1151497Sru//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2151497Sru//
3151497Sru// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4151497Sru// See https://llvm.org/LICENSE.txt for license information.
5151497Sru// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6151497Sru//
7151497Sru//===----------------------------------------------------------------------===//
8151497Sru//
9151497Sru// This file defines vectorizer utilities.
10151497Sru//
11151497Sru//===----------------------------------------------------------------------===//
12151497Sru
13151497Sru#include "llvm/Analysis/VectorUtils.h"
14151497Sru#include "llvm/ADT/EquivalenceClasses.h"
15151497Sru#include "llvm/Analysis/DemandedBits.h"
16151497Sru#include "llvm/Analysis/LoopInfo.h"
17151497Sru#include "llvm/Analysis/LoopIterator.h"
18151497Sru#include "llvm/Analysis/ScalarEvolution.h"
19151497Sru#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20151497Sru#include "llvm/Analysis/TargetTransformInfo.h"
21151497Sru#include "llvm/Analysis/ValueTracking.h"
22151497Sru#include "llvm/IR/Constants.h"
23151497Sru#include "llvm/IR/GetElementPtrTypeIterator.h"
24151497Sru#include "llvm/IR/IRBuilder.h"
25151497Sru#include "llvm/IR/PatternMatch.h"
26151497Sru#include "llvm/IR/Value.h"
27151497Sru#include "llvm/Support/CommandLine.h"
28151497Sru
29151497Sru#define DEBUG_TYPE "vectorutils"
30151497Sru
31151497Sruusing namespace llvm;
32151497Sruusing namespace llvm::PatternMatch;
33151497Sru
34151497Sru/// Maximum factor for an interleaved memory access.
35151497Srustatic cl::opt<unsigned> MaxInterleaveGroupFactor(
36151497Sru    "max-interleave-group-factor", cl::Hidden,
37151497Sru    cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38151497Sru    cl::init(8));
39151497Sru
40151497Sru/// Return true if all of the intrinsic's arguments and return type are scalars
41151497Sru/// for the scalar form of the intrinsic, and vectors for the vector form of the
42151497Sru/// intrinsic (except operands that are marked as always being scalar by
43151497Sru/// isVectorIntrinsicWithScalarOpAtArg).
44151497Srubool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45151497Sru  switch (ID) {
46151497Sru  case Intrinsic::abs:   // Begin integer bit-manipulation.
47151497Sru  case Intrinsic::bswap:
48151497Sru  case Intrinsic::bitreverse:
49151497Sru  case Intrinsic::ctpop:
50151497Sru  case Intrinsic::ctlz:
51151497Sru  case Intrinsic::cttz:
52151497Sru  case Intrinsic::fshl:
53151497Sru  case Intrinsic::fshr:
54151497Sru  case Intrinsic::smax:
55151497Sru  case Intrinsic::smin:
56151497Sru  case Intrinsic::umax:
57151497Sru  case Intrinsic::umin:
58151497Sru  case Intrinsic::sadd_sat:
59151497Sru  case Intrinsic::ssub_sat:
60151497Sru  case Intrinsic::uadd_sat:
61151497Sru  case Intrinsic::usub_sat:
62151497Sru  case Intrinsic::smul_fix:
63151497Sru  case Intrinsic::smul_fix_sat:
64151497Sru  case Intrinsic::umul_fix:
65151497Sru  case Intrinsic::umul_fix_sat:
66151497Sru  case Intrinsic::sqrt: // Begin floating-point.
67151497Sru  case Intrinsic::sin:
68151497Sru  case Intrinsic::cos:
69151497Sru  case Intrinsic::exp:
70151497Sru  case Intrinsic::exp2:
71151497Sru  case Intrinsic::log:
72151497Sru  case Intrinsic::log10:
73151497Sru  case Intrinsic::log2:
74151497Sru  case Intrinsic::fabs:
75151497Sru  case Intrinsic::minnum:
76151497Sru  case Intrinsic::maxnum:
77151497Sru  case Intrinsic::minimum:
78151497Sru  case Intrinsic::maximum:
79151497Sru  case Intrinsic::copysign:
80151497Sru  case Intrinsic::floor:
81151497Sru  case Intrinsic::ceil:
82151497Sru  case Intrinsic::trunc:
83151497Sru  case Intrinsic::rint:
84151497Sru  case Intrinsic::nearbyint:
85151497Sru  case Intrinsic::round:
86151497Sru  case Intrinsic::roundeven:
87151497Sru  case Intrinsic::pow:
88151497Sru  case Intrinsic::fma:
89151497Sru  case Intrinsic::fmuladd:
90151497Sru  case Intrinsic::powi:
91151497Sru  case Intrinsic::canonicalize:
92151497Sru  case Intrinsic::fptosi_sat:
93151497Sru  case Intrinsic::fptoui_sat:
94151497Sru    return true;
95151497Sru  default:
96151497Sru    return false;
97151497Sru  }
98151497Sru}
99151497Sru
100151497Sru/// Identifies if the vector form of the intrinsic has a scalar operand.
101151497Srubool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
102151497Sru                                              unsigned ScalarOpdIdx) {
103151497Sru  switch (ID) {
104151497Sru  case Intrinsic::abs:
105151497Sru  case Intrinsic::ctlz:
106151497Sru  case Intrinsic::cttz:
107151497Sru  case Intrinsic::powi:
108151497Sru    return (ScalarOpdIdx == 1);
109151497Sru  case Intrinsic::smul_fix:
110151497Sru  case Intrinsic::smul_fix_sat:
111151497Sru  case Intrinsic::umul_fix:
112151497Sru  case Intrinsic::umul_fix_sat:
113151497Sru    return (ScalarOpdIdx == 2);
114151497Sru  default:
115151497Sru    return false;
116151497Sru  }
117151497Sru}
118151497Sru
119151497Srubool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
120151497Sru                                                  unsigned OpdIdx) {
121151497Sru  switch (ID) {
122151497Sru  case Intrinsic::fptosi_sat:
123151497Sru  case Intrinsic::fptoui_sat:
124151497Sru    return OpdIdx == 0;
125151497Sru  case Intrinsic::powi:
126151497Sru    return OpdIdx == 1;
127151497Sru  default:
128151497Sru    return false;
129151497Sru  }
130151497Sru}
131151497Sru
132151497Sru/// Returns intrinsic ID for call.
133151497Sru/// For the input call instruction it finds mapping intrinsic and returns
134151497Sru/// its ID, in case it does not found it return not_intrinsic.
135151497SruIntrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
136151497Sru                                                const TargetLibraryInfo *TLI) {
137151497Sru  Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
138151497Sru  if (ID == Intrinsic::not_intrinsic)
139151497Sru    return Intrinsic::not_intrinsic;
140151497Sru
141151497Sru  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
142151497Sru      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
143151497Sru      ID == Intrinsic::experimental_noalias_scope_decl ||
144151497Sru      ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
145151497Sru    return ID;
146151497Sru  return Intrinsic::not_intrinsic;
147151497Sru}
148151497Sru
149151497Sru/// Find the operand of the GEP that should be checked for consecutive
150151497Sru/// stores. This ignores trailing indices that have no effect on the final
151151497Sru/// pointer.
152151497Sruunsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
153151497Sru  const DataLayout &DL = Gep->getModule()->getDataLayout();
154151497Sru  unsigned LastOperand = Gep->getNumOperands() - 1;
155151497Sru  TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
156151497Sru
157151497Sru  // Walk backwards and try to peel off zeros.
158151497Sru  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
159151497Sru    // Find the type we're currently indexing into.
160151497Sru    gep_type_iterator GEPTI = gep_type_begin(Gep);
161151497Sru    std::advance(GEPTI, LastOperand - 2);
162151497Sru
163151497Sru    // If it's a type with the same allocation size as the result of the GEP we
164151497Sru    // can peel off the zero index.
165151497Sru    if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
166151497Sru      break;
167151497Sru    --LastOperand;
168151497Sru  }
169151497Sru
170151497Sru  return LastOperand;
171151497Sru}
172151497Sru
173151497Sru/// If the argument is a GEP, then returns the operand identified by
174151497Sru/// getGEPInductionOperand. However, if there is some other non-loop-invariant
175151497Sru/// operand, it returns that instead.
176151497SruValue *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
177151497Sru  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
178151497Sru  if (!GEP)
179151497Sru    return Ptr;
180151497Sru
181151497Sru  unsigned InductionOperand = getGEPInductionOperand(GEP);
182151497Sru
183151497Sru  // Check that all of the gep indices are uniform except for our induction
184151497Sru  // operand.
185151497Sru  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
186151497Sru    if (i != InductionOperand &&
187151497Sru        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
188151497Sru      return Ptr;
189151497Sru  return GEP->getOperand(InductionOperand);
190151497Sru}
191151497Sru
192151497Sru/// If a value has only one user that is a CastInst, return it.
193151497SruValue *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
194151497Sru  Value *UniqueCast = nullptr;
195151497Sru  for (User *U : Ptr->users()) {
196151497Sru    CastInst *CI = dyn_cast<CastInst>(U);
197151497Sru    if (CI && CI->getType() == Ty) {
198151497Sru      if (!UniqueCast)
199151497Sru        UniqueCast = CI;
200151497Sru      else
201151497Sru        return nullptr;
202151497Sru    }
203151497Sru  }
204151497Sru  return UniqueCast;
205151497Sru}
206151497Sru
207151497Sru/// Get the stride of a pointer access in a loop. Looks for symbolic
208151497Sru/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
209151497SruValue *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
210151497Sru  auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
211151497Sru  if (!PtrTy || PtrTy->isAggregateType())
212151497Sru    return nullptr;
213151497Sru
214151497Sru  // Try to remove a gep instruction to make the pointer (actually index at this
215151497Sru  // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
216151497Sru  // pointer, otherwise, we are analyzing the index.
217151497Sru  Value *OrigPtr = Ptr;
218151497Sru
219151497Sru  // The size of the pointer access.
220151497Sru  int64_t PtrAccessSize = 1;
221151497Sru
222151497Sru  Ptr = stripGetElementPtr(Ptr, SE, Lp);
223151497Sru  const SCEV *V = SE->getSCEV(Ptr);
224151497Sru
225151497Sru  if (Ptr != OrigPtr)
226151497Sru    // Strip off casts.
227151497Sru    while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
228151497Sru      V = C->getOperand();
229151497Sru
230151497Sru  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
231151497Sru  if (!S)
232151497Sru    return nullptr;
233151497Sru
234151497Sru  V = S->getStepRecurrence(*SE);
235151497Sru  if (!V)
236151497Sru    return nullptr;
237151497Sru
238151497Sru  // Strip off the size of access multiplication if we are still analyzing the
239151497Sru  // pointer.
240151497Sru  if (OrigPtr == Ptr) {
241151497Sru    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
242151497Sru      if (M->getOperand(0)->getSCEVType() != scConstant)
243151497Sru        return nullptr;
244151497Sru
245151497Sru      const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
246151497Sru
247151497Sru      // Huge step value - give up.
248151497Sru      if (APStepVal.getBitWidth() > 64)
249151497Sru        return nullptr;
250151497Sru
251151497Sru      int64_t StepVal = APStepVal.getSExtValue();
252151497Sru      if (PtrAccessSize != StepVal)
253151497Sru        return nullptr;
254151497Sru      V = M->getOperand(1);
255151497Sru    }
256151497Sru  }
257151497Sru
258151497Sru  // Strip off casts.
259151497Sru  Type *StripedOffRecurrenceCast = nullptr;
260151497Sru  if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
261151497Sru    StripedOffRecurrenceCast = C->getType();
262151497Sru    V = C->getOperand();
263151497Sru  }
264151497Sru
265151497Sru  // Look for the loop invariant symbolic value.
266151497Sru  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
267151497Sru  if (!U)
268151497Sru    return nullptr;
269151497Sru
270151497Sru  Value *Stride = U->getValue();
271151497Sru  if (!Lp->isLoopInvariant(Stride))
272151497Sru    return nullptr;
273151497Sru
274151497Sru  // If we have stripped off the recurrence cast we have to make sure that we
275151497Sru  // return the value that is used in this loop so that we can replace it later.
276151497Sru  if (StripedOffRecurrenceCast)
277151497Sru    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
278151497Sru
279151497Sru  return Stride;
280151497Sru}
281151497Sru
282151497Sru/// Given a vector and an element number, see if the scalar value is
283151497Sru/// already around as a register, for example if it were inserted then extracted
284151497Sru/// from the vector.
285151497SruValue *llvm::findScalarElement(Value *V, unsigned EltNo) {
286151497Sru  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
287151497Sru  VectorType *VTy = cast<VectorType>(V->getType());
288151497Sru  // For fixed-length vector, return undef for out of range access.
289151497Sru  if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
290151497Sru    unsigned Width = FVTy->getNumElements();
291151497Sru    if (EltNo >= Width)
292151497Sru      return UndefValue::get(FVTy->getElementType());
293151497Sru  }
294151497Sru
295151497Sru  if (Constant *C = dyn_cast<Constant>(V))
296151497Sru    return C->getAggregateElement(EltNo);
297151497Sru
298151497Sru  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
299151497Sru    // If this is an insert to a variable element, we don't know what it is.
300151497Sru    if (!isa<ConstantInt>(III->getOperand(2)))
301151497Sru      return nullptr;
302151497Sru    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
303151497Sru
304151497Sru    // If this is an insert to the element we are looking for, return the
305151497Sru    // inserted value.
306151497Sru    if (EltNo == IIElt)
307151497Sru      return III->getOperand(1);
308151497Sru
309151497Sru    // Guard against infinite loop on malformed, unreachable IR.
310151497Sru    if (III == III->getOperand(0))
311151497Sru      return nullptr;
312151497Sru
313151497Sru    // Otherwise, the insertelement doesn't modify the value, recurse on its
314151497Sru    // vector input.
315151497Sru    return findScalarElement(III->getOperand(0), EltNo);
316151497Sru  }
317151497Sru
318151497Sru  ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
319151497Sru  // Restrict the following transformation to fixed-length vector.
320151497Sru  if (SVI && isa<FixedVectorType>(SVI->getType())) {
321151497Sru    unsigned LHSWidth =
322151497Sru        cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
323151497Sru    int InEl = SVI->getMaskValue(EltNo);
324151497Sru    if (InEl < 0)
325151497Sru      return UndefValue::get(VTy->getElementType());
326151497Sru    if (InEl < (int)LHSWidth)
327151497Sru      return findScalarElement(SVI->getOperand(0), InEl);
328151497Sru    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
329151497Sru  }
330151497Sru
331151497Sru  // Extract a value from a vector add operation with a constant zero.
332151497Sru  // TODO: Use getBinOpIdentity() to generalize this.
333151497Sru  Value *Val; Constant *C;
334151497Sru  if (match(V, m_Add(m_Value(Val), m_Constant(C))))
335151497Sru    if (Constant *Elt = C->getAggregateElement(EltNo))
336151497Sru      if (Elt->isNullValue())
337151497Sru        return findScalarElement(Val, EltNo);
338151497Sru
339151497Sru  // If the vector is a splat then we can trivially find the scalar element.
340151497Sru  if (isa<ScalableVectorType>(VTy))
341151497Sru    if (Value *Splat = getSplatValue(V))
342151497Sru      if (EltNo < VTy->getElementCount().getKnownMinValue())
343151497Sru        return Splat;
344151497Sru
345151497Sru  // Otherwise, we don't know.
346151497Sru  return nullptr;
347151497Sru}
348151497Sru
349151497Sruint llvm::getSplatIndex(ArrayRef<int> Mask) {
350151497Sru  int SplatIndex = -1;
351151497Sru  for (int M : Mask) {
352151497Sru    // Ignore invalid (undefined) mask elements.
353151497Sru    if (M < 0)
354151497Sru      continue;
355151497Sru
356151497Sru    // There can be only 1 non-negative mask element value if this is a splat.
357151497Sru    if (SplatIndex != -1 && SplatIndex != M)
358151497Sru      return -1;
359151497Sru
360151497Sru    // Initialize the splat index to the 1st non-negative mask element.
361151497Sru    SplatIndex = M;
362151497Sru  }
363151497Sru  assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
364151497Sru  return SplatIndex;
365151497Sru}
366151497Sru
367151497Sru/// Get splat value if the input is a splat vector or return nullptr.
368151497Sru/// This function is not fully general. It checks only 2 cases:
369151497Sru/// the input value is (1) a splat constant vector or (2) a sequence
370151497Sru/// of instructions that broadcasts a scalar at element 0.
371151497SruValue *llvm::getSplatValue(const Value *V) {
372151497Sru  if (isa<VectorType>(V->getType()))
373151497Sru    if (auto *C = dyn_cast<Constant>(V))
374151497Sru      return C->getSplatValue();
375151497Sru
376151497Sru  // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
377151497Sru  Value *Splat;
378151497Sru  if (match(V,
379151497Sru            m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
380151497Sru                      m_Value(), m_ZeroMask())))
381151497Sru    return Splat;
382151497Sru
383151497Sru  return nullptr;
384151497Sru}
385151497Sru
386151497Srubool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
387151497Sru  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
388151497Sru
389151497Sru  if (isa<VectorType>(V->getType())) {
390151497Sru    if (isa<UndefValue>(V))
391151497Sru      return true;
392151497Sru    // FIXME: We can allow undefs, but if Index was specified, we may want to
393151497Sru    //        check that the constant is defined at that index.
394151497Sru    if (auto *C = dyn_cast<Constant>(V))
395151497Sru      return C->getSplatValue() != nullptr;
396151497Sru  }
397151497Sru
398151497Sru  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
399151497Sru    // FIXME: We can safely allow undefs here. If Index was specified, we will
400151497Sru    //        check that the mask elt is defined at the required index.
401151497Sru    if (!all_equal(Shuf->getShuffleMask()))
402151497Sru      return false;
403151497Sru
404151497Sru    // Match any index.
405151497Sru    if (Index == -1)
406151497Sru      return true;
407151497Sru
408151497Sru    // Match a specific element. The mask should be defined at and match the
409151497Sru    // specified index.
410151497Sru    return Shuf->getMaskValue(Index) == Index;
411151497Sru  }
412151497Sru
413151497Sru  // The remaining tests are all recursive, so bail out if we hit the limit.
414151497Sru  if (Depth++ == MaxAnalysisRecursionDepth)
415151497Sru    return false;
416151497Sru
417151497Sru  // If both operands of a binop are splats, the result is a splat.
418151497Sru  Value *X, *Y, *Z;
419151497Sru  if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
420151497Sru    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
421151497Sru
422151497Sru  // If all operands of a select are splats, the result is a splat.
423151497Sru  if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
424151497Sru    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
425151497Sru           isSplatValue(Z, Index, Depth);
426151497Sru
427151497Sru  // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
428151497Sru
429151497Sru  return false;
430151497Sru}
431151497Sru
432151497Srubool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
433151497Sru                                  const APInt &DemandedElts, APInt &DemandedLHS,
434151497Sru                                  APInt &DemandedRHS, bool AllowUndefElts) {
435151497Sru  DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
436151497Sru
437151497Sru  // Early out if we don't demand any elements.
438151497Sru  if (DemandedElts.isZero())
439151497Sru    return true;
440151497Sru
441151497Sru  // Simple case of a shuffle with zeroinitializer.
442151497Sru  if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
443151497Sru    DemandedLHS.setBit(0);
444151497Sru    return true;
445151497Sru  }
446151497Sru
447151497Sru  for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
448151497Sru    int M = Mask[I];
449151497Sru    assert((-1 <= M) && (M < (SrcWidth * 2)) &&
450151497Sru           "Invalid shuffle mask constant");
451151497Sru
452151497Sru    if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
453151497Sru      continue;
454151497Sru
455151497Sru    // For undef elements, we don't know anything about the common state of
456151497Sru    // the shuffle result.
457151497Sru    if (M < 0)
458151497Sru      return false;
459151497Sru
460151497Sru    if (M < SrcWidth)
461151497Sru      DemandedLHS.setBit(M);
462151497Sru    else
463151497Sru      DemandedRHS.setBit(M - SrcWidth);
464151497Sru  }
465151497Sru
466151497Sru  return true;
467151497Sru}
468151497Sru
469151497Sruvoid llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
470151497Sru                                 SmallVectorImpl<int> &ScaledMask) {
471151497Sru  assert(Scale > 0 && "Unexpected scaling factor");
472151497Sru
473151497Sru  // Fast-path: if no scaling, then it is just a copy.
474151497Sru  if (Scale == 1) {
475151497Sru    ScaledMask.assign(Mask.begin(), Mask.end());
476151497Sru    return;
477151497Sru  }
478151497Sru
479151497Sru  ScaledMask.clear();
480151497Sru  for (int MaskElt : Mask) {
481151497Sru    if (MaskElt >= 0) {
482151497Sru      assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
483151497Sru             "Overflowed 32-bits");
484151497Sru    }
485151497Sru    for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
486151497Sru      ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
487151497Sru  }
488151497Sru}
489151497Sru
490151497Srubool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
491151497Sru                                SmallVectorImpl<int> &ScaledMask) {
492151497Sru  assert(Scale > 0 && "Unexpected scaling factor");
493151497Sru
494151497Sru  // Fast-path: if no scaling, then it is just a copy.
495151497Sru  if (Scale == 1) {
496151497Sru    ScaledMask.assign(Mask.begin(), Mask.end());
497151497Sru    return true;
498151497Sru  }
499151497Sru
500151497Sru  // We must map the original elements down evenly to a type with less elements.
501151497Sru  int NumElts = Mask.size();
502151497Sru  if (NumElts % Scale != 0)
503151497Sru    return false;
504151497Sru
505151497Sru  ScaledMask.clear();
506151497Sru  ScaledMask.reserve(NumElts / Scale);
507151497Sru
508151497Sru  // Step through the input mask by splitting into Scale-sized slices.
509151497Sru  do {
510151497Sru    ArrayRef<int> MaskSlice = Mask.take_front(Scale);
511151497Sru    assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
512151497Sru
513151497Sru    // The first element of the slice determines how we evaluate this slice.
514151497Sru    int SliceFront = MaskSlice.front();
515151497Sru    if (SliceFront < 0) {
516151497Sru      // Negative values (undef or other "sentinel" values) must be equal across
517151497Sru      // the entire slice.
518151497Sru      if (!all_equal(MaskSlice))
519151497Sru        return false;
520151497Sru      ScaledMask.push_back(SliceFront);
521151497Sru    } else {
522151497Sru      // A positive mask element must be cleanly divisible.
523151497Sru      if (SliceFront % Scale != 0)
524151497Sru        return false;
525151497Sru      // Elements of the slice must be consecutive.
526151497Sru      for (int i = 1; i < Scale; ++i)
527151497Sru        if (MaskSlice[i] != SliceFront + i)
528151497Sru          return false;
529151497Sru      ScaledMask.push_back(SliceFront / Scale);
530151497Sru    }
531151497Sru    Mask = Mask.drop_front(Scale);
532151497Sru  } while (!Mask.empty());
533151497Sru
534151497Sru  assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
535151497Sru
536151497Sru  // All elements of the original mask can be scaled down to map to the elements
537151497Sru  // of a mask with wider elements.
538151497Sru  return true;
539151497Sru}
540151497Sru
541151497Sruvoid llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
542151497Sru                                        SmallVectorImpl<int> &ScaledMask) {
543151497Sru  std::array<SmallVector<int, 16>, 2> TmpMasks;
544151497Sru  SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
545151497Sru  ArrayRef<int> InputMask = Mask;
546151497Sru  for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
547151497Sru    while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
548151497Sru      InputMask = *Output;
549151497Sru      std::swap(Output, Tmp);
550151497Sru    }
551151497Sru  }
552151497Sru  ScaledMask.assign(InputMask.begin(), InputMask.end());
553151497Sru}
554151497Sru
555151497Sruvoid llvm::processShuffleMasks(
556151497Sru    ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
557151497Sru    unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
558151497Sru    function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
559151497Sru    function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
560151497Sru  SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
561151497Sru  // Try to perform better estimation of the permutation.
562151497Sru  // 1. Split the source/destination vectors into real registers.
563151497Sru  // 2. Do the mask analysis to identify which real registers are
564151497Sru  // permuted.
565151497Sru  int Sz = Mask.size();
566151497Sru  unsigned SzDest = Sz / NumOfDestRegs;
567151497Sru  unsigned SzSrc = Sz / NumOfSrcRegs;
568151497Sru  for (unsigned I = 0; I < NumOfDestRegs; ++I) {
569151497Sru    auto &RegMasks = Res[I];
570151497Sru    RegMasks.assign(NumOfSrcRegs, {});
571151497Sru    // Check that the values in dest registers are in the one src
572151497Sru    // register.
573151497Sru    for (unsigned K = 0; K < SzDest; ++K) {
574151497Sru      int Idx = I * SzDest + K;
575151497Sru      if (Idx == Sz)
576151497Sru        break;
577151497Sru      if (Mask[Idx] >= Sz || Mask[Idx] == UndefMaskElem)
578151497Sru        continue;
579151497Sru      int SrcRegIdx = Mask[Idx] / SzSrc;
580151497Sru      // Add a cost of PermuteTwoSrc for each new source register permute,
581151497Sru      // if we have more than one source registers.
582151497Sru      if (RegMasks[SrcRegIdx].empty())
583151497Sru        RegMasks[SrcRegIdx].assign(SzDest, UndefMaskElem);
584151497Sru      RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
585151497Sru    }
586151497Sru  }
587151497Sru  // Process split mask.
588151497Sru  for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
589151497Sru    auto &Dest = Res[I];
590151497Sru    int NumSrcRegs =
591151497Sru        count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
592151497Sru    switch (NumSrcRegs) {
593151497Sru    case 0:
594151497Sru      // No input vectors were used!
595151497Sru      NoInputAction();
596151497Sru      break;
597151497Sru    case 1: {
598151497Sru      // Find the only mask with at least single undef mask elem.
599151497Sru      auto *It =
600151497Sru          find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
601151497Sru      unsigned SrcReg = std::distance(Dest.begin(), It);
602151497Sru      SingleInputAction(*It, SrcReg, I);
603151497Sru      break;
604151497Sru    }
605151497Sru    default: {
606151497Sru      // The first mask is a permutation of a single register. Since we have >2
607151497Sru      // input registers to shuffle, we merge the masks for 2 first registers
608151497Sru      // and generate a shuffle of 2 registers rather than the reordering of the
609151497Sru      // first register and then shuffle with the second register. Next,
610151497Sru      // generate the shuffles of the resulting register + the remaining
611151497Sru      // registers from the list.
612151497Sru      auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
613151497Sru                               ArrayRef<int> SecondMask) {
614151497Sru        for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
615151497Sru          if (SecondMask[Idx] != UndefMaskElem) {
616151497Sru            assert(FirstMask[Idx] == UndefMaskElem &&
617151497Sru                   "Expected undefined mask element.");
618151497Sru            FirstMask[Idx] = SecondMask[Idx] + VF;
619151497Sru          }
620151497Sru        }
621151497Sru      };
622151497Sru      auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
623151497Sru        for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
624151497Sru          if (Mask[Idx] != UndefMaskElem)
625151497Sru            Mask[Idx] = Idx;
626151497Sru        }
627151497Sru      };
628151497Sru      int SecondIdx;
629151497Sru      do {
630151497Sru        int FirstIdx = -1;
631151497Sru        SecondIdx = -1;
632151497Sru        MutableArrayRef<int> FirstMask, SecondMask;
633151497Sru        for (unsigned I = 0; I < NumOfDestRegs; ++I) {
634151497Sru          SmallVectorImpl<int> &RegMask = Dest[I];
635151497Sru          if (RegMask.empty())
636151497Sru            continue;
637151497Sru
638151497Sru          if (FirstIdx == SecondIdx) {
639151497Sru            FirstIdx = I;
640151497Sru            FirstMask = RegMask;
641151497Sru            continue;
642151497Sru          }
643151497Sru          SecondIdx = I;
644151497Sru          SecondMask = RegMask;
645151497Sru          CombineMasks(FirstMask, SecondMask);
646151497Sru          ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
647151497Sru          NormalizeMask(FirstMask);
648151497Sru          RegMask.clear();
649151497Sru          SecondMask = FirstMask;
650151497Sru          SecondIdx = FirstIdx;
651151497Sru        }
652151497Sru        if (FirstIdx != SecondIdx && SecondIdx >= 0) {
653151497Sru          CombineMasks(SecondMask, FirstMask);
654151497Sru          ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
655151497Sru          Dest[FirstIdx].clear();
656151497Sru          NormalizeMask(SecondMask);
657151497Sru        }
658151497Sru      } while (SecondIdx >= 0);
659151497Sru      break;
660151497Sru    }
661151497Sru    }
662151497Sru  }
663151497Sru}
664151497Sru
665151497SruMapVector<Instruction *, uint64_t>
666151497Srullvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
667151497Sru                               const TargetTransformInfo *TTI) {
668151497Sru
669151497Sru  // DemandedBits will give us every value's live-out bits. But we want
670151497Sru  // to ensure no extra casts would need to be inserted, so every DAG
671151497Sru  // of connected values must have the same minimum bitwidth.
672151497Sru  EquivalenceClasses<Value *> ECs;
673151497Sru  SmallVector<Value *, 16> Worklist;
674151497Sru  SmallPtrSet<Value *, 4> Roots;
675151497Sru  SmallPtrSet<Value *, 16> Visited;
676151497Sru  DenseMap<Value *, uint64_t> DBits;
677151497Sru  SmallPtrSet<Instruction *, 4> InstructionSet;
678151497Sru  MapVector<Instruction *, uint64_t> MinBWs;
679151497Sru
680151497Sru  // Determine the roots. We work bottom-up, from truncs or icmps.
681151497Sru  bool SeenExtFromIllegalType = false;
682151497Sru  for (auto *BB : Blocks)
683151497Sru    for (auto &I : *BB) {
684151497Sru      InstructionSet.insert(&I);
685151497Sru
686151497Sru      if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
687151497Sru          !TTI->isTypeLegal(I.getOperand(0)->getType()))
688151497Sru        SeenExtFromIllegalType = true;
689151497Sru
690151497Sru      // Only deal with non-vector integers up to 64-bits wide.
691151497Sru      if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
692151497Sru          !I.getType()->isVectorTy() &&
693151497Sru          I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
694151497Sru        // Don't make work for ourselves. If we know the loaded type is legal,
695151497Sru        // don't add it to the worklist.
696151497Sru        if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
697151497Sru          continue;
698151497Sru
699151497Sru        Worklist.push_back(&I);
700151497Sru        Roots.insert(&I);
701151497Sru      }
702151497Sru    }
703151497Sru  // Early exit.
704151497Sru  if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
705151497Sru    return MinBWs;
706151497Sru
707151497Sru  // Now proceed breadth-first, unioning values together.
708151497Sru  while (!Worklist.empty()) {
709151497Sru    Value *Val = Worklist.pop_back_val();
710151497Sru    Value *Leader = ECs.getOrInsertLeaderValue(Val);
711151497Sru
712151497Sru    if (!Visited.insert(Val).second)
713151497Sru      continue;
714151497Sru
715151497Sru    // Non-instructions terminate a chain successfully.
716151497Sru    if (!isa<Instruction>(Val))
717151497Sru      continue;
718151497Sru    Instruction *I = cast<Instruction>(Val);
719151497Sru
720151497Sru    // If we encounter a type that is larger than 64 bits, we can't represent
721151497Sru    // it so bail out.
722151497Sru    if (DB.getDemandedBits(I).getBitWidth() > 64)
723151497Sru      return MapVector<Instruction *, uint64_t>();
724151497Sru
725151497Sru    uint64_t V = DB.getDemandedBits(I).getZExtValue();
726151497Sru    DBits[Leader] |= V;
727151497Sru    DBits[I] = V;
728151497Sru
729151497Sru    // Casts, loads and instructions outside of our range terminate a chain
730151497Sru    // successfully.
731151497Sru    if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
732151497Sru        !InstructionSet.count(I))
733151497Sru      continue;
734151497Sru
735151497Sru    // Unsafe casts terminate a chain unsuccessfully. We can't do anything
736151497Sru    // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
737151497Sru    // transform anything that relies on them.
738151497Sru    if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
739151497Sru        !I->getType()->isIntegerTy()) {
740151497Sru      DBits[Leader] |= ~0ULL;
741151497Sru      continue;
742151497Sru    }
743151497Sru
744151497Sru    // We don't modify the types of PHIs. Reductions will already have been
745151497Sru    // truncated if possible, and inductions' sizes will have been chosen by
746151497Sru    // indvars.
747151497Sru    if (isa<PHINode>(I))
748151497Sru      continue;
749151497Sru
750151497Sru    if (DBits[Leader] == ~0ULL)
751151497Sru      // All bits demanded, no point continuing.
752151497Sru      continue;
753151497Sru
754151497Sru    for (Value *O : cast<User>(I)->operands()) {
755151497Sru      ECs.unionSets(Leader, O);
756151497Sru      Worklist.push_back(O);
757151497Sru    }
758151497Sru  }
759151497Sru
760151497Sru  // Now we've discovered all values, walk them to see if there are
761151497Sru  // any users we didn't see. If there are, we can't optimize that
762151497Sru  // chain.
763151497Sru  for (auto &I : DBits)
764151497Sru    for (auto *U : I.first->users())
765151497Sru      if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
766151497Sru        DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
767151497Sru
768151497Sru  for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
769151497Sru    uint64_t LeaderDemandedBits = 0;
770151497Sru    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
771151497Sru      LeaderDemandedBits |= DBits[M];
772151497Sru
773151497Sru    uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
774151497Sru                     llvm::countLeadingZeros(LeaderDemandedBits);
775151497Sru    // Round up to a power of 2
776151497Sru    if (!isPowerOf2_64((uint64_t)MinBW))
777151497Sru      MinBW = NextPowerOf2(MinBW);
778151497Sru
779151497Sru    // We don't modify the types of PHIs. Reductions will already have been
780151497Sru    // truncated if possible, and inductions' sizes will have been chosen by
781151497Sru    // indvars.
782151497Sru    // If we are required to shrink a PHI, abandon this entire equivalence class.
783151497Sru    bool Abort = false;
784151497Sru    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
785151497Sru      if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
786151497Sru        Abort = true;
787151497Sru        break;
788151497Sru      }
789151497Sru    if (Abort)
790151497Sru      continue;
791151497Sru
792151497Sru    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
793151497Sru      if (!isa<Instruction>(M))
794151497Sru        continue;
795151497Sru      Type *Ty = M->getType();
796151497Sru      if (Roots.count(M))
797151497Sru        Ty = cast<Instruction>(M)->getOperand(0)->getType();
798151497Sru      if (MinBW < Ty->getScalarSizeInBits())
799151497Sru        MinBWs[cast<Instruction>(M)] = MinBW;
800151497Sru    }
801151497Sru  }
802151497Sru
803151497Sru  return MinBWs;
804151497Sru}
805151497Sru
806151497Sru/// Add all access groups in @p AccGroups to @p List.
807151497Srutemplate <typename ListT>
808151497Srustatic void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
809151497Sru  // Interpret an access group as a list containing itself.
810151497Sru  if (AccGroups->getNumOperands() == 0) {
811151497Sru    assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
812151497Sru    List.insert(AccGroups);
813151497Sru    return;
814151497Sru  }
815151497Sru
816151497Sru  for (const auto &AccGroupListOp : AccGroups->operands()) {
817151497Sru    auto *Item = cast<MDNode>(AccGroupListOp.get());
818151497Sru    assert(isValidAsAccessGroup(Item) && "List item must be an access group");
819151497Sru    List.insert(Item);
820151497Sru  }
821151497Sru}
822151497Sru
823151497SruMDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
824151497Sru  if (!AccGroups1)
825151497Sru    return AccGroups2;
826151497Sru  if (!AccGroups2)
827151497Sru    return AccGroups1;
828151497Sru  if (AccGroups1 == AccGroups2)
829151497Sru    return AccGroups1;
830151497Sru
831151497Sru  SmallSetVector<Metadata *, 4> Union;
832151497Sru  addToAccessGroupList(Union, AccGroups1);
833151497Sru  addToAccessGroupList(Union, AccGroups2);
834151497Sru
835151497Sru  if (Union.size() == 0)
836151497Sru    return nullptr;
837151497Sru  if (Union.size() == 1)
838151497Sru    return cast<MDNode>(Union.front());
839151497Sru
840151497Sru  LLVMContext &Ctx = AccGroups1->getContext();
841151497Sru  return MDNode::get(Ctx, Union.getArrayRef());
842151497Sru}
843151497Sru
844151497SruMDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
845151497Sru                                    const Instruction *Inst2) {
846151497Sru  bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
847151497Sru  bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
848151497Sru
849151497Sru  if (!MayAccessMem1 && !MayAccessMem2)
850151497Sru    return nullptr;
851151497Sru  if (!MayAccessMem1)
852151497Sru    return Inst2->getMetadata(LLVMContext::MD_access_group);
853151497Sru  if (!MayAccessMem2)
854151497Sru    return Inst1->getMetadata(LLVMContext::MD_access_group);
855151497Sru
856151497Sru  MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
857151497Sru  MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
858151497Sru  if (!MD1 || !MD2)
859151497Sru    return nullptr;
860151497Sru  if (MD1 == MD2)
861151497Sru    return MD1;
862151497Sru
863151497Sru  // Use set for scalable 'contains' check.
864151497Sru  SmallPtrSet<Metadata *, 4> AccGroupSet2;
865151497Sru  addToAccessGroupList(AccGroupSet2, MD2);
866151497Sru
867151497Sru  SmallVector<Metadata *, 4> Intersection;
868151497Sru  if (MD1->getNumOperands() == 0) {
869151497Sru    assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
870151497Sru    if (AccGroupSet2.count(MD1))
871151497Sru      Intersection.push_back(MD1);
872151497Sru  } else {
873151497Sru    for (const MDOperand &Node : MD1->operands()) {
874151497Sru      auto *Item = cast<MDNode>(Node.get());
875151497Sru      assert(isValidAsAccessGroup(Item) && "List item must be an access group");
876151497Sru      if (AccGroupSet2.count(Item))
877151497Sru        Intersection.push_back(Item);
878151497Sru    }
879151497Sru  }
880151497Sru
881151497Sru  if (Intersection.size() == 0)
882151497Sru    return nullptr;
883151497Sru  if (Intersection.size() == 1)
884151497Sru    return cast<MDNode>(Intersection.front());
885151497Sru
886151497Sru  LLVMContext &Ctx = Inst1->getContext();
887151497Sru  return MDNode::get(Ctx, Intersection);
888151497Sru}
889151497Sru
890151497Sru/// \returns \p I after propagating metadata from \p VL.
891151497SruInstruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
892151497Sru  if (VL.empty())
893151497Sru    return Inst;
894151497Sru  Instruction *I0 = cast<Instruction>(VL[0]);
895151497Sru  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
896151497Sru  I0->getAllMetadataOtherThanDebugLoc(Metadata);
897151497Sru
898151497Sru  for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
899151497Sru                    LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
900151497Sru                    LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
901151497Sru                    LLVMContext::MD_access_group}) {
902151497Sru    MDNode *MD = I0->getMetadata(Kind);
903151497Sru
904151497Sru    for (int J = 1, E = VL.size(); MD && J != E; ++J) {
905151497Sru      const Instruction *IJ = cast<Instruction>(VL[J]);
906151497Sru      MDNode *IMD = IJ->getMetadata(Kind);
907151497Sru      switch (Kind) {
908151497Sru      case LLVMContext::MD_tbaa:
909151497Sru        MD = MDNode::getMostGenericTBAA(MD, IMD);
910151497Sru        break;
911151497Sru      case LLVMContext::MD_alias_scope:
912151497Sru        MD = MDNode::getMostGenericAliasScope(MD, IMD);
913151497Sru        break;
914151497Sru      case LLVMContext::MD_fpmath:
915151497Sru        MD = MDNode::getMostGenericFPMath(MD, IMD);
916151497Sru        break;
917151497Sru      case LLVMContext::MD_noalias:
918151497Sru      case LLVMContext::MD_nontemporal:
919151497Sru      case LLVMContext::MD_invariant_load:
920151497Sru        MD = MDNode::intersect(MD, IMD);
921151497Sru        break;
922151497Sru      case LLVMContext::MD_access_group:
923151497Sru        MD = intersectAccessGroups(Inst, IJ);
924151497Sru        break;
925151497Sru      default:
926151497Sru        llvm_unreachable("unhandled metadata");
927151497Sru      }
928151497Sru    }
929151497Sru
930151497Sru    Inst->setMetadata(Kind, MD);
931151497Sru  }
932151497Sru
933151497Sru  return Inst;
934151497Sru}
935151497Sru
936151497SruConstant *
937151497Srullvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
938151497Sru                           const InterleaveGroup<Instruction> &Group) {
939151497Sru  // All 1's means mask is not needed.
940151497Sru  if (Group.getNumMembers() == Group.getFactor())
941151497Sru    return nullptr;
942151497Sru
943151497Sru  // TODO: support reversed access.
944151497Sru  assert(!Group.isReverse() && "Reversed group not supported.");
945151497Sru
946151497Sru  SmallVector<Constant *, 16> Mask;
947151497Sru  for (unsigned i = 0; i < VF; i++)
948151497Sru    for (unsigned j = 0; j < Group.getFactor(); ++j) {
949151497Sru      unsigned HasMember = Group.getMember(j) ? 1 : 0;
950151497Sru      Mask.push_back(Builder.getInt1(HasMember));
951151497Sru    }
952151497Sru
953151497Sru  return ConstantVector::get(Mask);
954151497Sru}
955151497Sru
956151497Srullvm::SmallVector<int, 16>
957151497Srullvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
958151497Sru  SmallVector<int, 16> MaskVec;
959151497Sru  for (unsigned i = 0; i < VF; i++)
960151497Sru    for (unsigned j = 0; j < ReplicationFactor; j++)
961151497Sru      MaskVec.push_back(i);
962151497Sru
963151497Sru  return MaskVec;
964151497Sru}
965151497Sru
966151497Srullvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
967151497Sru                                                      unsigned NumVecs) {
968151497Sru  SmallVector<int, 16> Mask;
969151497Sru  for (unsigned i = 0; i < VF; i++)
970151497Sru    for (unsigned j = 0; j < NumVecs; j++)
971151497Sru      Mask.push_back(j * VF + i);
972151497Sru
973151497Sru  return Mask;
974151497Sru}
975151497Sru
976151497Srullvm::SmallVector<int, 16>
977151497Srullvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
978151497Sru  SmallVector<int, 16> Mask;
979151497Sru  for (unsigned i = 0; i < VF; i++)
980151497Sru    Mask.push_back(Start + i * Stride);
981151497Sru
982151497Sru  return Mask;
983151497Sru}
984151497Sru
985151497Srullvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
986151497Sru                                                      unsigned NumInts,
987151497Sru                                                      unsigned NumUndefs) {
988151497Sru  SmallVector<int, 16> Mask;
989151497Sru  for (unsigned i = 0; i < NumInts; i++)
990151497Sru    Mask.push_back(Start + i);
991151497Sru
992151497Sru  for (unsigned i = 0; i < NumUndefs; i++)
993151497Sru    Mask.push_back(-1);
994151497Sru
995151497Sru  return Mask;
996151497Sru}
997151497Sru
998151497Srullvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
999151497Sru                                                 unsigned NumElts) {
1000151497Sru  // Avoid casts in the loop and make sure we have a reasonable number.
1001151497Sru  int NumEltsSigned = NumElts;
1002151497Sru  assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
1003151497Sru
1004151497Sru  // If the mask chooses an element from operand 1, reduce it to choose from the
1005151497Sru  // corresponding element of operand 0. Undef mask elements are unchanged.
1006151497Sru  SmallVector<int, 16> UnaryMask;
1007151497Sru  for (int MaskElt : Mask) {
1008151497Sru    assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
1009151497Sru    int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
1010151497Sru    UnaryMask.push_back(UnaryElt);
1011151497Sru  }
1012151497Sru  return UnaryMask;
1013151497Sru}
1014151497Sru
1015151497Sru/// A helper function for concatenating vectors. This function concatenates two
1016151497Sru/// vectors having the same element type. If the second vector has fewer
1017151497Sru/// elements than the first, it is padded with undefs.
1018151497Srustatic Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
1019151497Sru                                    Value *V2) {
1020151497Sru  VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
1021151497Sru  VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
1022151497Sru  assert(VecTy1 && VecTy2 &&
1023151497Sru         VecTy1->getScalarType() == VecTy2->getScalarType() &&
1024151497Sru         "Expect two vectors with the same element type");
1025151497Sru
1026151497Sru  unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
1027151497Sru  unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
1028151497Sru  assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
1029151497Sru
1030151497Sru  if (NumElts1 > NumElts2) {
1031151497Sru    // Extend with UNDEFs.
1032151497Sru    V2 = Builder.CreateShuffleVector(
1033151497Sru        V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
1034151497Sru  }
1035151497Sru
1036151497Sru  return Builder.CreateShuffleVector(
1037151497Sru      V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
1038151497Sru}
1039151497Sru
1040151497SruValue *llvm::concatenateVectors(IRBuilderBase &Builder,
1041151497Sru                                ArrayRef<Value *> Vecs) {
1042151497Sru  unsigned NumVecs = Vecs.size();
1043151497Sru  assert(NumVecs > 1 && "Should be at least two vectors");
1044151497Sru
1045151497Sru  SmallVector<Value *, 8> ResList;
1046151497Sru  ResList.append(Vecs.begin(), Vecs.end());
1047151497Sru  do {
1048151497Sru    SmallVector<Value *, 8> TmpList;
1049151497Sru    for (unsigned i = 0; i < NumVecs - 1; i += 2) {
1050151497Sru      Value *V0 = ResList[i], *V1 = ResList[i + 1];
1051151497Sru      assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
1052151497Sru             "Only the last vector may have a different type");
1053151497Sru
1054151497Sru      TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
1055151497Sru    }
1056151497Sru
1057151497Sru    // Push the last vector if the total number of vectors is odd.
1058151497Sru    if (NumVecs % 2 != 0)
1059151497Sru      TmpList.push_back(ResList[NumVecs - 1]);
1060151497Sru
1061151497Sru    ResList = TmpList;
1062151497Sru    NumVecs = ResList.size();
1063151497Sru  } while (NumVecs > 1);
1064151497Sru
1065151497Sru  return ResList[0];
1066151497Sru}
1067151497Sru
1068151497Srubool llvm::maskIsAllZeroOrUndef(Value *Mask) {
1069151497Sru  assert(isa<VectorType>(Mask->getType()) &&
1070151497Sru         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1071151497Sru         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1072151497Sru             1 &&
1073151497Sru         "Mask must be a vector of i1");
1074151497Sru
1075151497Sru  auto *ConstMask = dyn_cast<Constant>(Mask);
1076151497Sru  if (!ConstMask)
1077151497Sru    return false;
1078151497Sru  if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1079151497Sru    return true;
1080151497Sru  if (isa<ScalableVectorType>(ConstMask->getType()))
1081151497Sru    return false;
1082151497Sru  for (unsigned
1083151497Sru           I = 0,
1084151497Sru           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1085151497Sru       I != E; ++I) {
1086151497Sru    if (auto *MaskElt = ConstMask->getAggregateElement(I))
1087151497Sru      if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1088151497Sru        continue;
1089151497Sru    return false;
1090151497Sru  }
1091151497Sru  return true;
1092151497Sru}
1093151497Sru
1094151497Srubool llvm::maskIsAllOneOrUndef(Value *Mask) {
1095151497Sru  assert(isa<VectorType>(Mask->getType()) &&
1096151497Sru         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1097151497Sru         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1098151497Sru             1 &&
1099151497Sru         "Mask must be a vector of i1");
1100151497Sru
1101151497Sru  auto *ConstMask = dyn_cast<Constant>(Mask);
1102151497Sru  if (!ConstMask)
1103151497Sru    return false;
1104151497Sru  if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1105151497Sru    return true;
1106151497Sru  if (isa<ScalableVectorType>(ConstMask->getType()))
1107151497Sru    return false;
1108151497Sru  for (unsigned
1109151497Sru           I = 0,
1110151497Sru           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1111151497Sru       I != E; ++I) {
1112151497Sru    if (auto *MaskElt = ConstMask->getAggregateElement(I))
1113151497Sru      if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1114151497Sru        continue;
1115151497Sru    return false;
1116151497Sru  }
1117151497Sru  return true;
1118151497Sru}
1119151497Sru
1120151497Sru/// TODO: This is a lot like known bits, but for
1121151497Sru/// vectors.  Is there something we can common this with?
1122151497SruAPInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1123151497Sru  assert(isa<FixedVectorType>(Mask->getType()) &&
1124151497Sru         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1125151497Sru         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1126151497Sru             1 &&
1127151497Sru         "Mask must be a fixed width vector of i1");
1128151497Sru
1129151497Sru  const unsigned VWidth =
1130151497Sru      cast<FixedVectorType>(Mask->getType())->getNumElements();
1131151497Sru  APInt DemandedElts = APInt::getAllOnes(VWidth);
1132151497Sru  if (auto *CV = dyn_cast<ConstantVector>(Mask))
1133151497Sru    for (unsigned i = 0; i < VWidth; i++)
1134151497Sru      if (CV->getAggregateElement(i)->isNullValue())
1135151497Sru        DemandedElts.clearBit(i);
1136151497Sru  return DemandedElts;
1137151497Sru}
1138151497Sru
1139151497Srubool InterleavedAccessInfo::isStrided(int Stride) {
1140151497Sru  unsigned Factor = std::abs(Stride);
1141151497Sru  return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1142151497Sru}
1143151497Sru
1144151497Sruvoid InterleavedAccessInfo::collectConstStrideAccesses(
1145151497Sru    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1146151497Sru    const ValueToValueMap &Strides) {
1147151497Sru  auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1148151497Sru
1149151497Sru  // Since it's desired that the load/store instructions be maintained in
1150151497Sru  // "program order" for the interleaved access analysis, we have to visit the
1151151497Sru  // blocks in the loop in reverse postorder (i.e., in a topological order).
1152151497Sru  // Such an ordering will ensure that any load/store that may be executed
1153151497Sru  // before a second load/store will precede the second load/store in
1154151497Sru  // AccessStrideInfo.
1155151497Sru  LoopBlocksDFS DFS(TheLoop);
1156151497Sru  DFS.perform(LI);
1157151497Sru  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1158151497Sru    for (auto &I : *BB) {
1159151497Sru      Value *Ptr = getLoadStorePointerOperand(&I);
1160151497Sru      if (!Ptr)
1161151497Sru        continue;
1162151497Sru      Type *ElementTy = getLoadStoreType(&I);
1163151497Sru
1164151497Sru      // Currently, codegen doesn't support cases where the type size doesn't
1165151497Sru      // match the alloc size. Skip them for now.
1166151497Sru      uint64_t Size = DL.getTypeAllocSize(ElementTy);
1167151497Sru      if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1168151497Sru        continue;
1169151497Sru
1170151497Sru      // We don't check wrapping here because we don't know yet if Ptr will be
1171151497Sru      // part of a full group or a group with gaps. Checking wrapping for all
1172151497Sru      // pointers (even those that end up in groups with no gaps) will be overly
1173151497Sru      // conservative. For full groups, wrapping should be ok since if we would
1174151497Sru      // wrap around the address space we would do a memory access at nullptr
1175151497Sru      // even without the transformation. The wrapping checks are therefore
1176151497Sru      // deferred until after we've formed the interleaved groups.
1177151497Sru      int64_t Stride =
1178151497Sru        getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1179151497Sru                     /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1180151497Sru
1181151497Sru      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1182151497Sru      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1183151497Sru                                              getLoadStoreAlignment(&I));
1184151497Sru    }
1185151497Sru}
1186151497Sru
1187151497Sru// Analyze interleaved accesses and collect them into interleaved load and
1188151497Sru// store groups.
1189151497Sru//
1190151497Sru// When generating code for an interleaved load group, we effectively hoist all
1191151497Sru// loads in the group to the location of the first load in program order. When
1192151497Sru// generating code for an interleaved store group, we sink all stores to the
1193151497Sru// location of the last store. This code motion can change the order of load
1194151497Sru// and store instructions and may break dependences.
1195151497Sru//
1196151497Sru// The code generation strategy mentioned above ensures that we won't violate
1197151497Sru// any write-after-read (WAR) dependences.
1198151497Sru//
1199151497Sru// E.g., for the WAR dependence:  a = A[i];      // (1)
1200151497Sru//                                A[i] = b;      // (2)
1201151497Sru//
1202151497Sru// The store group of (2) is always inserted at or below (2), and the load
1203151497Sru// group of (1) is always inserted at or above (1). Thus, the instructions will
1204151497Sru// never be reordered. All other dependences are checked to ensure the
1205151497Sru// correctness of the instruction reordering.
1206151497Sru//
1207151497Sru// The algorithm visits all memory accesses in the loop in bottom-up program
1208151497Sru// order. Program order is established by traversing the blocks in the loop in
1209151497Sru// reverse postorder when collecting the accesses.
1210151497Sru//
1211151497Sru// We visit the memory accesses in bottom-up order because it can simplify the
1212151497Sru// construction of store groups in the presence of write-after-write (WAW)
1213151497Sru// dependences.
1214151497Sru//
1215151497Sru// E.g., for the WAW dependence:  A[i] = a;      // (1)
1216151497Sru//                                A[i] = b;      // (2)
1217151497Sru//                                A[i + 1] = c;  // (3)
1218151497Sru//
1219151497Sru// We will first create a store group with (3) and (2). (1) can't be added to
1220151497Sru// this group because it and (2) are dependent. However, (1) can be grouped
1221151497Sru// with other accesses that may precede it in program order. Note that a
1222151497Sru// bottom-up order does not imply that WAW dependences should not be checked.
1223151497Sruvoid InterleavedAccessInfo::analyzeInterleaving(
1224151497Sru                                 bool EnablePredicatedInterleavedMemAccesses) {
1225151497Sru  LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1226151497Sru  const ValueToValueMap &Strides = LAI->getSymbolicStrides();
1227151497Sru
1228151497Sru  // Holds all accesses with a constant stride.
1229151497Sru  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1230151497Sru  collectConstStrideAccesses(AccessStrideInfo, Strides);
1231151497Sru
1232151497Sru  if (AccessStrideInfo.empty())
1233151497Sru    return;
1234151497Sru
1235151497Sru  // Collect the dependences in the loop.
1236151497Sru  collectDependences();
1237151497Sru
1238151497Sru  // Holds all interleaved store groups temporarily.
1239151497Sru  SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1240151497Sru  // Holds all interleaved load groups temporarily.
1241151497Sru  SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1242151497Sru
1243151497Sru  // Search in bottom-up program order for pairs of accesses (A and B) that can
1244151497Sru  // form interleaved load or store groups. In the algorithm below, access A
1245151497Sru  // precedes access B in program order. We initialize a group for B in the
1246151497Sru  // outer loop of the algorithm, and then in the inner loop, we attempt to
1247151497Sru  // insert each A into B's group if:
1248151497Sru  //
1249151497Sru  //  1. A and B have the same stride,
1250151497Sru  //  2. A and B have the same memory object size, and
1251151497Sru  //  3. A belongs in B's group according to its distance from B.
1252151497Sru  //
1253151497Sru  // Special care is taken to ensure group formation will not break any
1254151497Sru  // dependences.
1255151497Sru  for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1256151497Sru       BI != E; ++BI) {
1257151497Sru    Instruction *B = BI->first;
1258151497Sru    StrideDescriptor DesB = BI->second;
1259151497Sru
1260151497Sru    // Initialize a group for B if it has an allowable stride. Even if we don't
1261151497Sru    // create a group for B, we continue with the bottom-up algorithm to ensure
1262151497Sru    // we don't break any of B's dependences.
1263151497Sru    InterleaveGroup<Instruction> *Group = nullptr;
1264151497Sru    if (isStrided(DesB.Stride) &&
1265151497Sru        (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1266151497Sru      Group = getInterleaveGroup(B);
1267151497Sru      if (!Group) {
1268151497Sru        LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1269151497Sru                          << '\n');
1270151497Sru        Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1271151497Sru      }
1272151497Sru      if (B->mayWriteToMemory())
1273151497Sru        StoreGroups.insert(Group);
1274151497Sru      else
1275151497Sru        LoadGroups.insert(Group);
1276151497Sru    }
1277151497Sru
1278151497Sru    for (auto AI = std::next(BI); AI != E; ++AI) {
1279151497Sru      Instruction *A = AI->first;
1280151497Sru      StrideDescriptor DesA = AI->second;
1281151497Sru
1282151497Sru      // Our code motion strategy implies that we can't have dependences
1283151497Sru      // between accesses in an interleaved group and other accesses located
1284151497Sru      // between the first and last member of the group. Note that this also
1285151497Sru      // means that a group can't have more than one member at a given offset.
1286151497Sru      // The accesses in a group can have dependences with other accesses, but
1287151497Sru      // we must ensure we don't extend the boundaries of the group such that
1288151497Sru      // we encompass those dependent accesses.
1289151497Sru      //
1290151497Sru      // For example, assume we have the sequence of accesses shown below in a
1291151497Sru      // stride-2 loop:
1292151497Sru      //
1293151497Sru      //  (1, 2) is a group | A[i]   = a;  // (1)
1294151497Sru      //                    | A[i-1] = b;  // (2) |
1295151497Sru      //                      A[i-3] = c;  // (3)
1296151497Sru      //                      A[i]   = d;  // (4) | (2, 4) is not a group
1297151497Sru      //
1298151497Sru      // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1299151497Sru      // but not with (4). If we did, the dependent access (3) would be within
1300151497Sru      // the boundaries of the (2, 4) group.
1301151497Sru      if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1302151497Sru        // If a dependence exists and A is already in a group, we know that A
1303151497Sru        // must be a store since A precedes B and WAR dependences are allowed.
1304151497Sru        // Thus, A would be sunk below B. We release A's group to prevent this
1305151497Sru        // illegal code motion. A will then be free to form another group with
1306151497Sru        // instructions that precede it.
1307151497Sru        if (isInterleaved(A)) {
1308151497Sru          InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1309151497Sru
1310151497Sru          LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1311151497Sru                               "dependence between " << *A << " and "<< *B << '\n');
1312151497Sru
1313151497Sru          StoreGroups.remove(StoreGroup);
1314151497Sru          releaseGroup(StoreGroup);
1315151497Sru        }
1316151497Sru
1317151497Sru        // If a dependence exists and A is not already in a group (or it was
1318151497Sru        // and we just released it), B might be hoisted above A (if B is a
1319151497Sru        // load) or another store might be sunk below A (if B is a store). In
1320151497Sru        // either case, we can't add additional instructions to B's group. B
1321151497Sru        // will only form a group with instructions that it precedes.
1322151497Sru        break;
1323151497Sru      }
1324151497Sru
1325151497Sru      // At this point, we've checked for illegal code motion. If either A or B
1326151497Sru      // isn't strided, there's nothing left to do.
1327151497Sru      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1328151497Sru        continue;
1329151497Sru
1330151497Sru      // Ignore A if it's already in a group or isn't the same kind of memory
1331151497Sru      // operation as B.
1332151497Sru      // Note that mayReadFromMemory() isn't mutually exclusive to
1333151497Sru      // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1334151497Sru      // here, canVectorizeMemory() should have returned false - except for the
1335151497Sru      // case we asked for optimization remarks.
1336151497Sru      if (isInterleaved(A) ||
1337151497Sru          (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1338151497Sru          (A->mayWriteToMemory() != B->mayWriteToMemory()))
1339151497Sru        continue;
1340151497Sru
1341151497Sru      // Check rules 1 and 2. Ignore A if its stride or size is different from
1342151497Sru      // that of B.
1343151497Sru      if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1344151497Sru        continue;
1345151497Sru
1346151497Sru      // Ignore A if the memory object of A and B don't belong to the same
1347151497Sru      // address space
1348151497Sru      if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1349151497Sru        continue;
1350151497Sru
1351151497Sru      // Calculate the distance from A to B.
1352151497Sru      const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1353151497Sru          PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1354151497Sru      if (!DistToB)
1355151497Sru        continue;
1356151497Sru      int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1357151497Sru
1358151497Sru      // Check rule 3. Ignore A if its distance to B is not a multiple of the
1359151497Sru      // size.
1360151497Sru      if (DistanceToB % static_cast<int64_t>(DesB.Size))
1361151497Sru        continue;
1362151497Sru
1363151497Sru      // All members of a predicated interleave-group must have the same predicate,
1364151497Sru      // and currently must reside in the same BB.
1365151497Sru      BasicBlock *BlockA = A->getParent();
1366151497Sru      BasicBlock *BlockB = B->getParent();
1367151497Sru      if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1368151497Sru          (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1369151497Sru        continue;
1370151497Sru
1371151497Sru      // The index of A is the index of B plus A's distance to B in multiples
1372151497Sru      // of the size.
1373151497Sru      int IndexA =
1374151497Sru          Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1375151497Sru
1376151497Sru      // Try to insert A into B's group.
1377151497Sru      if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1378151497Sru        LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1379151497Sru                          << "    into the interleave group with" << *B
1380151497Sru                          << '\n');
1381151497Sru        InterleaveGroupMap[A] = Group;
1382151497Sru
1383151497Sru        // Set the first load in program order as the insert position.
1384151497Sru        if (A->mayReadFromMemory())
1385151497Sru          Group->setInsertPos(A);
1386151497Sru      }
1387151497Sru    } // Iteration over A accesses.
1388151497Sru  }   // Iteration over B accesses.
1389
1390  auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1391                                            int Index,
1392                                            std::string FirstOrLast) -> bool {
1393    Instruction *Member = Group->getMember(Index);
1394    assert(Member && "Group member does not exist");
1395    Value *MemberPtr = getLoadStorePointerOperand(Member);
1396    Type *AccessTy = getLoadStoreType(Member);
1397    if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1398                     /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1399      return false;
1400    LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1401                      << FirstOrLast
1402                      << " group member potentially pointer-wrapping.\n");
1403    releaseGroup(Group);
1404    return true;
1405  };
1406
1407  // Remove interleaved groups with gaps whose memory
1408  // accesses may wrap around. We have to revisit the getPtrStride analysis,
1409  // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1410  // not check wrapping (see documentation there).
1411  // FORNOW we use Assume=false;
1412  // TODO: Change to Assume=true but making sure we don't exceed the threshold
1413  // of runtime SCEV assumptions checks (thereby potentially failing to
1414  // vectorize altogether).
1415  // Additional optional optimizations:
1416  // TODO: If we are peeling the loop and we know that the first pointer doesn't
1417  // wrap then we can deduce that all pointers in the group don't wrap.
1418  // This means that we can forcefully peel the loop in order to only have to
1419  // check the first pointer for no-wrap. When we'll change to use Assume=true
1420  // we'll only need at most one runtime check per interleaved group.
1421  for (auto *Group : LoadGroups) {
1422    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1423    // load would wrap around the address space we would do a memory access at
1424    // nullptr even without the transformation.
1425    if (Group->getNumMembers() == Group->getFactor())
1426      continue;
1427
1428    // Case 2: If first and last members of the group don't wrap this implies
1429    // that all the pointers in the group don't wrap.
1430    // So we check only group member 0 (which is always guaranteed to exist),
1431    // and group member Factor - 1; If the latter doesn't exist we rely on
1432    // peeling (if it is a non-reversed accsess -- see Case 3).
1433    if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1434      continue;
1435    if (Group->getMember(Group->getFactor() - 1))
1436      InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1437                                     std::string("last"));
1438    else {
1439      // Case 3: A non-reversed interleaved load group with gaps: We need
1440      // to execute at least one scalar epilogue iteration. This will ensure
1441      // we don't speculatively access memory out-of-bounds. We only need
1442      // to look for a member at index factor - 1, since every group must have
1443      // a member at index zero.
1444      if (Group->isReverse()) {
1445        LLVM_DEBUG(
1446            dbgs() << "LV: Invalidate candidate interleaved group due to "
1447                      "a reverse access with gaps.\n");
1448        releaseGroup(Group);
1449        continue;
1450      }
1451      LLVM_DEBUG(
1452          dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1453      RequiresScalarEpilogue = true;
1454    }
1455  }
1456
1457  for (auto *Group : StoreGroups) {
1458    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1459    // store would wrap around the address space we would do a memory access at
1460    // nullptr even without the transformation.
1461    if (Group->getNumMembers() == Group->getFactor())
1462      continue;
1463
1464    // Interleave-store-group with gaps is implemented using masked wide store.
1465    // Remove interleaved store groups with gaps if
1466    // masked-interleaved-accesses are not enabled by the target.
1467    if (!EnablePredicatedInterleavedMemAccesses) {
1468      LLVM_DEBUG(
1469          dbgs() << "LV: Invalidate candidate interleaved store group due "
1470                    "to gaps.\n");
1471      releaseGroup(Group);
1472      continue;
1473    }
1474
1475    // Case 2: If first and last members of the group don't wrap this implies
1476    // that all the pointers in the group don't wrap.
1477    // So we check only group member 0 (which is always guaranteed to exist),
1478    // and the last group member. Case 3 (scalar epilog) is not relevant for
1479    // stores with gaps, which are implemented with masked-store (rather than
1480    // speculative access, as in loads).
1481    if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1482      continue;
1483    for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1484      if (Group->getMember(Index)) {
1485        InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1486        break;
1487      }
1488  }
1489}
1490
1491void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1492  // If no group had triggered the requirement to create an epilogue loop,
1493  // there is nothing to do.
1494  if (!requiresScalarEpilogue())
1495    return;
1496
1497  bool ReleasedGroup = false;
1498  // Release groups requiring scalar epilogues. Note that this also removes them
1499  // from InterleaveGroups.
1500  for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1501    if (!Group->requiresScalarEpilogue())
1502      continue;
1503    LLVM_DEBUG(
1504        dbgs()
1505        << "LV: Invalidate candidate interleaved group due to gaps that "
1506           "require a scalar epilogue (not allowed under optsize) and cannot "
1507           "be masked (not enabled). \n");
1508    releaseGroup(Group);
1509    ReleasedGroup = true;
1510  }
1511  assert(ReleasedGroup && "At least one group must be invalidated, as a "
1512                          "scalar epilogue was required");
1513  (void)ReleasedGroup;
1514  RequiresScalarEpilogue = false;
1515}
1516
1517template <typename InstT>
1518void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1519  llvm_unreachable("addMetadata can only be used for Instruction");
1520}
1521
1522namespace llvm {
1523template <>
1524void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1525  SmallVector<Value *, 4> VL;
1526  std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1527                 [](std::pair<int, Instruction *> p) { return p.second; });
1528  propagateMetadata(NewInst, VL);
1529}
1530}
1531
1532std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1533                                       StringRef ScalarName, unsigned numArgs,
1534                                       ElementCount VF) {
1535  SmallString<256> Buffer;
1536  llvm::raw_svector_ostream Out(Buffer);
1537  Out << "_ZGV" << VFABI::_LLVM_ << "N";
1538  if (VF.isScalable())
1539    Out << 'x';
1540  else
1541    Out << VF.getFixedValue();
1542  for (unsigned I = 0; I < numArgs; ++I)
1543    Out << "v";
1544  Out << "_" << ScalarName << "(" << VectorName << ")";
1545  return std::string(Out.str());
1546}
1547
1548void VFABI::getVectorVariantNames(
1549    const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1550  const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
1551  if (S.empty())
1552    return;
1553
1554  SmallVector<StringRef, 8> ListAttr;
1555  S.split(ListAttr, ",");
1556
1557  for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1558#ifndef NDEBUG
1559    LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1560    std::optional<VFInfo> Info =
1561        VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1562    assert(Info && "Invalid name for a VFABI variant.");
1563    assert(CI.getModule()->getFunction(Info->VectorName) &&
1564           "Vector function is missing.");
1565#endif
1566    VariantMappings.push_back(std::string(S));
1567  }
1568}
1569
1570bool VFShape::hasValidParameterList() const {
1571  for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1572       ++Pos) {
1573    assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1574
1575    switch (Parameters[Pos].ParamKind) {
1576    default: // Nothing to check.
1577      break;
1578    case VFParamKind::OMP_Linear:
1579    case VFParamKind::OMP_LinearRef:
1580    case VFParamKind::OMP_LinearVal:
1581    case VFParamKind::OMP_LinearUVal:
1582      // Compile time linear steps must be non-zero.
1583      if (Parameters[Pos].LinearStepOrPos == 0)
1584        return false;
1585      break;
1586    case VFParamKind::OMP_LinearPos:
1587    case VFParamKind::OMP_LinearRefPos:
1588    case VFParamKind::OMP_LinearValPos:
1589    case VFParamKind::OMP_LinearUValPos:
1590      // The runtime linear step must be referring to some other
1591      // parameters in the signature.
1592      if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1593        return false;
1594      // The linear step parameter must be marked as uniform.
1595      if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1596          VFParamKind::OMP_Uniform)
1597        return false;
1598      // The linear step parameter can't point at itself.
1599      if (Parameters[Pos].LinearStepOrPos == int(Pos))
1600        return false;
1601      break;
1602    case VFParamKind::GlobalPredicate:
1603      // The global predicate must be the unique. Can be placed anywhere in the
1604      // signature.
1605      for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1606        if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1607          return false;
1608      break;
1609    }
1610  }
1611  return true;
1612}
1613