1//===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/CodeGen/MachineTraceMetrics.h"
10#include "llvm/ADT/ArrayRef.h"
11#include "llvm/ADT/DenseMap.h"
12#include "llvm/ADT/PostOrderIterator.h"
13#include "llvm/ADT/SmallPtrSet.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/SparseSet.h"
16#include "llvm/CodeGen/MachineBasicBlock.h"
17#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineLoopInfo.h"
21#include "llvm/CodeGen/MachineOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/TargetRegisterInfo.h"
24#include "llvm/CodeGen/TargetSchedule.h"
25#include "llvm/CodeGen/TargetSubtargetInfo.h"
26#include "llvm/InitializePasses.h"
27#include "llvm/MC/MCRegisterInfo.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/Format.h"
32#include "llvm/Support/raw_ostream.h"
33#include <algorithm>
34#include <cassert>
35#include <iterator>
36#include <tuple>
37#include <utility>
38
39using namespace llvm;
40
41#define DEBUG_TYPE "machine-trace-metrics"
42
43char MachineTraceMetrics::ID = 0;
44
45char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
46
47INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE,
48                      "Machine Trace Metrics", false, true)
49INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
50INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
51INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE,
52                    "Machine Trace Metrics", false, true)
53
54MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) {
55  std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
56}
57
58void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
59  AU.setPreservesAll();
60  AU.addRequired<MachineBranchProbabilityInfo>();
61  AU.addRequired<MachineLoopInfo>();
62  MachineFunctionPass::getAnalysisUsage(AU);
63}
64
65bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
66  MF = &Func;
67  const TargetSubtargetInfo &ST = MF->getSubtarget();
68  TII = ST.getInstrInfo();
69  TRI = ST.getRegisterInfo();
70  MRI = &MF->getRegInfo();
71  Loops = &getAnalysis<MachineLoopInfo>();
72  SchedModel.init(&ST);
73  BlockInfo.resize(MF->getNumBlockIDs());
74  ProcResourceCycles.resize(MF->getNumBlockIDs() *
75                            SchedModel.getNumProcResourceKinds());
76  return false;
77}
78
79void MachineTraceMetrics::releaseMemory() {
80  MF = nullptr;
81  BlockInfo.clear();
82  for (Ensemble *&E : Ensembles) {
83    delete E;
84    E = nullptr;
85  }
86}
87
88//===----------------------------------------------------------------------===//
89//                          Fixed block information
90//===----------------------------------------------------------------------===//
91//
92// The number of instructions in a basic block and the CPU resources used by
93// those instructions don't depend on any given trace strategy.
94
95/// Compute the resource usage in basic block MBB.
96const MachineTraceMetrics::FixedBlockInfo*
97MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
98  assert(MBB && "No basic block");
99  FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
100  if (FBI->hasResources())
101    return FBI;
102
103  // Compute resource usage in the block.
104  FBI->HasCalls = false;
105  unsigned InstrCount = 0;
106
107  // Add up per-processor resource cycles as well.
108  unsigned PRKinds = SchedModel.getNumProcResourceKinds();
109  SmallVector<unsigned, 32> PRCycles(PRKinds);
110
111  for (const auto &MI : *MBB) {
112    if (MI.isTransient())
113      continue;
114    ++InstrCount;
115    if (MI.isCall())
116      FBI->HasCalls = true;
117
118    // Count processor resources used.
119    if (!SchedModel.hasInstrSchedModel())
120      continue;
121    const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
122    if (!SC->isValid())
123      continue;
124
125    for (TargetSchedModel::ProcResIter
126         PI = SchedModel.getWriteProcResBegin(SC),
127         PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
128      assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
129      PRCycles[PI->ProcResourceIdx] += PI->Cycles;
130    }
131  }
132  FBI->InstrCount = InstrCount;
133
134  // Scale the resource cycles so they are comparable.
135  unsigned PROffset = MBB->getNumber() * PRKinds;
136  for (unsigned K = 0; K != PRKinds; ++K)
137    ProcResourceCycles[PROffset + K] =
138      PRCycles[K] * SchedModel.getResourceFactor(K);
139
140  return FBI;
141}
142
143ArrayRef<unsigned>
144MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
145  assert(BlockInfo[MBBNum].hasResources() &&
146         "getResources() must be called before getProcResourceCycles()");
147  unsigned PRKinds = SchedModel.getNumProcResourceKinds();
148  assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
149  return ArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
150}
151
152//===----------------------------------------------------------------------===//
153//                         Ensemble utility functions
154//===----------------------------------------------------------------------===//
155
156MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
157  : MTM(*ct) {
158  BlockInfo.resize(MTM.BlockInfo.size());
159  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
160  ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
161  ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
162}
163
164// Virtual destructor serves as an anchor.
165MachineTraceMetrics::Ensemble::~Ensemble() = default;
166
167const MachineLoop*
168MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
169  return MTM.Loops->getLoopFor(MBB);
170}
171
172// Update resource-related information in the TraceBlockInfo for MBB.
173// Only update resources related to the trace above MBB.
174void MachineTraceMetrics::Ensemble::
175computeDepthResources(const MachineBasicBlock *MBB) {
176  TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
177  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
178  unsigned PROffset = MBB->getNumber() * PRKinds;
179
180  // Compute resources from trace above. The top block is simple.
181  if (!TBI->Pred) {
182    TBI->InstrDepth = 0;
183    TBI->Head = MBB->getNumber();
184    std::fill(ProcResourceDepths.begin() + PROffset,
185              ProcResourceDepths.begin() + PROffset + PRKinds, 0);
186    return;
187  }
188
189  // Compute from the block above. A post-order traversal ensures the
190  // predecessor is always computed first.
191  unsigned PredNum = TBI->Pred->getNumber();
192  TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
193  assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
194  const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
195  TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
196  TBI->Head = PredTBI->Head;
197
198  // Compute per-resource depths.
199  ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
200  ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
201  for (unsigned K = 0; K != PRKinds; ++K)
202    ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
203}
204
205// Update resource-related information in the TraceBlockInfo for MBB.
206// Only update resources related to the trace below MBB.
207void MachineTraceMetrics::Ensemble::
208computeHeightResources(const MachineBasicBlock *MBB) {
209  TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
210  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
211  unsigned PROffset = MBB->getNumber() * PRKinds;
212
213  // Compute resources for the current block.
214  TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
215  ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
216
217  // The trace tail is done.
218  if (!TBI->Succ) {
219    TBI->Tail = MBB->getNumber();
220    llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset);
221    return;
222  }
223
224  // Compute from the block below. A post-order traversal ensures the
225  // predecessor is always computed first.
226  unsigned SuccNum = TBI->Succ->getNumber();
227  TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
228  assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
229  TBI->InstrHeight += SuccTBI->InstrHeight;
230  TBI->Tail = SuccTBI->Tail;
231
232  // Compute per-resource heights.
233  ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
234  for (unsigned K = 0; K != PRKinds; ++K)
235    ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
236}
237
238// Check if depth resources for MBB are valid and return the TBI.
239// Return NULL if the resources have been invalidated.
240const MachineTraceMetrics::TraceBlockInfo*
241MachineTraceMetrics::Ensemble::
242getDepthResources(const MachineBasicBlock *MBB) const {
243  const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
244  return TBI->hasValidDepth() ? TBI : nullptr;
245}
246
247// Check if height resources for MBB are valid and return the TBI.
248// Return NULL if the resources have been invalidated.
249const MachineTraceMetrics::TraceBlockInfo*
250MachineTraceMetrics::Ensemble::
251getHeightResources(const MachineBasicBlock *MBB) const {
252  const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
253  return TBI->hasValidHeight() ? TBI : nullptr;
254}
255
256/// Get an array of processor resource depths for MBB. Indexed by processor
257/// resource kind, this array contains the scaled processor resources consumed
258/// by all blocks preceding MBB in its trace. It does not include instructions
259/// in MBB.
260///
261/// Compare TraceBlockInfo::InstrDepth.
262ArrayRef<unsigned>
263MachineTraceMetrics::Ensemble::
264getProcResourceDepths(unsigned MBBNum) const {
265  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
266  assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
267  return ArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
268}
269
270/// Get an array of processor resource heights for MBB. Indexed by processor
271/// resource kind, this array contains the scaled processor resources consumed
272/// by this block and all blocks following it in its trace.
273///
274/// Compare TraceBlockInfo::InstrHeight.
275ArrayRef<unsigned>
276MachineTraceMetrics::Ensemble::
277getProcResourceHeights(unsigned MBBNum) const {
278  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
279  assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
280  return ArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
281}
282
283//===----------------------------------------------------------------------===//
284//                         Trace Selection Strategies
285//===----------------------------------------------------------------------===//
286//
287// A trace selection strategy is implemented as a sub-class of Ensemble. The
288// trace through a block B is computed by two DFS traversals of the CFG
289// starting from B. One upwards, and one downwards. During the upwards DFS,
290// pickTracePred() is called on the post-ordered blocks. During the downwards
291// DFS, pickTraceSucc() is called in a post-order.
292//
293
294// We never allow traces that leave loops, but we do allow traces to enter
295// nested loops. We also never allow traces to contain back-edges.
296//
297// This means that a loop header can never appear above the center block of a
298// trace, except as the trace head. Below the center block, loop exiting edges
299// are banned.
300//
301// Return true if an edge from the From loop to the To loop is leaving a loop.
302// Either of To and From can be null.
303static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
304  return From && !From->contains(To);
305}
306
307// MinInstrCountEnsemble - Pick the trace that executes the least number of
308// instructions.
309namespace {
310
311class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
312  const char *getName() const override { return "MinInstr"; }
313  const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
314  const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;
315
316public:
317  MinInstrCountEnsemble(MachineTraceMetrics *mtm)
318    : MachineTraceMetrics::Ensemble(mtm) {}
319};
320
321} // end anonymous namespace
322
323// Select the preferred predecessor for MBB.
324const MachineBasicBlock*
325MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
326  if (MBB->pred_empty())
327    return nullptr;
328  const MachineLoop *CurLoop = getLoopFor(MBB);
329  // Don't leave loops, and never follow back-edges.
330  if (CurLoop && MBB == CurLoop->getHeader())
331    return nullptr;
332  unsigned CurCount = MTM.getResources(MBB)->InstrCount;
333  const MachineBasicBlock *Best = nullptr;
334  unsigned BestDepth = 0;
335  for (const MachineBasicBlock *Pred : MBB->predecessors()) {
336    const MachineTraceMetrics::TraceBlockInfo *PredTBI =
337      getDepthResources(Pred);
338    // Ignore cycles that aren't natural loops.
339    if (!PredTBI)
340      continue;
341    // Pick the predecessor that would give this block the smallest InstrDepth.
342    unsigned Depth = PredTBI->InstrDepth + CurCount;
343    if (!Best || Depth < BestDepth) {
344      Best = Pred;
345      BestDepth = Depth;
346    }
347  }
348  return Best;
349}
350
351// Select the preferred successor for MBB.
352const MachineBasicBlock*
353MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
354  if (MBB->succ_empty())
355    return nullptr;
356  const MachineLoop *CurLoop = getLoopFor(MBB);
357  const MachineBasicBlock *Best = nullptr;
358  unsigned BestHeight = 0;
359  for (const MachineBasicBlock *Succ : MBB->successors()) {
360    // Don't consider back-edges.
361    if (CurLoop && Succ == CurLoop->getHeader())
362      continue;
363    // Don't consider successors exiting CurLoop.
364    if (isExitingLoop(CurLoop, getLoopFor(Succ)))
365      continue;
366    const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
367      getHeightResources(Succ);
368    // Ignore cycles that aren't natural loops.
369    if (!SuccTBI)
370      continue;
371    // Pick the successor that would give this block the smallest InstrHeight.
372    unsigned Height = SuccTBI->InstrHeight;
373    if (!Best || Height < BestHeight) {
374      Best = Succ;
375      BestHeight = Height;
376    }
377  }
378  return Best;
379}
380
381// Get an Ensemble sub-class for the requested trace strategy.
382MachineTraceMetrics::Ensemble *
383MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
384  assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
385  Ensemble *&E = Ensembles[strategy];
386  if (E)
387    return E;
388
389  // Allocate new Ensemble on demand.
390  switch (strategy) {
391  case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
392  default: llvm_unreachable("Invalid trace strategy enum");
393  }
394}
395
396void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
397  LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB)
398                    << '\n');
399  BlockInfo[MBB->getNumber()].invalidate();
400  for (Ensemble *E : Ensembles)
401    if (E)
402      E->invalidate(MBB);
403}
404
405void MachineTraceMetrics::verifyAnalysis() const {
406  if (!MF)
407    return;
408#ifndef NDEBUG
409  assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
410  for (Ensemble *E : Ensembles)
411    if (E)
412      E->verify();
413#endif
414}
415
416//===----------------------------------------------------------------------===//
417//                               Trace building
418//===----------------------------------------------------------------------===//
419//
420// Traces are built by two CFG traversals. To avoid recomputing too much, use a
421// set abstraction that confines the search to the current loop, and doesn't
422// revisit blocks.
423
424namespace {
425
426struct LoopBounds {
427  MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
428  SmallPtrSet<const MachineBasicBlock*, 8> Visited;
429  const MachineLoopInfo *Loops;
430  bool Downward = false;
431
432  LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
433             const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {}
434};
435
436} // end anonymous namespace
437
438// Specialize po_iterator_storage in order to prune the post-order traversal so
439// it is limited to the current loop and doesn't traverse the loop back edges.
440namespace llvm {
441
442template<>
443class po_iterator_storage<LoopBounds, true> {
444  LoopBounds &LB;
445
446public:
447  po_iterator_storage(LoopBounds &lb) : LB(lb) {}
448
449  void finishPostorder(const MachineBasicBlock*) {}
450
451  bool insertEdge(std::optional<const MachineBasicBlock *> From,
452                  const MachineBasicBlock *To) {
453    // Skip already visited To blocks.
454    MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
455    if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
456      return false;
457    // From is null once when To is the trace center block.
458    if (From) {
459      if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) {
460        // Don't follow backedges, don't leave FromLoop when going upwards.
461        if ((LB.Downward ? To : *From) == FromLoop->getHeader())
462          return false;
463        // Don't leave FromLoop.
464        if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
465          return false;
466      }
467    }
468    // To is a new block. Mark the block as visited in case the CFG has cycles
469    // that MachineLoopInfo didn't recognize as a natural loop.
470    return LB.Visited.insert(To).second;
471  }
472};
473
474} // end namespace llvm
475
476/// Compute the trace through MBB.
477void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
478  LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through "
479                    << printMBBReference(*MBB) << '\n');
480  // Set up loop bounds for the backwards post-order traversal.
481  LoopBounds Bounds(BlockInfo, MTM.Loops);
482
483  // Run an upwards post-order search for the trace start.
484  Bounds.Downward = false;
485  Bounds.Visited.clear();
486  for (const auto *I : inverse_post_order_ext(MBB, Bounds)) {
487    LLVM_DEBUG(dbgs() << "  pred for " << printMBBReference(*I) << ": ");
488    TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
489    // All the predecessors have been visited, pick the preferred one.
490    TBI.Pred = pickTracePred(I);
491    LLVM_DEBUG({
492      if (TBI.Pred)
493        dbgs() << printMBBReference(*TBI.Pred) << '\n';
494      else
495        dbgs() << "null\n";
496    });
497    // The trace leading to I is now known, compute the depth resources.
498    computeDepthResources(I);
499  }
500
501  // Run a downwards post-order search for the trace end.
502  Bounds.Downward = true;
503  Bounds.Visited.clear();
504  for (const auto *I : post_order_ext(MBB, Bounds)) {
505    LLVM_DEBUG(dbgs() << "  succ for " << printMBBReference(*I) << ": ");
506    TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
507    // All the successors have been visited, pick the preferred one.
508    TBI.Succ = pickTraceSucc(I);
509    LLVM_DEBUG({
510      if (TBI.Succ)
511        dbgs() << printMBBReference(*TBI.Succ) << '\n';
512      else
513        dbgs() << "null\n";
514    });
515    // The trace leaving I is now known, compute the height resources.
516    computeHeightResources(I);
517  }
518}
519
520/// Invalidate traces through BadMBB.
521void
522MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
523  SmallVector<const MachineBasicBlock*, 16> WorkList;
524  TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
525
526  // Invalidate height resources of blocks above MBB.
527  if (BadTBI.hasValidHeight()) {
528    BadTBI.invalidateHeight();
529    WorkList.push_back(BadMBB);
530    do {
531      const MachineBasicBlock *MBB = WorkList.pop_back_val();
532      LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' '
533                        << getName() << " height.\n");
534      // Find any MBB predecessors that have MBB as their preferred successor.
535      // They are the only ones that need to be invalidated.
536      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
537        TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()];
538        if (!TBI.hasValidHeight())
539          continue;
540        if (TBI.Succ == MBB) {
541          TBI.invalidateHeight();
542          WorkList.push_back(Pred);
543          continue;
544        }
545        // Verify that TBI.Succ is actually a *I successor.
546        assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed");
547      }
548    } while (!WorkList.empty());
549  }
550
551  // Invalidate depth resources of blocks below MBB.
552  if (BadTBI.hasValidDepth()) {
553    BadTBI.invalidateDepth();
554    WorkList.push_back(BadMBB);
555    do {
556      const MachineBasicBlock *MBB = WorkList.pop_back_val();
557      LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' '
558                        << getName() << " depth.\n");
559      // Find any MBB successors that have MBB as their preferred predecessor.
560      // They are the only ones that need to be invalidated.
561      for (const MachineBasicBlock *Succ : MBB->successors()) {
562        TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()];
563        if (!TBI.hasValidDepth())
564          continue;
565        if (TBI.Pred == MBB) {
566          TBI.invalidateDepth();
567          WorkList.push_back(Succ);
568          continue;
569        }
570        // Verify that TBI.Pred is actually a *I predecessor.
571        assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed");
572      }
573    } while (!WorkList.empty());
574  }
575
576  // Clear any per-instruction data. We only have to do this for BadMBB itself
577  // because the instructions in that block may change. Other blocks may be
578  // invalidated, but their instructions will stay the same, so there is no
579  // need to erase the Cycle entries. They will be overwritten when we
580  // recompute.
581  for (const auto &I : *BadMBB)
582    Cycles.erase(&I);
583}
584
585void MachineTraceMetrics::Ensemble::verify() const {
586#ifndef NDEBUG
587  assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
588         "Outdated BlockInfo size");
589  for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
590    const TraceBlockInfo &TBI = BlockInfo[Num];
591    if (TBI.hasValidDepth() && TBI.Pred) {
592      const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
593      assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
594      assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
595             "Trace is broken, depth should have been invalidated.");
596      const MachineLoop *Loop = getLoopFor(MBB);
597      assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
598    }
599    if (TBI.hasValidHeight() && TBI.Succ) {
600      const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
601      assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
602      assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
603             "Trace is broken, height should have been invalidated.");
604      const MachineLoop *Loop = getLoopFor(MBB);
605      const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
606      assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
607             "Trace contains backedge");
608    }
609  }
610#endif
611}
612
613//===----------------------------------------------------------------------===//
614//                             Data Dependencies
615//===----------------------------------------------------------------------===//
616//
617// Compute the depth and height of each instruction based on data dependencies
618// and instruction latencies. These cycle numbers assume that the CPU can issue
619// an infinite number of instructions per cycle as long as their dependencies
620// are ready.
621
622// A data dependency is represented as a defining MI and operand numbers on the
623// defining and using MI.
624namespace {
625
626struct DataDep {
627  const MachineInstr *DefMI;
628  unsigned DefOp;
629  unsigned UseOp;
630
631  DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
632    : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
633
634  /// Create a DataDep from an SSA form virtual register.
635  DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
636    : UseOp(UseOp) {
637    assert(Register::isVirtualRegister(VirtReg));
638    MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
639    assert(!DefI.atEnd() && "Register has no defs");
640    DefMI = DefI->getParent();
641    DefOp = DefI.getOperandNo();
642    assert((++DefI).atEnd() && "Register has multiple defs");
643  }
644};
645
646} // end anonymous namespace
647
648// Get the input data dependencies that must be ready before UseMI can issue.
649// Return true if UseMI has any physreg operands.
650static bool getDataDeps(const MachineInstr &UseMI,
651                        SmallVectorImpl<DataDep> &Deps,
652                        const MachineRegisterInfo *MRI) {
653  // Debug values should not be included in any calculations.
654  if (UseMI.isDebugInstr())
655    return false;
656
657  bool HasPhysRegs = false;
658  for (MachineInstr::const_mop_iterator I = UseMI.operands_begin(),
659       E = UseMI.operands_end(); I != E; ++I) {
660    const MachineOperand &MO = *I;
661    if (!MO.isReg())
662      continue;
663    Register Reg = MO.getReg();
664    if (!Reg)
665      continue;
666    if (Reg.isPhysical()) {
667      HasPhysRegs = true;
668      continue;
669    }
670    // Collect virtual register reads.
671    if (MO.readsReg())
672      Deps.push_back(DataDep(MRI, Reg, UseMI.getOperandNo(I)));
673  }
674  return HasPhysRegs;
675}
676
677// Get the input data dependencies of a PHI instruction, using Pred as the
678// preferred predecessor.
679// This will add at most one dependency to Deps.
680static void getPHIDeps(const MachineInstr &UseMI,
681                       SmallVectorImpl<DataDep> &Deps,
682                       const MachineBasicBlock *Pred,
683                       const MachineRegisterInfo *MRI) {
684  // No predecessor at the beginning of a trace. Ignore dependencies.
685  if (!Pred)
686    return;
687  assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI");
688  for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) {
689    if (UseMI.getOperand(i + 1).getMBB() == Pred) {
690      Register Reg = UseMI.getOperand(i).getReg();
691      Deps.push_back(DataDep(MRI, Reg, i));
692      return;
693    }
694  }
695}
696
697// Identify physreg dependencies for UseMI, and update the live regunit
698// tracking set when scanning instructions downwards.
699static void updatePhysDepsDownwards(const MachineInstr *UseMI,
700                                    SmallVectorImpl<DataDep> &Deps,
701                                    SparseSet<LiveRegUnit> &RegUnits,
702                                    const TargetRegisterInfo *TRI) {
703  SmallVector<MCRegister, 8> Kills;
704  SmallVector<unsigned, 8> LiveDefOps;
705
706  for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(),
707       ME = UseMI->operands_end(); MI != ME; ++MI) {
708    const MachineOperand &MO = *MI;
709    if (!MO.isReg() || !MO.getReg().isPhysical())
710      continue;
711    MCRegister Reg = MO.getReg().asMCReg();
712    // Track live defs and kills for updating RegUnits.
713    if (MO.isDef()) {
714      if (MO.isDead())
715        Kills.push_back(Reg);
716      else
717        LiveDefOps.push_back(UseMI->getOperandNo(MI));
718    } else if (MO.isKill())
719      Kills.push_back(Reg);
720    // Identify dependencies.
721    if (!MO.readsReg())
722      continue;
723    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
724      SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
725      if (I == RegUnits.end())
726        continue;
727      Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI)));
728      break;
729    }
730  }
731
732  // Update RegUnits to reflect live registers after UseMI.
733  // First kills.
734  for (MCRegister Kill : Kills)
735    for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units)
736      RegUnits.erase(*Units);
737
738  // Second, live defs.
739  for (unsigned DefOp : LiveDefOps) {
740    for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg().asMCReg(),
741                                 TRI);
742         Units.isValid(); ++Units) {
743      LiveRegUnit &LRU = RegUnits[*Units];
744      LRU.MI = UseMI;
745      LRU.Op = DefOp;
746    }
747  }
748}
749
750/// The length of the critical path through a trace is the maximum of two path
751/// lengths:
752///
753/// 1. The maximum height+depth over all instructions in the trace center block.
754///
755/// 2. The longest cross-block dependency chain. For small blocks, it is
756///    possible that the critical path through the trace doesn't include any
757///    instructions in the block.
758///
759/// This function computes the second number from the live-in list of the
760/// center block.
761unsigned MachineTraceMetrics::Ensemble::
762computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
763  assert(TBI.HasValidInstrDepths && "Missing depth info");
764  assert(TBI.HasValidInstrHeights && "Missing height info");
765  unsigned MaxLen = 0;
766  for (const LiveInReg &LIR : TBI.LiveIns) {
767    if (!LIR.Reg.isVirtual())
768      continue;
769    const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
770    // Ignore dependencies outside the current trace.
771    const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
772    if (!DefTBI.isUsefulDominator(TBI))
773      continue;
774    unsigned Len = LIR.Height + Cycles[DefMI].Depth;
775    MaxLen = std::max(MaxLen, Len);
776  }
777  return MaxLen;
778}
779
780void MachineTraceMetrics::Ensemble::
781updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI,
782            SparseSet<LiveRegUnit> &RegUnits) {
783  SmallVector<DataDep, 8> Deps;
784  // Collect all data dependencies.
785  if (UseMI.isPHI())
786    getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI);
787  else if (getDataDeps(UseMI, Deps, MTM.MRI))
788    updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);
789
790  // Filter and process dependencies, computing the earliest issue cycle.
791  unsigned Cycle = 0;
792  for (const DataDep &Dep : Deps) {
793    const TraceBlockInfo&DepTBI =
794      BlockInfo[Dep.DefMI->getParent()->getNumber()];
795    // Ignore dependencies from outside the current trace.
796    if (!DepTBI.isUsefulDominator(TBI))
797      continue;
798    assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
799    unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
800    // Add latency if DefMI is a real instruction. Transients get latency 0.
801    if (!Dep.DefMI->isTransient())
802      DepCycle += MTM.SchedModel
803        .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
804    Cycle = std::max(Cycle, DepCycle);
805  }
806  // Remember the instruction depth.
807  InstrCycles &MICycles = Cycles[&UseMI];
808  MICycles.Depth = Cycle;
809
810  if (TBI.HasValidInstrHeights) {
811    // Update critical path length.
812    TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
813    LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
814  } else {
815    LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI);
816  }
817}
818
819void MachineTraceMetrics::Ensemble::
820updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI,
821            SparseSet<LiveRegUnit> &RegUnits) {
822  updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits);
823}
824
825void MachineTraceMetrics::Ensemble::
826updateDepths(MachineBasicBlock::iterator Start,
827             MachineBasicBlock::iterator End,
828             SparseSet<LiveRegUnit> &RegUnits) {
829    for (; Start != End; Start++)
830      updateDepth(Start->getParent(), *Start, RegUnits);
831}
832
833/// Compute instruction depths for all instructions above or in MBB in its
834/// trace. This assumes that the trace through MBB has already been computed.
835void MachineTraceMetrics::Ensemble::
836computeInstrDepths(const MachineBasicBlock *MBB) {
837  // The top of the trace may already be computed, and HasValidInstrDepths
838  // implies Head->HasValidInstrDepths, so we only need to start from the first
839  // block in the trace that needs to be recomputed.
840  SmallVector<const MachineBasicBlock*, 8> Stack;
841  do {
842    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
843    assert(TBI.hasValidDepth() && "Incomplete trace");
844    if (TBI.HasValidInstrDepths)
845      break;
846    Stack.push_back(MBB);
847    MBB = TBI.Pred;
848  } while (MBB);
849
850  // FIXME: If MBB is non-null at this point, it is the last pre-computed block
851  // in the trace. We should track any live-out physregs that were defined in
852  // the trace. This is quite rare in SSA form, typically created by CSE
853  // hoisting a compare.
854  SparseSet<LiveRegUnit> RegUnits;
855  RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
856
857  // Go through trace blocks in top-down order, stopping after the center block.
858  while (!Stack.empty()) {
859    MBB = Stack.pop_back_val();
860    LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n");
861    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
862    TBI.HasValidInstrDepths = true;
863    TBI.CriticalPath = 0;
864
865    // Print out resource depths here as well.
866    LLVM_DEBUG({
867      dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
868      ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
869      for (unsigned K = 0; K != PRDepths.size(); ++K)
870        if (PRDepths[K]) {
871          unsigned Factor = MTM.SchedModel.getResourceFactor(K);
872          dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
873                 << MTM.SchedModel.getProcResource(K)->Name << " ("
874                 << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
875        }
876    });
877
878    // Also compute the critical path length through MBB when possible.
879    if (TBI.HasValidInstrHeights)
880      TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
881
882    for (const auto &UseMI : *MBB) {
883      updateDepth(TBI, UseMI, RegUnits);
884    }
885  }
886}
887
888// Identify physreg dependencies for MI when scanning instructions upwards.
889// Return the issue height of MI after considering any live regunits.
890// Height is the issue height computed from virtual register dependencies alone.
891static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height,
892                                      SparseSet<LiveRegUnit> &RegUnits,
893                                      const TargetSchedModel &SchedModel,
894                                      const TargetInstrInfo *TII,
895                                      const TargetRegisterInfo *TRI) {
896  SmallVector<unsigned, 8> ReadOps;
897
898  for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
899                                        MOE = MI.operands_end();
900       MOI != MOE; ++MOI) {
901    const MachineOperand &MO = *MOI;
902    if (!MO.isReg())
903      continue;
904    Register Reg = MO.getReg();
905    if (!Reg.isPhysical())
906      continue;
907    if (MO.readsReg())
908      ReadOps.push_back(MI.getOperandNo(MOI));
909    if (!MO.isDef())
910      continue;
911    // This is a def of Reg. Remove corresponding entries from RegUnits, and
912    // update MI Height to consider the physreg dependencies.
913    for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
914         ++Units) {
915      SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
916      if (I == RegUnits.end())
917        continue;
918      unsigned DepHeight = I->Cycle;
919      if (!MI.isTransient()) {
920        // We may not know the UseMI of this dependency, if it came from the
921        // live-in list. SchedModel can handle a NULL UseMI.
922        DepHeight += SchedModel.computeOperandLatency(&MI, MI.getOperandNo(MOI),
923                                                      I->MI, I->Op);
924      }
925      Height = std::max(Height, DepHeight);
926      // This regunit is dead above MI.
927      RegUnits.erase(I);
928    }
929  }
930
931  // Now we know the height of MI. Update any regunits read.
932  for (size_t I = 0, E = ReadOps.size(); I != E; ++I) {
933    MCRegister Reg = MI.getOperand(ReadOps[I]).getReg().asMCReg();
934    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
935      LiveRegUnit &LRU = RegUnits[*Units];
936      // Set the height to the highest reader of the unit.
937      if (LRU.Cycle <= Height && LRU.MI != &MI) {
938        LRU.Cycle = Height;
939        LRU.MI = &MI;
940        LRU.Op = ReadOps[I];
941      }
942    }
943  }
944
945  return Height;
946}
947
948using MIHeightMap = DenseMap<const MachineInstr *, unsigned>;
949
950// Push the height of DefMI upwards if required to match UseMI.
951// Return true if this is the first time DefMI was seen.
952static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI,
953                          unsigned UseHeight, MIHeightMap &Heights,
954                          const TargetSchedModel &SchedModel,
955                          const TargetInstrInfo *TII) {
956  // Adjust height by Dep.DefMI latency.
957  if (!Dep.DefMI->isTransient())
958    UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI,
959                                                  Dep.UseOp);
960
961  // Update Heights[DefMI] to be the maximum height seen.
962  MIHeightMap::iterator I;
963  bool New;
964  std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
965  if (New)
966    return true;
967
968  // DefMI has been pushed before. Give it the max height.
969  if (I->second < UseHeight)
970    I->second = UseHeight;
971  return false;
972}
973
974/// Assuming that the virtual register defined by DefMI:DefOp was used by
975/// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
976/// when reaching the block that contains DefMI.
977void MachineTraceMetrics::Ensemble::
978addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
979           ArrayRef<const MachineBasicBlock*> Trace) {
980  assert(!Trace.empty() && "Trace should contain at least one block");
981  Register Reg = DefMI->getOperand(DefOp).getReg();
982  assert(Reg.isVirtual());
983  const MachineBasicBlock *DefMBB = DefMI->getParent();
984
985  // Reg is live-in to all blocks in Trace that follow DefMBB.
986  for (const MachineBasicBlock *MBB : llvm::reverse(Trace)) {
987    if (MBB == DefMBB)
988      return;
989    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
990    // Just add the register. The height will be updated later.
991    TBI.LiveIns.push_back(Reg);
992  }
993}
994
995/// Compute instruction heights in the trace through MBB. This updates MBB and
996/// the blocks below it in the trace. It is assumed that the trace has already
997/// been computed.
998void MachineTraceMetrics::Ensemble::
999computeInstrHeights(const MachineBasicBlock *MBB) {
1000  // The bottom of the trace may already be computed.
1001  // Find the blocks that need updating.
1002  SmallVector<const MachineBasicBlock*, 8> Stack;
1003  do {
1004    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1005    assert(TBI.hasValidHeight() && "Incomplete trace");
1006    if (TBI.HasValidInstrHeights)
1007      break;
1008    Stack.push_back(MBB);
1009    TBI.LiveIns.clear();
1010    MBB = TBI.Succ;
1011  } while (MBB);
1012
1013  // As we move upwards in the trace, keep track of instructions that are
1014  // required by deeper trace instructions. Map MI -> height required so far.
1015  MIHeightMap Heights;
1016
1017  // For physregs, the def isn't known when we see the use.
1018  // Instead, keep track of the highest use of each regunit.
1019  SparseSet<LiveRegUnit> RegUnits;
1020  RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
1021
1022  // If the bottom of the trace was already precomputed, initialize heights
1023  // from its live-in list.
1024  // MBB is the highest precomputed block in the trace.
1025  if (MBB) {
1026    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1027    for (LiveInReg &LI : TBI.LiveIns) {
1028      if (LI.Reg.isVirtual()) {
1029        // For virtual registers, the def latency is included.
1030        unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
1031        if (Height < LI.Height)
1032          Height = LI.Height;
1033      } else {
1034        // For register units, the def latency is not included because we don't
1035        // know the def yet.
1036        RegUnits[LI.Reg].Cycle = LI.Height;
1037      }
1038    }
1039  }
1040
1041  // Go through the trace blocks in bottom-up order.
1042  SmallVector<DataDep, 8> Deps;
1043  for (;!Stack.empty(); Stack.pop_back()) {
1044    MBB = Stack.back();
1045    LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n");
1046    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1047    TBI.HasValidInstrHeights = true;
1048    TBI.CriticalPath = 0;
1049
1050    LLVM_DEBUG({
1051      dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
1052      ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
1053      for (unsigned K = 0; K != PRHeights.size(); ++K)
1054        if (PRHeights[K]) {
1055          unsigned Factor = MTM.SchedModel.getResourceFactor(K);
1056          dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
1057                 << MTM.SchedModel.getProcResource(K)->Name << " ("
1058                 << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
1059        }
1060    });
1061
1062    // Get dependencies from PHIs in the trace successor.
1063    const MachineBasicBlock *Succ = TBI.Succ;
1064    // If MBB is the last block in the trace, and it has a back-edge to the
1065    // loop header, get loop-carried dependencies from PHIs in the header. For
1066    // that purpose, pretend that all the loop header PHIs have height 0.
1067    if (!Succ)
1068      if (const MachineLoop *Loop = getLoopFor(MBB))
1069        if (MBB->isSuccessor(Loop->getHeader()))
1070          Succ = Loop->getHeader();
1071
1072    if (Succ) {
1073      for (const auto &PHI : *Succ) {
1074        if (!PHI.isPHI())
1075          break;
1076        Deps.clear();
1077        getPHIDeps(PHI, Deps, MBB, MTM.MRI);
1078        if (!Deps.empty()) {
1079          // Loop header PHI heights are all 0.
1080          unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
1081          LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
1082          if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel,
1083                            MTM.TII))
1084            addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
1085        }
1086      }
1087    }
1088
1089    // Go through the block backwards.
1090    for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
1091         BI != BB;) {
1092      const MachineInstr &MI = *--BI;
1093
1094      // Find the MI height as determined by virtual register uses in the
1095      // trace below.
1096      unsigned Cycle = 0;
1097      MIHeightMap::iterator HeightI = Heights.find(&MI);
1098      if (HeightI != Heights.end()) {
1099        Cycle = HeightI->second;
1100        // We won't be seeing any more MI uses.
1101        Heights.erase(HeightI);
1102      }
1103
1104      // Don't process PHI deps. They depend on the specific predecessor, and
1105      // we'll get them when visiting the predecessor.
1106      Deps.clear();
1107      bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI);
1108
1109      // There may also be regunit dependencies to include in the height.
1110      if (HasPhysRegs)
1111        Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel,
1112                                      MTM.TII, MTM.TRI);
1113
1114      // Update the required height of any virtual registers read by MI.
1115      for (const DataDep &Dep : Deps)
1116        if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
1117          addLiveIns(Dep.DefMI, Dep.DefOp, Stack);
1118
1119      InstrCycles &MICycles = Cycles[&MI];
1120      MICycles.Height = Cycle;
1121      if (!TBI.HasValidInstrDepths) {
1122        LLVM_DEBUG(dbgs() << Cycle << '\t' << MI);
1123        continue;
1124      }
1125      // Update critical path length.
1126      TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
1127      LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI);
1128    }
1129
1130    // Update virtual live-in heights. They were added by addLiveIns() with a 0
1131    // height because the final height isn't known until now.
1132    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:");
1133    for (LiveInReg &LIR : TBI.LiveIns) {
1134      const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
1135      LIR.Height = Heights.lookup(DefMI);
1136      LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height);
1137    }
1138
1139    // Transfer the live regunits to the live-in list.
1140    for (SparseSet<LiveRegUnit>::const_iterator
1141         RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
1142      TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
1143      LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RI->RegUnit, MTM.TRI) << '@'
1144                        << RI->Cycle);
1145    }
1146    LLVM_DEBUG(dbgs() << '\n');
1147
1148    if (!TBI.HasValidInstrDepths)
1149      continue;
1150    // Add live-ins to the critical path length.
1151    TBI.CriticalPath = std::max(TBI.CriticalPath,
1152                                computeCrossBlockCriticalPath(TBI));
1153    LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
1154  }
1155}
1156
1157MachineTraceMetrics::Trace
1158MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
1159  TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1160
1161  if (!TBI.hasValidDepth() || !TBI.hasValidHeight())
1162    computeTrace(MBB);
1163  if (!TBI.HasValidInstrDepths)
1164    computeInstrDepths(MBB);
1165  if (!TBI.HasValidInstrHeights)
1166    computeInstrHeights(MBB);
1167
1168  return Trace(*this, TBI);
1169}
1170
1171unsigned
1172MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const {
1173  assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) &&
1174         "MI must be in the trace center block");
1175  InstrCycles Cyc = getInstrCycles(MI);
1176  return getCriticalPath() - (Cyc.Depth + Cyc.Height);
1177}
1178
1179unsigned
1180MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const {
1181  const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
1182  SmallVector<DataDep, 1> Deps;
1183  getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
1184  assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
1185  DataDep &Dep = Deps.front();
1186  unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth;
1187  // Add latency if DefMI is a real instruction. Transients get latency 0.
1188  if (!Dep.DefMI->isTransient())
1189    DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
1190                                                        &PHI, Dep.UseOp);
1191  return DepCycle;
1192}
1193
1194/// When bottom is set include instructions in current block in estimate.
1195unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
1196  // Find the limiting processor resource.
1197  // Numbers have been pre-scaled to be comparable.
1198  unsigned PRMax = 0;
1199  ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1200  if (Bottom) {
1201    ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
1202    for (unsigned K = 0; K != PRDepths.size(); ++K)
1203      PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
1204  } else {
1205    for (unsigned PRD : PRDepths)
1206      PRMax = std::max(PRMax, PRD);
1207  }
1208  // Convert to cycle count.
1209  PRMax = TE.MTM.getCycles(PRMax);
1210
1211  /// All instructions before current block
1212  unsigned Instrs = TBI.InstrDepth;
1213  // plus instructions in current block
1214  if (Bottom)
1215    Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
1216  if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1217    Instrs /= IW;
1218  // Assume issue width 1 without a schedule model.
1219  return std::max(Instrs, PRMax);
1220}
1221
1222unsigned MachineTraceMetrics::Trace::getResourceLength(
1223    ArrayRef<const MachineBasicBlock *> Extrablocks,
1224    ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
1225    ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
1226  // Add up resources above and below the center block.
1227  ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1228  ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
1229  unsigned PRMax = 0;
1230
1231  // Capture computing cycles from extra instructions
1232  auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
1233                            unsigned ResourceIdx)
1234                         ->unsigned {
1235    unsigned Cycles = 0;
1236    for (const MCSchedClassDesc *SC : Instrs) {
1237      if (!SC->isValid())
1238        continue;
1239      for (TargetSchedModel::ProcResIter
1240               PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
1241               PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
1242           PI != PE; ++PI) {
1243        if (PI->ProcResourceIdx != ResourceIdx)
1244          continue;
1245        Cycles +=
1246            (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
1247      }
1248    }
1249    return Cycles;
1250  };
1251
1252  for (unsigned K = 0; K != PRDepths.size(); ++K) {
1253    unsigned PRCycles = PRDepths[K] + PRHeights[K];
1254    for (const MachineBasicBlock *MBB : Extrablocks)
1255      PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K];
1256    PRCycles += extraCycles(ExtraInstrs, K);
1257    PRCycles -= extraCycles(RemoveInstrs, K);
1258    PRMax = std::max(PRMax, PRCycles);
1259  }
1260  // Convert to cycle count.
1261  PRMax = TE.MTM.getCycles(PRMax);
1262
1263  // Instrs: #instructions in current trace outside current block.
1264  unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
1265  // Add instruction count from the extra blocks.
1266  for (const MachineBasicBlock *MBB : Extrablocks)
1267    Instrs += TE.MTM.getResources(MBB)->InstrCount;
1268  Instrs += ExtraInstrs.size();
1269  Instrs -= RemoveInstrs.size();
1270  if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1271    Instrs /= IW;
1272  // Assume issue width 1 without a schedule model.
1273  return std::max(Instrs, PRMax);
1274}
1275
1276bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI,
1277                                              const MachineInstr &UseMI) const {
1278  if (DefMI.getParent() == UseMI.getParent())
1279    return true;
1280
1281  const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()];
1282  const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()];
1283
1284  return DepTBI.isUsefulDominator(TBI);
1285}
1286
1287void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
1288  OS << getName() << " ensemble:\n";
1289  for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
1290    OS << "  %bb." << i << '\t';
1291    BlockInfo[i].print(OS);
1292    OS << '\n';
1293  }
1294}
1295
1296void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
1297  if (hasValidDepth()) {
1298    OS << "depth=" << InstrDepth;
1299    if (Pred)
1300      OS << " pred=" << printMBBReference(*Pred);
1301    else
1302      OS << " pred=null";
1303    OS << " head=%bb." << Head;
1304    if (HasValidInstrDepths)
1305      OS << " +instrs";
1306  } else
1307    OS << "depth invalid";
1308  OS << ", ";
1309  if (hasValidHeight()) {
1310    OS << "height=" << InstrHeight;
1311    if (Succ)
1312      OS << " succ=" << printMBBReference(*Succ);
1313    else
1314      OS << " succ=null";
1315    OS << " tail=%bb." << Tail;
1316    if (HasValidInstrHeights)
1317      OS << " +instrs";
1318  } else
1319    OS << "height invalid";
1320  if (HasValidInstrDepths && HasValidInstrHeights)
1321    OS << ", crit=" << CriticalPath;
1322}
1323
1324void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
1325  unsigned MBBNum = &TBI - &TE.BlockInfo[0];
1326
1327  OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum
1328     << " --> %bb." << TBI.Tail << ':';
1329  if (TBI.hasValidHeight() && TBI.hasValidDepth())
1330    OS << ' ' << getInstrCount() << " instrs.";
1331  if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
1332    OS << ' ' << TBI.CriticalPath << " cycles.";
1333
1334  const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
1335  OS << "\n%bb." << MBBNum;
1336  while (Block->hasValidDepth() && Block->Pred) {
1337    unsigned Num = Block->Pred->getNumber();
1338    OS << " <- " << printMBBReference(*Block->Pred);
1339    Block = &TE.BlockInfo[Num];
1340  }
1341
1342  Block = &TBI;
1343  OS << "\n    ";
1344  while (Block->hasValidHeight() && Block->Succ) {
1345    unsigned Num = Block->Succ->getNumber();
1346    OS << " -> " << printMBBReference(*Block->Succ);
1347    Block = &TE.BlockInfo[Num];
1348  }
1349  OS << '\n';
1350}
1351