs.getFnAttrs();
338  auto RetAttrs = Attrs.getRetAttrs();
339  SmallVector<AttributeSet, 4> ArgAttrs;
340  for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo)
341    ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo));
342
343  // Add AS to FnAS while taking special care with integer extensions.
344  auto addAttrSet = [&](AttributeSet &FnAS, const AttributeSet &AS,
345                        bool Param = true) -> void {
346    bool HasSignExt = AS.hasAttribute(Attribute::SExt);
347    bool HasZeroExt = AS.hasAttribute(Attribute::ZExt);
348    if (HasSignExt || HasZeroExt) {
349      assert(AS.getNumAttributes() == 1 &&
350             "Currently not handling extension attr combined with others.");
351      if (Param) {
352        if (auto AK = TargetLibraryInfo::getExtAttrForI32Param(T, HasSignExt))
353          FnAS = FnAS.addAttribute(Ctx, AK);
354      } else
355        if (auto AK = TargetLibraryInfo::getExtAttrForI32Return(T, HasSignExt))
356          FnAS = FnAS.addAttribute(Ctx, AK);
357    } else {
358      FnAS = FnAS.addAttributes(Ctx, AS);
359    }
360  };
361
362#define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet;
363#include "llvm/Frontend/OpenMP/OMPKinds.def"
364
365  // Add attributes to the function declaration.
366  switch (FnID) {
367#define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets)                \
368  case Enum:                                                                   \
369    FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet);                           \
370    addAttrSet(RetAttrs, RetAttrSet, /*Param*/false);                          \
371    for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo)                \
372      addAttrSet(ArgAttrs[ArgNo], ArgAttrSets[ArgNo]);                         \
373    Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs));    \
374    break;
375#include "llvm/Frontend/OpenMP/OMPKinds.def"
376  default:
377    // Attributes are optional.
378    break;
379  }
380}
381
382FunctionCallee
383OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) {
384  FunctionType *FnTy = nullptr;
385  Function *Fn = nullptr;
386
387  // Try to find the declation in the module first.
388  switch (FnID) {
389#define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...)                          \
390  case Enum:                                                                   \
391    FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__},        \
392                             IsVarArg);                                        \
393    Fn = M.getFunction(Str);                                                   \
394    break;
395#include "llvm/Frontend/OpenMP/OMPKinds.def"
396  }
397
398  if (!Fn) {
399    // Create a new declaration if we need one.
400    switch (FnID) {
401#define OMP_RTL(Enum, Str, ...)                                                \
402  case Enum:                                                                   \
403    Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M);         \
404    break;
405#include "llvm/Frontend/OpenMP/OMPKinds.def"
406    }
407
408    // Add information if the runtime function takes a callback function
409    if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) {
410      if (!Fn->hasMetadata(LLVMContext::MD_callback)) {
411        LLVMContext &Ctx = Fn->getContext();
412        MDBuilder MDB(Ctx);
413        // Annotate the callback behavior of the runtime function:
414        //  - The callback callee is argument number 2 (microtask).
415        //  - The first two arguments of the callback callee are unknown (-1).
416        //  - All variadic arguments to the runtime function are passed to the
417        //    callback callee.
418        Fn->addMetadata(
419            LLVMContext::MD_callback,
420            *MDNode::get(Ctx, {MDB.createCallbackEncoding(
421                                  2, {-1, -1}, /* VarArgsArePassed */ true)}));
422      }
423    }
424
425    LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName()
426                      << " with type " << *Fn->getFunctionType() << "\n");
427    addAttributes(FnID, *Fn);
428
429  } else {
430    LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName()
431                      << " with type " << *Fn->getFunctionType() << "\n");
432  }
433
434  assert(Fn && "Failed to create OpenMP runtime function");
435
436  // Cast the function to the expected type if necessary
437  Constant *C = ConstantExpr::getBitCast(Fn, FnTy->getPointerTo());
438  return {FnTy, C};
439}
440
441Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) {
442  FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID);
443  auto *Fn = dyn_cast<llvm::Function>(RTLFn.getCallee());
444  assert(Fn && "Failed to create OpenMP runtime function pointer");
445  return Fn;
446}
447
448void OpenMPIRBuilder::initialize() { initializeTypes(M); }
449
450void OpenMPIRBuilder::finalize(Function *Fn) {
451  SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
452  SmallVector<BasicBlock *, 32> Blocks;
453  SmallVector<OutlineInfo, 16> DeferredOutlines;
454  for (OutlineInfo &OI : OutlineInfos) {
455    // Skip functions that have not finalized yet; may happen with nested
456    // function generation.
457    if (Fn && OI.getFunction() != Fn) {
458      DeferredOutlines.push_back(OI);
459      continue;
460    }
461
462    ParallelRegionBlockSet.clear();
463    Blocks.clear();
464    OI.collectBlocks(ParallelRegionBlockSet, Blocks);
465
466    Function *OuterFn = OI.getFunction();
467    CodeExtractorAnalysisCache CEAC(*OuterFn);
468    CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
469                            /* AggregateArgs */ true,
470                            /* BlockFrequencyInfo */ nullptr,
471                            /* BranchProbabilityInfo */ nullptr,
472                            /* AssumptionCache */ nullptr,
473                            /* AllowVarArgs */ true,
474                            /* AllowAlloca */ true,
475                            /* AllocaBlock*/ OI.OuterAllocaBB,
476                            /* Suffix */ ".omp_par");
477
478    LLVM_DEBUG(dbgs() << "Before     outlining: " << *OuterFn << "\n");
479    LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName()
480                      << " Exit: " << OI.ExitBB->getName() << "\n");
481    assert(Extractor.isEligible() &&
482           "Expected OpenMP outlining to be possible!");
483
484    for (auto *V : OI.ExcludeArgsFromAggregate)
485      Extractor.excludeArgFromAggregate(V);
486
487    Function *OutlinedFn = Extractor.extractCodeRegion(CEAC);
488
489    LLVM_DEBUG(dbgs() << "After      outlining: " << *OuterFn << "\n");
490    LLVM_DEBUG(dbgs() << "   Outlined function: " << *OutlinedFn << "\n");
491    assert(OutlinedFn->getReturnType()->isVoidTy() &&
492           "OpenMP outlined functions should not return a value!");
493
494    // For compability with the clang CG we move the outlined function after the
495    // one with the parallel region.
496    OutlinedFn->removeFromParent();
497    M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn);
498
499    // Remove the artificial entry introduced by the extractor right away, we
500    // made our own entry block after all.
501    {
502      BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock();
503      assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB);
504      assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry);
505      // Move instructions from the to-be-deleted ArtificialEntry to the entry
506      // basic block of the parallel region. CodeExtractor generates
507      // instructions to unwrap the aggregate argument and may sink
508      // allocas/bitcasts for values that are solely used in the outlined region
509      // and do not escape.
510      assert(!ArtificialEntry.empty() &&
511             "Expected instructions to add in the outlined region entry");
512      for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(),
513                                        End = ArtificialEntry.rend();
514           It != End;) {
515        Instruction &I = *It;
516        It++;
517
518        if (I.isTerminator())
519          continue;
520
521        I.moveBefore(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt());
522      }
523
524      OI.EntryBB->moveBefore(&ArtificialEntry);
525      ArtificialEntry.eraseFromParent();
526    }
527    assert(&OutlinedFn->getEntryBlock() == OI.EntryBB);
528    assert(OutlinedFn && OutlinedFn->getNumUses() == 1);
529
530    // Run a user callback, e.g. to add attributes.
531    if (OI.PostOutlineCB)
532      OI.PostOutlineCB(*OutlinedFn);
533  }
534
535  // Remove work items that have been completed.
536  OutlineInfos = std::move(DeferredOutlines);
537}
538
539OpenMPIRBuilder::~OpenMPIRBuilder() {
540  assert(OutlineInfos.empty() && "There must be no outstanding outlinings");
541}
542
543GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) {
544  IntegerType *I32Ty = Type::getInt32Ty(M.getContext());
545  auto *GV =
546      new GlobalVariable(M, I32Ty,
547                         /* isConstant = */ true, GlobalValue::WeakODRLinkage,
548                         ConstantInt::get(I32Ty, Value), Name);
549  GV->setVisibility(GlobalValue::HiddenVisibility);
550
551  return GV;
552}
553
554Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr,
555                                            uint32_t SrcLocStrSize,
556                                            IdentFlag LocFlags,
557                                            unsigned Reserve2Flags) {
558  // Enable "C-mode".
559  LocFlags |= OMP_IDENT_FLAG_KMPC;
560
561  Constant *&Ident =
562      IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}];
563  if (!Ident) {
564    Constant *I32Null = ConstantInt::getNullValue(Int32);
565    Constant *IdentData[] = {I32Null,
566                             ConstantInt::get(Int32, uint32_t(LocFlags)),
567                             ConstantInt::get(Int32, Reserve2Flags),
568                             ConstantInt::get(Int32, SrcLocStrSize), SrcLocStr};
569    Constant *Initializer =
570        ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData);
571
572    // Look for existing encoding of the location + flags, not needed but
573    // minimizes the difference to the existing solution while we transition.
574    for (GlobalVariable &GV : M.getGlobalList())
575      if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer())
576        if (GV.getInitializer() == Initializer)
577          Ident = &GV;
578
579    if (!Ident) {
580      auto *GV = new GlobalVariable(
581          M, OpenMPIRBuilder::Ident,
582          /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "",
583          nullptr, GlobalValue::NotThreadLocal,
584          M.getDataLayout().getDefaultGlobalsAddressSpace());
585      GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
586      GV->setAlignment(Align(8));
587      Ident = GV;
588    }
589  }
590
591  return ConstantExpr::getPointerBitCastOrAddrSpaceCast(Ident, IdentPtr);
592}
593
594Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr,
595                                                uint32_t &SrcLocStrSize) {
596  SrcLocStrSize = LocStr.size();
597  Constant *&SrcLocStr = SrcLocStrMap[LocStr];
598  if (!SrcLocStr) {
599    Constant *Initializer =
600        ConstantDataArray::getString(M.getContext(), LocStr);
601
602    // Look for existing encoding of the location, not needed but minimizes the
603    // difference to the existing solution while we transition.
604    for (GlobalVariable &GV : M.getGlobalList())
605      if (GV.isConstant() && GV.hasInitializer() &&
606          GV.getInitializer() == Initializer)
607        return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr);
608
609    SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "",
610                                              /* AddressSpace */ 0, &M);
611  }
612  return SrcLocStr;
613}
614
615Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName,
616                                                StringRef FileName,
617                                                unsigned Line, unsigned Column,
618                                                uint32_t &SrcLocStrSize) {
619  SmallString<128> Buffer;
620  Buffer.push_back(';');
621  Buffer.append(FileName);
622  Buffer.push_back(';');
623  Buffer.append(FunctionName);
624  Buffer.push_back(';');
625  Buffer.append(std::to_string(Line));
626  Buffer.push_back(';');
627  Buffer.append(std::to_string(Column));
628  Buffer.push_back(';');
629  Buffer.push_back(';');
630  return getOrCreateSrcLocStr(Buffer.str(), SrcLocStrSize);
631}
632
633Constant *
634OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) {
635  StringRef UnknownLoc = ";unknown;unknown;0;0;;";
636  return getOrCreateSrcLocStr(UnknownLoc, SrcLocStrSize);
637}
638
639Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL,
640                                                uint32_t &SrcLocStrSize,
641                                                Function *F) {
642  DILocation *DIL = DL.get();
643  if (!DIL)
644    return getOrCreateDefaultSrcLocStr(SrcLocStrSize);
645  StringRef FileName = M.getName();
646  if (DIFile *DIF = DIL->getFile())
647    if (std::optional<StringRef> Source = DIF->getSource())
648      FileName = *Source;
649  StringRef Function = DIL->getScope()->getSubprogram()->getName();
650  if (Function.empty() && F)
651    Function = F->getName();
652  return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(),
653                              DIL->getColumn(), SrcLocStrSize);
654}
655
656Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc,
657                                                uint32_t &SrcLocStrSize) {
658  return getOrCreateSrcLocStr(Loc.DL, SrcLocStrSize,
659                              Loc.IP.getBlock()->getParent());
660}
661
662Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) {
663  return Builder.CreateCall(
664      getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident,
665      "omp_global_thread_num");
666}
667
668OpenMPIRBuilder::InsertPointTy
669OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK,
670                               bool ForceSimpleCall, bool CheckCancelFlag) {
671  if (!updateToLocation(Loc))
672    return Loc.IP;
673  return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag);
674}
675
676OpenMPIRBuilder::InsertPointTy
677OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind,
678                                 bool ForceSimpleCall, bool CheckCancelFlag) {
679  // Build call __kmpc_cancel_barrier(loc, thread_id) or
680  //            __kmpc_barrier(loc, thread_id);
681
682  IdentFlag BarrierLocFlags;
683  switch (Kind) {
684  case OMPD_for:
685    BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR;
686    break;
687  case OMPD_sections:
688    BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS;
689    break;
690  case OMPD_single:
691    BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE;
692    break;
693  case OMPD_barrier:
694    BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL;
695    break;
696  default:
697    BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL;
698    break;
699  }
700
701  uint32_t SrcLocStrSize;
702  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
703  Value *Args[] = {
704      getOrCreateIdent(SrcLocStr, SrcLocStrSize, BarrierLocFlags),
705      getOrCreateThreadID(getOrCreateIdent(SrcLocStr, SrcLocStrSize))};
706
707  // If we are in a cancellable parallel region, barriers are cancellation
708  // points.
709  // TODO: Check why we would force simple calls or to ignore the cancel flag.
710  bool UseCancelBarrier =
711      !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel);
712
713  Value *Result =
714      Builder.CreateCall(getOrCreateRuntimeFunctionPtr(
715                             UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier
716                                              : OMPRTL___kmpc_barrier),
717                         Args);
718
719  if (UseCancelBarrier && CheckCancelFlag)
720    emitCancelationCheckImpl(Result, OMPD_parallel);
721
722  return Builder.saveIP();
723}
724
725OpenMPIRBuilder::InsertPointTy
726OpenMPIRBuilder::createCancel(const LocationDescription &Loc,
727                              Value *IfCondition,
728                              omp::Directive CanceledDirective) {
729  if (!updateToLocation(Loc))
730    return Loc.IP;
731
732  // LLVM utilities like blocks with terminators.
733  auto *UI = Builder.CreateUnreachable();
734
735  Instruction *ThenTI = UI, *ElseTI = nullptr;
736  if (IfCondition)
737    SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI);
738  Builder.SetInsertPoint(ThenTI);
739
740  Value *CancelKind = nullptr;
741  switch (CanceledDirective) {
742#define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value)                       \
743  case DirectiveEnum:                                                          \
744    CancelKind = Builder.getInt32(Value);                                      \
745    break;
746#include "llvm/Frontend/OpenMP/OMPKinds.def"
747  default:
748    llvm_unreachable("Unknown cancel kind!");
749  }
750
751  uint32_t SrcLocStrSize;
752  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
753  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
754  Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind};
755  Value *Result = Builder.CreateCall(
756      getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args);
757  auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) {
758    if (CanceledDirective == OMPD_parallel) {
759      IRBuilder<>::InsertPointGuard IPG(Builder);
760      Builder.restoreIP(IP);
761      createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
762                    omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
763                    /* CheckCancelFlag */ false);
764    }
765  };
766
767  // The actual cancel logic is shared with others, e.g., cancel_barriers.
768  emitCancelationCheckImpl(Result, CanceledDirective, ExitCB);
769
770  // Update the insertion point and remove the terminator we introduced.
771  Builder.SetInsertPoint(UI->getParent());
772  UI->eraseFromParent();
773
774  return Builder.saveIP();
775}
776
777void OpenMPIRBuilder::emitOffloadingEntry(Constant *Addr, StringRef Name,
778                                          uint64_t Size, int32_t Flags,
779                                          StringRef SectionName) {
780  Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
781  Type *Int32Ty = Type::getInt32Ty(M.getContext());
782  Type *SizeTy = M.getDataLayout().getIntPtrType(M.getContext());
783
784  Constant *AddrName = ConstantDataArray::getString(M.getContext(), Name);
785
786  // Create the constant string used to look up the symbol in the device.
787  auto *Str =
788      new llvm::GlobalVariable(M, AddrName->getType(), /*isConstant=*/true,
789                               llvm::GlobalValue::InternalLinkage, AddrName,
790                               ".omp_offloading.entry_name");
791  Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
792
793  // Construct the offloading entry.
794  Constant *EntryData[] = {
795      ConstantExpr::getPointerBitCastOrAddrSpaceCast(Addr, Int8PtrTy),
796      ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, Int8PtrTy),
797      ConstantInt::get(SizeTy, Size),
798      ConstantInt::get(Int32Ty, Flags),
799      ConstantInt::get(Int32Ty, 0),
800  };
801  Constant *EntryInitializer =
802      ConstantStruct::get(OpenMPIRBuilder::OffloadEntry, EntryData);
803
804  auto *Entry = new GlobalVariable(
805      M, OpenMPIRBuilder::OffloadEntry,
806      /* isConstant = */ true, GlobalValue::WeakAnyLinkage, EntryInitializer,
807      ".omp_offloading.entry." + Name, nullptr, GlobalValue::NotThreadLocal,
808      M.getDataLayout().getDefaultGlobalsAddressSpace());
809
810  // The entry has to be created in the section the linker expects it to be.
811  Entry->setSection(SectionName);
812  Entry->setAlignment(Align(1));
813}
814
815OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel(
816    const LocationDescription &Loc, Value *&Return, Value *Ident,
817    Value *DeviceID, Value *NumTeams, Value *NumThreads, Value *HostPtr,
818    ArrayRef<Value *> KernelArgs) {
819  if (!updateToLocation(Loc))
820    return Loc.IP;
821
822  auto *KernelArgsPtr =
823      Builder.CreateAlloca(OpenMPIRBuilder::KernelArgs, nullptr, "kernel_args");
824  for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) {
825    llvm::Value *Arg =
826        Builder.CreateStructGEP(OpenMPIRBuilder::KernelArgs, KernelArgsPtr, I);
827    Builder.CreateAlignedStore(
828        KernelArgs[I], Arg,
829        M.getDataLayout().getPrefTypeAlign(KernelArgs[I]->getType()));
830  }
831
832  SmallVector<Value *> OffloadingArgs{Ident,      DeviceID, NumTeams,
833                                      NumThreads, HostPtr,  KernelArgsPtr};
834
835  Return = Builder.CreateCall(
836      getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel),
837      OffloadingArgs);
838
839  return Builder.saveIP();
840}
841
842void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag,
843                                               omp::Directive CanceledDirective,
844                                               FinalizeCallbackTy ExitCB) {
845  assert(isLastFinalizationInfoCancellable(CanceledDirective) &&
846         "Unexpected cancellation!");
847
848  // For a cancel barrier we create two new blocks.
849  BasicBlock *BB = Builder.GetInsertBlock();
850  BasicBlock *NonCancellationBlock;
851  if (Builder.GetInsertPoint() == BB->end()) {
852    // TODO: This branch will not be needed once we moved to the
853    // OpenMPIRBuilder codegen completely.
854    NonCancellationBlock = BasicBlock::Create(
855        BB->getContext(), BB->getName() + ".cont", BB->getParent());
856  } else {
857    NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint());
858    BB->getTerminator()->eraseFromParent();
859    Builder.SetInsertPoint(BB);
860  }
861  BasicBlock *CancellationBlock = BasicBlock::Create(
862      BB->getContext(), BB->getName() + ".cncl", BB->getParent());
863
864  // Jump to them based on the return value.
865  Value *Cmp = Builder.CreateIsNull(CancelFlag);
866  Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock,
867                       /* TODO weight */ nullptr, nullptr);
868
869  // From the cancellation block we finalize all variables and go to the
870  // post finalization block that is known to the FiniCB callback.
871  Builder.SetInsertPoint(CancellationBlock);
872  if (ExitCB)
873    ExitCB(Builder.saveIP());
874  auto &FI = FinalizationStack.back();
875  FI.FiniCB(Builder.saveIP());
876
877  // The continuation block is where code generation continues.
878  Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin());
879}
880
881IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel(
882    const LocationDescription &Loc, InsertPointTy OuterAllocaIP,
883    BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB,
884    FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads,
885    omp::ProcBindKind ProcBind, bool IsCancellable) {
886  assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous");
887
888  if (!updateToLocation(Loc))
889    return Loc.IP;
890
891  uint32_t SrcLocStrSize;
892  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
893  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
894  Value *ThreadID = getOrCreateThreadID(Ident);
895
896  if (NumThreads) {
897    // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads)
898    Value *Args[] = {
899        Ident, ThreadID,
900        Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)};
901    Builder.CreateCall(
902        getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args);
903  }
904
905  if (ProcBind != OMP_PROC_BIND_default) {
906    // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind)
907    Value *Args[] = {
908        Ident, ThreadID,
909        ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)};
910    Builder.CreateCall(
911        getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args);
912  }
913
914  BasicBlock *InsertBB = Builder.GetInsertBlock();
915  Function *OuterFn = InsertBB->getParent();
916
917  // Save the outer alloca block because the insertion iterator may get
918  // invalidated and we still need this later.
919  BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock();
920
921  // Vector to remember instructions we used only during the modeling but which
922  // we want to delete at the end.
923  SmallVector<Instruction *, 4> ToBeDeleted;
924
925  // Change the location to the outer alloca insertion point to create and
926  // initialize the allocas we pass into the parallel region.
927  Builder.restoreIP(OuterAllocaIP);
928  AllocaInst *TIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr");
929  AllocaInst *ZeroAddr = Builder.CreateAlloca(Int32, nullptr, "zero.addr");
930
931  // We only need TIDAddr and ZeroAddr for modeling purposes to get the
932  // associated arguments in the outlined function, so we delete them later.
933  ToBeDeleted.push_back(TIDAddr);
934  ToBeDeleted.push_back(ZeroAddr);
935
936  // Create an artificial insertion point that will also ensure the blocks we
937  // are about to split are not degenerated.
938  auto *UI = new UnreachableInst(Builder.getContext(), InsertBB);
939
940  BasicBlock *EntryBB = UI->getParent();
941  BasicBlock *PRegEntryBB = EntryBB->splitBasicBlock(UI, "omp.par.entry");
942  BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(UI, "omp.par.region");
943  BasicBlock *PRegPreFiniBB =
944      PRegBodyBB->splitBasicBlock(UI, "omp.par.pre_finalize");
945  BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(UI, "omp.par.exit");
946
947  auto FiniCBWrapper = [&](InsertPointTy IP) {
948    // Hide "open-ended" blocks from the given FiniCB by setting the right jump
949    // target to the region exit block.
950    if (IP.getBlock()->end() == IP.getPoint()) {
951      IRBuilder<>::InsertPointGuard IPG(Builder);
952      Builder.restoreIP(IP);
953      Instruction *I = Builder.CreateBr(PRegExitBB);
954      IP = InsertPointTy(I->getParent(), I->getIterator());
955    }
956    assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 &&
957           IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB &&
958           "Unexpected insertion point for finalization call!");
959    return FiniCB(IP);
960  };
961
962  FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable});
963
964  // Generate the privatization allocas in the block that will become the entry
965  // of the outlined function.
966  Builder.SetInsertPoint(PRegEntryBB->getTerminator());
967  InsertPointTy InnerAllocaIP = Builder.saveIP();
968
969  AllocaInst *PrivTIDAddr =
970      Builder.CreateAlloca(Int32, nullptr, "tid.addr.local");
971  Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid");
972
973  // Add some fake uses for OpenMP provided arguments.
974  ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use"));
975  Instruction *ZeroAddrUse =
976      Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use");
977  ToBeDeleted.push_back(ZeroAddrUse);
978
979  // EntryBB
980  //   |
981  //   V
982  // PRegionEntryBB         <- Privatization allocas are placed here.
983  //   |
984  //   V
985  // PRegionBodyBB          <- BodeGen is invoked here.
986  //   |
987  //   V
988  // PRegPreFiniBB          <- The block we will start finalization from.
989  //   |
990  //   V
991  // PRegionExitBB          <- A common exit to simplify block collection.
992  //
993
994  LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n");
995
996  // Let the caller create the body.
997  assert(BodyGenCB && "Expected body generation callback!");
998  InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin());
999  BodyGenCB(InnerAllocaIP, CodeGenIP);
1000
1001  LLVM_DEBUG(dbgs() << "After  body codegen: " << *OuterFn << "\n");
1002  FunctionCallee RTLFn;
1003  if (IfCondition)
1004    RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call_if);
1005  else
1006    RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call);
1007
1008  if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
1009    if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
1010      llvm::LLVMContext &Ctx = F->getContext();
1011      MDBuilder MDB(Ctx);
1012      // Annotate the callback behavior of the __kmpc_fork_call:
1013      //  - The callback callee is argument number 2 (microtask).
1014      //  - The first two arguments of the callback callee are unknown (-1).
1015      //  - All variadic arguments to the __kmpc_fork_call are passed to the
1016      //    callback callee.
1017      F->addMetadata(
1018          llvm::LLVMContext::MD_callback,
1019          *llvm::MDNode::get(
1020              Ctx, {MDB.createCallbackEncoding(2, {-1, -1},
1021                                               /* VarArgsArePassed */ true)}));
1022    }
1023  }
1024
1025  OutlineInfo OI;
1026  OI.PostOutlineCB = [=](Function &OutlinedFn) {
1027    // Add some known attributes.
1028    OutlinedFn.addParamAttr(0, Attribute::NoAlias);
1029    OutlinedFn.addParamAttr(1, Attribute::NoAlias);
1030    OutlinedFn.addFnAttr(Attribute::NoUnwind);
1031    OutlinedFn.addFnAttr(Attribute::NoRecurse);
1032
1033    assert(OutlinedFn.arg_size() >= 2 &&
1034           "Expected at least tid and bounded tid as arguments");
1035    unsigned NumCapturedVars =
1036        OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
1037
1038    CallInst *CI = cast<CallInst>(OutlinedFn.user_back());
1039    CI->getParent()->setName("omp_parallel");
1040    Builder.SetInsertPoint(CI);
1041
1042    // Build call __kmpc_fork_call[_if](Ident, n, microtask, var1, .., varn);
1043    Value *ForkCallArgs[] = {
1044        Ident, Builder.getInt32(NumCapturedVars),
1045        Builder.CreateBitCast(&OutlinedFn, ParallelTaskPtr)};
1046
1047    SmallVector<Value *, 16> RealArgs;
1048    RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs));
1049    if (IfCondition) {
1050      Value *Cond = Builder.CreateSExtOrTrunc(IfCondition,
1051                                              Type::getInt32Ty(M.getContext()));
1052      RealArgs.push_back(Cond);
1053    }
1054    RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end());
1055
1056    // __kmpc_fork_call_if always expects a void ptr as the last argument
1057    // If there are no arguments, pass a null pointer.
1058    auto PtrTy = Type::getInt8PtrTy(M.getContext());
1059    if (IfCondition && NumCapturedVars == 0) {
1060      llvm::Value *Void = ConstantPointerNull::get(PtrTy);
1061      RealArgs.push_back(Void);
1062    }
1063    if (IfCondition && RealArgs.back()->getType() != PtrTy)
1064      RealArgs.back() = Builder.CreateBitCast(RealArgs.back(), PtrTy);
1065
1066    Builder.CreateCall(RTLFn, RealArgs);
1067
1068    LLVM_DEBUG(dbgs() << "With fork_call placed: "
1069                      << *Builder.GetInsertBlock()->getParent() << "\n");
1070
1071    InsertPointTy ExitIP(PRegExitBB, PRegExitBB->end());
1072
1073    // Initialize the local TID stack location with the argument value.
1074    Builder.SetInsertPoint(PrivTID);
1075    Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
1076    Builder.CreateStore(Builder.CreateLoad(Int32, OutlinedAI), PrivTIDAddr);
1077
1078    CI->eraseFromParent();
1079
1080    for (Instruction *I : ToBeDeleted)
1081      I->eraseFromParent();
1082  };
1083
1084  // Adjust the finalization stack, verify the adjustment, and call the
1085  // finalize function a last time to finalize values between the pre-fini
1086  // block and the exit block if we left the parallel "the normal way".
1087  auto FiniInfo = FinalizationStack.pop_back_val();
1088  (void)FiniInfo;
1089  assert(FiniInfo.DK == OMPD_parallel &&
1090         "Unexpected finalization stack state!");
1091
1092  Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator();
1093
1094  InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator());
1095  FiniCB(PreFiniIP);
1096
1097  OI.OuterAllocaBB = OuterAllocaBlock;
1098  OI.EntryBB = PRegEntryBB;
1099  OI.ExitBB = PRegExitBB;
1100
1101  SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
1102  SmallVector<BasicBlock *, 32> Blocks;
1103  OI.collectBlocks(ParallelRegionBlockSet, Blocks);
1104
1105  // Ensure a single exit node for the outlined region by creating one.
1106  // We might have multiple incoming edges to the exit now due to finalizations,
1107  // e.g., cancel calls that cause the control flow to leave the region.
1108  BasicBlock *PRegOutlinedExitBB = PRegExitBB;
1109  PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt());
1110  PRegOutlinedExitBB->setName("omp.par.outlined.exit");
1111  Blocks.push_back(PRegOutlinedExitBB);
1112
1113  CodeExtractorAnalysisCache CEAC(*OuterFn);
1114  CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
1115                          /* AggregateArgs */ false,
1116                          /* BlockFrequencyInfo */ nullptr,
1117                          /* BranchProbabilityInfo */ nullptr,
1118                          /* AssumptionCache */ nullptr,
1119                          /* AllowVarArgs */ true,
1120                          /* AllowAlloca */ true,
1121                          /* AllocationBlock */ OuterAllocaBlock,
1122                          /* Suffix */ ".omp_par");
1123
1124  // Find inputs to, outputs from the code region.
1125  BasicBlock *CommonExit = nullptr;
1126  SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
1127  Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1128  Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands);
1129
1130  LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n");
1131
1132  FunctionCallee TIDRTLFn =
1133      getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num);
1134
1135  auto PrivHelper = [&](Value &V) {
1136    if (&V == TIDAddr || &V == ZeroAddr) {
1137      OI.ExcludeArgsFromAggregate.push_back(&V);
1138      return;
1139    }
1140
1141    SetVector<Use *> Uses;
1142    for (Use &U : V.uses())
1143      if (auto *UserI = dyn_cast<Instruction>(U.getUser()))
1144        if (ParallelRegionBlockSet.count(UserI->getParent()))
1145          Uses.insert(&U);
1146
1147    // __kmpc_fork_call expects extra arguments as pointers. If the input
1148    // already has a pointer type, everything is fine. Otherwise, store the
1149    // value onto stack and load it back inside the to-be-outlined region. This
1150    // will ensure only the pointer will be passed to the function.
1151    // FIXME: if there are more than 15 trailing arguments, they must be
1152    // additionally packed in a struct.
1153    Value *Inner = &V;
1154    if (!V.getType()->isPointerTy()) {
1155      IRBuilder<>::InsertPointGuard Guard(Builder);
1156      LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n");
1157
1158      Builder.restoreIP(OuterAllocaIP);
1159      Value *Ptr =
1160          Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded");
1161
1162      // Store to stack at end of the block that currently branches to the entry
1163      // block of the to-be-outlined region.
1164      Builder.SetInsertPoint(InsertBB,
1165                             InsertBB->getTerminator()->getIterator());
1166      Builder.CreateStore(&V, Ptr);
1167
1168      // Load back next to allocations in the to-be-outlined region.
1169      Builder.restoreIP(InnerAllocaIP);
1170      Inner = Builder.CreateLoad(V.getType(), Ptr);
1171    }
1172
1173    Value *ReplacementValue = nullptr;
1174    CallInst *CI = dyn_cast<CallInst>(&V);
1175    if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) {
1176      ReplacementValue = PrivTID;
1177    } else {
1178      Builder.restoreIP(
1179          PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue));
1180      assert(ReplacementValue &&
1181             "Expected copy/create callback to set replacement value!");
1182      if (ReplacementValue == &V)
1183        return;
1184    }
1185
1186    for (Use *UPtr : Uses)
1187      UPtr->set(ReplacementValue);
1188  };
1189
1190  // Reset the inner alloca insertion as it will be used for loading the values
1191  // wrapped into pointers before passing them into the to-be-outlined region.
1192  // Configure it to insert immediately after the fake use of zero address so
1193  // that they are available in the generated body and so that the
1194  // OpenMP-related values (thread ID and zero address pointers) remain leading
1195  // in the argument list.
1196  InnerAllocaIP = IRBuilder<>::InsertPoint(
1197      ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator());
1198
1199  // Reset the outer alloca insertion point to the entry of the relevant block
1200  // in case it was invalidated.
1201  OuterAllocaIP = IRBuilder<>::InsertPoint(
1202      OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt());
1203
1204  for (Value *Input : Inputs) {
1205    LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n");
1206    PrivHelper(*Input);
1207  }
1208  LLVM_DEBUG({
1209    for (Value *Output : Outputs)
1210      LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n");
1211  });
1212  assert(Outputs.empty() &&
1213         "OpenMP outlining should not produce live-out values!");
1214
1215  LLVM_DEBUG(dbgs() << "After  privatization: " << *OuterFn << "\n");
1216  LLVM_DEBUG({
1217    for (auto *BB : Blocks)
1218      dbgs() << " PBR: " << BB->getName() << "\n";
1219  });
1220
1221  // Register the outlined info.
1222  addOutlineInfo(std::move(OI));
1223
1224  InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end());
1225  UI->eraseFromParent();
1226
1227  return AfterIP;
1228}
1229
1230void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) {
1231  // Build call void __kmpc_flush(ident_t *loc)
1232  uint32_t SrcLocStrSize;
1233  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1234  Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)};
1235
1236  Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args);
1237}
1238
1239void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) {
1240  if (!updateToLocation(Loc))
1241    return;
1242  emitFlush(Loc);
1243}
1244
1245void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) {
1246  // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
1247  // global_tid);
1248  uint32_t SrcLocStrSize;
1249  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1250  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1251  Value *Args[] = {Ident, getOrCreateThreadID(Ident)};
1252
1253  // Ignore return result until untied tasks are supported.
1254  Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait),
1255                     Args);
1256}
1257
1258void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) {
1259  if (!updateToLocation(Loc))
1260    return;
1261  emitTaskwaitImpl(Loc);
1262}
1263
1264void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) {
1265  // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
1266  uint32_t SrcLocStrSize;
1267  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1268  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1269  Constant *I32Null = ConstantInt::getNullValue(Int32);
1270  Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null};
1271
1272  Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield),
1273                     Args);
1274}
1275
1276void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) {
1277  if (!updateToLocation(Loc))
1278    return;
1279  emitTaskyieldImpl(Loc);
1280}
1281
1282OpenMPIRBuilder::InsertPointTy
1283OpenMPIRBuilder::createTask(const LocationDescription &Loc,
1284                            InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB,
1285                            bool Tied, Value *Final, Value *IfCondition,
1286                            SmallVector<DependData> Dependencies) {
1287  if (!updateToLocation(Loc))
1288    return InsertPointTy();
1289
1290  uint32_t SrcLocStrSize;
1291  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1292  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1293  // The current basic block is split into four basic blocks. After outlining,
1294  // they will be mapped as follows:
1295  // ```
1296  // def current_fn() {
1297  //   current_basic_block:
1298  //     br label %task.exit
1299  //   task.exit:
1300  //     ; instructions after task
1301  // }
1302  // def outlined_fn() {
1303  //   task.alloca:
1304  //     br label %task.body
1305  //   task.body:
1306  //     ret void
1307  // }
1308  // ```
1309  BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, "task.exit");
1310  BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "task.body");
1311  BasicBlock *TaskAllocaBB =
1312      splitBB(Builder, /*CreateBranch=*/true, "task.alloca");
1313
1314  OutlineInfo OI;
1315  OI.EntryBB = TaskAllocaBB;
1316  OI.OuterAllocaBB = AllocaIP.getBlock();
1317  OI.ExitBB = TaskExitBB;
1318  OI.PostOutlineCB = [this, Ident, Tied, Final, IfCondition,
1319                      Dependencies](Function &OutlinedFn) {
1320    // The input IR here looks like the following-
1321    // ```
1322    // func @current_fn() {
1323    //   outlined_fn(%args)
1324    // }
1325    // func @outlined_fn(%args) { ... }
1326    // ```
1327    //
1328    // This is changed to the following-
1329    //
1330    // ```
1331    // func @current_fn() {
1332    //   runtime_call(..., wrapper_fn, ...)
1333    // }
1334    // func @wrapper_fn(..., %args) {
1335    //   outlined_fn(%args)
1336    // }
1337    // func @outlined_fn(%args) { ... }
1338    // ```
1339
1340    // The stale call instruction will be replaced with a new call instruction
1341    // for runtime call with a wrapper function.
1342    assert(OutlinedFn.getNumUses() == 1 &&
1343           "there must be a single user for the outlined function");
1344    CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back());
1345
1346    // HasTaskData is true if any variables are captured in the outlined region,
1347    // false otherwise.
1348    bool HasTaskData = StaleCI->arg_size() > 0;
1349    Builder.SetInsertPoint(StaleCI);
1350
1351    // Gather the arguments for emitting the runtime call for
1352    // @__kmpc_omp_task_alloc
1353    Function *TaskAllocFn =
1354        getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc);
1355
1356    // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID)
1357    // call.
1358    Value *ThreadID = getOrCreateThreadID(Ident);
1359
1360    // Argument - `flags`
1361    // Task is tied iff (Flags & 1) == 1.
1362    // Task is untied iff (Flags & 1) == 0.
1363    // Task is final iff (Flags & 2) == 2.
1364    // Task is not final iff (Flags & 2) == 0.
1365    // TODO: Handle the other flags.
1366    Value *Flags = Builder.getInt32(Tied);
1367    if (Final) {
1368      Value *FinalFlag =
1369          Builder.CreateSelect(Final, Builder.getInt32(2), Builder.getInt32(0));
1370      Flags = Builder.CreateOr(FinalFlag, Flags);
1371    }
1372
1373    // Argument - `sizeof_kmp_task_t` (TaskSize)
1374    // Tasksize refers to the size in bytes of kmp_task_t data structure
1375    // including private vars accessed in task.
1376    Value *TaskSize = Builder.getInt64(0);
1377    if (HasTaskData) {
1378      AllocaInst *ArgStructAlloca =
1379          dyn_cast<AllocaInst>(StaleCI->getArgOperand(0));
1380      assert(ArgStructAlloca &&
1381             "Unable to find the alloca instruction corresponding to arguments "
1382             "for extracted function");
1383      StructType *ArgStructType =
1384          dyn_cast<StructType>(ArgStructAlloca->getAllocatedType());
1385      assert(ArgStructType && "Unable to find struct type corresponding to "
1386                              "arguments for extracted function");
1387      TaskSize =
1388          Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType));
1389    }
1390
1391    // TODO: Argument - sizeof_shareds
1392
1393    // Argument - task_entry (the wrapper function)
1394    // If the outlined function has some captured variables (i.e. HasTaskData is
1395    // true), then the wrapper function will have an additional argument (the
1396    // struct containing captured variables). Otherwise, no such argument will
1397    // be present.
1398    SmallVector<Type *> WrapperArgTys{Builder.getInt32Ty()};
1399    if (HasTaskData)
1400      WrapperArgTys.push_back(OutlinedFn.getArg(0)->getType());
1401    FunctionCallee WrapperFuncVal = M.getOrInsertFunction(
1402        (Twine(OutlinedFn.getName()) + ".wrapper").str(),
1403        FunctionType::get(Builder.getInt32Ty(), WrapperArgTys, false));
1404    Function *WrapperFunc = dyn_cast<Function>(WrapperFuncVal.getCallee());
1405    PointerType *WrapperFuncBitcastType =
1406        FunctionType::get(Builder.getInt32Ty(),
1407                          {Builder.getInt32Ty(), Builder.getInt8PtrTy()}, false)
1408            ->getPointerTo();
1409    Value *WrapperFuncBitcast =
1410        ConstantExpr::getBitCast(WrapperFunc, WrapperFuncBitcastType);
1411
1412    // Emit the @__kmpc_omp_task_alloc runtime call
1413    // The runtime call returns a pointer to an area where the task captured
1414    // variables must be copied before the task is run (NewTaskData)
1415    CallInst *NewTaskData = Builder.CreateCall(
1416        TaskAllocFn,
1417        {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags,
1418         /*sizeof_task=*/TaskSize, /*sizeof_shared=*/Builder.getInt64(0),
1419         /*task_func=*/WrapperFuncBitcast});
1420
1421    // Copy the arguments for outlined function
1422    if (HasTaskData) {
1423      Value *TaskData = StaleCI->getArgOperand(0);
1424      Align Alignment = TaskData->getPointerAlignment(M.getDataLayout());
1425      Builder.CreateMemCpy(NewTaskData, Alignment, TaskData, Alignment,
1426                           TaskSize);
1427    }
1428
1429    Value *DepArrayPtr = nullptr;
1430    if (Dependencies.size()) {
1431      InsertPointTy OldIP = Builder.saveIP();
1432      Builder.SetInsertPoint(
1433          &OldIP.getBlock()->getParent()->getEntryBlock().back());
1434
1435      Type *DepArrayTy = ArrayType::get(DependInfo, Dependencies.size());
1436      Value *DepArray =
1437          Builder.CreateAlloca(DepArrayTy, nullptr, ".dep.arr.addr");
1438
1439      unsigned P = 0;
1440      for (const DependData &Dep : Dependencies) {
1441        Value *Base =
1442            Builder.CreateConstInBoundsGEP2_64(DepArrayTy, DepArray, 0, P);
1443        // Store the pointer to the variable
1444        Value *Addr = Builder.CreateStructGEP(
1445            DependInfo, Base,
1446            static_cast<unsigned int>(RTLDependInfoFields::BaseAddr));
1447        Value *DepValPtr =
1448            Builder.CreatePtrToInt(Dep.DepVal, Builder.getInt64Ty());
1449        Builder.CreateStore(DepValPtr, Addr);
1450        // Store the size of the variable
1451        Value *Size = Builder.CreateStructGEP(
1452            DependInfo, Base,
1453            static_cast<unsigned int>(RTLDependInfoFields::Len));
1454        Builder.CreateStore(Builder.getInt64(M.getDataLayout().getTypeStoreSize(
1455                                Dep.DepValueType)),
1456                            Size);
1457        // Store the dependency kind
1458        Value *Flags = Builder.CreateStructGEP(
1459            DependInfo, Base,
1460            static_cast<unsigned int>(RTLDependInfoFields::Flags));
1461        Builder.CreateStore(
1462            ConstantInt::get(Builder.getInt8Ty(),
1463                             static_cast<unsigned int>(Dep.DepKind)),
1464            Flags);
1465        ++P;
1466      }
1467
1468      DepArrayPtr = Builder.CreateBitCast(DepArray, Builder.getInt8PtrTy());
1469      Builder.restoreIP(OldIP);
1470    }
1471
1472    // In the presence of the `if` clause, the following IR is generated:
1473    //    ...
1474    //    %data = call @__kmpc_omp_task_alloc(...)
1475    //    br i1 %if_condition, label %then, label %else
1476    //  then:
1477    //    call @__kmpc_omp_task(...)
1478    //    br label %exit
1479    //  else:
1480    //    call @__kmpc_omp_task_begin_if0(...)
1481    //    call @wrapper_fn(...)
1482    //    call @__kmpc_omp_task_complete_if0(...)
1483    //    br label %exit
1484    //  exit:
1485    //    ...
1486    if (IfCondition) {
1487      // `SplitBlockAndInsertIfThenElse` requires the block to have a
1488      // terminator.
1489      BasicBlock *NewBasicBlock =
1490          splitBB(Builder, /*CreateBranch=*/true, "if.end");
1491      Instruction *IfTerminator =
1492          NewBasicBlock->getSinglePredecessor()->getTerminator();
1493      Instruction *ThenTI = IfTerminator, *ElseTI = nullptr;
1494      Builder.SetInsertPoint(IfTerminator);
1495      SplitBlockAndInsertIfThenElse(IfCondition, IfTerminator, &ThenTI,
1496                                    &ElseTI);
1497      Builder.SetInsertPoint(ElseTI);
1498      Function *TaskBeginFn =
1499          getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0);
1500      Function *TaskCompleteFn =
1501          getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0);
1502      Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, NewTaskData});
1503      if (HasTaskData)
1504        Builder.CreateCall(WrapperFunc, {ThreadID, NewTaskData});
1505      else
1506        Builder.CreateCall(WrapperFunc, {ThreadID});
1507      Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, NewTaskData});
1508      Builder.SetInsertPoint(ThenTI);
1509    }
1510
1511    if (Dependencies.size()) {
1512      Function *TaskFn =
1513          getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps);
1514      Builder.CreateCall(
1515          TaskFn,
1516          {Ident, ThreadID, NewTaskData, Builder.getInt32(Dependencies.size()),
1517           DepArrayPtr, ConstantInt::get(Builder.getInt32Ty(), 0),
1518           ConstantPointerNull::get(Type::getInt8PtrTy(M.getContext()))});
1519
1520    } else {
1521      // Emit the @__kmpc_omp_task runtime call to spawn the task
1522      Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task);
1523      Builder.CreateCall(TaskFn, {Ident, ThreadID, NewTaskData});
1524    }
1525
1526    StaleCI->eraseFromParent();
1527
1528    // Emit the body for wrapper function
1529    BasicBlock *WrapperEntryBB =
1530        BasicBlock::Create(M.getContext(), "", WrapperFunc);
1531    Builder.SetInsertPoint(WrapperEntryBB);
1532    if (HasTaskData)
1533      Builder.CreateCall(&OutlinedFn, {WrapperFunc->getArg(1)});
1534    else
1535      Builder.CreateCall(&OutlinedFn);
1536    Builder.CreateRet(Builder.getInt32(0));
1537  };
1538
1539  addOutlineInfo(std::move(OI));
1540
1541  InsertPointTy TaskAllocaIP =
1542      InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin());
1543  InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin());
1544  BodyGenCB(TaskAllocaIP, TaskBodyIP);
1545  Builder.SetInsertPoint(TaskExitBB, TaskExitBB->begin());
1546
1547  return Builder.saveIP();
1548}
1549
1550OpenMPIRBuilder::InsertPointTy
1551OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc,
1552                                 InsertPointTy AllocaIP,
1553                                 BodyGenCallbackTy BodyGenCB) {
1554  if (!updateToLocation(Loc))
1555    return InsertPointTy();
1556
1557  uint32_t SrcLocStrSize;
1558  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1559  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1560  Value *ThreadID = getOrCreateThreadID(Ident);
1561
1562  // Emit the @__kmpc_taskgroup runtime call to start the taskgroup
1563  Function *TaskgroupFn =
1564      getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_taskgroup);
1565  Builder.CreateCall(TaskgroupFn, {Ident, ThreadID});
1566
1567  BasicBlock *TaskgroupExitBB = splitBB(Builder, true, "taskgroup.exit");
1568  BodyGenCB(AllocaIP, Builder.saveIP());
1569
1570  Builder.SetInsertPoint(TaskgroupExitBB);
1571  // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup
1572  Function *EndTaskgroupFn =
1573      getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_taskgroup);
1574  Builder.CreateCall(EndTaskgroupFn, {Ident, ThreadID});
1575
1576  return Builder.saveIP();
1577}
1578
1579OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections(
1580    const LocationDescription &Loc, InsertPointTy AllocaIP,
1581    ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB,
1582    FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) {
1583  assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required");
1584
1585  if (!updateToLocation(Loc))
1586    return Loc.IP;
1587
1588  auto FiniCBWrapper = [&](InsertPointTy IP) {
1589    if (IP.getBlock()->end() != IP.getPoint())
1590      return FiniCB(IP);
1591    // This must be done otherwise any nested constructs using FinalizeOMPRegion
1592    // will fail because that function requires the Finalization Basic Block to
1593    // have a terminator, which is already removed by EmitOMPRegionBody.
1594    // IP is currently at cancelation block.
1595    // We need to backtrack to the condition block to fetch
1596    // the exit block and create a branch from cancelation
1597    // to exit block.
1598    IRBuilder<>::InsertPointGuard IPG(Builder);
1599    Builder.restoreIP(IP);
1600    auto *CaseBB = IP.getBlock()->getSinglePredecessor();
1601    auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
1602    auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
1603    Instruction *I = Builder.CreateBr(ExitBB);
1604    IP = InsertPointTy(I->getParent(), I->getIterator());
1605    return FiniCB(IP);
1606  };
1607
1608  FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable});
1609
1610  // Each section is emitted as a switch case
1611  // Each finalization callback is handled from clang.EmitOMPSectionDirective()
1612  // -> OMP.createSection() which generates the IR for each section
1613  // Iterate through all sections and emit a switch construct:
1614  // switch (IV) {
1615  //   case 0:
1616  //     <SectionStmt[0]>;
1617  //     break;
1618  // ...
1619  //   case <NumSection> - 1:
1620  //     <SectionStmt[<NumSection> - 1]>;
1621  //     break;
1622  // }
1623  // ...
1624  // section_loop.after:
1625  // <FiniCB>;
1626  auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) {
1627    Builder.restoreIP(CodeGenIP);
1628    BasicBlock *Continue =
1629        splitBBWithSuffix(Builder, /*CreateBranch=*/false, ".sections.after");
1630    Function *CurFn = Continue->getParent();
1631    SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, Continue);
1632
1633    unsigned CaseNumber = 0;
1634    for (auto SectionCB : SectionCBs) {
1635      BasicBlock *CaseBB = BasicBlock::Create(
1636          M.getContext(), "omp_section_loop.body.case", CurFn, Continue);
1637      SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB);
1638      Builder.SetInsertPoint(CaseBB);
1639      BranchInst *CaseEndBr = Builder.CreateBr(Continue);
1640      SectionCB(InsertPointTy(),
1641                {CaseEndBr->getParent(), CaseEndBr->getIterator()});
1642      CaseNumber++;
1643    }
1644    // remove the existing terminator from body BB since there can be no
1645    // terminators after switch/case
1646  };
1647  // Loop body ends here
1648  // LowerBound, UpperBound, and STride for createCanonicalLoop
1649  Type *I32Ty = Type::getInt32Ty(M.getContext());
1650  Value *LB = ConstantInt::get(I32Ty, 0);
1651  Value *UB = ConstantInt::get(I32Ty, SectionCBs.size());
1652  Value *ST = ConstantInt::get(I32Ty, 1);
1653  llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop(
1654      Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop");
1655  InsertPointTy AfterIP =
1656      applyStaticWorkshareLoop(Loc.DL, LoopInfo, AllocaIP, !IsNowait);
1657
1658  // Apply the finalization callback in LoopAfterBB
1659  auto FiniInfo = FinalizationStack.pop_back_val();
1660  assert(FiniInfo.DK == OMPD_sections &&
1661         "Unexpected finalization stack state!");
1662  if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) {
1663    Builder.restoreIP(AfterIP);
1664    BasicBlock *FiniBB =
1665        splitBBWithSuffix(Builder, /*CreateBranch=*/true, "sections.fini");
1666    CB(Builder.saveIP());
1667    AfterIP = {FiniBB, FiniBB->begin()};
1668  }
1669
1670  return AfterIP;
1671}
1672
1673OpenMPIRBuilder::InsertPointTy
1674OpenMPIRBuilder::createSection(const LocationDescription &Loc,
1675                               BodyGenCallbackTy BodyGenCB,
1676                               FinalizeCallbackTy FiniCB) {
1677  if (!updateToLocation(Loc))
1678    return Loc.IP;
1679
1680  auto FiniCBWrapper = [&](InsertPointTy IP) {
1681    if (IP.getBlock()->end() != IP.getPoint())
1682      return FiniCB(IP);
1683    // This must be done otherwise any nested constructs using FinalizeOMPRegion
1684    // will fail because that function requires the Finalization Basic Block to
1685    // have a terminator, which is already removed by EmitOMPRegionBody.
1686    // IP is currently at cancelation block.
1687    // We need to backtrack to the condition block to fetch
1688    // the exit block and create a branch from cancelation
1689    // to exit block.
1690    IRBuilder<>::InsertPointGuard IPG(Builder);
1691    Builder.restoreIP(IP);
1692    auto *CaseBB = Loc.IP.getBlock();
1693    auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
1694    auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
1695    Instruction *I = Builder.CreateBr(ExitBB);
1696    IP = InsertPointTy(I->getParent(), I->getIterator());
1697    return FiniCB(IP);
1698  };
1699
1700  Directive OMPD = Directive::OMPD_sections;
1701  // Since we are using Finalization Callback here, HasFinalize
1702  // and IsCancellable have to be true
1703  return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper,
1704                              /*Conditional*/ false, /*hasFinalize*/ true,
1705                              /*IsCancellable*/ true);
1706}
1707
1708/// Create a function with a unique name and a "void (i8*, i8*)" signature in
1709/// the given module and return it.
1710Function *getFreshReductionFunc(Module &M) {
1711  Type *VoidTy = Type::getVoidTy(M.getContext());
1712  Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
1713  auto *FuncTy =
1714      FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false);
1715  return Function::Create(FuncTy, GlobalVariable::InternalLinkage,
1716                          M.getDataLayout().getDefaultGlobalsAddressSpace(),
1717                          ".omp.reduction.func", &M);
1718}
1719
1720OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductions(
1721    const LocationDescription &Loc, InsertPointTy AllocaIP,
1722    ArrayRef<ReductionInfo> ReductionInfos, bool IsNoWait) {
1723  for (const ReductionInfo &RI : ReductionInfos) {
1724    (void)RI;
1725    assert(RI.Variable && "expected non-null variable");
1726    assert(RI.PrivateVariable && "expected non-null private variable");
1727    assert(RI.ReductionGen && "expected non-null reduction generator callback");
1728    assert(RI.Variable->getType() == RI.PrivateVariable->getType() &&
1729           "expected variables and their private equivalents to have the same "
1730           "type");
1731    assert(RI.Variable->getType()->isPointerTy() &&
1732           "expected variables to be pointers");
1733  }
1734
1735  if (!updateToLocation(Loc))
1736    return InsertPointTy();
1737
1738  BasicBlock *InsertBlock = Loc.IP.getBlock();
1739  BasicBlock *ContinuationBlock =
1740      InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize");
1741  InsertBlock->getTerminator()->eraseFromParent();
1742
1743  // Create and populate array of type-erased pointers to private reduction
1744  // values.
1745  unsigned NumReductions = ReductionInfos.size();
1746  Type *RedArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumReductions);
1747  Builder.restoreIP(AllocaIP);
1748  Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array");
1749
1750  Builder.SetInsertPoint(InsertBlock, InsertBlock->end());
1751
1752  for (auto En : enumerate(ReductionInfos)) {
1753    unsigned Index = En.index();
1754    const ReductionInfo &RI = En.value();
1755    Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64(
1756        RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index));
1757    Value *Casted =
1758        Builder.CreateBitCast(RI.PrivateVariable, Builder.getInt8PtrTy(),
1759                              "private.red.var." + Twine(Index) + ".casted");
1760    Builder.CreateStore(Casted, RedArrayElemPtr);
1761  }
1762
1763  // Emit a call to the runtime function that orchestrates the reduction.
1764  // Declare the reduction function in the process.
1765  Function *Func = Builder.GetInsertBlock()->getParent();
1766  Module *Module = Func->getParent();
1767  Value *RedArrayPtr =
1768      Builder.CreateBitCast(RedArray, Builder.getInt8PtrTy(), "red.array.ptr");
1769  uint32_t SrcLocStrSize;
1770  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1771  bool CanGenerateAtomic =
1772      llvm::all_of(ReductionInfos, [](const ReductionInfo &RI) {
1773        return RI.AtomicReductionGen;
1774      });
1775  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize,
1776                                  CanGenerateAtomic
1777                                      ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE
1778                                      : IdentFlag(0));
1779  Value *ThreadId = getOrCreateThreadID(Ident);
1780  Constant *NumVariables = Builder.getInt32(NumReductions);
1781  const DataLayout &DL = Module->getDataLayout();
1782  unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy);
1783  Constant *RedArraySize = Builder.getInt64(RedArrayByteSize);
1784  Function *ReductionFunc = getFreshReductionFunc(*Module);
1785  Value *Lock = getOMPCriticalRegionLock(".reduction");
1786  Function *ReduceFunc = getOrCreateRuntimeFunctionPtr(
1787      IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait
1788               : RuntimeFunction::OMPRTL___kmpc_reduce);
1789  CallInst *ReduceCall =
1790      Builder.CreateCall(ReduceFunc,
1791                         {Ident, ThreadId, NumVariables, RedArraySize,
1792                          RedArrayPtr, ReductionFunc, Lock},
1793                         "reduce");
1794
1795  // Create final reduction entry blocks for the atomic and non-atomic case.
1796  // Emit IR that dispatches control flow to one of the blocks based on the
1797  // reduction supporting the atomic mode.
1798  BasicBlock *NonAtomicRedBlock =
1799      BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func);
1800  BasicBlock *AtomicRedBlock =
1801      BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func);
1802  SwitchInst *Switch =
1803      Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2);
1804  Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock);
1805  Switch->addCase(Builder.getInt32(2), AtomicRedBlock);
1806
1807  // Populate the non-atomic reduction using the elementwise reduction function.
1808  // This loads the elements from the global and private variables and reduces
1809  // them before storing back the result to the global variable.
1810  Builder.SetInsertPoint(NonAtomicRedBlock);
1811  for (auto En : enumerate(ReductionInfos)) {
1812    const ReductionInfo &RI = En.value();
1813    Type *ValueType = RI.ElementType;
1814    Value *RedValue = Builder.CreateLoad(ValueType, RI.Variable,
1815                                         "red.value." + Twine(En.index()));
1816    Value *PrivateRedValue =
1817        Builder.CreateLoad(ValueType, RI.PrivateVariable,
1818                           "red.private.value." + Twine(En.index()));
1819    Value *Reduced;
1820    Builder.restoreIP(
1821        RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced));
1822    if (!Builder.GetInsertBlock())
1823      return InsertPointTy();
1824    Builder.CreateStore(Reduced, RI.Variable);
1825  }
1826  Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr(
1827      IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait
1828               : RuntimeFunction::OMPRTL___kmpc_end_reduce);
1829  Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock});
1830  Builder.CreateBr(ContinuationBlock);
1831
1832  // Populate the atomic reduction using the atomic elementwise reduction
1833  // function. There are no loads/stores here because they will be happening
1834  // inside the atomic elementwise reduction.
1835  Builder.SetInsertPoint(AtomicRedBlock);
1836  if (CanGenerateAtomic) {
1837    for (const ReductionInfo &RI : ReductionInfos) {
1838      Builder.restoreIP(RI.AtomicReductionGen(Builder.saveIP(), RI.ElementType,
1839                                              RI.Variable, RI.PrivateVariable));
1840      if (!Builder.GetInsertBlock())
1841        return InsertPointTy();
1842    }
1843    Builder.CreateBr(ContinuationBlock);
1844  } else {
1845    Builder.CreateUnreachable();
1846  }
1847
1848  // Populate the outlined reduction function using the elementwise reduction
1849  // function. Partial values are extracted from the type-erased array of
1850  // pointers to private variables.
1851  BasicBlock *ReductionFuncBlock =
1852      BasicBlock::Create(Module->getContext(), "", ReductionFunc);
1853  Builder.SetInsertPoint(ReductionFuncBlock);
1854  Value *LHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(0),
1855                                             RedArrayTy->getPointerTo());
1856  Value *RHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(1),
1857                                             RedArrayTy->getPointerTo());
1858  for (auto En : enumerate(ReductionInfos)) {
1859    const ReductionInfo &RI = En.value();
1860    Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
1861        RedArrayTy, LHSArrayPtr, 0, En.index());
1862    Value *LHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), LHSI8PtrPtr);
1863    Value *LHSPtr = Builder.CreateBitCast(LHSI8Ptr, RI.Variable->getType());
1864    Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr);
1865    Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
1866        RedArrayTy, RHSArrayPtr, 0, En.index());
1867    Value *RHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), RHSI8PtrPtr);
1868    Value *RHSPtr =
1869        Builder.CreateBitCast(RHSI8Ptr, RI.PrivateVariable->getType());
1870    Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr);
1871    Value *Reduced;
1872    Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced));
1873    if (!Builder.GetInsertBlock())
1874      return InsertPointTy();
1875    Builder.CreateStore(Reduced, LHSPtr);
1876  }
1877  Builder.CreateRetVoid();
1878
1879  Builder.SetInsertPoint(ContinuationBlock);
1880  return Builder.saveIP();
1881}
1882
1883OpenMPIRBuilder::InsertPointTy
1884OpenMPIRBuilder::createMaster(const LocationDescription &Loc,
1885                              BodyGenCallbackTy BodyGenCB,
1886                              FinalizeCallbackTy FiniCB) {
1887
1888  if (!updateToLocation(Loc))
1889    return Loc.IP;
1890
1891  Directive OMPD = Directive::OMPD_master;
1892  uint32_t SrcLocStrSize;
1893  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1894  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1895  Value *ThreadId = getOrCreateThreadID(Ident);
1896  Value *Args[] = {Ident, ThreadId};
1897
1898  Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master);
1899  Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
1900
1901  Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master);
1902  Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
1903
1904  return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
1905                              /*Conditional*/ true, /*hasFinalize*/ true);
1906}
1907
1908OpenMPIRBuilder::InsertPointTy
1909OpenMPIRBuilder::createMasked(const LocationDescription &Loc,
1910                              BodyGenCallbackTy BodyGenCB,
1911                              FinalizeCallbackTy FiniCB, Value *Filter) {
1912  if (!updateToLocation(Loc))
1913    return Loc.IP;
1914
1915  Directive OMPD = Directive::OMPD_masked;
1916  uint32_t SrcLocStrSize;
1917  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1918  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1919  Value *ThreadId = getOrCreateThreadID(Ident);
1920  Value *Args[] = {Ident, ThreadId, Filter};
1921  Value *ArgsEnd[] = {Ident, ThreadId};
1922
1923  Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked);
1924  Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
1925
1926  Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked);
1927  Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd);
1928
1929  return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
1930                              /*Conditional*/ true, /*hasFinalize*/ true);
1931}
1932
1933CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton(
1934    DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore,
1935    BasicBlock *PostInsertBefore, const Twine &Name) {
1936  Module *M = F->getParent();
1937  LLVMContext &Ctx = M->getContext();
1938  Type *IndVarTy = TripCount->getType();
1939
1940  // Create the basic block structure.
1941  BasicBlock *Preheader =
1942      BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore);
1943  BasicBlock *Header =
1944      BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore);
1945  BasicBlock *Cond =
1946      BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore);
1947  BasicBlock *Body =
1948      BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore);
1949  BasicBlock *Latch =
1950      BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore);
1951  BasicBlock *Exit =
1952      BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore);
1953  BasicBlock *After =
1954      BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore);
1955
1956  // Use specified DebugLoc for new instructions.
1957  Builder.SetCurrentDebugLocation(DL);
1958
1959  Builder.SetInsertPoint(Preheader);
1960  Builder.CreateBr(Header);
1961
1962  Builder.SetInsertPoint(Header);
1963  PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv");
1964  IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader);
1965  Builder.CreateBr(Cond);
1966
1967  Builder.SetInsertPoint(Cond);
1968  Value *Cmp =
1969      Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp");
1970  Builder.CreateCondBr(Cmp, Body, Exit);
1971
1972  Builder.SetInsertPoint(Body);
1973  Builder.CreateBr(Latch);
1974
1975  Builder.SetInsertPoint(Latch);
1976  Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1),
1977                                  "omp_" + Name + ".next", /*HasNUW=*/true);
1978  Builder.CreateBr(Header);
1979  IndVarPHI->addIncoming(Next, Latch);
1980
1981  Builder.SetInsertPoint(Exit);
1982  Builder.CreateBr(After);
1983
1984  // Remember and return the canonical control flow.
1985  LoopInfos.emplace_front();
1986  CanonicalLoopInfo *CL = &LoopInfos.front();
1987
1988  CL->Header = Header;
1989  CL->Cond = Cond;
1990  CL->Latch = Latch;
1991  CL->Exit = Exit;
1992
1993#ifndef NDEBUG
1994  CL->assertOK();
1995#endif
1996  return CL;
1997}
1998
1999CanonicalLoopInfo *
2000OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc,
2001                                     LoopBodyGenCallbackTy BodyGenCB,
2002                                     Value *TripCount, const Twine &Name) {
2003  BasicBlock *BB = Loc.IP.getBlock();
2004  BasicBlock *NextBB = BB->getNextNode();
2005
2006  CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(),
2007                                             NextBB, NextBB, Name);
2008  BasicBlock *After = CL->getAfter();
2009
2010  // If location is not set, don't connect the loop.
2011  if (updateToLocation(Loc)) {
2012    // Split the loop at the insertion point: Branch to the preheader and move
2013    // every following instruction to after the loop (the After BB). Also, the
2014    // new successor is the loop's after block.
2015    spliceBB(Builder, After, /*CreateBranch=*/false);
2016    Builder.CreateBr(CL->getPreheader());
2017  }
2018
2019  // Emit the body content. We do it after connecting the loop to the CFG to
2020  // avoid that the callback encounters degenerate BBs.
2021  BodyGenCB(CL->getBodyIP(), CL->getIndVar());
2022
2023#ifndef NDEBUG
2024  CL->assertOK();
2025#endif
2026  return CL;
2027}
2028
2029CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop(
2030    const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB,
2031    Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop,
2032    InsertPointTy ComputeIP, const Twine &Name) {
2033
2034  // Consider the following difficulties (assuming 8-bit signed integers):
2035  //  * Adding \p Step to the loop counter which passes \p Stop may overflow:
2036  //      DO I = 1, 100, 50
2037  ///  * A \p Step of INT_MIN cannot not be normalized to a positive direction:
2038  //      DO I = 100, 0, -128
2039
2040  // Start, Stop and Step must be of the same integer type.
2041  auto *IndVarTy = cast<IntegerType>(Start->getType());
2042  assert(IndVarTy == Stop->getType() && "Stop type mismatch");
2043  assert(IndVarTy == Step->getType() && "Step type mismatch");
2044
2045  LocationDescription ComputeLoc =
2046      ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc;
2047  updateToLocation(ComputeLoc);
2048
2049  ConstantInt *Zero = ConstantInt::get(IndVarTy, 0);
2050  ConstantInt *One = ConstantInt::get(IndVarTy, 1);
2051
2052  // Like Step, but always positive.
2053  Value *Incr = Step;
2054
2055  // Distance between Start and Stop; always positive.
2056  Value *Span;
2057
2058  // Condition whether there are no iterations are executed at all, e.g. because
2059  // UB < LB.
2060  Value *ZeroCmp;
2061
2062  if (IsSigned) {
2063    // Ensure that increment is positive. If not, negate and invert LB and UB.
2064    Value *IsNeg = Builder.CreateICmpSLT(Step, Zero);
2065    Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step);
2066    Value *LB = Builder.CreateSelect(IsNeg, Stop, Start);
2067    Value *UB = Builder.CreateSelect(IsNeg, Start, Stop);
2068    Span = Builder.CreateSub(UB, LB, "", false, true);
2069    ZeroCmp = Builder.CreateICmp(
2070        InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB);
2071  } else {
2072    Span = Builder.CreateSub(Stop, Start, "", true);
2073    ZeroCmp = Builder.CreateICmp(
2074        InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start);
2075  }
2076
2077  Value *CountIfLooping;
2078  if (InclusiveStop) {
2079    CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One);
2080  } else {
2081    // Avoid incrementing past stop since it could overflow.
2082    Value *CountIfTwo = Builder.CreateAdd(
2083        Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One);
2084    Value *OneCmp = Builder.CreateICmp(
2085        InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Span, Incr);
2086    CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo);
2087  }
2088  Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping,
2089                                          "omp_" + Name + ".tripcount");
2090
2091  auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) {
2092    Builder.restoreIP(CodeGenIP);
2093    Value *Span = Builder.CreateMul(IV, Step);
2094    Value *IndVar = Builder.CreateAdd(Span, Start);
2095    BodyGenCB(Builder.saveIP(), IndVar);
2096  };
2097  LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP();
2098  return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name);
2099}
2100
2101// Returns an LLVM function to call for initializing loop bounds using OpenMP
2102// static scheduling depending on `type`. Only i32 and i64 are supported by the
2103// runtime. Always interpret integers as unsigned similarly to
2104// CanonicalLoopInfo.
2105static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M,
2106                                                  OpenMPIRBuilder &OMPBuilder) {
2107  unsigned Bitwidth = Ty->getIntegerBitWidth();
2108  if (Bitwidth == 32)
2109    return OMPBuilder.getOrCreateRuntimeFunction(
2110        M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u);
2111  if (Bitwidth == 64)
2112    return OMPBuilder.getOrCreateRuntimeFunction(
2113        M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u);
2114  llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2115}
2116
2117OpenMPIRBuilder::InsertPointTy
2118OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI,
2119                                          InsertPointTy AllocaIP,
2120                                          bool NeedsBarrier) {
2121  assert(CLI->isValid() && "Requires a valid canonical loop");
2122  assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&
2123         "Require dedicated allocate IP");
2124
2125  // Set up the source location value for OpenMP runtime.
2126  Builder.restoreIP(CLI->getPreheaderIP());
2127  Builder.SetCurrentDebugLocation(DL);
2128
2129  uint32_t SrcLocStrSize;
2130  Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2131  Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2132
2133  // Declare useful OpenMP runtime functions.
2134  Value *IV = CLI->getIndVar();
2135  Type *IVTy = IV->getType();
2136  FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this);
2137  FunctionCallee StaticFini =
2138      getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
2139
2140  // Allocate space for computed loop bounds as expected by the "init" function.
2141  Builder.restoreIP(AllocaIP);
2142  Type *I32Type = Type::getInt32Ty(M.getContext());
2143  Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
2144  Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
2145  Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
2146  Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
2147
2148  // At the end of the preheader, prepare for calling the "init" function by
2149  // storing the current loop bounds into the allocated space. A canonical loop
2150  // always iterates from 0 to trip-count with step 1. Note that "init" expects
2151  // and produces an inclusive upper bound.
2152  Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
2153  Constant *Zero = ConstantInt::get(IVTy, 0);
2154  Constant *One = ConstantInt::get(IVTy, 1);
2155  Builder.CreateStore(Zero, PLowerBound);
2156  Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One);
2157  Builder.CreateStore(UpperBound, PUpperBound);
2158  Builder.CreateStore(One, PStride);
2159
2160  Value *ThreadNum = getOrCreateThreadID(SrcLoc);
2161
2162  Constant *SchedulingType = ConstantInt::get(
2163      I32Type, static_cast<int>(OMPScheduleType::UnorderedStatic));
2164
2165  // Call the "init" function and update the trip count of the loop with the
2166  // value it produced.
2167  Builder.CreateCall(StaticInit,
2168                     {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound,
2169                      PUpperBound, PStride, One, Zero});
2170  Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound);
2171  Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound);
2172  Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound);
2173  Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One);
2174  CLI->setTripCount(TripCount);
2175
2176  // Update all uses of the induction variable except the one in the condition
2177  // block that compares it with the actual upper bound, and the increment in
2178  // the latch block.
2179
2180  CLI->mapIndVar([&](Instruction *OldIV) -> Value * {
2181    Builder.SetInsertPoint(CLI->getBody(),
2182                           CLI->getBody()->getFirstInsertionPt());
2183    Builder.SetCurrentDebugLocation(DL);
2184    return Builder.CreateAdd(OldIV, LowerBound);
2185  });
2186
2187  // In the "exit" block, call the "fini" function.
2188  Builder.SetInsertPoint(CLI->getExit(),
2189                         CLI->getExit()->getTerminator()->getIterator());
2190  Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
2191
2192  // Add the barrier if requested.
2193  if (NeedsBarrier)
2194    createBarrier(LocationDescription(Builder.saveIP(), DL),
2195                  omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
2196                  /* CheckCancelFlag */ false);
2197
2198  InsertPointTy AfterIP = CLI->getAfterIP();
2199  CLI->invalidate();
2200
2201  return AfterIP;
2202}
2203
2204OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop(
2205    DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2206    bool NeedsBarrier, Value *ChunkSize) {
2207  assert(CLI->isValid() && "Requires a valid canonical loop");
2208  assert(ChunkSize && "Chunk size is required");
2209
2210  LLVMContext &Ctx = CLI->getFunction()->getContext();
2211  Value *IV = CLI->getIndVar();
2212  Value *OrigTripCount = CLI->getTripCount();
2213  Type *IVTy = IV->getType();
2214  assert(IVTy->getIntegerBitWidth() <= 64 &&
2215         "Max supported tripcount bitwidth is 64 bits");
2216  Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(Ctx)
2217                                                        : Type::getInt64Ty(Ctx);
2218  Type *I32Type = Type::getInt32Ty(M.getContext());
2219  Constant *Zero = ConstantInt::get(InternalIVTy, 0);
2220  Constant *One = ConstantInt::get(InternalIVTy, 1);
2221
2222  // Declare useful OpenMP runtime functions.
2223  FunctionCallee StaticInit =
2224      getKmpcForStaticInitForType(InternalIVTy, M, *this);
2225  FunctionCallee StaticFini =
2226      getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
2227
2228  // Allocate space for computed loop bounds as expected by the "init" function.
2229  Builder.restoreIP(AllocaIP);
2230  Builder.SetCurrentDebugLocation(DL);
2231  Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
2232  Value *PLowerBound =
2233      Builder.CreateAlloca(InternalIVTy, nullptr, "p.lowerbound");
2234  Value *PUpperBound =
2235      Builder.CreateAlloca(InternalIVTy, nullptr, "p.upperbound");
2236  Value *PStride = Builder.CreateAlloca(InternalIVTy, nullptr, "p.stride");
2237
2238  // Set up the source location value for the OpenMP runtime.
2239  Builder.restoreIP(CLI->getPreheaderIP());
2240  Builder.SetCurrentDebugLocation(DL);
2241
2242  // TODO: Detect overflow in ubsan or max-out with current tripcount.
2243  Value *CastedChunkSize =
2244      Builder.CreateZExtOrTrunc(ChunkSize, InternalIVTy, "chunksize");
2245  Value *CastedTripCount =
2246      Builder.CreateZExt(OrigTripCount, InternalIVTy, "tripcount");
2247
2248  Constant *SchedulingType = ConstantInt::get(
2249      I32Type, static_cast<int>(OMPScheduleType::UnorderedStaticChunked));
2250  Builder.CreateStore(Zero, PLowerBound);
2251  Value *OrigUpperBound = Builder.CreateSub(CastedTripCount, One);
2252  Builder.CreateStore(OrigUpperBound, PUpperBound);
2253  Builder.CreateStore(One, PStride);
2254
2255  // Call the "init" function and update the trip count of the loop with the
2256  // value it produced.
2257  uint32_t SrcLocStrSize;
2258  Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2259  Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2260  Value *ThreadNum = getOrCreateThreadID(SrcLoc);
2261  Builder.CreateCall(StaticInit,
2262                     {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum,
2263                      /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter,
2264                      /*plower=*/PLowerBound, /*pupper=*/PUpperBound,
2265                      /*pstride=*/PStride, /*incr=*/One,
2266                      /*chunk=*/CastedChunkSize});
2267
2268  // Load values written by the "init" function.
2269  Value *FirstChunkStart =
2270      Builder.CreateLoad(InternalIVTy, PLowerBound, "omp_firstchunk.lb");
2271  Value *FirstChunkStop =
2272      Builder.CreateLoad(InternalIVTy, PUpperBound, "omp_firstchunk.ub");
2273  Value *FirstChunkEnd = Builder.CreateAdd(FirstChunkStop, One);
2274  Value *ChunkRange =
2275      Builder.CreateSub(FirstChunkEnd, FirstChunkStart, "omp_chunk.range");
2276  Value *NextChunkStride =
2277      Builder.CreateLoad(InternalIVTy, PStride, "omp_dispatch.stride");
2278
2279  // Create outer "dispatch" loop for enumerating the chunks.
2280  BasicBlock *DispatchEnter = splitBB(Builder, true);
2281  Value *DispatchCounter;
2282  CanonicalLoopInfo *DispatchCLI = createCanonicalLoop(
2283      {Builder.saveIP(), DL},
2284      [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; },
2285      FirstChunkStart, CastedTripCount, NextChunkStride,
2286      /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{},
2287      "dispatch");
2288
2289  // Remember the BasicBlocks of the dispatch loop we need, then invalidate to
2290  // not have to preserve the canonical invariant.
2291  BasicBlock *DispatchBody = DispatchCLI->getBody();
2292  BasicBlock *DispatchLatch = DispatchCLI->getLatch();
2293  BasicBlock *DispatchExit = DispatchCLI->getExit();
2294  BasicBlock *DispatchAfter = DispatchCLI->getAfter();
2295  DispatchCLI->invalidate();
2296
2297  // Rewire the original loop to become the chunk loop inside the dispatch loop.
2298  redirectTo(DispatchAfter, CLI->getAfter(), DL);
2299  redirectTo(CLI->getExit(), DispatchLatch, DL);
2300  redirectTo(DispatchBody, DispatchEnter, DL);
2301
2302  // Prepare the prolog of the chunk loop.
2303  Builder.restoreIP(CLI->getPreheaderIP());
2304  Builder.SetCurrentDebugLocation(DL);
2305
2306  // Compute the number of iterations of the chunk loop.
2307  Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
2308  Value *ChunkEnd = Builder.CreateAdd(DispatchCounter, ChunkRange);
2309  Value *IsLastChunk =
2310      Builder.CreateICmpUGE(ChunkEnd, CastedTripCount, "omp_chunk.is_last");
2311  Value *CountUntilOrigTripCount =
2312      Builder.CreateSub(CastedTripCount, DispatchCounter);
2313  Value *ChunkTripCount = Builder.CreateSelect(
2314      IsLastChunk, CountUntilOrigTripCount, ChunkRange, "omp_chunk.tripcount");
2315  Value *BackcastedChunkTC =
2316      Builder.CreateTrunc(ChunkTripCount, IVTy, "omp_chunk.tripcount.trunc");
2317  CLI->setTripCount(BackcastedChunkTC);
2318
2319  // Update all uses of the induction variable except the one in the condition
2320  // block that compares it with the actual upper bound, and the increment in
2321  // the latch block.
2322  Value *BackcastedDispatchCounter =
2323      Builder.CreateTrunc(DispatchCounter, IVTy, "omp_dispatch.iv.trunc");
2324  CLI->mapIndVar([&](Instruction *) -> Value * {
2325    Builder.restoreIP(CLI->getBodyIP());
2326    return Builder.CreateAdd(IV, BackcastedDispatchCounter);
2327  });
2328
2329  // In the "exit" block, call the "fini" function.
2330  Builder.SetInsertPoint(DispatchExit, DispatchExit->getFirstInsertionPt());
2331  Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
2332
2333  // Add the barrier if requested.
2334  if (NeedsBarrier)
2335    createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for,
2336                  /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false);
2337
2338#ifndef NDEBUG
2339  // Even though we currently do not support applying additional methods to it,
2340  // the chunk loop should remain a canonical loop.
2341  CLI->assertOK();
2342#endif
2343
2344  return {DispatchAfter, DispatchAfter->getFirstInsertionPt()};
2345}
2346
2347OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoop(
2348    DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2349    bool NeedsBarrier, llvm::omp::ScheduleKind SchedKind,
2350    llvm::Value *ChunkSize, bool HasSimdModifier, bool HasMonotonicModifier,
2351    bool HasNonmonotonicModifier, bool HasOrderedClause) {
2352  OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType(
2353      SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier,
2354      HasNonmonotonicModifier, HasOrderedClause);
2355
2356  bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) ==
2357                   OMPScheduleType::ModifierOrdered;
2358  switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) {
2359  case OMPScheduleType::BaseStatic:
2360    assert(!ChunkSize && "No chunk size with static-chunked schedule");
2361    if (IsOrdered)
2362      return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2363                                       NeedsBarrier, ChunkSize);
2364    // FIXME: Monotonicity ignored?
2365    return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier);
2366
2367  case OMPScheduleType::BaseStaticChunked:
2368    if (IsOrdered)
2369      return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2370                                       NeedsBarrier, ChunkSize);
2371    // FIXME: Monotonicity ignored?
2372    return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier,
2373                                           ChunkSize);
2374
2375  case OMPScheduleType::BaseRuntime:
2376  case OMPScheduleType::BaseAuto:
2377  case OMPScheduleType::BaseGreedy:
2378  case OMPScheduleType::BaseBalanced:
2379  case OMPScheduleType::BaseSteal:
2380  case OMPScheduleType::BaseGuidedSimd:
2381  case OMPScheduleType::BaseRuntimeSimd:
2382    assert(!ChunkSize &&
2383           "schedule type does not support user-defined chunk sizes");
2384    LLVM_FALLTHROUGH;
2385  case OMPScheduleType::BaseDynamicChunked:
2386  case OMPScheduleType::BaseGuidedChunked:
2387  case OMPScheduleType::BaseGuidedIterativeChunked:
2388  case OMPScheduleType::BaseGuidedAnalyticalChunked:
2389  case OMPScheduleType::BaseStaticBalancedChunked:
2390    return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2391                                     NeedsBarrier, ChunkSize);
2392
2393  default:
2394    llvm_unreachable("Unknown/unimplemented schedule kind");
2395  }
2396}
2397
2398/// Returns an LLVM function to call for initializing loop bounds using OpenMP
2399/// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
2400/// the runtime. Always interpret integers as unsigned similarly to
2401/// CanonicalLoopInfo.
2402static FunctionCallee
2403getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2404  unsigned Bitwidth = Ty->getIntegerBitWidth();
2405  if (Bitwidth == 32)
2406    return OMPBuilder.getOrCreateRuntimeFunction(
2407        M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u);
2408  if (Bitwidth == 64)
2409    return OMPBuilder.getOrCreateRuntimeFunction(
2410        M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u);
2411  llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2412}
2413
2414/// Returns an LLVM function to call for updating the next loop using OpenMP
2415/// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
2416/// the runtime. Always interpret integers as unsigned similarly to
2417/// CanonicalLoopInfo.
2418static FunctionCallee
2419getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2420  unsigned Bitwidth = Ty->getIntegerBitWidth();
2421  if (Bitwidth == 32)
2422    return OMPBuilder.getOrCreateRuntimeFunction(
2423        M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u);
2424  if (Bitwidth == 64)
2425    return OMPBuilder.getOrCreateRuntimeFunction(
2426        M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u);
2427  llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2428}
2429
2430/// Returns an LLVM function to call for finalizing the dynamic loop using
2431/// depending on `type`. Only i32 and i64 are supported by the runtime. Always
2432/// interpret integers as unsigned similarly to CanonicalLoopInfo.
2433static FunctionCallee
2434getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2435  unsigned Bitwidth = Ty->getIntegerBitWidth();
2436  if (Bitwidth == 32)
2437    return OMPBuilder.getOrCreateRuntimeFunction(
2438        M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u);
2439  if (Bitwidth == 64)
2440    return OMPBuilder.getOrCreateRuntimeFunction(
2441        M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u);
2442  llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2443}
2444
2445OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop(
2446    DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2447    OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) {
2448  assert(CLI->isValid() && "Requires a valid canonical loop");
2449  assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&
2450         "Require dedicated allocate IP");
2451  assert(isValidWorkshareLoopScheduleType(SchedType) &&
2452         "Require valid schedule type");
2453
2454  bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) ==
2455                 OMPScheduleType::ModifierOrdered;
2456
2457  // Set up the source location value for OpenMP runtime.
2458  Builder.SetCurrentDebugLocation(DL);
2459
2460  uint32_t SrcLocStrSize;
2461  Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2462  Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2463
2464  // Declare useful OpenMP runtime functions.
2465  Value *IV = CLI->getIndVar();
2466  Type *IVTy = IV->getType();
2467  FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this);
2468  FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this);
2469
2470  // Allocate space for computed loop bounds as expected by the "init" function.
2471  Builder.restoreIP(AllocaIP);
2472  Type *I32Type = Type::getInt32Ty(M.getContext());
2473  Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
2474  Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
2475  Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
2476  Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
2477
2478  // At the end of the preheader, prepare for calling the "init" function by
2479  // storing the current loop bounds into the allocated space. A canonical loop
2480  // always iterates from 0 to trip-count with step 1. Note that "init" expects
2481  // and produces an inclusive upper bound.
2482  BasicBlock *PreHeader = CLI->getPreheader();
2483  Builder.SetInsertPoint(PreHeader->getTerminator());
2484  Constant *One = ConstantInt::get(IVTy, 1);
2485  Builder.CreateStore(One, PLowerBound);
2486  Value *UpperBound = CLI->getTripCount();
2487  Builder.CreateStore(UpperBound, PUpperBound);
2488  Builder.CreateStore(One, PStride);
2489
2490  BasicBlock *Header = CLI->getHeader();
2491  BasicBlock *Exit = CLI->getExit();
2492  BasicBlock *Cond = CLI->getCond();
2493  BasicBlock *Latch = CLI->getLatch();
2494  InsertPointTy AfterIP = CLI->getAfterIP();
2495
2496  // The CLI will be "broken" in the code below, as the loop is no longer
2497  // a valid canonical loop.
2498
2499  if (!Chunk)
2500    Chunk = One;
2501
2502  Value *ThreadNum = getOrCreateThreadID(SrcLoc);
2503
2504  Constant *SchedulingType =
2505      ConstantInt::get(I32Type, static_cast<int>(SchedType));
2506
2507  // Call the "init" function.
2508  Builder.CreateCall(DynamicInit,
2509                     {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One,
2510                      UpperBound, /* step */ One, Chunk});
2511
2512  // An outer loop around the existing one.
2513  BasicBlock *OuterCond = BasicBlock::Create(
2514      PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond",
2515      PreHeader->getParent());
2516  // This needs to be 32-bit always, so can't use the IVTy Zero above.
2517  Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt());
2518  Value *Res =
2519      Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter,
2520                                       PLowerBound, PUpperBound, PStride});
2521  Constant *Zero32 = ConstantInt::get(I32Type, 0);
2522  Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32);
2523  Value *LowerBound =
2524      Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb");
2525  Builder.CreateCondBr(MoreWork, Header, Exit);
2526
2527  // Change PHI-node in loop header to use outer cond rather than preheader,
2528  // and set IV to the LowerBound.
2529  Instruction *Phi = &Header->front();
2530  auto *PI = cast<PHINode>(Phi);
2531  PI->setIncomingBlock(0, OuterCond);
2532  PI->setIncomingValue(0, LowerBound);
2533
2534  // Then set the pre-header to jump to the OuterCond
2535  Instruction *Term = PreHeader->getTerminator();
2536  auto *Br = cast<BranchInst>(Term);
2537  Br->setSuccessor(0, OuterCond);
2538
2539  // Modify the inner condition:
2540  // * Use the UpperBound returned from the DynamicNext call.
2541  // * jump to the loop outer loop when done with one of the inner loops.
2542  Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt());
2543  UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub");
2544  Instruction *Comp = &*Builder.GetInsertPoint();
2545  auto *CI = cast<CmpInst>(Comp);
2546  CI->setOperand(1, UpperBound);
2547  // Redirect the inner exit to branch to outer condition.
2548  Instruction *Branch = &Cond->back();
2549  auto *BI = cast<BranchInst>(Branch);
2550  assert(BI->getSuccessor(1) == Exit);
2551  BI->setSuccessor(1, OuterCond);
2552
2553  // Call the "fini" function if "ordered" is present in wsloop directive.
2554  if (Ordered) {
2555    Builder.SetInsertPoint(&Latch->back());
2556    FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(IVTy, M, *this);
2557    Builder.CreateCall(DynamicFini, {SrcLoc, ThreadNum});
2558  }
2559
2560  // Add the barrier if requested.
2561  if (NeedsBarrier) {
2562    Builder.SetInsertPoint(&Exit->back());
2563    createBarrier(LocationDescription(Builder.saveIP(), DL),
2564                  omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
2565                  /* CheckCancelFlag */ false);
2566  }
2567
2568  CLI->invalidate();
2569  return AfterIP;
2570}
2571
2572/// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is,
2573/// after this \p OldTarget will be orphaned.
2574static void redirectAllPredecessorsTo(BasicBlock *OldTarget,
2575                                      BasicBlock *NewTarget, DebugLoc DL) {
2576  for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget)))
2577    redirectTo(Pred, NewTarget, DL);
2578}
2579
2580/// Determine which blocks in \p BBs are reachable from outside and remove the
2581/// ones that are not reachable from the function.
2582static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) {
2583  SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()};
2584  auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) {
2585    for (Use &U : BB->uses()) {
2586      auto *UseInst = dyn_cast<Instruction>(U.getUser());
2587      if (!UseInst)
2588        continue;
2589      if (BBsToErase.count(UseInst->getParent()))
2590        continue;
2591      return true;
2592    }
2593    return false;
2594  };
2595
2596  while (true) {
2597    bool Changed = false;
2598    for (BasicBlock *BB : make_early_inc_range(BBsToErase)) {
2599      if (HasRemainingUses(BB)) {
2600        BBsToErase.erase(BB);
2601        Changed = true;
2602      }
2603    }
2604    if (!Changed)
2605      break;
2606  }
2607
2608  SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end());
2609  DeleteDeadBlocks(BBVec);
2610}
2611
2612CanonicalLoopInfo *
2613OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
2614                               InsertPointTy ComputeIP) {
2615  assert(Loops.size() >= 1 && "At least one loop required");
2616  size_t NumLoops = Loops.size();
2617
2618  // Nothing to do if there is already just one loop.
2619  if (NumLoops == 1)
2620    return Loops.front();
2621
2622  CanonicalLoopInfo *Outermost = Loops.front();
2623  CanonicalLoopInfo *Innermost = Loops.back();
2624  BasicBlock *OrigPreheader = Outermost->getPreheader();
2625  BasicBlock *OrigAfter = Outermost->getAfter();
2626  Function *F = OrigPreheader->getParent();
2627
2628  // Loop control blocks that may become orphaned later.
2629  SmallVector<BasicBlock *, 12> OldControlBBs;
2630  OldControlBBs.reserve(6 * Loops.size());
2631  for (CanonicalLoopInfo *Loop : Loops)
2632    Loop->collectControlBlocks(OldControlBBs);
2633
2634  // Setup the IRBuilder for inserting the trip count computation.
2635  Builder.SetCurrentDebugLocation(DL);
2636  if (ComputeIP.isSet())
2637    Builder.restoreIP(ComputeIP);
2638  else
2639    Builder.restoreIP(Outermost->getPreheaderIP());
2640
2641  // Derive the collapsed' loop trip count.
2642  // TODO: Find common/largest indvar type.
2643  Value *CollapsedTripCount = nullptr;
2644  for (CanonicalLoopInfo *L : Loops) {
2645    assert(L->isValid() &&
2646           "All loops to collapse must be valid canonical loops");
2647    Value *OrigTripCount = L->getTripCount();
2648    if (!CollapsedTripCount) {
2649      CollapsedTripCount = OrigTripCount;
2650      continue;
2651    }
2652
2653    // TODO: Enable UndefinedSanitizer to diagnose an overflow here.
2654    CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount,
2655                                           {}, /*HasNUW=*/true);
2656  }
2657
2658  // Create the collapsed loop control flow.
2659  CanonicalLoopInfo *Result =
2660      createLoopSkeleton(DL, CollapsedTripCount, F,
2661                         OrigPreheader->getNextNode(), OrigAfter, "collapsed");
2662
2663  // Build the collapsed loop body code.
2664  // Start with deriving the input loop induction variables from the collapsed
2665  // one, using a divmod scheme. To preserve the original loops' order, the
2666  // innermost loop use the least significant bits.
2667  Builder.restoreIP(Result->getBodyIP());
2668
2669  Value *Leftover = Result->getIndVar();
2670  SmallVector<Value *> NewIndVars;
2671  NewIndVars.resize(NumLoops);
2672  for (int i = NumLoops - 1; i >= 1; --i) {
2673    Value *OrigTripCount = Loops[i]->getTripCount();
2674
2675    Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount);
2676    NewIndVars[i] = NewIndVar;
2677
2678    Leftover = Builder.CreateUDiv(Leftover, OrigTripCount);
2679  }
2680  // Outermost loop gets all the remaining bits.
2681  NewIndVars[0] = Leftover;
2682
2683  // Construct the loop body control flow.
2684  // We progressively construct the branch structure following in direction of
2685  // the control flow, from the leading in-between code, the loop nest body, the
2686  // trailing in-between code, and rejoining the collapsed loop's latch.
2687  // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If
2688  // the ContinueBlock is set, continue with that block. If ContinuePred, use
2689  // its predecessors as sources.
2690  BasicBlock *ContinueBlock = Result->getBody();
2691  BasicBlock *ContinuePred = nullptr;
2692  auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest,
2693                                                          BasicBlock *NextSrc) {
2694    if (ContinueBlock)
2695      redirectTo(ContinueBlock, Dest, DL);
2696    else
2697      redirectAllPredecessorsTo(ContinuePred, Dest, DL);
2698
2699    ContinueBlock = nullptr;
2700    ContinuePred = NextSrc;
2701  };
2702
2703  // The code before the nested loop of each level.
2704  // Because we are sinking it into the nest, it will be executed more often
2705  // that the original loop. More sophisticated schemes could keep track of what
2706  // the in-between code is and instantiate it only once per thread.
2707  for (size_t i = 0; i < NumLoops - 1; ++i)
2708    ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader());
2709
2710  // Connect the loop nest body.
2711  ContinueWith(Innermost->getBody(), Innermost->getLatch());
2712
2713  // The code after the nested loop at each level.
2714  for (size_t i = NumLoops - 1; i > 0; --i)
2715    ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch());
2716
2717  // Connect the finished loop to the collapsed loop latch.
2718  ContinueWith(Result->getLatch(), nullptr);
2719
2720  // Replace the input loops with the new collapsed loop.
2721  redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL);
2722  redirectTo(Result->getAfter(), Outermost->getAfter(), DL);
2723
2724  // Replace the input loop indvars with the derived ones.
2725  for (size_t i = 0; i < NumLoops; ++i)
2726    Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]);
2727
2728  // Remove unused parts of the input loops.
2729  removeUnusedBlocksFromParent(OldControlBBs);
2730
2731  for (CanonicalLoopInfo *L : Loops)
2732    L->invalidate();
2733
2734#ifndef NDEBUG
2735  Result->assertOK();
2736#endif
2737  return Result;
2738}
2739
2740std::vector<CanonicalLoopInfo *>
2741OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
2742                           ArrayRef<Value *> TileSizes) {
2743  assert(TileSizes.size() == Loops.size() &&
2744         "Must pass as many tile sizes as there are loops");
2745  int NumLoops = Loops.size();
2746  assert(NumLoops >= 1 && "At least one loop to tile required");
2747
2748  CanonicalLoopInfo *OutermostLoop = Loops.front();
2749  CanonicalLoopInfo *InnermostLoop = Loops.back();
2750  Function *F = OutermostLoop->getBody()->getParent();
2751  BasicBlock *InnerEnter = InnermostLoop->getBody();
2752  BasicBlock *InnerLatch = InnermostLoop->getLatch();
2753
2754  // Loop control blocks that may become orphaned later.
2755  SmallVector<BasicBlock *, 12> OldControlBBs;
2756  OldControlBBs.reserve(6 * Loops.size());
2757  for (CanonicalLoopInfo *Loop : Loops)
2758    Loop->collectControlBlocks(OldControlBBs);
2759
2760  // Collect original trip counts and induction variable to be accessible by
2761  // index. Also, the structure of the original loops is not preserved during
2762  // the construction of the tiled loops, so do it before we scavenge the BBs of
2763  // any original CanonicalLoopInfo.
2764  SmallVector<Value *, 4> OrigTripCounts, OrigIndVars;
2765  for (CanonicalLoopInfo *L : Loops) {
2766    assert(L->isValid() && "All input loops must be valid canonical loops");
2767    OrigTripCounts.push_back(L->getTripCount());
2768    OrigIndVars.push_back(L->getIndVar());
2769  }
2770
2771  // Collect the code between loop headers. These may contain SSA definitions
2772  // that are used in the loop nest body. To be usable with in the innermost
2773  // body, these BasicBlocks will be sunk into the loop nest body. That is,
2774  // these instructions may be executed more often than before the tiling.
2775  // TODO: It would be sufficient to only sink them into body of the
2776  // corresponding tile loop.
2777  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode;
2778  for (int i = 0; i < NumLoops - 1; ++i) {
2779    CanonicalLoopInfo *Surrounding = Loops[i];
2780    CanonicalLoopInfo *Nested = Loops[i + 1];
2781
2782    BasicBlock *EnterBB = Surrounding->getBody();
2783    BasicBlock *ExitBB = Nested->getHeader();
2784    InbetweenCode.emplace_back(EnterBB, ExitBB);
2785  }
2786
2787  // Compute the trip counts of the floor loops.
2788  Builder.SetCurrentDebugLocation(DL);
2789  Builder.restoreIP(OutermostLoop->getPreheaderIP());
2790  SmallVector<Value *, 4> FloorCount, FloorRems;
2791  for (int i = 0; i < NumLoops; ++i) {
2792    Value *TileSize = TileSizes[i];
2793    Value *OrigTripCount = OrigTripCounts[i];
2794    Type *IVType = OrigTripCount->getType();
2795
2796    Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize);
2797    Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize);
2798
2799    // 0 if tripcount divides the tilesize, 1 otherwise.
2800    // 1 means we need an additional iteration for a partial tile.
2801    //
2802    // Unfortunately we cannot just use the roundup-formula
2803    //   (tripcount + tilesize - 1)/tilesize
2804    // because the summation might overflow. We do not want introduce undefined
2805    // behavior when the untiled loop nest did not.
2806    Value *FloorTripOverflow =
2807        Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0));
2808
2809    FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType);
2810    FloorTripCount =
2811        Builder.CreateAdd(FloorTripCount, FloorTripOverflow,
2812                          "omp_floor" + Twine(i) + ".tripcount", true);
2813
2814    // Remember some values for later use.
2815    FloorCount.push_back(FloorTripCount);
2816    FloorRems.push_back(FloorTripRem);
2817  }
2818
2819  // Generate the new loop nest, from the outermost to the innermost.
2820  std::vector<CanonicalLoopInfo *> Result;
2821  Result.reserve(NumLoops * 2);
2822
2823  // The basic block of the surrounding loop that enters the nest generated
2824  // loop.
2825  BasicBlock *Enter = OutermostLoop->getPreheader();
2826
2827  // The basic block of the surrounding loop where the inner code should
2828  // continue.
2829  BasicBlock *Continue = OutermostLoop->getAfter();
2830
2831  // Where the next loop basic block should be inserted.
2832  BasicBlock *OutroInsertBefore = InnermostLoop->getExit();
2833
2834  auto EmbeddNewLoop =
2835      [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore](
2836          Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * {
2837    CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton(
2838        DL, TripCount, F, InnerEnter, OutroInsertBefore, Name);
2839    redirectTo(Enter, EmbeddedLoop->getPreheader(), DL);
2840    redirectTo(EmbeddedLoop->getAfter(), Continue, DL);
2841
2842    // Setup the position where the next embedded loop connects to this loop.
2843    Enter = EmbeddedLoop->getBody();
2844    Continue = EmbeddedLoop->getLatch();
2845    OutroInsertBefore = EmbeddedLoop->getLatch();
2846    return EmbeddedLoop;
2847  };
2848
2849  auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts,
2850                                                  const Twine &NameBase) {
2851    for (auto P : enumerate(TripCounts)) {
2852      CanonicalLoopInfo *EmbeddedLoop =
2853          EmbeddNewLoop(P.value(), NameBase + Twine(P.index()));
2854      Result.push_back(EmbeddedLoop);
2855    }
2856  };
2857
2858  EmbeddNewLoops(FloorCount, "floor");
2859
2860  // Within the innermost floor loop, emit the code that computes the tile
2861  // sizes.
2862  Builder.SetInsertPoint(Enter->getTerminator());
2863  SmallVector<Value *, 4> TileCounts;
2864  for (int i = 0; i < NumLoops; ++i) {
2865    CanonicalLoopInfo *FloorLoop = Result[i];
2866    Value *TileSize = TileSizes[i];
2867
2868    Value *FloorIsEpilogue =
2869        Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]);
2870    Value *TileTripCount =
2871        Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize);
2872
2873    TileCounts.push_back(TileTripCount);
2874  }
2875
2876  // Create the tile loops.
2877  EmbeddNewLoops(TileCounts, "tile");
2878
2879  // Insert the inbetween code into the body.
2880  BasicBlock *BodyEnter = Enter;
2881  BasicBlock *BodyEntered = nullptr;
2882  for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) {
2883    BasicBlock *EnterBB = P.first;
2884    BasicBlock *ExitBB = P.second;
2885
2886    if (BodyEnter)
2887      redirectTo(BodyEnter, EnterBB, DL);
2888    else
2889      redirectAllPredecessorsTo(BodyEntered, EnterBB, DL);
2890
2891    BodyEnter = nullptr;
2892    BodyEntered = ExitBB;
2893  }
2894
2895  // Append the original loop nest body into the generated loop nest body.
2896  if (BodyEnter)
2897    redirectTo(BodyEnter, InnerEnter, DL);
2898  else
2899    redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL);
2900  redirectAllPredecessorsTo(InnerLatch, Continue, DL);
2901
2902  // Replace the original induction variable with an induction variable computed
2903  // from the tile and floor induction variables.
2904  Builder.restoreIP(Result.back()->getBodyIP());
2905  for (int i = 0; i < NumLoops; ++i) {
2906    CanonicalLoopInfo *FloorLoop = Result[i];
2907    CanonicalLoopInfo *TileLoop = Result[NumLoops + i];
2908    Value *OrigIndVar = OrigIndVars[i];
2909    Value *Size = TileSizes[i];
2910
2911    Value *Scale =
2912        Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true);
2913    Value *Shift =
2914        Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true);
2915    OrigIndVar->replaceAllUsesWith(Shift);
2916  }
2917
2918  // Remove unused parts of the original loops.
2919  removeUnusedBlocksFromParent(OldControlBBs);
2920
2921  for (CanonicalLoopInfo *L : Loops)
2922    L->invalidate();
2923
2924#ifndef NDEBUG
2925  for (CanonicalLoopInfo *GenL : Result)
2926    GenL->assertOK();
2927#endif
2928  return Result;
2929}
2930
2931/// Attach metadata \p Properties to the basic block described by \p BB. If the
2932/// basic block already has metadata, the basic block properties are appended.
2933static void addBasicBlockMetadata(BasicBlock *BB,
2934                                  ArrayRef<Metadata *> Properties) {
2935  // Nothing to do if no property to attach.
2936  if (Properties.empty())
2937    return;
2938
2939  LLVMContext &Ctx = BB->getContext();
2940  SmallVector<Metadata *> NewProperties;
2941  NewProperties.push_back(nullptr);
2942
2943  // If the basic block already has metadata, prepend it to the new metadata.
2944  MDNode *Existing = BB->getTerminator()->getMetadata(LLVMContext::MD_loop);
2945  if (Existing)
2946    append_range(NewProperties, drop_begin(Existing->operands(), 1));
2947
2948  append_range(NewProperties, Properties);
2949  MDNode *BasicBlockID = MDNode::getDistinct(Ctx, NewProperties);
2950  BasicBlockID->replaceOperandWith(0, BasicBlockID);
2951
2952  BB->getTerminator()->setMetadata(LLVMContext::MD_loop, BasicBlockID);
2953}
2954
2955/// Attach loop metadata \p Properties to the loop described by \p Loop. If the
2956/// loop already has metadata, the loop properties are appended.
2957static void addLoopMetadata(CanonicalLoopInfo *Loop,
2958                            ArrayRef<Metadata *> Properties) {
2959  assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo");
2960
2961  // Attach metadata to the loop's latch
2962  BasicBlock *Latch = Loop->getLatch();
2963  assert(Latch && "A valid CanonicalLoopInfo must have a unique latch");
2964  addBasicBlockMetadata(Latch, Properties);
2965}
2966
2967/// Attach llvm.access.group metadata to the memref instructions of \p Block
2968static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup,
2969                            LoopInfo &LI) {
2970  for (Instruction &I : *Block) {
2971    if (I.mayReadOrWriteMemory()) {
2972      // TODO: This instruction may already have access group from
2973      // other pragmas e.g. #pragma clang loop vectorize.  Append
2974      // so that the existing metadata is not overwritten.
2975      I.setMetadata(LLVMContext::MD_access_group, AccessGroup);
2976    }
2977  }
2978}
2979
2980void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) {
2981  LLVMContext &Ctx = Builder.getContext();
2982  addLoopMetadata(
2983      Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
2984             MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))});
2985}
2986
2987void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) {
2988  LLVMContext &Ctx = Builder.getContext();
2989  addLoopMetadata(
2990      Loop, {
2991                MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
2992            });
2993}
2994
2995void OpenMPIRBuilder::createIfVersion(CanonicalLoopInfo *CanonicalLoop,
2996                                      Value *IfCond, ValueToValueMapTy &VMap,
2997                                      const Twine &NamePrefix) {
2998  Function *F = CanonicalLoop->getFunction();
2999
3000  // Define where if branch should be inserted
3001  Instruction *SplitBefore;
3002  if (Instruction::classof(IfCond)) {
3003    SplitBefore = dyn_cast<Instruction>(IfCond);
3004  } else {
3005    SplitBefore = CanonicalLoop->getPreheader()->getTerminator();
3006  }
3007
3008  // TODO: We should not rely on pass manager. Currently we use pass manager
3009  // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
3010  // object. We should have a method  which returns all blocks between
3011  // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
3012  FunctionAnalysisManager FAM;
3013  FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3014  FAM.registerPass([]() { return LoopAnalysis(); });
3015  FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3016
3017  // Get the loop which needs to be cloned
3018  LoopAnalysis LIA;
3019  LoopInfo &&LI = LIA.run(*F, FAM);
3020  Loop *L = LI.getLoopFor(CanonicalLoop->getHeader());
3021
3022  // Create additional blocks for the if statement
3023  BasicBlock *Head = SplitBefore->getParent();
3024  Instruction *HeadOldTerm = Head->getTerminator();
3025  llvm::LLVMContext &C = Head->getContext();
3026  llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create(
3027      C, NamePrefix + ".if.then", Head->getParent(), Head->getNextNode());
3028  llvm::BasicBlock *ElseBlock = llvm::BasicBlock::Create(
3029      C, NamePrefix + ".if.else", Head->getParent(), CanonicalLoop->getExit());
3030
3031  // Create if condition branch.
3032  Builder.SetInsertPoint(HeadOldTerm);
3033  Instruction *BrInstr =
3034      Builder.CreateCondBr(IfCond, ThenBlock, /*ifFalse*/ ElseBlock);
3035  InsertPointTy IP{BrInstr->getParent(), ++BrInstr->getIterator()};
3036  // Then block contains branch to omp loop which needs to be vectorized
3037  spliceBB(IP, ThenBlock, false);
3038  ThenBlock->replaceSuccessorsPhiUsesWith(Head, ThenBlock);
3039
3040  Builder.SetInsertPoint(ElseBlock);
3041
3042  // Clone loop for the else branch
3043  SmallVector<BasicBlock *, 8> NewBlocks;
3044
3045  VMap[CanonicalLoop->getPreheader()] = ElseBlock;
3046  for (BasicBlock *Block : L->getBlocks()) {
3047    BasicBlock *NewBB = CloneBasicBlock(Block, VMap, "", F);
3048    NewBB->moveBefore(CanonicalLoop->getExit());
3049    VMap[Block] = NewBB;
3050    NewBlocks.push_back(NewBB);
3051  }
3052  remapInstructionsInBlocks(NewBlocks, VMap);
3053  Builder.CreateBr(NewBlocks.front());
3054}
3055
3056void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop,
3057                                MapVector<Value *, Value *> AlignedVars,
3058                                Value *IfCond, OrderKind Order,
3059                                ConstantInt *Simdlen, ConstantInt *Safelen) {
3060  LLVMContext &Ctx = Builder.getContext();
3061
3062  Function *F = CanonicalLoop->getFunction();
3063
3064  // TODO: We should not rely on pass manager. Currently we use pass manager
3065  // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
3066  // object. We should have a method  which returns all blocks between
3067  // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
3068  FunctionAnalysisManager FAM;
3069  FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3070  FAM.registerPass([]() { return LoopAnalysis(); });
3071  FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3072
3073  LoopAnalysis LIA;
3074  LoopInfo &&LI = LIA.run(*F, FAM);
3075
3076  Loop *L = LI.getLoopFor(CanonicalLoop->getHeader());
3077  if (AlignedVars.size()) {
3078    InsertPointTy IP = Builder.saveIP();
3079    Builder.SetInsertPoint(CanonicalLoop->getPreheader()->getTerminator());
3080    for (auto &AlignedItem : AlignedVars) {
3081      Value *AlignedPtr = AlignedItem.first;
3082      Value *Alignment = AlignedItem.second;
3083      Builder.CreateAlignmentAssumption(F->getParent()->getDataLayout(),
3084                                        AlignedPtr, Alignment);
3085    }
3086    Builder.restoreIP(IP);
3087  }
3088
3089  if (IfCond) {
3090    ValueToValueMapTy VMap;
3091    createIfVersion(CanonicalLoop, IfCond, VMap, "simd");
3092    // Add metadata to the cloned loop which disables vectorization
3093    Value *MappedLatch = VMap.lookup(CanonicalLoop->getLatch());
3094    assert(MappedLatch &&
3095           "Cannot find value which corresponds to original loop latch");
3096    assert(isa<BasicBlock>(MappedLatch) &&
3097           "Cannot cast mapped latch block value to BasicBlock");
3098    BasicBlock *NewLatchBlock = dyn_cast<BasicBlock>(MappedLatch);
3099    ConstantAsMetadata *BoolConst =
3100        ConstantAsMetadata::get(ConstantInt::getFalse(Type::getInt1Ty(Ctx)));
3101    addBasicBlockMetadata(
3102        NewLatchBlock,
3103        {MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"),
3104                           BoolConst})});
3105  }
3106
3107  SmallSet<BasicBlock *, 8> Reachable;
3108
3109  // Get the basic blocks from the loop in which memref instructions
3110  // can be found.
3111  // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo,
3112  // preferably without running any passes.
3113  for (BasicBlock *Block : L->getBlocks()) {
3114    if (Block == CanonicalLoop->getCond() ||
3115        Block == CanonicalLoop->getHeader())
3116      continue;
3117    Reachable.insert(Block);
3118  }
3119
3120  SmallVector<Metadata *> LoopMDList;
3121
3122  // In presence of finite 'safelen', it may be unsafe to mark all
3123  // the memory instructions parallel, because loop-carried
3124  // dependences of 'safelen' iterations are possible.
3125  // If clause order(concurrent) is specified then the memory instructions
3126  // are marked parallel even if 'safelen' is finite.
3127  if ((Safelen == nullptr) || (Order == OrderKind::OMP_ORDER_concurrent)) {
3128    // Add access group metadata to memory-access instructions.
3129    MDNode *AccessGroup = MDNode::getDistinct(Ctx, {});
3130    for (BasicBlock *BB : Reachable)
3131      addSimdMetadata(BB, AccessGroup, LI);
3132    // TODO:  If the loop has existing parallel access metadata, have
3133    // to combine two lists.
3134    LoopMDList.push_back(MDNode::get(
3135        Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccessGroup}));
3136  }
3137
3138  // Use the above access group metadata to create loop level
3139  // metadata, which should be distinct for each loop.
3140  ConstantAsMetadata *BoolConst =
3141      ConstantAsMetadata::get(ConstantInt::getTrue(Type::getInt1Ty(Ctx)));
3142  LoopMDList.push_back(MDNode::get(
3143      Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), BoolConst}));
3144
3145  if (Simdlen || Safelen) {
3146    // If both simdlen and safelen clauses are specified, the value of the
3147    // simdlen parameter must be less than or equal to the value of the safelen
3148    // parameter. Therefore, use safelen only in the absence of simdlen.
3149    ConstantInt *VectorizeWidth = Simdlen == nullptr ? Safelen : Simdlen;
3150    LoopMDList.push_back(
3151        MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.width"),
3152                          ConstantAsMetadata::get(VectorizeWidth)}));
3153  }
3154
3155  addLoopMetadata(CanonicalLoop, LoopMDList);
3156}
3157
3158/// Create the TargetMachine object to query the backend for optimization
3159/// preferences.
3160///
3161/// Ideally, this would be passed from the front-end to the OpenMPBuilder, but
3162/// e.g. Clang does not pass it to its CodeGen layer and creates it only when
3163/// needed for the LLVM pass pipline. We use some default options to avoid
3164/// having to pass too many settings from the frontend that probably do not
3165/// matter.
3166///
3167/// Currently, TargetMachine is only used sometimes by the unrollLoopPartial
3168/// method. If we are going to use TargetMachine for more purposes, especially
3169/// those that are sensitive to TargetOptions, RelocModel and CodeModel, it
3170/// might become be worth requiring front-ends to pass on their TargetMachine,
3171/// or at least cache it between methods. Note that while fontends such as Clang
3172/// have just a single main TargetMachine per translation unit, "target-cpu" and
3173/// "target-features" that determine the TargetMachine are per-function and can
3174/// be overrided using __attribute__((target("OPTIONS"))).
3175static std::unique_ptr<TargetMachine>
3176createTargetMachine(Function *F, CodeGenOpt::Level OptLevel) {
3177  Module *M = F->getParent();
3178
3179  StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString();
3180  StringRef Features = F->getFnAttribute("target-features").getValueAsString();
3181  const std::string &Triple = M->getTargetTriple();
3182
3183  std::string Error;
3184  const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
3185  if (!TheTarget)
3186    return {};
3187
3188  llvm::TargetOptions Options;
3189  return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
3190      Triple, CPU, Features, Options, /*RelocModel=*/std::nullopt,
3191      /*CodeModel=*/std::nullopt, OptLevel));
3192}
3193
3194/// Heuristically determine the best-performant unroll factor for \p CLI. This
3195/// depends on the target processor. We are re-using the same heuristics as the
3196/// LoopUnrollPass.
3197static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) {
3198  Function *F = CLI->getFunction();
3199
3200  // Assume the user requests the most aggressive unrolling, even if the rest of
3201  // the code is optimized using a lower setting.
3202  CodeGenOpt::Level OptLevel = CodeGenOpt::Aggressive;
3203  std::unique_ptr<TargetMachine> TM = createTargetMachine(F, OptLevel);
3204
3205  FunctionAnalysisManager FAM;
3206  FAM.registerPass([]() { return TargetLibraryAnalysis(); });
3207  FAM.registerPass([]() { return AssumptionAnalysis(); });
3208  FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3209  FAM.registerPass([]() { return LoopAnalysis(); });
3210  FAM.registerPass([]() { return ScalarEvolutionAnalysis(); });
3211  FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3212  TargetIRAnalysis TIRA;
3213  if (TM)
3214    TIRA = TargetIRAnalysis(
3215        [&](const Function &F) { return TM->getTargetTransformInfo(F); });
3216  FAM.registerPass([&]() { return TIRA; });
3217
3218  TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM);
3219  ScalarEvolutionAnalysis SEA;
3220  ScalarEvolution &&SE = SEA.run(*F, FAM);
3221  DominatorTreeAnalysis DTA;
3222  DominatorTree &&DT = DTA.run(*F, FAM);
3223  LoopAnalysis LIA;
3224  LoopInfo &&LI = LIA.run(*F, FAM);
3225  AssumptionAnalysis ACT;
3226  AssumptionCache &&AC = ACT.run(*F, FAM);
3227  OptimizationRemarkEmitter ORE{F};
3228
3229  Loop *L = LI.getLoopFor(CLI->getHeader());
3230  assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop");
3231
3232  TargetTransformInfo::UnrollingPreferences UP =
3233      gatherUnrollingPreferences(L, SE, TTI,
3234                                 /*BlockFrequencyInfo=*/nullptr,
3235                                 /*ProfileSummaryInfo=*/nullptr, ORE, OptLevel,
3236                                 /*UserThreshold=*/std::nullopt,
3237                                 /*UserCount=*/std::nullopt,
3238                                 /*UserAllowPartial=*/true,
3239                                 /*UserAllowRuntime=*/true,
3240                                 /*UserUpperBound=*/std::nullopt,
3241                                 /*UserFullUnrollMaxCount=*/std::nullopt);
3242
3243  UP.Force = true;
3244
3245  // Account for additional optimizations taking place before the LoopUnrollPass
3246  // would unroll the loop.
3247  UP.Threshold *= UnrollThresholdFactor;
3248  UP.PartialThreshold *= UnrollThresholdFactor;
3249
3250  // Use normal unroll factors even if the rest of the code is optimized for
3251  // size.
3252  UP.OptSizeThreshold = UP.Threshold;
3253  UP.PartialOptSizeThreshold = UP.PartialThreshold;
3254
3255  LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n"
3256                    << "  Threshold=" << UP.Threshold << "\n"
3257                    << "  PartialThreshold=" << UP.PartialThreshold << "\n"
3258                    << "  OptSizeThreshold=" << UP.OptSizeThreshold << "\n"
3259                    << "  PartialOptSizeThreshold="
3260                    << UP.PartialOptSizeThreshold << "\n");
3261
3262  // Disable peeling.
3263  TargetTransformInfo::PeelingPreferences PP =
3264      gatherPeelingPreferences(L, SE, TTI,
3265                               /*UserAllowPeeling=*/false,
3266                               /*UserAllowProfileBasedPeeling=*/false,
3267                               /*UnrollingSpecficValues=*/false);
3268
3269  SmallPtrSet<const Value *, 32> EphValues;
3270  CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
3271
3272  // Assume that reads and writes to stack variables can be eliminated by
3273  // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's
3274  // size.
3275  for (BasicBlock *BB : L->blocks()) {
3276    for (Instruction &I : *BB) {
3277      Value *Ptr;
3278      if (auto *Load = dyn_cast<LoadInst>(&I)) {
3279        Ptr = Load->getPointerOperand();
3280      } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
3281        Ptr = Store->getPointerOperand();
3282      } else
3283        continue;
3284
3285      Ptr = Ptr->stripPointerCasts();
3286
3287      if (auto *Alloca = dyn_cast<AllocaInst>(Ptr)) {
3288        if (Alloca->getParent() == &F->getEntryBlock())
3289          EphValues.insert(&I);
3290      }
3291    }
3292  }
3293
3294  unsigned NumInlineCandidates;
3295  bool NotDuplicatable;
3296  bool Convergent;
3297  InstructionCost LoopSizeIC =
3298      ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
3299                          TTI, EphValues, UP.BEInsns);
3300  LLVM_DEBUG(dbgs() << "Estimated loop size is " << LoopSizeIC << "\n");
3301
3302  // Loop is not unrollable if the loop contains certain instructions.
3303  if (NotDuplicatable || Convergent || !LoopSizeIC.isValid()) {
3304    LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n");
3305    return 1;
3306  }
3307  unsigned LoopSize = *LoopSizeIC.getValue();
3308
3309  // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might
3310  // be able to use it.
3311  int TripCount = 0;
3312  int MaxTripCount = 0;
3313  bool MaxOrZero = false;
3314  unsigned TripMultiple = 0;
3315
3316  bool UseUpperBound = false;
3317  computeUnrollCount(L, TTI, DT, &LI, &AC, SE, EphValues, &ORE, TripCount,
3318                     MaxTripCount, MaxOrZero, TripMultiple, LoopSize, UP, PP,
3319                     UseUpperBound);
3320  unsigned Factor = UP.Count;
3321  LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n");
3322
3323  // This function returns 1 to signal to not unroll a loop.
3324  if (Factor == 0)
3325    return 1;
3326  return Factor;
3327}
3328
3329void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop,
3330                                        int32_t Factor,
3331                                        CanonicalLoopInfo **UnrolledCLI) {
3332  assert(Factor >= 0 && "Unroll factor must not be negative");
3333
3334  Function *F = Loop->getFunction();
3335  LLVMContext &Ctx = F->getContext();
3336
3337  // If the unrolled loop is not used for another loop-associated directive, it
3338  // is sufficient to add metadata for the LoopUnrollPass.
3339  if (!UnrolledCLI) {
3340    SmallVector<Metadata *, 2> LoopMetadata;
3341    LoopMetadata.push_back(
3342        MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")));
3343
3344    if (Factor >= 1) {
3345      ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
3346          ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor)));
3347      LoopMetadata.push_back(MDNode::get(
3348          Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst}));
3349    }
3350
3351    addLoopMetadata(Loop, LoopMetadata);
3352    return;
3353  }
3354
3355  // Heuristically determine the unroll factor.
3356  if (Factor == 0)
3357    Factor = computeHeuristicUnrollFactor(Loop);
3358
3359  // No change required with unroll factor 1.
3360  if (Factor == 1) {
3361    *UnrolledCLI = Loop;
3362    return;
3363  }
3364
3365  assert(Factor >= 2 &&
3366         "unrolling only makes sense with a factor of 2 or larger");
3367
3368  Type *IndVarTy = Loop->getIndVarType();
3369
3370  // Apply partial unrolling by tiling the loop by the unroll-factor, then fully
3371  // unroll the inner loop.
3372  Value *FactorVal =
3373      ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor,
3374                                       /*isSigned=*/false));
3375  std::vector<CanonicalLoopInfo *> LoopNest =
3376      tileLoops(DL, {Loop}, {FactorVal});
3377  assert(LoopNest.size() == 2 && "Expect 2 loops after tiling");
3378  *UnrolledCLI = LoopNest[0];
3379  CanonicalLoopInfo *InnerLoop = LoopNest[1];
3380
3381  // LoopUnrollPass can only fully unroll loops with constant trip count.
3382  // Unroll by the unroll factor with a fallback epilog for the remainder
3383  // iterations if necessary.
3384  ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
3385      ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor)));
3386  addLoopMetadata(
3387      InnerLoop,
3388      {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
3389       MDNode::get(
3390           Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})});
3391
3392#ifndef NDEBUG
3393  (*UnrolledCLI)->assertOK();
3394#endif
3395}
3396
3397OpenMPIRBuilder::InsertPointTy
3398OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc,
3399                                   llvm::Value *BufSize, llvm::Value *CpyBuf,
3400                                   llvm::Value *CpyFn, llvm::Value *DidIt) {
3401  if (!updateToLocation(Loc))
3402    return Loc.IP;
3403
3404  uint32_t SrcLocStrSize;
3405  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3406  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3407  Value *ThreadId = getOrCreateThreadID(Ident);
3408
3409  llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt);
3410
3411  Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD};
3412
3413  Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate);
3414  Builder.CreateCall(Fn, Args);
3415
3416  return Builder.saveIP();
3417}
3418
3419OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSingle(
3420    const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
3421    FinalizeCallbackTy FiniCB, bool IsNowait, llvm::Value *DidIt) {
3422
3423  if (!updateToLocation(Loc))
3424    return Loc.IP;
3425
3426  // If needed (i.e. not null), initialize `DidIt` with 0
3427  if (DidIt) {
3428    Builder.CreateStore(Builder.getInt32(0), DidIt);
3429  }
3430
3431  Directive OMPD = Directive::OMPD_single;
3432  uint32_t SrcLocStrSize;
3433  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3434  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3435  Value *ThreadId = getOrCreateThreadID(Ident);
3436  Value *Args[] = {Ident, ThreadId};
3437
3438  Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single);
3439  Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
3440
3441  Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single);
3442  Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
3443
3444  // generates the following:
3445  // if (__kmpc_single()) {
3446  //		.... single region ...
3447  // 		__kmpc_end_single
3448  // }
3449  // __kmpc_barrier
3450
3451  EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
3452                       /*Conditional*/ true,
3453                       /*hasFinalize*/ true);
3454  if (!IsNowait)
3455    createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
3456                  omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
3457                  /* CheckCancelFlag */ false);
3458  return Builder.saveIP();
3459}
3460
3461OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical(
3462    const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
3463    FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) {
3464
3465  if (!updateToLocation(Loc))
3466    return Loc.IP;
3467
3468  Directive OMPD = Directive::OMPD_critical;
3469  uint32_t SrcLocStrSize;
3470  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3471  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3472  Value *ThreadId = getOrCreateThreadID(Ident);
3473  Value *LockVar = getOMPCriticalRegionLock(CriticalName);
3474  Value *Args[] = {Ident, ThreadId, LockVar};
3475
3476  SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), std::end(Args));
3477  Function *RTFn = nullptr;
3478  if (HintInst) {
3479    // Add Hint to entry Args and create call
3480    EnterArgs.push_back(HintInst);
3481    RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint);
3482  } else {
3483    RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical);
3484  }
3485  Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs);
3486
3487  Function *ExitRTLFn =
3488      getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical);
3489  Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
3490
3491  return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
3492                              /*Conditional*/ false, /*hasFinalize*/ true);
3493}
3494
3495OpenMPIRBuilder::InsertPointTy
3496OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc,
3497                                     InsertPointTy AllocaIP, unsigned NumLoops,
3498                                     ArrayRef<llvm::Value *> StoreValues,
3499                                     const Twine &Name, bool IsDependSource) {
3500  assert(
3501      llvm::all_of(StoreValues,
3502                   [](Value *SV) { return SV->getType()->isIntegerTy(64); }) &&
3503      "OpenMP runtime requires depend vec with i64 type");
3504
3505  if (!updateToLocation(Loc))
3506    return Loc.IP;
3507
3508  // Allocate space for vector and generate alloc instruction.
3509  auto *ArrI64Ty = ArrayType::get(Int64, NumLoops);
3510  Builder.restoreIP(AllocaIP);
3511  AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name);
3512  ArgsBase->setAlignment(Align(8));
3513  Builder.restoreIP(Loc.IP);
3514
3515  // Store the index value with offset in depend vector.
3516  for (unsigned I = 0; I < NumLoops; ++I) {
3517    Value *DependAddrGEPIter = Builder.CreateInBoundsGEP(
3518        ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)});
3519    StoreInst *STInst = Builder.CreateStore(StoreValues[I], DependAddrGEPIter);
3520    STInst->setAlignment(Align(8));
3521  }
3522
3523  Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP(
3524      ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)});
3525
3526  uint32_t SrcLocStrSize;
3527  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3528  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3529  Value *ThreadId = getOrCreateThreadID(Ident);
3530  Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP};
3531
3532  Function *RTLFn = nullptr;
3533  if (IsDependSource)
3534    RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post);
3535  else
3536    RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait);
3537  Builder.CreateCall(RTLFn, Args);
3538
3539  return Builder.saveIP();
3540}
3541
3542OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd(
3543    const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
3544    FinalizeCallbackTy FiniCB, bool IsThreads) {
3545  if (!updateToLocation(Loc))
3546    return Loc.IP;
3547
3548  Directive OMPD = Directive::OMPD_ordered;
3549  Instruction *EntryCall = nullptr;
3550  Instruction *ExitCall = nullptr;
3551
3552  if (IsThreads) {
3553    uint32_t SrcLocStrSize;
3554    Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3555    Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3556    Value *ThreadId = getOrCreateThreadID(Ident);
3557    Value *Args[] = {Ident, ThreadId};
3558
3559    Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered);
3560    EntryCall = Builder.CreateCall(EntryRTLFn, Args);
3561
3562    Function *ExitRTLFn =
3563        getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered);
3564    ExitCall = Builder.CreateCall(ExitRTLFn, Args);
3565  }
3566
3567  return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
3568                              /*Conditional*/ false, /*hasFinalize*/ true);
3569}
3570
3571OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion(
3572    Directive OMPD, Instruction *EntryCall, Instruction *ExitCall,
3573    BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional,
3574    bool HasFinalize, bool IsCancellable) {
3575
3576  if (HasFinalize)
3577    FinalizationStack.push_back({FiniCB, OMPD, IsCancellable});
3578
3579  // Create inlined region's entry and body blocks, in preparation
3580  // for conditional creation
3581  BasicBlock *EntryBB = Builder.GetInsertBlock();
3582  Instruction *SplitPos = EntryBB->getTerminator();
3583  if (!isa_and_nonnull<BranchInst>(SplitPos))
3584    SplitPos = new UnreachableInst(Builder.getContext(), EntryBB);
3585  BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end");
3586  BasicBlock *FiniBB =
3587      EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize");
3588
3589  Builder.SetInsertPoint(EntryBB->getTerminator());
3590  emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional);
3591
3592  // generate body
3593  BodyGenCB(/* AllocaIP */ InsertPointTy(),
3594            /* CodeGenIP */ Builder.saveIP());
3595
3596  // emit exit call and do any needed finalization.
3597  auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt());
3598  assert(FiniBB->getTerminator()->getNumSuccessors() == 1 &&
3599         FiniBB->getTerminator()->getSuccessor(0) == ExitBB &&
3600         "Unexpected control flow graph state!!");
3601  emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize);
3602  assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB &&
3603         "Unexpected Control Flow State!");
3604  MergeBlockIntoPredecessor(FiniBB);
3605
3606  // If we are skipping the region of a non conditional, remove the exit
3607  // block, and clear the builder's insertion point.
3608  assert(SplitPos->getParent() == ExitBB &&
3609         "Unexpected Insertion point location!");
3610  auto merged = MergeBlockIntoPredecessor(ExitBB);
3611  BasicBlock *ExitPredBB = SplitPos->getParent();
3612  auto InsertBB = merged ? ExitPredBB : ExitBB;
3613  if (!isa_and_nonnull<BranchInst>(SplitPos))
3614    SplitPos->eraseFromParent();
3615  Builder.SetInsertPoint(InsertBB);
3616
3617  return Builder.saveIP();
3618}
3619
3620OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry(
3621    Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) {
3622  // if nothing to do, Return current insertion point.
3623  if (!Conditional || !EntryCall)
3624    return Builder.saveIP();
3625
3626  BasicBlock *EntryBB = Builder.GetInsertBlock();
3627  Value *CallBool = Builder.CreateIsNotNull(EntryCall);
3628  auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body");
3629  auto *UI = new UnreachableInst(Builder.getContext(), ThenBB);
3630
3631  // Emit thenBB and set the Builder's insertion point there for
3632  // body generation next. Place the block after the current block.
3633  Function *CurFn = EntryBB->getParent();
3634  CurFn->insert(std::next(EntryBB->getIterator()), ThenBB);
3635
3636  // Move Entry branch to end of ThenBB, and replace with conditional
3637  // branch (If-stmt)
3638  Instruction *EntryBBTI = EntryBB->getTerminator();
3639  Builder.CreateCondBr(CallBool, ThenBB, ExitBB);
3640  EntryBBTI->removeFromParent();
3641  Builder.SetInsertPoint(UI);
3642  Builder.Insert(EntryBBTI);
3643  UI->eraseFromParent();
3644  Builder.SetInsertPoint(ThenBB->getTerminator());
3645
3646  // return an insertion point to ExitBB.
3647  return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt());
3648}
3649
3650OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit(
3651    omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall,
3652    bool HasFinalize) {
3653
3654  Builder.restoreIP(FinIP);
3655
3656  // If there is finalization to do, emit it before the exit call
3657  if (HasFinalize) {
3658    assert(!FinalizationStack.empty() &&
3659           "Unexpected finalization stack state!");
3660
3661    FinalizationInfo Fi = FinalizationStack.pop_back_val();
3662    assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!");
3663
3664    Fi.FiniCB(FinIP);
3665
3666    BasicBlock *FiniBB = FinIP.getBlock();
3667    Instruction *FiniBBTI = FiniBB->getTerminator();
3668
3669    // set Builder IP for call creation
3670    Builder.SetInsertPoint(FiniBBTI);
3671  }
3672
3673  if (!ExitCall)
3674    return Builder.saveIP();
3675
3676  // place the Exitcall as last instruction before Finalization block terminator
3677  ExitCall->removeFromParent();
3678  Builder.Insert(ExitCall);
3679
3680  return IRBuilder<>::InsertPoint(ExitCall->getParent(),
3681                                  ExitCall->getIterator());
3682}
3683
3684OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks(
3685    InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr,
3686    llvm::IntegerType *IntPtrTy, bool BranchtoEnd) {
3687  if (!IP.isSet())
3688    return IP;
3689
3690  IRBuilder<>::InsertPointGuard IPG(Builder);
3691
3692  // creates the following CFG structure
3693  //	   OMP_Entry : (MasterAddr != PrivateAddr)?
3694  //       F     T
3695  //       |      \
3696  //       |     copin.not.master
3697  //       |      /
3698  //       v     /
3699  //   copyin.not.master.end
3700  //		     |
3701  //         v
3702  //   OMP.Entry.Next
3703
3704  BasicBlock *OMP_Entry = IP.getBlock();
3705  Function *CurFn = OMP_Entry->getParent();
3706  BasicBlock *CopyBegin =
3707      BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn);
3708  BasicBlock *CopyEnd = nullptr;
3709
3710  // If entry block is terminated, split to preserve the branch to following
3711  // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is.
3712  if (isa_and_nonnull<BranchInst>(OMP_Entry->getTerminator())) {
3713    CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(),
3714                                         "copyin.not.master.end");
3715    OMP_Entry->getTerminator()->eraseFromParent();
3716  } else {
3717    CopyEnd =
3718        BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn);
3719  }
3720
3721  Builder.SetInsertPoint(OMP_Entry);
3722  Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy);
3723  Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy);
3724  Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr);
3725  Builder.CreateCondBr(cmp, CopyBegin, CopyEnd);
3726
3727  Builder.SetInsertPoint(CopyBegin);
3728  if (BranchtoEnd)
3729    Builder.SetInsertPoint(Builder.CreateBr(CopyEnd));
3730
3731  return Builder.saveIP();
3732}
3733
3734CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc,
3735                                          Value *Size, Value *Allocator,
3736                                          std::string Name) {
3737  IRBuilder<>::InsertPointGuard IPG(Builder);
3738  Builder.restoreIP(Loc.IP);
3739
3740  uint32_t SrcLocStrSize;
3741  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3742  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3743  Value *ThreadId = getOrCreateThreadID(Ident);
3744  Value *Args[] = {ThreadId, Size, Allocator};
3745
3746  Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc);
3747
3748  return Builder.CreateCall(Fn, Args, Name);
3749}
3750
3751CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc,
3752                                         Value *Addr, Value *Allocator,
3753                                         std::string Name) {
3754  IRBuilder<>::InsertPointGuard IPG(Builder);
3755  Builder.restoreIP(Loc.IP);
3756
3757  uint32_t SrcLocStrSize;
3758  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3759  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3760  Value *ThreadId = getOrCreateThreadID(Ident);
3761  Value *Args[] = {ThreadId, Addr, Allocator};
3762  Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free);
3763  return Builder.CreateCall(Fn, Args, Name);
3764}
3765
3766CallInst *OpenMPIRBuilder::createOMPInteropInit(
3767    const LocationDescription &Loc, Value *InteropVar,
3768    omp::OMPInteropType InteropType, Value *Device, Value *NumDependences,
3769    Value *DependenceAddress, bool HaveNowaitClause) {
3770  IRBuilder<>::InsertPointGuard IPG(Builder);
3771  Builder.restoreIP(Loc.IP);
3772
3773  uint32_t SrcLocStrSize;
3774  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3775  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3776  Value *ThreadId = getOrCreateThreadID(Ident);
3777  if (Device == nullptr)
3778    Device = ConstantInt::get(Int32, -1);
3779  Constant *InteropTypeVal = ConstantInt::get(Int32, (int)InteropType);
3780  if (NumDependences == nullptr) {
3781    NumDependences = ConstantInt::get(Int64, 0);
3782    PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext());
3783    DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
3784  }
3785  Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
3786  Value *Args[] = {
3787      Ident,  ThreadId,       InteropVar,        InteropTypeVal,
3788      Device, NumDependences, DependenceAddress, HaveNowaitClauseVal};
3789
3790  Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_init);
3791
3792  return Builder.CreateCall(Fn, Args);
3793}
3794
3795CallInst *OpenMPIRBuilder::createOMPInteropDestroy(
3796    const LocationDescription &Loc, Value *InteropVar, Value *Device,
3797    Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) {
3798  IRBuilder<>::InsertPointGuard IPG(Builder);
3799  Builder.restoreIP(Loc.IP);
3800
3801  uint32_t SrcLocStrSize;
3802  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3803  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3804  Value *ThreadId = getOrCreateThreadID(Ident);
3805  if (Device == nullptr)
3806    Device = ConstantInt::get(Int32, -1);
3807  if (NumDependences == nullptr) {
3808    NumDependences = ConstantInt::get(Int32, 0);
3809    PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext());
3810    DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
3811  }
3812  Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
3813  Value *Args[] = {
3814      Ident,          ThreadId,          InteropVar,         Device,
3815      NumDependences, DependenceAddress, HaveNowaitClauseVal};
3816
3817  Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_destroy);
3818
3819  return Builder.CreateCall(Fn, Args);
3820}
3821
3822CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc,
3823                                               Value *InteropVar, Value *Device,
3824                                               Value *NumDependences,
3825                                               Value *DependenceAddress,
3826                                               bool HaveNowaitClause) {
3827  IRBuilder<>::InsertPointGuard IPG(Builder);
3828  Builder.restoreIP(Loc.IP);
3829  uint32_t SrcLocStrSize;
3830  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3831  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3832  Value *ThreadId = getOrCreateThreadID(Ident);
3833  if (Device == nullptr)
3834    Device = ConstantInt::get(Int32, -1);
3835  if (NumDependences == nullptr) {
3836    NumDependences = ConstantInt::get(Int32, 0);
3837    PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext());
3838    DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
3839  }
3840  Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
3841  Value *Args[] = {
3842      Ident,          ThreadId,          InteropVar,         Device,
3843      NumDependences, DependenceAddress, HaveNowaitClauseVal};
3844
3845  Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_use);
3846
3847  return Builder.CreateCall(Fn, Args);
3848}
3849
3850CallInst *OpenMPIRBuilder::createCachedThreadPrivate(
3851    const LocationDescription &Loc, llvm::Value *Pointer,
3852    llvm::ConstantInt *Size, const llvm::Twine &Name) {
3853  IRBuilder<>::InsertPointGuard IPG(Builder);
3854  Builder.restoreIP(Loc.IP);
3855
3856  uint32_t SrcLocStrSize;
3857  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3858  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3859  Value *ThreadId = getOrCreateThreadID(Ident);
3860  Constant *ThreadPrivateCache =
3861      getOrCreateInternalVariable(Int8PtrPtr, Name.str());
3862  llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache};
3863
3864  Function *Fn =
3865      getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached);
3866
3867  return Builder.CreateCall(Fn, Args);
3868}
3869
3870OpenMPIRBuilder::InsertPointTy
3871OpenMPIRBuilder::createTargetInit(const LocationDescription &Loc, bool IsSPMD) {
3872  if (!updateToLocation(Loc))
3873    return Loc.IP;
3874
3875  uint32_t SrcLocStrSize;
3876  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3877  Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3878  ConstantInt *IsSPMDVal = ConstantInt::getSigned(
3879      IntegerType::getInt8Ty(Int8->getContext()),
3880      IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC);
3881  ConstantInt *UseGenericStateMachine =
3882      ConstantInt::getBool(Int32->getContext(), !IsSPMD);
3883
3884  Function *Fn = getOrCreateRuntimeFunctionPtr(
3885      omp::RuntimeFunction::OMPRTL___kmpc_target_init);
3886
3887  CallInst *ThreadKind = Builder.CreateCall(
3888      Fn, {Ident, IsSPMDVal, UseGenericStateMachine});
3889
3890  Value *ExecUserCode = Builder.CreateICmpEQ(
3891      ThreadKind, ConstantInt::get(ThreadKind->getType(), -1),
3892      "exec_user_code");
3893
3894  // ThreadKind = __kmpc_target_init(...)
3895  // if (ThreadKind == -1)
3896  //   user_code
3897  // else
3898  //   return;
3899
3900  auto *UI = Builder.CreateUnreachable();
3901  BasicBlock *CheckBB = UI->getParent();
3902  BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(UI, "user_code.entry");
3903
3904  BasicBlock *WorkerExitBB = BasicBlock::Create(
3905      CheckBB->getContext(), "worker.exit", CheckBB->getParent());
3906  Builder.SetInsertPoint(WorkerExitBB);
3907  Builder.CreateRetVoid();
3908
3909  auto *CheckBBTI = CheckBB->getTerminator();
3910  Builder.SetInsertPoint(CheckBBTI);
3911  Builder.CreateCondBr(ExecUserCode, UI->getParent(), WorkerExitBB);
3912
3913  CheckBBTI->eraseFromParent();
3914  UI->eraseFromParent();
3915
3916  // Continue in the "user_code" block, see diagram above and in
3917  // openmp/libomptarget/deviceRTLs/common/include/target.h .
3918  return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt());
3919}
3920
3921void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc,
3922                                         bool IsSPMD) {
3923  if (!updateToLocation(Loc))
3924    return;
3925
3926  uint32_t SrcLocStrSize;
3927  Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3928  Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3929  ConstantInt *IsSPMDVal = ConstantInt::getSigned(
3930      IntegerType::getInt8Ty(Int8->getContext()),
3931      IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC);
3932
3933  Function *Fn = getOrCreateRuntimeFunctionPtr(
3934      omp::RuntimeFunction::OMPRTL___kmpc_target_deinit);
3935
3936  Builder.CreateCall(Fn, {Ident, IsSPMDVal});
3937}
3938
3939void OpenMPIRBuilder::setOutlinedTargetRegionFunctionAttributes(
3940    Function *OutlinedFn, int32_t NumTeams, int32_t NumThreads) {
3941  if (Config.isEmbedded()) {
3942    OutlinedFn->setLinkage(GlobalValue::WeakODRLinkage);
3943    // TODO: Determine if DSO local can be set to true.
3944    OutlinedFn->setDSOLocal(false);
3945    OutlinedFn->setVisibility(GlobalValue::ProtectedVisibility);
3946    if (Triple(M.getTargetTriple()).isAMDGCN())
3947      OutlinedFn->setCallingConv(CallingConv::AMDGPU_KERNEL);
3948  }
3949
3950  if (NumTeams > 0)
3951    OutlinedFn->addFnAttr("omp_target_num_teams", std::to_string(NumTeams));
3952  if (NumThreads > 0)
3953    OutlinedFn->addFnAttr("omp_target_thread_limit",
3954                          std::to_string(NumThreads));
3955}
3956
3957Constant *OpenMPIRBuilder::createOutlinedFunctionID(Function *OutlinedFn,
3958                                                    StringRef EntryFnIDName) {
3959  if (Config.isEmbedded()) {
3960    assert(OutlinedFn && "The outlined function must exist if embedded");
3961    return ConstantExpr::getBitCast(OutlinedFn, Builder.getInt8PtrTy());
3962  }
3963
3964  return new GlobalVariable(
3965      M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::WeakAnyLinkage,
3966      Constant::getNullValue(Builder.getInt8Ty()), EntryFnIDName);
3967}
3968
3969Constant *OpenMPIRBuilder::createTargetRegionEntryAddr(Function *OutlinedFn,
3970                                                       StringRef EntryFnName) {
3971  if (OutlinedFn)
3972    return OutlinedFn;
3973
3974  assert(!M.getGlobalVariable(EntryFnName, true) &&
3975         "Named kernel already exists?");
3976  return new GlobalVariable(
3977      M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::InternalLinkage,
3978      Constant::getNullValue(Builder.getInt8Ty()), EntryFnName);
3979}
3980
3981void OpenMPIRBuilder::emitTargetRegionFunction(
3982    OffloadEntriesInfoManager &InfoManager, TargetRegionEntryInfo &EntryInfo,
3983    FunctionGenCallback &GenerateFunctionCallback, int32_t NumTeams,
3984    int32_t NumThreads, bool IsOffloadEntry, Function *&OutlinedFn,
3985    Constant *&OutlinedFnID) {
3986
3987  SmallString<64> EntryFnName;
3988  InfoManager.getTargetRegionEntryFnName(EntryFnName, EntryInfo);
3989
3990  OutlinedFn = Config.isEmbedded() || !Config.openMPOffloadMandatory()
3991                   ? GenerateFunctionCallback(EntryFnName)
3992                   : nullptr;
3993
3994  // If this target outline function is not an offload entry, we don't need to
3995  // register it. This may be in the case of a false if clause, or if there are
3996  // no OpenMP targets.
3997  if (!IsOffloadEntry)
3998    return;
3999
4000  std::string EntryFnIDName =
4001      Config.isEmbedded()
4002          ? std::string(EntryFnName)
4003          : createPlatformSpecificName({EntryFnName, "region_id"});
4004
4005  OutlinedFnID = registerTargetRegionFunction(
4006      InfoManager, EntryInfo, OutlinedFn, EntryFnName, EntryFnIDName, NumTeams,
4007      NumThreads);
4008}
4009
4010Constant *OpenMPIRBuilder::registerTargetRegionFunction(
4011    OffloadEntriesInfoManager &InfoManager, TargetRegionEntryInfo &EntryInfo,
4012    Function *OutlinedFn, StringRef EntryFnName, StringRef EntryFnIDName,
4013    int32_t NumTeams, int32_t NumThreads) {
4014  if (OutlinedFn)
4015    setOutlinedTargetRegionFunctionAttributes(OutlinedFn, NumTeams, NumThreads);
4016  auto OutlinedFnID = createOutlinedFunctionID(OutlinedFn, EntryFnIDName);
4017  auto EntryAddr = createTargetRegionEntryAddr(OutlinedFn, EntryFnName);
4018  InfoManager.registerTargetRegionEntryInfo(
4019      EntryInfo, EntryAddr, OutlinedFnID,
4020      OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion);
4021  return OutlinedFnID;
4022}
4023
4024std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef<StringRef> Parts,
4025                                                   StringRef FirstSeparator,
4026                                                   StringRef Separator) {
4027  SmallString<128> Buffer;
4028  llvm::raw_svector_ostream OS(Buffer);
4029  StringRef Sep = FirstSeparator;
4030  for (StringRef Part : Parts) {
4031    OS << Sep << Part;
4032    Sep = Separator;
4033  }
4034  return OS.str().str();
4035}
4036
4037std::string
4038OpenMPIRBuilder::createPlatformSpecificName(ArrayRef<StringRef> Parts) const {
4039  return OpenMPIRBuilder::getNameWithSeparators(Parts, Config.firstSeparator(),
4040                                                Config.separator());
4041}
4042
4043GlobalVariable *
4044OpenMPIRBuilder::getOrCreateInternalVariable(Type *Ty, const StringRef &Name,
4045                                             unsigned AddressSpace) {
4046  auto &Elem = *InternalVars.try_emplace(Name, nullptr).first;
4047  if (Elem.second) {
4048    assert(cast<PointerType>(Elem.second->getType())
4049               ->isOpaqueOrPointeeTypeMatches(Ty) &&
4050           "OMP internal variable has different type than requested");
4051  } else {
4052    // TODO: investigate the appropriate linkage type used for the global
4053    // variable for possibly changing that to internal or private, or maybe
4054    // create different versions of the function for different OMP internal
4055    // variables.
4056    Elem.second = new GlobalVariable(
4057        M, Ty, /*IsConstant=*/false, GlobalValue::CommonLinkage,
4058        Constant::getNullValue(Ty), Elem.first(),
4059        /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal, AddressSpace);
4060  }
4061
4062  return cast<GlobalVariable>(&*Elem.second);
4063}
4064
4065Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) {
4066  std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
4067  std::string Name = getNameWithSeparators({Prefix, "var"}, ".", ".");
4068  return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
4069}
4070
4071GlobalVariable *
4072OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl<uint64_t> &Mappings,
4073                                       std::string VarName) {
4074  llvm::Constant *MaptypesArrayInit =
4075      llvm::ConstantDataArray::get(M.getContext(), Mappings);
4076  auto *MaptypesArrayGlobal = new llvm::GlobalVariable(
4077      M, MaptypesArrayInit->getType(),
4078      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit,
4079      VarName);
4080  MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4081  return MaptypesArrayGlobal;
4082}
4083
4084void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc,
4085                                          InsertPointTy AllocaIP,
4086                                          unsigned NumOperands,
4087                                          struct MapperAllocas &MapperAllocas) {
4088  if (!updateToLocation(Loc))
4089    return;
4090
4091  auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands);
4092  auto *ArrI64Ty = ArrayType::get(Int64, NumOperands);
4093  Builder.restoreIP(AllocaIP);
4094  AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI8PtrTy);
4095  AllocaInst *Args = Builder.CreateAlloca(ArrI8PtrTy);
4096  AllocaInst *ArgSizes = Builder.CreateAlloca(ArrI64Ty);
4097  Builder.restoreIP(Loc.IP);
4098  MapperAllocas.ArgsBase = ArgsBase;
4099  MapperAllocas.Args = Args;
4100  MapperAllocas.ArgSizes = ArgSizes;
4101}
4102
4103void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc,
4104                                     Function *MapperFunc, Value *SrcLocInfo,
4105                                     Value *MaptypesArg, Value *MapnamesArg,
4106                                     struct MapperAllocas &MapperAllocas,
4107                                     int64_t DeviceID, unsigned NumOperands) {
4108  if (!updateToLocation(Loc))
4109    return;
4110
4111  auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands);
4112  auto *ArrI64Ty = ArrayType::get(Int64, NumOperands);
4113  Value *ArgsBaseGEP =
4114      Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.ArgsBase,
4115                                {Builder.getInt32(0), Builder.getInt32(0)});
4116  Value *ArgsGEP =
4117      Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.Args,
4118                                {Builder.getInt32(0), Builder.getInt32(0)});
4119  Value *ArgSizesGEP =
4120      Builder.CreateInBoundsGEP(ArrI64Ty, MapperAllocas.ArgSizes,
4121                                {Builder.getInt32(0), Builder.getInt32(0)});
4122  Value *NullPtr = Constant::getNullValue(Int8Ptr->getPointerTo());
4123  Builder.CreateCall(MapperFunc,
4124                     {SrcLocInfo, Builder.getInt64(DeviceID),
4125                      Builder.getInt32(NumOperands), ArgsBaseGEP, ArgsGEP,
4126                      ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr});
4127}
4128
4129void OpenMPIRBuilder::emitOffloadingArraysArgument(IRBuilderBase &Builder,
4130                                                   TargetDataRTArgs &RTArgs,
4131                                                   TargetDataInfo &Info,
4132                                                   bool EmitDebug,
4133                                                   bool ForEndCall) {
4134  assert((!ForEndCall || Info.separateBeginEndCalls()) &&
4135         "expected region end call to runtime only when end call is separate");
4136  auto VoidPtrTy = Type::getInt8PtrTy(M.getContext());
4137  auto VoidPtrPtrTy = VoidPtrTy->getPointerTo(0);
4138  auto Int64Ty = Type::getInt64Ty(M.getContext());
4139  auto Int64PtrTy = Type::getInt64PtrTy(M.getContext());
4140
4141  if (!Info.NumberOfPtrs) {
4142    RTArgs.BasePointersArray = ConstantPointerNull::get(VoidPtrPtrTy);
4143    RTArgs.PointersArray = ConstantPointerNull::get(VoidPtrPtrTy);
4144    RTArgs.SizesArray = ConstantPointerNull::get(Int64PtrTy);
4145    RTArgs.MapTypesArray = ConstantPointerNull::get(Int64PtrTy);
4146    RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy);
4147    RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy);
4148    return;
4149  }
4150
4151  RTArgs.BasePointersArray = Builder.CreateConstInBoundsGEP2_32(
4152      ArrayType::get(VoidPtrTy, Info.NumberOfPtrs),
4153      Info.RTArgs.BasePointersArray,
4154      /*Idx0=*/0, /*Idx1=*/0);
4155  RTArgs.PointersArray = Builder.CreateConstInBoundsGEP2_32(
4156      ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray,
4157      /*Idx0=*/0,
4158      /*Idx1=*/0);
4159  RTArgs.SizesArray = Builder.CreateConstInBoundsGEP2_32(
4160      ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray,
4161      /*Idx0=*/0, /*Idx1=*/0);
4162  RTArgs.MapTypesArray = Builder.CreateConstInBoundsGEP2_32(
4163      ArrayType::get(Int64Ty, Info.NumberOfPtrs),
4164      ForEndCall && Info.RTArgs.MapTypesArrayEnd ? Info.RTArgs.MapTypesArrayEnd
4165                                                 : Info.RTArgs.MapTypesArray,
4166      /*Idx0=*/0,
4167      /*Idx1=*/0);
4168
4169  // Only emit the mapper information arrays if debug information is
4170  // requested.
4171  if (!EmitDebug)
4172    RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy);
4173  else
4174    RTArgs.MapNamesArray = Builder.CreateConstInBoundsGEP2_32(
4175        ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.MapNamesArray,
4176        /*Idx0=*/0,
4177        /*Idx1=*/0);
4178  // If there is no user-defined mapper, set the mapper array to nullptr to
4179  // avoid an unnecessary data privatization
4180  if (!Info.HasMapper)
4181    RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy);
4182  else
4183    RTArgs.MappersArray =
4184        Builder.CreatePointerCast(Info.RTArgs.MappersArray, VoidPtrPtrTy);
4185}
4186
4187bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic(
4188    const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) {
4189  assert(!(AO == AtomicOrdering::NotAtomic ||
4190           AO == llvm::AtomicOrdering::Unordered) &&
4191         "Unexpected Atomic Ordering.");
4192
4193  bool Flush = false;
4194  llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic;
4195
4196  switch (AK) {
4197  case Read:
4198    if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease ||
4199        AO == AtomicOrdering::SequentiallyConsistent) {
4200      FlushAO = AtomicOrdering::Acquire;
4201      Flush = true;
4202    }
4203    break;
4204  case Write:
4205  case Compare:
4206  case Update:
4207    if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease ||
4208        AO == AtomicOrdering::SequentiallyConsistent) {
4209      FlushAO = AtomicOrdering::Release;
4210      Flush = true;
4211    }
4212    break;
4213  case Capture:
4214    switch (AO) {
4215    case AtomicOrdering::Acquire:
4216      FlushAO = AtomicOrdering::Acquire;
4217      Flush = true;
4218      break;
4219    case AtomicOrdering::Release:
4220      FlushAO = AtomicOrdering::Release;
4221      Flush = true;
4222      break;
4223    case AtomicOrdering::AcquireRelease:
4224    case AtomicOrdering::SequentiallyConsistent:
4225      FlushAO = AtomicOrdering::AcquireRelease;
4226      Flush = true;
4227      break;
4228    default:
4229      // do nothing - leave silently.
4230      break;
4231    }
4232  }
4233
4234  if (Flush) {
4235    // Currently Flush RT call still doesn't take memory_ordering, so for when
4236    // that happens, this tries to do the resolution of which atomic ordering
4237    // to use with but issue the flush call
4238    // TODO: pass `FlushAO` after memory ordering support is added
4239    (void)FlushAO;
4240    emitFlush(Loc);
4241  }
4242
4243  // for AO == AtomicOrdering::Monotonic and  all other case combinations
4244  // do nothing
4245  return Flush;
4246}
4247
4248OpenMPIRBuilder::InsertPointTy
4249OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc,
4250                                  AtomicOpValue &X, AtomicOpValue &V,
4251                                  AtomicOrdering AO) {
4252  if (!updateToLocation(Loc))
4253    return Loc.IP;
4254
4255  Type *XTy = X.Var->getType();
4256  assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory");
4257  Type *XElemTy = X.ElemTy;
4258  assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
4259          XElemTy->isPointerTy()) &&
4260         "OMP atomic read expected a scalar type");
4261
4262  Value *XRead = nullptr;
4263
4264  if (XElemTy->isIntegerTy()) {
4265    LoadInst *XLD =
4266        Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read");
4267    XLD->setAtomic(AO);
4268    XRead = cast<Value>(XLD);
4269  } else {
4270    // We need to bitcast and perform atomic op as integer
4271    unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace();
4272    IntegerType *IntCastTy =
4273        IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
4274    Value *XBCast = Builder.CreateBitCast(
4275        X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.src.int.cast");
4276    LoadInst *XLoad =
4277        Builder.CreateLoad(IntCastTy, XBCast, X.IsVolatile, "omp.atomic.load");
4278    XLoad->setAtomic(AO);
4279    if (XElemTy->isFloatingPointTy()) {
4280      XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast");
4281    } else {
4282      XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast");
4283    }
4284  }
4285  checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read);
4286  Builder.CreateStore(XRead, V.Var, V.IsVolatile);
4287  return Builder.saveIP();
4288}
4289
4290OpenMPIRBuilder::InsertPointTy
4291OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc,
4292                                   AtomicOpValue &X, Value *Expr,
4293                                   AtomicOrdering AO) {
4294  if (!updateToLocation(Loc))
4295    return Loc.IP;
4296
4297  Type *XTy = X.Var->getType();
4298  assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory");
4299  Type *XElemTy = X.ElemTy;
4300  assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
4301          XElemTy->isPointerTy()) &&
4302         "OMP atomic write expected a scalar type");
4303
4304  if (XElemTy->isIntegerTy()) {
4305    StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile);
4306    XSt->setAtomic(AO);
4307  } else {
4308    // We need to bitcast and perform atomic op as integers
4309    unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace();
4310    IntegerType *IntCastTy =
4311        IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
4312    Value *XBCast = Builder.CreateBitCast(
4313        X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.dst.int.cast");
4314    Value *ExprCast =
4315        Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast");
4316    StoreInst *XSt = Builder.CreateStore(ExprCast, XBCast, X.IsVolatile);
4317    XSt->setAtomic(AO);
4318  }
4319
4320  checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write);
4321  return Builder.saveIP();
4322}
4323
4324OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate(
4325    const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
4326    Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
4327    AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) {
4328  assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous");
4329  if (!updateToLocation(Loc))
4330    return Loc.IP;
4331
4332  LLVM_DEBUG({
4333    Type *XTy = X.Var->getType();
4334    assert(XTy->isPointerTy() &&
4335           "OMP Atomic expects a pointer to target memory");
4336    Type *XElemTy = X.ElemTy;
4337    assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
4338            XElemTy->isPointerTy()) &&
4339           "OMP atomic update expected a scalar type");
4340    assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
4341           (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) &&
4342           "OpenMP atomic does not support LT or GT operations");
4343  });
4344
4345  emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, RMWOp, UpdateOp,
4346                   X.IsVolatile, IsXBinopExpr);
4347  checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update);
4348  return Builder.saveIP();
4349}
4350
4351// FIXME: Duplicating AtomicExpand
4352Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2,
4353                                               AtomicRMWInst::BinOp RMWOp) {
4354  switch (RMWOp) {
4355  case AtomicRMWInst::Add:
4356    return Builder.CreateAdd(Src1, Src2);
4357  case AtomicRMWInst::Sub:
4358    return Builder.CreateSub(Src1, Src2);
4359  case AtomicRMWInst::And:
4360    return Builder.CreateAnd(Src1, Src2);
4361  case AtomicRMWInst::Nand:
4362    return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2));
4363  case AtomicRMWInst::Or:
4364    return Builder.CreateOr(Src1, Src2);
4365  case AtomicRMWInst::Xor:
4366    return Builder.CreateXor(Src1, Src2);
4367  case AtomicRMWInst::Xchg:
4368  case AtomicRMWInst::FAdd:
4369  case AtomicRMWInst::FSub:
4370  case AtomicRMWInst::BAD_BINOP:
4371  case AtomicRMWInst::Max:
4372  case AtomicRMWInst::Min:
4373  case AtomicRMWInst::UMax:
4374  case AtomicRMWInst::UMin:
4375  case AtomicRMWInst::FMax:
4376  case AtomicRMWInst::FMin:
4377  case AtomicRMWInst::UIncWrap:
4378  case AtomicRMWInst::UDecWrap:
4379    llvm_unreachable("Unsupported atomic update operation");
4380  }
4381  llvm_unreachable("Unsupported atomic update operation");
4382}
4383
4384std::pair<Value *, Value *> OpenMPIRBuilder::emitAtomicUpdate(
4385    InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr,
4386    AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
4387    AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) {
4388  // TODO: handle the case where XElemTy is not byte-sized or not a power of 2
4389  // or a complex datatype.
4390  bool emitRMWOp = false;
4391  switch (RMWOp) {
4392  case AtomicRMWInst::Add:
4393  case AtomicRMWInst::And:
4394  case AtomicRMWInst::Nand:
4395  case AtomicRMWInst::Or:
4396  case AtomicRMWInst::Xor:
4397  case AtomicRMWInst::Xchg:
4398    emitRMWOp = XElemTy;
4399    break;
4400  case AtomicRMWInst::Sub:
4401    emitRMWOp = (IsXBinopExpr && XElemTy);
4402    break;
4403  default:
4404    emitRMWOp = false;
4405  }
4406  emitRMWOp &= XElemTy->isIntegerTy();
4407
4408  std::pair<Value *, Value *> Res;
4409  if (emitRMWOp) {
4410    Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO);
4411    // not needed except in case of postfix captures. Generate anyway for
4412    // consistency with the else part. Will be removed with any DCE pass.
4413    // AtomicRMWInst::Xchg does not have a coressponding instruction.
4414    if (RMWOp == AtomicRMWInst::Xchg)
4415      Res.second = Res.first;
4416    else
4417      Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp);
4418  } else {
4419    unsigned Addrspace = cast<PointerType>(X->getType())->getAddressSpace();
4420    IntegerType *IntCastTy =
4421        IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
4422    Value *XBCast =
4423        Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace));
4424    LoadInst *OldVal =
4425        Builder.CreateLoad(IntCastTy, XBCast, X->getName() + ".atomic.load");
4426    OldVal->setAtomic(AO);
4427    // CurBB
4428    // |     /---\
4429		// ContBB    |
4430    // |     \---/
4431    // ExitBB
4432    BasicBlock *CurBB = Builder.GetInsertBlock();
4433    Instruction *CurBBTI = CurBB->getTerminator();
4434    CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
4435    BasicBlock *ExitBB =
4436        CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit");
4437    BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(),
4438                                                X->getName() + ".atomic.cont");
4439    ContBB->getTerminator()->eraseFromParent();
4440    Builder.restoreIP(AllocaIP);
4441    AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy);
4442    NewAtomicAddr->setName(X->getName() + "x.new.val");
4443    Builder.SetInsertPoint(ContBB);
4444    llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2);
4445    PHI->addIncoming(OldVal, CurBB);
4446    IntegerType *NewAtomicCastTy =
4447        IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
4448    bool IsIntTy = XElemTy->isIntegerTy();
4449    Value *NewAtomicIntAddr =
4450        (IsIntTy)
4451            ? NewAtomicAddr
4452            : Builder.CreateBitCast(NewAtomicAddr,
4453                                    NewAtomicCastTy->getPointerTo(Addrspace));
4454    Value *OldExprVal = PHI;
4455    if (!IsIntTy) {
4456      if (XElemTy->isFloatingPointTy()) {
4457        OldExprVal = Builder.CreateBitCast(PHI, XElemTy,
4458                                           X->getName() + ".atomic.fltCast");
4459      } else {
4460        OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy,
4461                                            X->getName() + ".atomic.ptrCast");
4462      }
4463    }
4464
4465    Value *Upd = UpdateOp(OldExprVal, Builder);
4466    Builder.CreateStore(Upd, NewAtomicAddr);
4467    LoadInst *DesiredVal = Builder.CreateLoad(IntCastTy, NewAtomicIntAddr);
4468    Value *XAddr =
4469        (IsIntTy)
4470            ? X
4471            : Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace));
4472    AtomicOrdering Failure =
4473        llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
4474    AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg(
4475        XAddr, PHI, DesiredVal, llvm::MaybeAlign(), AO, Failure);
4476    Result->setVolatile(VolatileX);
4477    Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0);
4478    Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
4479    PHI->addIncoming(PreviousVal, Builder.GetInsertBlock());
4480    Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB);
4481
4482    Res.first = OldExprVal;
4483    Res.second = Upd;
4484
4485    // set Insertion point in exit block
4486    if (UnreachableInst *ExitTI =
4487            dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
4488      CurBBTI->eraseFromParent();
4489      Builder.SetInsertPoint(ExitBB);
4490    } else {
4491      Builder.SetInsertPoint(ExitTI);
4492    }
4493  }
4494
4495  return Res;
4496}
4497
4498OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture(
4499    const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
4500    AtomicOpValue &V, Value *Expr, AtomicOrdering AO,
4501    AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp,
4502    bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) {
4503  if (!updateToLocation(Loc))
4504    return Loc.IP;
4505
4506  LLVM_DEBUG({
4507    Type *XTy = X.Var->getType();
4508    assert(XTy->isPointerTy() &&
4509           "OMP Atomic expects a pointer to target memory");
4510    Type *XElemTy = X.ElemTy;
4511    assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
4512            XElemTy->isPointerTy()) &&
4513           "OMP atomic capture expected a scalar type");
4514    assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
4515           "OpenMP atomic does not support LT or GT operations");
4516  });
4517
4518  // If UpdateExpr is 'x' updated with some `expr` not based on 'x',
4519  // 'x' is simply atomically rewritten with 'expr'.
4520  AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg);
4521  std::pair<Value *, Value *> Result =
4522      emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, AtomicOp, UpdateOp,
4523                       X.IsVolatile, IsXBinopExpr);
4524
4525  Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second);
4526  Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile);
4527
4528  checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture);
4529  return Builder.saveIP();
4530}
4531
4532OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare(
4533    const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V,
4534    AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO,
4535    omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate,
4536    bool IsFailOnly) {
4537
4538  if (!updateToLocation(Loc))
4539    return Loc.IP;
4540
4541  assert(X.Var->getType()->isPointerTy() &&
4542         "OMP atomic expects a pointer to target memory");
4543  // compare capture
4544  if (V.Var) {
4545    assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type");
4546    assert(V.ElemTy == X.ElemTy && "x and v must be of same type");
4547  }
4548
4549  bool IsInteger = E->getType()->isIntegerTy();
4550
4551  if (Op == OMPAtomicCompareOp::EQ) {
4552    AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
4553    AtomicCmpXchgInst *Result = nullptr;
4554    if (!IsInteger) {
4555      unsigned Addrspace =
4556          cast<PointerType>(X.Var->getType())->getAddressSpace();
4557      IntegerType *IntCastTy =
4558          IntegerType::get(M.getContext(), X.ElemTy->getScalarSizeInBits());
4559      Value *XBCast =
4560          Builder.CreateBitCast(X.Var, IntCastTy->getPointerTo(Addrspace));
4561      Value *EBCast = Builder.CreateBitCast(E, IntCastTy);
4562      Value *DBCast = Builder.CreateBitCast(D, IntCastTy);
4563      Result = Builder.CreateAtomicCmpXchg(XBCast, EBCast, DBCast, MaybeAlign(),
4564                                           AO, Failure);
4565    } else {
4566      Result =
4567          Builder.CreateAtomicCmpXchg(X.Var, E, D, MaybeAlign(), AO, Failure);
4568    }
4569
4570    if (V.Var) {
4571      Value *OldValue = Builder.CreateExtractValue(Result, /*Idxs=*/0);
4572      if (!IsInteger)
4573        OldValue = Builder.CreateBitCast(OldValue, X.ElemTy);
4574      assert(OldValue->getType() == V.ElemTy &&
4575             "OldValue and V must be of same type");
4576      if (IsPostfixUpdate) {
4577        Builder.CreateStore(OldValue, V.Var, V.IsVolatile);
4578      } else {
4579        Value *SuccessOrFail = Builder.CreateExtractValue(Result, /*Idxs=*/1);
4580        if (IsFailOnly) {
4581          // CurBB----
4582          //   |     |
4583          //   v     |
4584          // ContBB  |
4585          //   |     |
4586          //   v     |
4587          // ExitBB <-
4588          //
4589          // where ContBB only contains the store of old value to 'v'.
4590          BasicBlock *CurBB = Builder.GetInsertBlock();
4591          Instruction *CurBBTI = CurBB->getTerminator();
4592          CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
4593          BasicBlock *ExitBB = CurBB->splitBasicBlock(
4594              CurBBTI, X.Var->getName() + ".atomic.exit");
4595          BasicBlock *ContBB = CurBB->splitBasicBlock(
4596              CurBB->getTerminator(), X.Var->getName() + ".atomic.cont");
4597          ContBB->getTerminator()->eraseFromParent();
4598          CurBB->getTerminator()->eraseFromParent();
4599
4600          Builder.CreateCondBr(SuccessOrFail, ExitBB, ContBB);
4601
4602          Builder.SetInsertPoint(ContBB);
4603          Builder.CreateStore(OldValue, V.Var);
4604          Builder.CreateBr(ExitBB);
4605
4606          if (UnreachableInst *ExitTI =
4607                  dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
4608            CurBBTI->eraseFromParent();
4609            Builder.SetInsertPoint(ExitBB);
4610          } else {
4611            Builder.SetInsertPoint(ExitTI);
4612          }
4613        } else {
4614          Value *CapturedValue =
4615              Builder.CreateSelect(SuccessOrFail, E, OldValue);
4616          Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile);
4617        }
4618      }
4619    }
4620    // The comparison result has to be stored.
4621    if (R.Var) {
4622      assert(R.Var->getType()->isPointerTy() &&
4623             "r.var must be of pointer type");
4624      assert(R.ElemTy->isIntegerTy() && "r must be of integral type");
4625
4626      Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
4627      Value *ResultCast = R.IsSigned
4628                              ? Builder.CreateSExt(SuccessFailureVal, R.ElemTy)
4629                              : Builder.CreateZExt(SuccessFailureVal, R.ElemTy);
4630      Builder.CreateStore(ResultCast, R.Var, R.IsVolatile);
4631    }
4632  } else {
4633    assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) &&
4634           "Op should be either max or min at this point");
4635    assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is ==");
4636
4637    // Reverse the ordop as the OpenMP forms are different from LLVM forms.
4638    // Let's take max as example.
4639    // OpenMP form:
4640    // x = x > expr ? expr : x;
4641    // LLVM form:
4642    // *ptr = *ptr > val ? *ptr : val;
4643    // We need to transform to LLVM form.
4644    // x = x <= expr ? x : expr;
4645    AtomicRMWInst::BinOp NewOp;
4646    if (IsXBinopExpr) {
4647      if (IsInteger) {
4648        if (X.IsSigned)
4649          NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min
4650                                                : AtomicRMWInst::Max;
4651        else
4652          NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin
4653                                                : AtomicRMWInst::UMax;
4654      } else {
4655        NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin
4656                                              : AtomicRMWInst::FMax;
4657      }
4658    } else {
4659      if (IsInteger) {
4660        if (X.IsSigned)
4661          NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max
4662                                                : AtomicRMWInst::Min;
4663        else
4664          NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax
4665                                                : AtomicRMWInst::UMin;
4666      } else {
4667        NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax
4668                                              : AtomicRMWInst::FMin;
4669      }
4670    }
4671
4672    AtomicRMWInst *OldValue =
4673        Builder.CreateAtomicRMW(NewOp, X.Var, E, MaybeAlign(), AO);
4674    if (V.Var) {
4675      Value *CapturedValue = nullptr;
4676      if (IsPostfixUpdate) {
4677        CapturedValue = OldValue;
4678      } else {
4679        CmpInst::Predicate Pred;
4680        switch (NewOp) {
4681        case AtomicRMWInst::Max:
4682          Pred = CmpInst::ICMP_SGT;
4683          break;
4684        case AtomicRMWInst::UMax:
4685          Pred = CmpInst::ICMP_UGT;
4686          break;
4687        case AtomicRMWInst::FMax:
4688          Pred = CmpInst::FCMP_OGT;
4689          break;
4690        case AtomicRMWInst::Min:
4691          Pred = CmpInst::ICMP_SLT;
4692          break;
4693        case AtomicRMWInst::UMin:
4694          Pred = CmpInst::ICMP_ULT;
4695          break;
4696        case AtomicRMWInst::FMin:
4697          Pred = CmpInst::FCMP_OLT;
4698          break;
4699        default:
4700          llvm_unreachable("unexpected comparison op");
4701        }
4702        Value *NonAtomicCmp = Builder.CreateCmp(Pred, OldValue, E);
4703        CapturedValue = Builder.CreateSelect(NonAtomicCmp, E, OldValue);
4704      }
4705      Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile);
4706    }
4707  }
4708
4709  checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Compare);
4710
4711  return Builder.saveIP();
4712}
4713
4714GlobalVariable *
4715OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl<llvm::Constant *> &Names,
4716                                       std::string VarName) {
4717  llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get(
4718      llvm::ArrayType::get(
4719          llvm::Type::getInt8Ty(M.getContext())->getPointerTo(), Names.size()),
4720      Names);
4721  auto *MapNamesArrayGlobal = new llvm::GlobalVariable(
4722      M, MapNamesArrayInit->getType(),
4723      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit,
4724      VarName);
4725  return MapNamesArrayGlobal;
4726}
4727
4728// Create all simple and struct types exposed by the runtime and remember
4729// the llvm::PointerTypes of them for easy access later.
4730void OpenMPIRBuilder::initializeTypes(Module &M) {
4731  LLVMContext &Ctx = M.getContext();
4732  StructType *T;
4733#define OMP_TYPE(VarName, InitValue) VarName = InitValue;
4734#define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize)                             \
4735  VarName##Ty = ArrayType::get(ElemTy, ArraySize);                             \
4736  VarName##PtrTy = PointerType::getUnqual(VarName##Ty);
4737#define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...)                  \
4738  VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg);            \
4739  VarName##Ptr = PointerType::getUnqual(VarName);
4740#define OMP_STRUCT_TYPE(VarName, StructName, Packed, ...)                      \
4741  T = StructType::getTypeByName(Ctx, StructName);                              \
4742  if (!T)                                                                      \
4743    T = StructType::create(Ctx, {__VA_ARGS__}, StructName, Packed);            \
4744  VarName = T;                                                                 \
4745  VarName##Ptr = PointerType::getUnqual(T);
4746#include "llvm/Frontend/OpenMP/OMPKinds.def"
4747}
4748
4749void OpenMPIRBuilder::OutlineInfo::collectBlocks(
4750    SmallPtrSetImpl<BasicBlock *> &BlockSet,
4751    SmallVectorImpl<BasicBlock *> &BlockVector) {
4752  SmallVector<BasicBlock *, 32> Worklist;
4753  BlockSet.insert(EntryBB);
4754  BlockSet.insert(ExitBB);
4755
4756  Worklist.push_back(EntryBB);
4757  while (!Worklist.empty()) {
4758    BasicBlock *BB = Worklist.pop_back_val();
4759    BlockVector.push_back(BB);
4760    for (BasicBlock *SuccBB : successors(BB))
4761      if (BlockSet.insert(SuccBB).second)
4762        Worklist.push_back(SuccBB);
4763  }
4764}
4765
4766void OpenMPIRBuilder::createOffloadEntry(Constant *ID, Constant *Addr,
4767                                         uint64_t Size, int32_t Flags,
4768                                         GlobalValue::LinkageTypes) {
4769  if (!Config.isTargetCodegen()) {
4770    emitOffloadingEntry(ID, Addr->getName(), Size, Flags);
4771    return;
4772  }
4773  // TODO: Add support for global variables on the device after declare target
4774  // support.
4775  Function *Fn = dyn_cast<Function>(Addr);
4776  if (!Fn)
4777    return;
4778
4779  Module &M = *(Fn->getParent());
4780  LLVMContext &Ctx = M.getContext();
4781
4782  // Get "nvvm.annotations" metadata node.
4783  NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
4784
4785  Metadata *MDVals[] = {
4786      ConstantAsMetadata::get(Fn), MDString::get(Ctx, "kernel"),
4787      ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Ctx), 1))};
4788  // Append metadata to nvvm.annotations.
4789  MD->addOperand(MDNode::get(Ctx, MDVals));
4790
4791  // Add a function attribute for the kernel.
4792  Fn->addFnAttr(Attribute::get(Ctx, "kernel"));
4793}
4794
4795// We only generate metadata for function that contain target regions.
4796void OpenMPIRBuilder::createOffloadEntriesAndInfoMetadata(
4797    OffloadEntriesInfoManager &OffloadEntriesInfoManager,
4798    EmitMetadataErrorReportFunctionTy &ErrorFn) {
4799
4800  // If there are no entries, we don't need to do anything.
4801  if (OffloadEntriesInfoManager.empty())
4802    return;
4803
4804  LLVMContext &C = M.getContext();
4805  SmallVector<std::pair<const OffloadEntriesInfoManager::OffloadEntryInfo *,
4806                        TargetRegionEntryInfo>,
4807              16>
4808      OrderedEntries(OffloadEntriesInfoManager.size());
4809
4810  // Auxiliary methods to create metadata values and strings.
4811  auto &&GetMDInt = [this](unsigned V) {
4812    return ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), V));
4813  };
4814
4815  auto &&GetMDString = [&C](StringRef V) { return MDString::get(C, V); };
4816
4817  // Create the offloading info metadata node.
4818  NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
4819  auto &&TargetRegionMetadataEmitter =
4820      [&C, MD, &OrderedEntries, &GetMDInt, &GetMDString](
4821          const TargetRegionEntryInfo &EntryInfo,
4822          const OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion &E) {
4823        // Generate metadata for target regions. Each entry of this metadata
4824        // contains:
4825        // - Entry 0 -> Kind of this type of metadata (0).
4826        // - Entry 1 -> Device ID of the file where the entry was identified.
4827        // - Entry 2 -> File ID of the file where the entry was identified.
4828        // - Entry 3 -> Mangled name of the function where the entry was
4829        // identified.
4830        // - Entry 4 -> Line in the file where the entry was identified.
4831        // - Entry 5 -> Count of regions at this DeviceID/FilesID/Line.
4832        // - Entry 6 -> Order the entry was created.
4833        // The first element of the metadata node is the kind.
4834        Metadata *Ops[] = {
4835            GetMDInt(E.getKind()),      GetMDInt(EntryInfo.DeviceID),
4836            GetMDInt(EntryInfo.FileID), GetMDString(EntryInfo.ParentName),
4837            GetMDInt(EntryInfo.Line),   GetMDInt(EntryInfo.Count),
4838            GetMDInt(E.getOrder())};
4839
4840        // Save this entry in the right position of the ordered entries array.
4841        OrderedEntries[E.getOrder()] = std::make_pair(&E, EntryInfo);
4842
4843        // Add metadata to the named metadata node.
4844        MD->addOperand(MDNode::get(C, Ops));
4845      };
4846
4847  OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
4848      TargetRegionMetadataEmitter);
4849
4850  // Create function that emits metadata for each device global variable entry;
4851  auto &&DeviceGlobalVarMetadataEmitter =
4852      [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD](
4853          StringRef MangledName,
4854          const OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar &E) {
4855        // Generate metadata for global variables. Each entry of this metadata
4856        // contains:
4857        // - Entry 0 -> Kind of this type of metadata (1).
4858        // - Entry 1 -> Mangled name of the variable.
4859        // - Entry 2 -> Declare target kind.
4860        // - Entry 3 -> Order the entry was created.
4861        // The first element of the metadata node is the kind.
4862        Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDString(MangledName),
4863                           GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
4864
4865        // Save this entry in the right position of the ordered entries array.
4866        TargetRegionEntryInfo varInfo(MangledName, 0, 0, 0);
4867        OrderedEntries[E.getOrder()] = std::make_pair(&E, varInfo);
4868
4869        // Add metadata to the named metadata node.
4870        MD->addOperand(MDNode::get(C, Ops));
4871      };
4872
4873  OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
4874      DeviceGlobalVarMetadataEmitter);
4875
4876  for (const auto &E : OrderedEntries) {
4877    assert(E.first && "All ordered entries must exist!");
4878    if (const auto *CE =
4879            dyn_cast<OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion>(
4880                E.first)) {
4881      if (!CE->getID() || !CE->getAddress()) {
4882        // Do not blame the entry if the parent funtion is not emitted.
4883        TargetRegionEntryInfo EntryInfo = E.second;
4884        StringRef FnName = EntryInfo.ParentName;
4885        if (!M.getNamedValue(FnName))
4886          continue;
4887        ErrorFn(EMIT_MD_TARGET_REGION_ERROR, EntryInfo);
4888        continue;
4889      }
4890      createOffloadEntry(CE->getID(), CE->getAddress(),
4891                         /*Size=*/0, CE->getFlags(),
4892                         GlobalValue::WeakAnyLinkage);
4893    } else if (const auto *CE = dyn_cast<
4894                   OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar>(
4895                   E.first)) {
4896      OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags =
4897          static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
4898              CE->getFlags());
4899      switch (Flags) {
4900      case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo: {
4901        if (Config.isEmbedded() && Config.hasRequiresUnifiedSharedMemory())
4902          continue;
4903        if (!CE->getAddress()) {
4904          ErrorFn(EMIT_MD_DECLARE_TARGET_ERROR, E.second);
4905          continue;
4906        }
4907        // The vaiable has no definition - no need to add the entry.
4908        if (CE->getVarSize() == 0)
4909          continue;
4910        break;
4911      }
4912      case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink:
4913        assert(((Config.isEmbedded() && !CE->getAddress()) ||
4914                (!Config.isEmbedded() && CE->getAddress())) &&
4915               "Declaret target link address is set.");
4916        if (Config.isEmbedded())
4917          continue;
4918        if (!CE->getAddress()) {
4919          ErrorFn(EMIT_MD_GLOBAL_VAR_LINK_ERROR, TargetRegionEntryInfo());
4920          continue;
4921        }
4922        break;
4923      }
4924
4925      // Hidden or internal symbols on the device are not externally visible.
4926      // We should not attempt to register them by creating an offloading
4927      // entry.
4928      if (auto *GV = dyn_cast<GlobalValue>(CE->getAddress()))
4929        if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
4930          continue;
4931
4932      createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(),
4933                         Flags, CE->getLinkage());
4934
4935    } else {
4936      llvm_unreachable("Unsupported entry kind.");
4937    }
4938  }
4939}
4940
4941void TargetRegionEntryInfo::getTargetRegionEntryFnName(
4942    SmallVectorImpl<char> &Name, StringRef ParentName, unsigned DeviceID,
4943    unsigned FileID, unsigned Line, unsigned Count) {
4944  raw_svector_ostream OS(Name);
4945  OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
4946     << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
4947  if (Count)
4948    OS << "_" << Count;
4949}
4950
4951void OffloadEntriesInfoManager::getTargetRegionEntryFnName(
4952    SmallVectorImpl<char> &Name, const TargetRegionEntryInfo &EntryInfo) {
4953  unsigned NewCount = getTargetRegionEntryInfoCount(EntryInfo);
4954  TargetRegionEntryInfo::getTargetRegionEntryFnName(
4955      Name, EntryInfo.ParentName, EntryInfo.DeviceID, EntryInfo.FileID,
4956      EntryInfo.Line, NewCount);
4957}
4958
4959/// Loads all the offload entries information from the host IR
4960/// metadata.
4961void OpenMPIRBuilder::loadOffloadInfoMetadata(
4962    Module &M, OffloadEntriesInfoManager &OffloadEntriesInfoManager) {
4963  // If we are in target mode, load the metadata from the host IR. This code has
4964  // to match the metadata creation in createOffloadEntriesAndInfoMetadata().
4965
4966  NamedMDNode *MD = M.getNamedMetadata(ompOffloadInfoName);
4967  if (!MD)
4968    return;
4969
4970  for (MDNode *MN : MD->operands()) {
4971    auto &&GetMDInt = [MN](unsigned Idx) {
4972      auto *V = cast<ConstantAsMetadata>(MN->getOperand(Idx));
4973      return cast<ConstantInt>(V->getValue())->getZExtValue();
4974    };
4975
4976    auto &&GetMDString = [MN](unsigned Idx) {
4977      auto *V = cast<MDString>(MN->getOperand(Idx));
4978      return V->getString();
4979    };
4980
4981    switch (GetMDInt(0)) {
4982    default:
4983      llvm_unreachable("Unexpected metadata!");
4984      break;
4985    case OffloadEntriesInfoManager::OffloadEntryInfo::
4986        OffloadingEntryInfoTargetRegion: {
4987      TargetRegionEntryInfo EntryInfo(/*ParentName=*/GetMDString(3),
4988                                      /*DeviceID=*/GetMDInt(1),
4989                                      /*FileID=*/GetMDInt(2),
4990                                      /*Line=*/GetMDInt(4),
4991                                      /*Count=*/GetMDInt(5));
4992      OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
4993          EntryInfo, /*Order=*/GetMDInt(6));
4994      break;
4995    }
4996    case OffloadEntriesInfoManager::OffloadEntryInfo::
4997        OffloadingEntryInfoDeviceGlobalVar:
4998      OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
4999          /*MangledName=*/GetMDString(1),
5000          static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
5001              /*Flags=*/GetMDInt(2)),
5002          /*Order=*/GetMDInt(3));
5003      break;
5004    }
5005  }
5006}
5007
5008bool OffloadEntriesInfoManager::empty() const {
5009  return OffloadEntriesTargetRegion.empty() &&
5010         OffloadEntriesDeviceGlobalVar.empty();
5011}
5012
5013unsigned OffloadEntriesInfoManager::getTargetRegionEntryInfoCount(
5014    const TargetRegionEntryInfo &EntryInfo) const {
5015  auto It = OffloadEntriesTargetRegionCount.find(
5016      getTargetRegionEntryCountKey(EntryInfo));
5017  if (It == OffloadEntriesTargetRegionCount.end())
5018    return 0;
5019  return It->second;
5020}
5021
5022void OffloadEntriesInfoManager::incrementTargetRegionEntryInfoCount(
5023    const TargetRegionEntryInfo &EntryInfo) {
5024  OffloadEntriesTargetRegionCount[getTargetRegionEntryCountKey(EntryInfo)] =
5025      EntryInfo.Count + 1;
5026}
5027
5028/// Initialize target region entry.
5029void OffloadEntriesInfoManager::initializeTargetRegionEntryInfo(
5030    const TargetRegionEntryInfo &EntryInfo, unsigned Order) {
5031  OffloadEntriesTargetRegion[EntryInfo] =
5032      OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
5033                                   OMPTargetRegionEntryTargetRegion);
5034  ++OffloadingEntriesNum;
5035}
5036
5037void OffloadEntriesInfoManager::registerTargetRegionEntryInfo(
5038    TargetRegionEntryInfo EntryInfo, Constant *Addr, Constant *ID,
5039    OMPTargetRegionEntryKind Flags) {
5040  assert(EntryInfo.Count == 0 && "expected default EntryInfo");
5041
5042  // Update the EntryInfo with the next available count for this location.
5043  EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
5044
5045  // If we are emitting code for a target, the entry is already initialized,
5046  // only has to be registered.
5047  if (Config.isEmbedded()) {
5048    // This could happen if the device compilation is invoked standalone.
5049    if (!hasTargetRegionEntryInfo(EntryInfo)) {
5050      return;
5051    }
5052    auto &Entry = OffloadEntriesTargetRegion[EntryInfo];
5053    Entry.setAddress(Addr);
5054    Entry.setID(ID);
5055    Entry.setFlags(Flags);
5056  } else {
5057    if (Flags == OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion &&
5058        hasTargetRegionEntryInfo(EntryInfo, /*IgnoreAddressId*/ true))
5059      return;
5060    assert(!hasTargetRegionEntryInfo(EntryInfo) &&
5061           "Target region entry already registered!");
5062    OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
5063    OffloadEntriesTargetRegion[EntryInfo] = Entry;
5064    ++OffloadingEntriesNum;
5065  }
5066  incrementTargetRegionEntryInfoCount(EntryInfo);
5067}
5068
5069bool OffloadEntriesInfoManager::hasTargetRegionEntryInfo(
5070    TargetRegionEntryInfo EntryInfo, bool IgnoreAddressId) const {
5071
5072  // Update the EntryInfo with the next available count for this location.
5073  EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
5074
5075  auto It = OffloadEntriesTargetRegion.find(EntryInfo);
5076  if (It == OffloadEntriesTargetRegion.end()) {
5077    return false;
5078  }
5079  // Fail if this entry is already registered.
5080  if (!IgnoreAddressId && (It->second.getAddress() || It->second.getID()))
5081    return false;
5082  return true;
5083}
5084
5085void OffloadEntriesInfoManager::actOnTargetRegionEntriesInfo(
5086    const OffloadTargetRegionEntryInfoActTy &Action) {
5087  // Scan all target region entries and perform the provided action.
5088  for (const auto &It : OffloadEntriesTargetRegion) {
5089    Action(It.first, It.second);
5090  }
5091}
5092
5093void OffloadEntriesInfoManager::initializeDeviceGlobalVarEntryInfo(
5094    StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) {
5095  OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
5096  ++OffloadingEntriesNum;
5097}
5098
5099void OffloadEntriesInfoManager::registerDeviceGlobalVarEntryInfo(
5100    StringRef VarName, Constant *Addr, int64_t VarSize,
5101    OMPTargetGlobalVarEntryKind Flags, GlobalValue::LinkageTypes Linkage) {
5102  if (Config.isEmbedded()) {
5103    // This could happen if the device compilation is invoked standalone.
5104    if (!hasDeviceGlobalVarEntryInfo(VarName))
5105      return;
5106    auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
5107    if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
5108      if (Entry.getVarSize() == 0) {
5109        Entry.setVarSize(VarSize);
5110        Entry.setLinkage(Linkage);
5111      }
5112      return;
5113    }
5114    Entry.setVarSize(VarSize);
5115    Entry.setLinkage(Linkage);
5116    Entry.setAddress(Addr);
5117  } else {
5118    if (hasDeviceGlobalVarEntryInfo(VarName)) {
5119      auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
5120      assert(Entry.isValid() && Entry.getFlags() == Flags &&
5121             "Entry not initialized!");
5122      if (Entry.getVarSize() == 0) {
5123        Entry.setVarSize(VarSize);
5124        Entry.setLinkage(Linkage);
5125      }
5126      return;
5127    }
5128    OffloadEntriesDeviceGlobalVar.try_emplace(VarName, OffloadingEntriesNum,
5129                                              Addr, VarSize, Flags, Linkage);
5130    ++OffloadingEntriesNum;
5131  }
5132}
5133
5134void OffloadEntriesInfoManager::actOnDeviceGlobalVarEntriesInfo(
5135    const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
5136  // Scan all target region entries and perform the provided action.
5137  for (const auto &E : OffloadEntriesDeviceGlobalVar)
5138    Action(E.getKey(), E.getValue());
5139}
5140
5141void CanonicalLoopInfo::collectControlBlocks(
5142    SmallVectorImpl<BasicBlock *> &BBs) {
5143  // We only count those BBs as control block for which we do not need to
5144  // reverse the CFG, i.e. not the loop body which can contain arbitrary control
5145  // flow. For consistency, this also means we do not add the Body block, which
5146  // is just the entry to the body code.
5147  BBs.reserve(BBs.size() + 6);
5148  BBs.append({getPreheader(), Header, Cond, Latch, Exit, getAfter()});
5149}
5150
5151BasicBlock *CanonicalLoopInfo::getPreheader() const {
5152  assert(isValid() && "Requires a valid canonical loop");
5153  for (BasicBlock *Pred : predecessors(Header)) {
5154    if (Pred != Latch)
5155      return Pred;
5156  }
5157  llvm_unreachable("Missing preheader");
5158}
5159
5160void CanonicalLoopInfo::setTripCount(Value *TripCount) {
5161  assert(isValid() && "Requires a valid canonical loop");
5162
5163  Instruction *CmpI = &getCond()->front();
5164  assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount");
5165  CmpI->setOperand(1, TripCount);
5166
5167#ifndef NDEBUG
5168  assertOK();
5169#endif
5170}
5171
5172void CanonicalLoopInfo::mapIndVar(
5173    llvm::function_ref<Value *(Instruction *)> Updater) {
5174  assert(isValid() && "Requires a valid canonical loop");
5175
5176  Instruction *OldIV = getIndVar();
5177
5178  // Record all uses excluding those introduced by the updater. Uses by the
5179  // CanonicalLoopInfo itself to keep track of the number of iterations are
5180  // excluded.
5181  SmallVector<Use *> ReplacableUses;
5182  for (Use &U : OldIV->uses()) {
5183    auto *User = dyn_cast<Instruction>(U.getUser());
5184    if (!User)
5185      continue;
5186    if (User->getParent() == getCond())
5187      continue;
5188    if (User->getParent() == getLatch())
5189      continue;
5190    ReplacableUses.push_back(&U);
5191  }
5192
5193  // Run the updater that may introduce new uses
5194  Value *NewIV = Updater(OldIV);
5195
5196  // Replace the old uses with the value returned by the updater.
5197  for (Use *U : ReplacableUses)
5198    U->set(NewIV);
5199
5200#ifndef NDEBUG
5201  assertOK();
5202#endif
5203}
5204
5205void CanonicalLoopInfo::assertOK() const {
5206#ifndef NDEBUG
5207  // No constraints if this object currently does not describe a loop.
5208  if (!isValid())
5209    return;
5210
5211  BasicBlock *Preheader = getPreheader();
5212  BasicBlock *Body = getBody();
5213  BasicBlock *After = getAfter();
5214
5215  // Verify standard control-flow we use for OpenMP loops.
5216  assert(Preheader);
5217  assert(isa<BranchInst>(Preheader->getTerminator()) &&
5218         "Preheader must terminate with unconditional branch");
5219  assert(Preheader->getSingleSuccessor() == Header &&
5220         "Preheader must jump to header");
5221
5222  assert(Header);
5223  assert(isa<BranchInst>(Header->getTerminator()) &&
5224         "Header must terminate with unconditional branch");
5225  assert(Header->getSingleSuccessor() == Cond &&
5226         "Header must jump to exiting block");
5227
5228  assert(Cond);
5229  assert(Cond->getSinglePredecessor() == Header &&
5230         "Exiting block only reachable from header");
5231
5232  assert(isa<BranchInst>(Cond->getTerminator()) &&
5233         "Exiting block must terminate with conditional branch");
5234  assert(size(successors(Cond)) == 2 &&
5235         "Exiting block must have two successors");
5236  assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body &&
5237         "Exiting block's first successor jump to the body");
5238  assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit &&
5239         "Exiting block's second successor must exit the loop");
5240
5241  assert(Body);
5242  assert(Body->getSinglePredecessor() == Cond &&
5243         "Body only reachable from exiting block");
5244  assert(!isa<PHINode>(Body->front()));
5245
5246  assert(Latch);
5247  assert(isa<BranchInst>(Latch->getTerminator()) &&
5248         "Latch must terminate with unconditional branch");
5249  assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header");
5250  // TODO: To support simple redirecting of the end of the body code that has
5251  // multiple; introduce another auxiliary basic block like preheader and after.
5252  assert(Latch->getSinglePredecessor() != nullptr);
5253  assert(!isa<PHINode>(Latch->front()));
5254
5255  assert(Exit);
5256  assert(isa<BranchInst>(Exit->getTerminator()) &&
5257         "Exit block must terminate with unconditional branch");
5258  assert(Exit->getSingleSuccessor() == After &&
5259         "Exit block must jump to after block");
5260
5261  assert(After);
5262  assert(After->getSinglePredecessor() == Exit &&
5263         "After block only reachable from exit block");
5264  assert(After->empty() || !isa<PHINode>(After->front()));
5265
5266  Instruction *IndVar = getIndVar();
5267  assert(IndVar && "Canonical induction variable not found?");
5268  assert(isa<IntegerType>(IndVar->getType()) &&
5269         "Induction variable must be an integer");
5270  assert(cast<PHINode>(IndVar)->getParent() == Header &&
5271         "Induction variable must be a PHI in the loop header");
5272  assert(cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader);
5273  assert(
5274      cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero());
5275  assert(cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch);
5276
5277  auto *NextIndVar = cast<PHINode>(IndVar)->getIncomingValue(1);
5278  assert(cast<Instruction>(NextIndVar)->getParent() == Latch);
5279  assert(cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add);
5280  assert(cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar);
5281  assert(cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1))
5282             ->isOne());
5283
5284  Value *TripCount = getTripCount();
5285  assert(TripCount && "Loop trip count not found?");
5286  assert(IndVar->getType() == TripCount->getType() &&
5287         "Trip count and induction variable must have the same type");
5288
5289  auto *CmpI = cast<CmpInst>(&Cond->front());
5290  assert(CmpI->getPredicate() == CmpInst::ICMP_ULT &&
5291         "Exit condition must be a signed less-than comparison");
5292  assert(CmpI->getOperand(0) == IndVar &&
5293         "Exit condition must compare the induction variable");
5294  assert(CmpI->getOperand(1) == TripCount &&
5295         "Exit condition must compare with the trip count");
5296#endif
5297}
5298
5299void CanonicalLoopInfo::invalidate() {
5300  Header = nullptr;
5301  Cond = nullptr;
5302  Latch = nullptr;
5303  Exit = nullptr;
5304}
5305