1//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines vectorizer utilities.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Analysis/VectorUtils.h"
14#include "llvm/ADT/EquivalenceClasses.h"
15#include "llvm/Analysis/DemandedBits.h"
16#include "llvm/Analysis/LoopInfo.h"
17#include "llvm/Analysis/LoopIterator.h"
18#include "llvm/Analysis/ScalarEvolution.h"
19#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/GetElementPtrTypeIterator.h"
24#include "llvm/IR/IRBuilder.h"
25#include "llvm/IR/PatternMatch.h"
26#include "llvm/IR/Value.h"
27#include "llvm/Support/CommandLine.h"
28
29#define DEBUG_TYPE "vectorutils"
30
31using namespace llvm;
32using namespace llvm::PatternMatch;
33
34/// Maximum factor for an interleaved memory access.
35static cl::opt<unsigned> MaxInterleaveGroupFactor(
36    "max-interleave-group-factor", cl::Hidden,
37    cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38    cl::init(8));
39
40/// Return true if all of the intrinsic's arguments and return type are scalars
41/// for the scalar form of the intrinsic, and vectors for the vector form of the
42/// intrinsic (except operands that are marked as always being scalar by
43/// isVectorIntrinsicWithScalarOpAtArg).
44bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45  switch (ID) {
46  case Intrinsic::abs:   // Begin integer bit-manipulation.
47  case Intrinsic::bswap:
48  case Intrinsic::bitreverse:
49  case Intrinsic::ctpop:
50  case Intrinsic::ctlz:
51  case Intrinsic::cttz:
52  case Intrinsic::fshl:
53  case Intrinsic::fshr:
54  case Intrinsic::smax:
55  case Intrinsic::smin:
56  case Intrinsic::umax:
57  case Intrinsic::umin:
58  case Intrinsic::sadd_sat:
59  case Intrinsic::ssub_sat:
60  case Intrinsic::uadd_sat:
61  case Intrinsic::usub_sat:
62  case Intrinsic::smul_fix:
63  case Intrinsic::smul_fix_sat:
64  case Intrinsic::umul_fix:
65  case Intrinsic::umul_fix_sat:
66  case Intrinsic::sqrt: // Begin floating-point.
67  case Intrinsic::sin:
68  case Intrinsic::cos:
69  case Intrinsic::exp:
70  case Intrinsic::exp2:
71  case Intrinsic::log:
72  case Intrinsic::log10:
73  case Intrinsic::log2:
74  case Intrinsic::fabs:
75  case Intrinsic::minnum:
76  case Intrinsic::maxnum:
77  case Intrinsic::minimum:
78  case Intrinsic::maximum:
79  case Intrinsic::copysign:
80  case Intrinsic::floor:
81  case Intrinsic::ceil:
82  case Intrinsic::trunc:
83  case Intrinsic::rint:
84  case Intrinsic::nearbyint:
85  case Intrinsic::round:
86  case Intrinsic::roundeven:
87  case Intrinsic::pow:
88  case Intrinsic::fma:
89  case Intrinsic::fmuladd:
90  case Intrinsic::powi:
91  case Intrinsic::canonicalize:
92  case Intrinsic::fptosi_sat:
93  case Intrinsic::fptoui_sat:
94    return true;
95  default:
96    return false;
97  }
98}
99
100/// Identifies if the vector form of the intrinsic has a scalar operand.
101bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
102                                              unsigned ScalarOpdIdx) {
103  switch (ID) {
104  case Intrinsic::abs:
105  case Intrinsic::ctlz:
106  case Intrinsic::cttz:
107  case Intrinsic::powi:
108    return (ScalarOpdIdx == 1);
109  case Intrinsic::smul_fix:
110  case Intrinsic::smul_fix_sat:
111  case Intrinsic::umul_fix:
112  case Intrinsic::umul_fix_sat:
113    return (ScalarOpdIdx == 2);
114  default:
115    return false;
116  }
117}
118
119bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
120                                                  unsigned OpdIdx) {
121  switch (ID) {
122  case Intrinsic::fptosi_sat:
123  case Intrinsic::fptoui_sat:
124    return OpdIdx == 0;
125  case Intrinsic::powi:
126    return OpdIdx == 1;
127  default:
128    return false;
129  }
130}
131
132/// Returns intrinsic ID for call.
133/// For the input call instruction it finds mapping intrinsic and returns
134/// its ID, in case it does not found it return not_intrinsic.
135Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
136                                                const TargetLibraryInfo *TLI) {
137  Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
138  if (ID == Intrinsic::not_intrinsic)
139    return Intrinsic::not_intrinsic;
140
141  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
142      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
143      ID == Intrinsic::experimental_noalias_scope_decl ||
144      ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
145    return ID;
146  return Intrinsic::not_intrinsic;
147}
148
149/// Find the operand of the GEP that should be checked for consecutive
150/// stores. This ignores trailing indices that have no effect on the final
151/// pointer.
152unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
153  const DataLayout &DL = Gep->getModule()->getDataLayout();
154  unsigned LastOperand = Gep->getNumOperands() - 1;
155  TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
156
157  // Walk backwards and try to peel off zeros.
158  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
159    // Find the type we're currently indexing into.
160    gep_type_iterator GEPTI = gep_type_begin(Gep);
161    std::advance(GEPTI, LastOperand - 2);
162
163    // If it's a type with the same allocation size as the result of the GEP we
164    // can peel off the zero index.
165    if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
166      break;
167    --LastOperand;
168  }
169
170  return LastOperand;
171}
172
173/// If the argument is a GEP, then returns the operand identified by
174/// getGEPInductionOperand. However, if there is some other non-loop-invariant
175/// operand, it returns that instead.
176Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
177  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
178  if (!GEP)
179    return Ptr;
180
181  unsigned InductionOperand = getGEPInductionOperand(GEP);
182
183  // Check that all of the gep indices are uniform except for our induction
184  // operand.
185  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
186    if (i != InductionOperand &&
187        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
188      return Ptr;
189  return GEP->getOperand(InductionOperand);
190}
191
192/// If a value has only one user that is a CastInst, return it.
193Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
194  Value *UniqueCast = nullptr;
195  for (User *U : Ptr->users()) {
196    CastInst *CI = dyn_cast<CastInst>(U);
197    if (CI && CI->getType() == Ty) {
198      if (!UniqueCast)
199        UniqueCast = CI;
200      else
201        return nullptr;
202    }
203  }
204  return UniqueCast;
205}
206
207/// Get the stride of a pointer access in a loop. Looks for symbolic
208/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
209Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
210  auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
211  if (!PtrTy || PtrTy->isAggregateType())
212    return nullptr;
213
214  // Try to remove a gep instruction to make the pointer (actually index at this
215  // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
216  // pointer, otherwise, we are analyzing the index.
217  Value *OrigPtr = Ptr;
218
219  // The size of the pointer access.
220  int64_t PtrAccessSize = 1;
221
222  Ptr = stripGetElementPtr(Ptr, SE, Lp);
223  const SCEV *V = SE->getSCEV(Ptr);
224
225  if (Ptr != OrigPtr)
226    // Strip off casts.
227    while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
228      V = C->getOperand();
229
230  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
231  if (!S)
232    return nullptr;
233
234  V = S->getStepRecurrence(*SE);
235  if (!V)
236    return nullptr;
237
238  // Strip off the size of access multiplication if we are still analyzing the
239  // pointer.
240  if (OrigPtr == Ptr) {
241    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
242      if (M->getOperand(0)->getSCEVType() != scConstant)
243        return nullptr;
244
245      const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
246
247      // Huge step value - give up.
248      if (APStepVal.getBitWidth() > 64)
249        return nullptr;
250
251      int64_t StepVal = APStepVal.getSExtValue();
252      if (PtrAccessSize != StepVal)
253        return nullptr;
254      V = M->getOperand(1);
255    }
256  }
257
258  // Strip off casts.
259  Type *StripedOffRecurrenceCast = nullptr;
260  if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
261    StripedOffRecurrenceCast = C->getType();
262    V = C->getOperand();
263  }
264
265  // Look for the loop invariant symbolic value.
266  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
267  if (!U)
268    return nullptr;
269
270  Value *Stride = U->getValue();
271  if (!Lp->isLoopInvariant(Stride))
272    return nullptr;
273
274  // If we have stripped off the recurrence cast we have to make sure that we
275  // return the value that is used in this loop so that we can replace it later.
276  if (StripedOffRecurrenceCast)
277    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
278
279  return Stride;
280}
281
282/// Given a vector and an element number, see if the scalar value is
283/// already around as a register, for example if it were inserted then extracted
284/// from the vector.
285Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
286  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
287  VectorType *VTy = cast<VectorType>(V->getType());
288  // For fixed-length vector, return undef for out of range access.
289  if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
290    unsigned Width = FVTy->getNumElements();
291    if (EltNo >= Width)
292      return UndefValue::get(FVTy->getElementType());
293  }
294
295  if (Constant *C = dyn_cast<Constant>(V))
296    return C->getAggregateElement(EltNo);
297
298  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
299    // If this is an insert to a variable element, we don't know what it is.
300    if (!isa<ConstantInt>(III->getOperand(2)))
301      return nullptr;
302    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
303
304    // If this is an insert to the element we are looking for, return the
305    // inserted value.
306    if (EltNo == IIElt)
307      return III->getOperand(1);
308
309    // Guard against infinite loop on malformed, unreachable IR.
310    if (III == III->getOperand(0))
311      return nullptr;
312
313    // Otherwise, the insertelement doesn't modify the value, recurse on its
314    // vector input.
315    return findScalarElement(III->getOperand(0), EltNo);
316  }
317
318  ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
319  // Restrict the following transformation to fixed-length vector.
320  if (SVI && isa<FixedVectorType>(SVI->getType())) {
321    unsigned LHSWidth =
322        cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
323    int InEl = SVI->getMaskValue(EltNo);
324    if (InEl < 0)
325      return UndefValue::get(VTy->getElementType());
326    if (InEl < (int)LHSWidth)
327      return findScalarElement(SVI->getOperand(0), InEl);
328    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
329  }
330
331  // Extract a value from a vector add operation with a constant zero.
332  // TODO: Use getBinOpIdentity() to generalize this.
333  Value *Val; Constant *C;
334  if (match(V, m_Add(m_Value(Val), m_Constant(C))))
335    if (Constant *Elt = C->getAggregateElement(EltNo))
336      if (Elt->isNullValue())
337        return findScalarElement(Val, EltNo);
338
339  // If the vector is a splat then we can trivially find the scalar element.
340  if (isa<ScalableVectorType>(VTy))
341    if (Value *Splat = getSplatValue(V))
342      if (EltNo < VTy->getElementCount().getKnownMinValue())
343        return Splat;
344
345  // Otherwise, we don't know.
346  return nullptr;
347}
348
349int llvm::getSplatIndex(ArrayRef<int> Mask) {
350  int SplatIndex = -1;
351  for (int M : Mask) {
352    // Ignore invalid (undefined) mask elements.
353    if (M < 0)
354      continue;
355
356    // There can be only 1 non-negative mask element value if this is a splat.
357    if (SplatIndex != -1 && SplatIndex != M)
358      return -1;
359
360    // Initialize the splat index to the 1st non-negative mask element.
361    SplatIndex = M;
362  }
363  assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
364  return SplatIndex;
365}
366
367/// Get splat value if the input is a splat vector or return nullptr.
368/// This function is not fully general. It checks only 2 cases:
369/// the input value is (1) a splat constant vector or (2) a sequence
370/// of instructions that broadcasts a scalar at element 0.
371Value *llvm::getSplatValue(const Value *V) {
372  if (isa<VectorType>(V->getType()))
373    if (auto *C = dyn_cast<Constant>(V))
374      return C->getSplatValue();
375
376  // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
377  Value *Splat;
378  if (match(V,
379            m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
380                      m_Value(), m_ZeroMask())))
381    return Splat;
382
383  return nullptr;
384}
385
386bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
387  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
388
389  if (isa<VectorType>(V->getType())) {
390    if (isa<UndefValue>(V))
391      return true;
392    // FIXME: We can allow undefs, but if Index was specified, we may want to
393    //        check that the constant is defined at that index.
394    if (auto *C = dyn_cast<Constant>(V))
395      return C->getSplatValue() != nullptr;
396  }
397
398  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
399    // FIXME: We can safely allow undefs here. If Index was specified, we will
400    //        check that the mask elt is defined at the required index.
401    if (!all_equal(Shuf->getShuffleMask()))
402      return false;
403
404    // Match any index.
405    if (Index == -1)
406      return true;
407
408    // Match a specific element. The mask should be defined at and match the
409    // specified index.
410    return Shuf->getMaskValue(Index) == Index;
411  }
412
413  // The remaining tests are all recursive, so bail out if we hit the limit.
414  if (Depth++ == MaxAnalysisRecursionDepth)
415    return false;
416
417  // If both operands of a binop are splats, the result is a splat.
418  Value *X, *Y, *Z;
419  if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
420    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
421
422  // If all operands of a select are splats, the result is a splat.
423  if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
424    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
425           isSplatValue(Z, Index, Depth);
426
427  // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
428
429  return false;
430}
431
432bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
433                                  const APInt &DemandedElts, APInt &DemandedLHS,
434                                  APInt &DemandedRHS, bool AllowUndefElts) {
435  DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
436
437  // Early out if we don't demand any elements.
438  if (DemandedElts.isZero())
439    return true;
440
441  // Simple case of a shuffle with zeroinitializer.
442  if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
443    DemandedLHS.setBit(0);
444    return true;
445  }
446
447  for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
448    int M = Mask[I];
449    assert((-1 <= M) && (M < (SrcWidth * 2)) &&
450           "Invalid shuffle mask constant");
451
452    if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
453      continue;
454
455    // For undef elements, we don't know anything about the common state of
456    // the shuffle result.
457    if (M < 0)
458      return false;
459
460    if (M < SrcWidth)
461      DemandedLHS.setBit(M);
462    else
463      DemandedRHS.setBit(M - SrcWidth);
464  }
465
466  return true;
467}
468
469void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
470                                 SmallVectorImpl<int> &ScaledMask) {
471  assert(Scale > 0 && "Unexpected scaling factor");
472
473  // Fast-path: if no scaling, then it is just a copy.
474  if (Scale == 1) {
475    ScaledMask.assign(Mask.begin(), Mask.end());
476    return;
477  }
478
479  ScaledMask.clear();
480  for (int MaskElt : Mask) {
481    if (MaskElt >= 0) {
482      assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
483             "Overflowed 32-bits");
484    }
485    for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
486      ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
487  }
488}
489
490bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
491                                SmallVectorImpl<int> &ScaledMask) {
492  assert(Scale > 0 && "Unexpected scaling factor");
493
494  // Fast-path: if no scaling, then it is just a copy.
495  if (Scale == 1) {
496    ScaledMask.assign(Mask.begin(), Mask.end());
497    return true;
498  }
499
500  // We must map the original elements down evenly to a type with less elements.
501  int NumElts = Mask.size();
502  if (NumElts % Scale != 0)
503    return false;
504
505  ScaledMask.clear();
506  ScaledMask.reserve(NumElts / Scale);
507
508  // Step through the input mask by splitting into Scale-sized slices.
509  do {
510    ArrayRef<int> MaskSlice = Mask.take_front(Scale);
511    assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
512
513    // The first element of the slice determines how we evaluate this slice.
514    int SliceFront = MaskSlice.front();
515    if (SliceFront < 0) {
516      // Negative values (undef or other "sentinel" values) must be equal across
517      // the entire slice.
518      if (!all_equal(MaskSlice))
519        return false;
520      ScaledMask.push_back(SliceFront);
521    } else {
522      // A positive mask element must be cleanly divisible.
523      if (SliceFront % Scale != 0)
524        return false;
525      // Elements of the slice must be consecutive.
526      for (int i = 1; i < Scale; ++i)
527        if (MaskSlice[i] != SliceFront + i)
528          return false;
529      ScaledMask.push_back(SliceFront / Scale);
530    }
531    Mask = Mask.drop_front(Scale);
532  } while (!Mask.empty());
533
534  assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
535
536  // All elements of the original mask can be scaled down to map to the elements
537  // of a mask with wider elements.
538  return true;
539}
540
541void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
542                                        SmallVectorImpl<int> &ScaledMask) {
543  std::array<SmallVector<int, 16>, 2> TmpMasks;
544  SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
545  ArrayRef<int> InputMask = Mask;
546  for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
547    while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
548      InputMask = *Output;
549      std::swap(Output, Tmp);
550    }
551  }
552  ScaledMask.assign(InputMask.begin(), InputMask.end());
553}
554
555void llvm::processShuffleMasks(
556    ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
557    unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
558    function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
559    function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
560  SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
561  // Try to perform better estimation of the permutation.
562  // 1. Split the source/destination vectors into real registers.
563  // 2. Do the mask analysis to identify which real registers are
564  // permuted.
565  int Sz = Mask.size();
566  unsigned SzDest = Sz / NumOfDestRegs;
567  unsigned SzSrc = Sz / NumOfSrcRegs;
568  for (unsigned I = 0; I < NumOfDestRegs; ++I) {
569    auto &RegMasks = Res[I];
570    RegMasks.assign(NumOfSrcRegs, {});
571    // Check that the values in dest registers are in the one src
572    // register.
573    for (unsigned K = 0; K < SzDest; ++K) {
574      int Idx = I * SzDest + K;
575      if (Idx == Sz)
576        break;
577      if (Mask[Idx] >= Sz || Mask[Idx] == UndefMaskElem)
578        continue;
579      int SrcRegIdx = Mask[Idx] / SzSrc;
580      // Add a cost of PermuteTwoSrc for each new source register permute,
581      // if we have more than one source registers.
582      if (RegMasks[SrcRegIdx].empty())
583        RegMasks[SrcRegIdx].assign(SzDest, UndefMaskElem);
584      RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
585    }
586  }
587  // Process split mask.
588  for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
589    auto &Dest = Res[I];
590    int NumSrcRegs =
591        count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
592    switch (NumSrcRegs) {
593    case 0:
594      // No input vectors were used!
595      NoInputAction();
596      break;
597    case 1: {
598      // Find the only mask with at least single undef mask elem.
599      auto *It =
600          find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
601      unsigned SrcReg = std::distance(Dest.begin(), It);
602      SingleInputAction(*It, SrcReg, I);
603      break;
604    }
605    default: {
606      // The first mask is a permutation of a single register. Since we have >2
607      // input registers to shuffle, we merge the masks for 2 first registers
608      // and generate a shuffle of 2 registers rather than the reordering of the
609      // first register and then shuffle with the second register. Next,
610      // generate the shuffles of the resulting register + the remaining
611      // registers from the list.
612      auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
613                               ArrayRef<int> SecondMask) {
614        for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
615          if (SecondMask[Idx] != UndefMaskElem) {
616            assert(FirstMask[Idx] == UndefMaskElem &&
617                   "Expected undefined mask element.");
618            FirstMask[Idx] = SecondMask[Idx] + VF;
619          }
620        }
621      };
622      auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
623        for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
624          if (Mask[Idx] != UndefMaskElem)
625            Mask[Idx] = Idx;
626        }
627      };
628      int SecondIdx;
629      do {
630        int FirstIdx = -1;
631        SecondIdx = -1;
632        MutableArrayRef<int> FirstMask, SecondMask;
633        for (unsigned I = 0; I < NumOfDestRegs; ++I) {
634          SmallVectorImpl<int> &RegMask = Dest[I];
635          if (RegMask.empty())
636            continue;
637
638          if (FirstIdx == SecondIdx) {
639            FirstIdx = I;
640            FirstMask = RegMask;
641            continue;
642          }
643          SecondIdx = I;
644          SecondMask = RegMask;
645          CombineMasks(FirstMask, SecondMask);
646          ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
647          NormalizeMask(FirstMask);
648          RegMask.clear();
649          SecondMask = FirstMask;
650          SecondIdx = FirstIdx;
651        }
652        if (FirstIdx != SecondIdx && SecondIdx >= 0) {
653          CombineMasks(SecondMask, FirstMask);
654          ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
655          Dest[FirstIdx].clear();
656          NormalizeMask(SecondMask);
657        }
658      } while (SecondIdx >= 0);
659      break;
660    }
661    }
662  }
663}
664
665MapVector<Instruction *, uint64_t>
666llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
667                               const TargetTransformInfo *TTI) {
668
669  // DemandedBits will give us every value's live-out bits. But we want
670  // to ensure no extra casts would need to be inserted, so every DAG
671  // of connected values must have the same minimum bitwidth.
672  EquivalenceClasses<Value *> ECs;
673  SmallVector<Value *, 16> Worklist;
674  SmallPtrSet<Value *, 4> Roots;
675  SmallPtrSet<Value *, 16> Visited;
676  DenseMap<Value *, uint64_t> DBits;
677  SmallPtrSet<Instruction *, 4> InstructionSet;
678  MapVector<Instruction *, uint64_t> MinBWs;
679
680  // Determine the roots. We work bottom-up, from truncs or icmps.
681  bool SeenExtFromIllegalType = false;
682  for (auto *BB : Blocks)
683    for (auto &I : *BB) {
684      InstructionSet.insert(&I);
685
686      if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
687          !TTI->isTypeLegal(I.getOperand(0)->getType()))
688        SeenExtFromIllegalType = true;
689
690      // Only deal with non-vector integers up to 64-bits wide.
691      if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
692          !I.getType()->isVectorTy() &&
693          I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
694        // Don't make work for ourselves. If we know the loaded type is legal,
695        // don't add it to the worklist.
696        if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
697          continue;
698
699        Worklist.push_back(&I);
700        Roots.insert(&I);
701      }
702    }
703  // Early exit.
704  if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
705    return MinBWs;
706
707  // Now proceed breadth-first, unioning values together.
708  while (!Worklist.empty()) {
709    Value *Val = Worklist.pop_back_val();
710    Value *Leader = ECs.getOrInsertLeaderValue(Val);
711
712    if (!Visited.insert(Val).second)
713      continue;
714
715    // Non-instructions terminate a chain successfully.
716    if (!isa<Instruction>(Val))
717      continue;
718    Instruction *I = cast<Instruction>(Val);
719
720    // If we encounter a type that is larger than 64 bits, we can't represent
721    // it so bail out.
722    if (DB.getDemandedBits(I).getBitWidth() > 64)
723      return MapVector<Instruction *, uint64_t>();
724
725    uint64_t V = DB.getDemandedBits(I).getZExtValue();
726    DBits[Leader] |= V;
727    DBits[I] = V;
728
729    // Casts, loads and instructions outside of our range terminate a chain
730    // successfully.
731    if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
732        !InstructionSet.count(I))
733      continue;
734
735    // Unsafe casts terminate a chain unsuccessfully. We can't do anything
736    // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
737    // transform anything that relies on them.
738    if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
739        !I->getType()->isIntegerTy()) {
740      DBits[Leader] |= ~0ULL;
741      continue;
742    }
743
744    // We don't modify the types of PHIs. Reductions will already have been
745    // truncated if possible, and inductions' sizes will have been chosen by
746    // indvars.
747    if (isa<PHINode>(I))
748      continue;
749
750    if (DBits[Leader] == ~0ULL)
751      // All bits demanded, no point continuing.
752      continue;
753
754    for (Value *O : cast<User>(I)->operands()) {
755      ECs.unionSets(Leader, O);
756      Worklist.push_back(O);
757    }
758  }
759
760  // Now we've discovered all values, walk them to see if there are
761  // any users we didn't see. If there are, we can't optimize that
762  // chain.
763  for (auto &I : DBits)
764    for (auto *U : I.first->users())
765      if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
766        DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
767
768  for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
769    uint64_t LeaderDemandedBits = 0;
770    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
771      LeaderDemandedBits |= DBits[M];
772
773    uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
774                     llvm::countLeadingZeros(LeaderDemandedBits);
775    // Round up to a power of 2
776    if (!isPowerOf2_64((uint64_t)MinBW))
777      MinBW = NextPowerOf2(MinBW);
778
779    // We don't modify the types of PHIs. Reductions will already have been
780    // truncated if possible, and inductions' sizes will have been chosen by
781    // indvars.
782    // If we are required to shrink a PHI, abandon this entire equivalence class.
783    bool Abort = false;
784    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
785      if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
786        Abort = true;
787        break;
788      }
789    if (Abort)
790      continue;
791
792    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
793      if (!isa<Instruction>(M))
794        continue;
795      Type *Ty = M->getType();
796      if (Roots.count(M))
797        Ty = cast<Instruction>(M)->getOperand(0)->getType();
798      if (MinBW < Ty->getScalarSizeInBits())
799        MinBWs[cast<Instruction>(M)] = MinBW;
800    }
801  }
802
803  return MinBWs;
804}
805
806/// Add all access groups in @p AccGroups to @p List.
807template <typename ListT>
808static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
809  // Interpret an access group as a list containing itself.
810  if (AccGroups->getNumOperands() == 0) {
811    assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
812    List.insert(AccGroups);
813    return;
814  }
815
816  for (const auto &AccGroupListOp : AccGroups->operands()) {
817    auto *Item = cast<MDNode>(AccGroupListOp.get());
818    assert(isValidAsAccessGroup(Item) && "List item must be an access group");
819    List.insert(Item);
820  }
821}
822
823MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
824  if (!AccGroups1)
825    return AccGroups2;
826  if (!AccGroups2)
827    return AccGroups1;
828  if (AccGroups1 == AccGroups2)
829    return AccGroups1;
830
831  SmallSetVector<Metadata *, 4> Union;
832  addToAccessGroupList(Union, AccGroups1);
833  addToAccessGroupList(Union, AccGroups2);
834
835  if (Union.size() == 0)
836    return nullptr;
837  if (Union.size() == 1)
838    return cast<MDNode>(Union.front());
839
840  LLVMContext &Ctx = AccGroups1->getContext();
841  return MDNode::get(Ctx, Union.getArrayRef());
842}
843
844MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
845                                    const Instruction *Inst2) {
846  bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
847  bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
848
849  if (!MayAccessMem1 && !MayAccessMem2)
850    return nullptr;
851  if (!MayAccessMem1)
852    return Inst2->getMetadata(LLVMContext::MD_access_group);
853  if (!MayAccessMem2)
854    return Inst1->getMetadata(LLVMContext::MD_access_group);
855
856  MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
857  MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
858  if (!MD1 || !MD2)
859    return nullptr;
860  if (MD1 == MD2)
861    return MD1;
862
863  // Use set for scalable 'contains' check.
864  SmallPtrSet<Metadata *, 4> AccGroupSet2;
865  addToAccessGroupList(AccGroupSet2, MD2);
866
867  SmallVector<Metadata *, 4> Intersection;
868  if (MD1->getNumOperands() == 0) {
869    assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
870    if (AccGroupSet2.count(MD1))
871      Intersection.push_back(MD1);
872  } else {
873    for (const MDOperand &Node : MD1->operands()) {
874      auto *Item = cast<MDNode>(Node.get());
875      assert(isValidAsAccessGroup(Item) && "List item must be an access group");
876      if (AccGroupSet2.count(Item))
877        Intersection.push_back(Item);
878    }
879  }
880
881  if (Intersection.size() == 0)
882    return nullptr;
883  if (Intersection.size() == 1)
884    return cast<MDNode>(Intersection.front());
885
886  LLVMContext &Ctx = Inst1->getContext();
887  return MDNode::get(Ctx, Intersection);
888}
889
890/// \returns \p I after propagating metadata from \p VL.
891Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
892  if (VL.empty())
893    return Inst;
894  Instruction *I0 = cast<Instruction>(VL[0]);
895  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
896  I0->getAllMetadataOtherThanDebugLoc(Metadata);
897
898  for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
899                    LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
900                    LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
901                    LLVMContext::MD_access_group}) {
902    MDNode *MD = I0->getMetadata(Kind);
903
904    for (int J = 1, E = VL.size(); MD && J != E; ++J) {
905      const Instruction *IJ = cast<Instruction>(VL[J]);
906      MDNode *IMD = IJ->getMetadata(Kind);
907      switch (Kind) {
908      case LLVMContext::MD_tbaa:
909        MD = MDNode::getMostGenericTBAA(MD, IMD);
910        break;
911      case LLVMContext::MD_alias_scope:
912        MD = MDNode::getMostGenericAliasScope(MD, IMD);
913        break;
914      case LLVMContext::MD_fpmath:
915        MD = MDNode::getMostGenericFPMath(MD, IMD);
916        break;
917      case LLVMContext::MD_noalias:
918      case LLVMContext::MD_nontemporal:
919      case LLVMContext::MD_invariant_load:
920        MD = MDNode::intersect(MD, IMD);
921        break;
922      case LLVMContext::MD_access_group:
923        MD = intersectAccessGroups(Inst, IJ);
924        break;
925      default:
926        llvm_unreachable("unhandled metadata");
927      }
928    }
929
930    Inst->setMetadata(Kind, MD);
931  }
932
933  return Inst;
934}
935
936Constant *
937llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
938                           const InterleaveGroup<Instruction> &Group) {
939  // All 1's means mask is not needed.
940  if (Group.getNumMembers() == Group.getFactor())
941    return nullptr;
942
943  // TODO: support reversed access.
944  assert(!Group.isReverse() && "Reversed group not supported.");
945
946  SmallVector<Constant *, 16> Mask;
947  for (unsigned i = 0; i < VF; i++)
948    for (unsigned j = 0; j < Group.getFactor(); ++j) {
949      unsigned HasMember = Group.getMember(j) ? 1 : 0;
950      Mask.push_back(Builder.getInt1(HasMember));
951    }
952
953  return ConstantVector::get(Mask);
954}
955
956llvm::SmallVector<int, 16>
957llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
958  SmallVector<int, 16> MaskVec;
959  for (unsigned i = 0; i < VF; i++)
960    for (unsigned j = 0; j < ReplicationFactor; j++)
961      MaskVec.push_back(i);
962
963  return MaskVec;
964}
965
966llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
967                                                      unsigned NumVecs) {
968  SmallVector<int, 16> Mask;
969  for (unsigned i = 0; i < VF; i++)
970    for (unsigned j = 0; j < NumVecs; j++)
971      Mask.push_back(j * VF + i);
972
973  return Mask;
974}
975
976llvm::SmallVector<int, 16>
977llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
978  SmallVector<int, 16> Mask;
979  for (unsigned i = 0; i < VF; i++)
980    Mask.push_back(Start + i * Stride);
981
982  return Mask;
983}
984
985llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
986                                                      unsigned NumInts,
987                                                      unsigned NumUndefs) {
988  SmallVector<int, 16> Mask;
989  for (unsigned i = 0; i < NumInts; i++)
990    Mask.push_back(Start + i);
991
992  for (unsigned i = 0; i < NumUndefs; i++)
993    Mask.push_back(-1);
994
995  return Mask;
996}
997
998llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
999                                                 unsigned NumElts) {
1000  // Avoid casts in the loop and make sure we have a reasonable number.
1001  int NumEltsSigned = NumElts;
1002  assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
1003
1004  // If the mask chooses an element from operand 1, reduce it to choose from the
1005  // corresponding element of operand 0. Undef mask elements are unchanged.
1006  SmallVector<int, 16> UnaryMask;
1007  for (int MaskElt : Mask) {
1008    assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
1009    int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
1010    UnaryMask.push_back(UnaryElt);
1011  }
1012  return UnaryMask;
1013}
1014
1015/// A helper function for concatenating vectors. This function concatenates two
1016/// vectors having the same element type. If the second vector has fewer
1017/// elements than the first, it is padded with undefs.
1018static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
1019                                    Value *V2) {
1020  VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
1021  VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
1022  assert(VecTy1 && VecTy2 &&
1023         VecTy1->getScalarType() == VecTy2->getScalarType() &&
1024         "Expect two vectors with the same element type");
1025
1026  unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
1027  unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
1028  assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
1029
1030  if (NumElts1 > NumElts2) {
1031    // Extend with UNDEFs.
1032    V2 = Builder.CreateShuffleVector(
1033        V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
1034  }
1035
1036  return Builder.CreateShuffleVector(
1037      V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
1038}
1039
1040Value *llvm::concatenateVectors(IRBuilderBase &Builder,
1041                                ArrayRef<Value *> Vecs) {
1042  unsigned NumVecs = Vecs.size();
1043  assert(NumVecs > 1 && "Should be at least two vectors");
1044
1045  SmallVector<Value *, 8> ResList;
1046  ResList.append(Vecs.begin(), Vecs.end());
1047  do {
1048    SmallVector<Value *, 8> TmpList;
1049    for (unsigned i = 0; i < NumVecs - 1; i += 2) {
1050      Value *V0 = ResList[i], *V1 = ResList[i + 1];
1051      assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
1052             "Only the last vector may have a different type");
1053
1054      TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
1055    }
1056
1057    // Push the last vector if the total number of vectors is odd.
1058    if (NumVecs % 2 != 0)
1059      TmpList.push_back(ResList[NumVecs - 1]);
1060
1061    ResList = TmpList;
1062    NumVecs = ResList.size();
1063  } while (NumVecs > 1);
1064
1065  return ResList[0];
1066}
1067
1068bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
1069  assert(isa<VectorType>(Mask->getType()) &&
1070         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1071         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1072             1 &&
1073         "Mask must be a vector of i1");
1074
1075  auto *ConstMask = dyn_cast<Constant>(Mask);
1076  if (!ConstMask)
1077    return false;
1078  if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1079    return true;
1080  if (isa<ScalableVectorType>(ConstMask->getType()))
1081    return false;
1082  for (unsigned
1083           I = 0,
1084           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1085       I != E; ++I) {
1086    if (auto *MaskElt = ConstMask->getAggregateElement(I))
1087      if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1088        continue;
1089    return false;
1090  }
1091  return true;
1092}
1093
1094bool llvm::maskIsAllOneOrUndef(Value *Mask) {
1095  assert(isa<VectorType>(Mask->getType()) &&
1096         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1097         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1098             1 &&
1099         "Mask must be a vector of i1");
1100
1101  auto *ConstMask = dyn_cast<Constant>(Mask);
1102  if (!ConstMask)
1103    return false;
1104  if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1105    return true;
1106  if (isa<ScalableVectorType>(ConstMask->getType()))
1107    return false;
1108  for (unsigned
1109           I = 0,
1110           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1111       I != E; ++I) {
1112    if (auto *MaskElt = ConstMask->getAggregateElement(I))
1113      if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1114        continue;
1115    return false;
1116  }
1117  return true;
1118}
1119
1120/// TODO: This is a lot like known bits, but for
1121/// vectors.  Is there something we can common this with?
1122APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1123  assert(isa<FixedVectorType>(Mask->getType()) &&
1124         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1125         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1126             1 &&
1127         "Mask must be a fixed width vector of i1");
1128
1129  const unsigned VWidth =
1130      cast<FixedVectorType>(Mask->getType())->getNumElements();
1131  APInt DemandedElts = APInt::getAllOnes(VWidth);
1132  if (auto *CV = dyn_cast<ConstantVector>(Mask))
1133    for (unsigned i = 0; i < VWidth; i++)
1134      if (CV->getAggregateElement(i)->isNullValue())
1135        DemandedElts.clearBit(i);
1136  return DemandedElts;
1137}
1138
1139bool InterleavedAccessInfo::isStrided(int Stride) {
1140  unsigned Factor = std::abs(Stride);
1141  return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1142}
1143
1144void InterleavedAccessInfo::collectConstStrideAccesses(
1145    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1146    const ValueToValueMap &Strides) {
1147  auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1148
1149  // Since it's desired that the load/store instructions be maintained in
1150  // "program order" for the interleaved access analysis, we have to visit the
1151  // blocks in the loop in reverse postorder (i.e., in a topological order).
1152  // Such an ordering will ensure that any load/store that may be executed
1153  // before a second load/store will precede the second load/store in
1154  // AccessStrideInfo.
1155  LoopBlocksDFS DFS(TheLoop);
1156  DFS.perform(LI);
1157  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1158    for (auto &I : *BB) {
1159      Value *Ptr = getLoadStorePointerOperand(&I);
1160      if (!Ptr)
1161        continue;
1162      Type *ElementTy = getLoadStoreType(&I);
1163
1164      // Currently, codegen doesn't support cases where the type size doesn't
1165      // match the alloc size. Skip them for now.
1166      uint64_t Size = DL.getTypeAllocSize(ElementTy);
1167      if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1168        continue;
1169
1170      // We don't check wrapping here because we don't know yet if Ptr will be
1171      // part of a full group or a group with gaps. Checking wrapping for all
1172      // pointers (even those that end up in groups with no gaps) will be overly
1173      // conservative. For full groups, wrapping should be ok since if we would
1174      // wrap around the address space we would do a memory access at nullptr
1175      // even without the transformation. The wrapping checks are therefore
1176      // deferred until after we've formed the interleaved groups.
1177      int64_t Stride =
1178        getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1179                     /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1180
1181      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1182      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1183                                              getLoadStoreAlignment(&I));
1184    }
1185}
1186
1187// Analyze interleaved accesses and collect them into interleaved load and
1188// store groups.
1189//
1190// When generating code for an interleaved load group, we effectively hoist all
1191// loads in the group to the location of the first load in program order. When
1192// generating code for an interleaved store group, we sink all stores to the
1193// location of the last store. This code motion can change the order of load
1194// and store instructions and may break dependences.
1195//
1196// The code generation strategy mentioned above ensures that we won't violate
1197// any write-after-read (WAR) dependences.
1198//
1199// E.g., for the WAR dependence:  a = A[i];      // (1)
1200//                                A[i] = b;      // (2)
1201//
1202// The store group of (2) is always inserted at or below (2), and the load
1203// group of (1) is always inserted at or above (1). Thus, the instructions will
1204// never be reordered. All other dependences are checked to ensure the
1205// correctness of the instruction reordering.
1206//
1207// The algorithm visits all memory accesses in the loop in bottom-up program
1208// order. Program order is established by traversing the blocks in the loop in
1209// reverse postorder when collecting the accesses.
1210//
1211// We visit the memory accesses in bottom-up order because it can simplify the
1212// construction of store groups in the presence of write-after-write (WAW)
1213// dependences.
1214//
1215// E.g., for the WAW dependence:  A[i] = a;      // (1)
1216//                                A[i] = b;      // (2)
1217//                                A[i + 1] = c;  // (3)
1218//
1219// We will first create a store group with (3) and (2). (1) can't be added to
1220// this group because it and (2) are dependent. However, (1) can be grouped
1221// with other accesses that may precede it in program order. Note that a
1222// bottom-up order does not imply that WAW dependences should not be checked.
1223void InterleavedAccessInfo::analyzeInterleaving(
1224                                 bool EnablePredicatedInterleavedMemAccesses) {
1225  LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1226  const ValueToValueMap &Strides = LAI->getSymbolicStrides();
1227
1228  // Holds all accesses with a constant stride.
1229  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1230  collectConstStrideAccesses(AccessStrideInfo, Strides);
1231
1232  if (AccessStrideInfo.empty())
1233    return;
1234
1235  // Collect the dependences in the loop.
1236  collectDependences();
1237
1238  // Holds all interleaved store groups temporarily.
1239  SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1240  // Holds all interleaved load groups temporarily.
1241  SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1242
1243  // Search in bottom-up program order for pairs of accesses (A and B) that can
1244  // form interleaved load or store groups. In the algorithm below, access A
1245  // precedes access B in program order. We initialize a group for B in the
1246  // outer loop of the algorithm, and then in the inner loop, we attempt to
1247  // insert each A into B's group if:
1248  //
1249  //  1. A and B have the same stride,
1250  //  2. A and B have the same memory object size, and
1251  //  3. A belongs in B's group according to its distance from B.
1252  //
1253  // Special care is taken to ensure group formation will not break any
1254  // dependences.
1255  for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1256       BI != E; ++BI) {
1257    Instruction *B = BI->first;
1258    StrideDescriptor DesB = BI->second;
1259
1260    // Initialize a group for B if it has an allowable stride. Even if we don't
1261    // create a group for B, we continue with the bottom-up algorithm to ensure
1262    // we don't break any of B's dependences.
1263    InterleaveGroup<Instruction> *Group = nullptr;
1264    if (isStrided(DesB.Stride) &&
1265        (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1266      Group = getInterleaveGroup(B);
1267      if (!Group) {
1268        LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1269                          << '\n');
1270        Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1271      }
1272      if (B->mayWriteToMemory())
1273        StoreGroups.insert(Group);
1274      else
1275        LoadGroups.insert(Group);
1276    }
1277
1278    for (auto AI = std::next(BI); AI != E; ++AI) {
1279      Instruction *A = AI->first;
1280      StrideDescriptor DesA = AI->second;
1281
1282      // Our code motion strategy implies that we can't have dependences
1283      // between accesses in an interleaved group and other accesses located
1284      // between the first and last member of the group. Note that this also
1285      // means that a group can't have more than one member at a given offset.
1286      // The accesses in a group can have dependences with other accesses, but
1287      // we must ensure we don't extend the boundaries of the group such that
1288      // we encompass those dependent accesses.
1289      //
1290      // For example, assume we have the sequence of accesses shown below in a
1291      // stride-2 loop:
1292      //
1293      //  (1, 2) is a group | A[i]   = a;  // (1)
1294      //                    | A[i-1] = b;  // (2) |
1295      //                      A[i-3] = c;  // (3)
1296      //                      A[i]   = d;  // (4) | (2, 4) is not a group
1297      //
1298      // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1299      // but not with (4). If we did, the dependent access (3) would be within
1300      // the boundaries of the (2, 4) group.
1301      if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1302        // If a dependence exists and A is already in a group, we know that A
1303        // must be a store since A precedes B and WAR dependences are allowed.
1304        // Thus, A would be sunk below B. We release A's group to prevent this
1305        // illegal code motion. A will then be free to form another group with
1306        // instructions that precede it.
1307        if (isInterleaved(A)) {
1308          InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1309
1310          LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1311                               "dependence between " << *A << " and "<< *B << '\n');
1312
1313          StoreGroups.remove(StoreGroup);
1314          releaseGroup(StoreGroup);
1315        }
1316
1317        // If a dependence exists and A is not already in a group (or it was
1318        // and we just released it), B might be hoisted above A (if B is a
1319        // load) or another store might be sunk below A (if B is a store). In
1320        // either case, we can't add additional instructions to B's group. B
1321        // will only form a group with instructions that it precedes.
1322        break;
1323      }
1324
1325      // At this point, we've checked for illegal code motion. If either A or B
1326      // isn't strided, there's nothing left to do.
1327      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1328        continue;
1329
1330      // Ignore A if it's already in a group or isn't the same kind of memory
1331      // operation as B.
1332      // Note that mayReadFromMemory() isn't mutually exclusive to
1333      // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1334      // here, canVectorizeMemory() should have returned false - except for the
1335      // case we asked for optimization remarks.
1336      if (isInterleaved(A) ||
1337          (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1338          (A->mayWriteToMemory() != B->mayWriteToMemory()))
1339        continue;
1340
1341      // Check rules 1 and 2. Ignore A if its stride or size is different from
1342      // that of B.
1343      if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1344        continue;
1345
1346      // Ignore A if the memory object of A and B don't belong to the same
1347      // address space
1348      if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1349        continue;
1350
1351      // Calculate the distance from A to B.
1352      const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1353          PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1354      if (!DistToB)
1355        continue;
1356      int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1357
1358      // Check rule 3. Ignore A if its distance to B is not a multiple of the
1359      // size.
1360      if (DistanceToB % static_cast<int64_t>(DesB.Size))
1361        continue;
1362
1363      // All members of a predicated interleave-group must have the same predicate,
1364      // and currently must reside in the same BB.
1365      BasicBlock *BlockA = A->getParent();
1366      BasicBlock *BlockB = B->getParent();
1367      if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1368          (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1369        continue;
1370
1371      // The index of A is the index of B plus A's distance to B in multiples
1372      // of the size.
1373      int IndexA =
1374          Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1375
1376      // Try to insert A into B's group.
1377      if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1378        LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1379                          << "    into the interleave group with" << *B
1380                          << '\n');
1381        InterleaveGroupMap[A] = Group;
1382
1383        // Set the first load in program order as the insert position.
1384        if (A->mayReadFromMemory())
1385          Group->setInsertPos(A);
1386      }
1387    } // Iteration over A accesses.
1388  }   // Iteration over B accesses.
1389
1390  auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1391                                            int Index,
1392                                            std::string FirstOrLast) -> bool {
1393    Instruction *Member = Group->getMember(Index);
1394    assert(Member && "Group member does not exist");
1395    Value *MemberPtr = getLoadStorePointerOperand(Member);
1396    Type *AccessTy = getLoadStoreType(Member);
1397    if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1398                     /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1399      return false;
1400    LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1401                      << FirstOrLast
1402                      << " group member potentially pointer-wrapping.\n");
1403    releaseGroup(Group);
1404    return true;
1405  };
1406
1407  // Remove interleaved groups with gaps whose memory
1408  // accesses may wrap around. We have to revisit the getPtrStride analysis,
1409  // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1410  // not check wrapping (see documentation there).
1411  // FORNOW we use Assume=false;
1412  // TODO: Change to Assume=true but making sure we don't exceed the threshold
1413  // of runtime SCEV assumptions checks (thereby potentially failing to
1414  // vectorize altogether).
1415  // Additional optional optimizations:
1416  // TODO: If we are peeling the loop and we know that the first pointer doesn't
1417  // wrap then we can deduce that all pointers in the group don't wrap.
1418  // This means that we can forcefully peel the loop in order to only have to
1419  // check the first pointer for no-wrap. When we'll change to use Assume=true
1420  // we'll only need at most one runtime check per interleaved group.
1421  for (auto *Group : LoadGroups) {
1422    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1423    // load would wrap around the address space we would do a memory access at
1424    // nullptr even without the transformation.
1425    if (Group->getNumMembers() == Group->getFactor())
1426      continue;
1427
1428    // Case 2: If first and last members of the group don't wrap this implies
1429    // that all the pointers in the group don't wrap.
1430    // So we check only group member 0 (which is always guaranteed to exist),
1431    // and group member Factor - 1; If the latter doesn't exist we rely on
1432    // peeling (if it is a non-reversed accsess -- see Case 3).
1433    if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1434      continue;
1435    if (Group->getMember(Group->getFactor() - 1))
1436      InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1437                                     std::string("last"));
1438    else {
1439      // Case 3: A non-reversed interleaved load group with gaps: We need
1440      // to execute at least one scalar epilogue iteration. This will ensure
1441      // we don't speculatively access memory out-of-bounds. We only need
1442      // to look for a member at index factor - 1, since every group must have
1443      // a member at index zero.
1444      if (Group->isReverse()) {
1445        LLVM_DEBUG(
1446            dbgs() << "LV: Invalidate candidate interleaved group due to "
1447                      "a reverse access with gaps.\n");
1448        releaseGroup(Group);
1449        continue;
1450      }
1451      LLVM_DEBUG(
1452          dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1453      RequiresScalarEpilogue = true;
1454    }
1455  }
1456
1457  for (auto *Group : StoreGroups) {
1458    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1459    // store would wrap around the address space we would do a memory access at
1460    // nullptr even without the transformation.
1461    if (Group->getNumMembers() == Group->getFactor())
1462      continue;
1463
1464    // Interleave-store-group with gaps is implemented using masked wide store.
1465    // Remove interleaved store groups with gaps if
1466    // masked-interleaved-accesses are not enabled by the target.
1467    if (!EnablePredicatedInterleavedMemAccesses) {
1468      LLVM_DEBUG(
1469          dbgs() << "LV: Invalidate candidate interleaved store group due "
1470                    "to gaps.\n");
1471      releaseGroup(Group);
1472      continue;
1473    }
1474
1475    // Case 2: If first and last members of the group don't wrap this implies
1476    // that all the pointers in the group don't wrap.
1477    // So we check only group member 0 (which is always guaranteed to exist),
1478    // and the last group member. Case 3 (scalar epilog) is not relevant for
1479    // stores with gaps, which are implemented with masked-store (rather than
1480    // speculative access, as in loads).
1481    if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1482      continue;
1483    for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1484      if (Group->getMember(Index)) {
1485        InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1486        break;
1487      }
1488  }
1489}
1490
1491void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1492  // If no group had triggered the requirement to create an epilogue loop,
1493  // there is nothing to do.
1494  if (!requiresScalarEpilogue())
1495    return;
1496
1497  bool ReleasedGroup = false;
1498  // Release groups requiring scalar epilogues. Note that this also removes them
1499  // from InterleaveGroups.
1500  for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1501    if (!Group->requiresScalarEpilogue())
1502      continue;
1503    LLVM_DEBUG(
1504        dbgs()
1505        << "LV: Invalidate candidate interleaved group due to gaps that "
1506           "require a scalar epilogue (not allowed under optsize) and cannot "
1507           "be masked (not enabled). \n");
1508    releaseGroup(Group);
1509    ReleasedGroup = true;
1510  }
1511  assert(ReleasedGroup && "At least one group must be invalidated, as a "
1512                          "scalar epilogue was required");
1513  (void)ReleasedGroup;
1514  RequiresScalarEpilogue = false;
1515}
1516
1517template <typename InstT>
1518void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1519  llvm_unreachable("addMetadata can only be used for Instruction");
1520}
1521
1522namespace llvm {
1523template <>
1524void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1525  SmallVector<Value *, 4> VL;
1526  std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1527                 [](std::pair<int, Instruction *> p) { return p.second; });
1528  propagateMetadata(NewInst, VL);
1529}
1530}
1531
1532std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1533                                       StringRef ScalarName, unsigned numArgs,
1534                                       ElementCount VF) {
1535  SmallString<256> Buffer;
1536  llvm::raw_svector_ostream Out(Buffer);
1537  Out << "_ZGV" << VFABI::_LLVM_ << "N";
1538  if (VF.isScalable())
1539    Out << 'x';
1540  else
1541    Out << VF.getFixedValue();
1542  for (unsigned I = 0; I < numArgs; ++I)
1543    Out << "v";
1544  Out << "_" << ScalarName << "(" << VectorName << ")";
1545  return std::string(Out.str());
1546}
1547
1548void VFABI::getVectorVariantNames(
1549    const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1550  const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
1551  if (S.empty())
1552    return;
1553
1554  SmallVector<StringRef, 8> ListAttr;
1555  S.split(ListAttr, ",");
1556
1557  for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1558#ifndef NDEBUG
1559    LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1560    std::optional<VFInfo> Info =
1561        VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1562    assert(Info && "Invalid name for a VFABI variant.");
1563    assert(CI.getModule()->getFunction(Info->VectorName) &&
1564           "Vector function is missing.");
1565#endif
1566    VariantMappings.push_back(std::string(S));
1567  }
1568}
1569
1570bool VFShape::hasValidParameterList() const {
1571  for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1572       ++Pos) {
1573    assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1574
1575    switch (Parameters[Pos].ParamKind) {
1576    default: // Nothing to check.
1577      break;
1578    case VFParamKind::OMP_Linear:
1579    case VFParamKind::OMP_LinearRef:
1580    case VFParamKind::OMP_LinearVal:
1581    case VFParamKind::OMP_LinearUVal:
1582      // Compile time linear steps must be non-zero.
1583      if (Parameters[Pos].LinearStepOrPos == 0)
1584        return false;
1585      break;
1586    case VFParamKind::OMP_LinearPos:
1587    case VFParamKind::OMP_LinearRefPos:
1588    case VFParamKind::OMP_LinearValPos:
1589    case VFParamKind::OMP_LinearUValPos:
1590      // The runtime linear step must be referring to some other
1591      // parameters in the signature.
1592      if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1593        return false;
1594      // The linear step parameter must be marked as uniform.
1595      if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1596          VFParamKind::OMP_Uniform)
1597        return false;
1598      // The linear step parameter can't point at itself.
1599      if (Parameters[Pos].LinearStepOrPos == int(Pos))
1600        return false;
1601      break;
1602    case VFParamKind::GlobalPredicate:
1603      // The global predicate must be the unique. Can be placed anywhere in the
1604      // signature.
1605      for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1606        if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1607          return false;
1608      break;
1609    }
1610  }
1611  return true;
1612}
1613