1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/ValueTracking.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/AssumeBundleQueries.h"
26#include "llvm/Analysis/AssumptionCache.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/EHPersonalities.h"
29#include "llvm/Analysis/GuardUtils.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/Loads.h"
32#include "llvm/Analysis/LoopInfo.h"
33#include "llvm/Analysis/OptimizationRemarkEmitter.h"
34#include "llvm/Analysis/TargetLibraryInfo.h"
35#include "llvm/Analysis/VectorUtils.h"
36#include "llvm/IR/Argument.h"
37#include "llvm/IR/Attributes.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/Constant.h"
40#include "llvm/IR/ConstantRange.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/DiagnosticInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/GetElementPtrTypeIterator.h"
47#include "llvm/IR/GlobalAlias.h"
48#include "llvm/IR/GlobalValue.h"
49#include "llvm/IR/GlobalVariable.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
54#include "llvm/IR/Intrinsics.h"
55#include "llvm/IR/IntrinsicsAArch64.h"
56#include "llvm/IR/IntrinsicsRISCV.h"
57#include "llvm/IR/IntrinsicsX86.h"
58#include "llvm/IR/LLVMContext.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Module.h"
61#include "llvm/IR/Operator.h"
62#include "llvm/IR/PatternMatch.h"
63#include "llvm/IR/Type.h"
64#include "llvm/IR/User.h"
65#include "llvm/IR/Value.h"
66#include "llvm/Support/Casting.h"
67#include "llvm/Support/CommandLine.h"
68#include "llvm/Support/Compiler.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/KnownBits.h"
71#include "llvm/Support/MathExtras.h"
72#include <algorithm>
73#include <cassert>
74#include <cstdint>
75#include <optional>
76#include <utility>
77
78using namespace llvm;
79using namespace llvm::PatternMatch;
80
81// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                              cl::Hidden, cl::init(20));
85
86
87/// Returns the bitwidth of the given scalar or pointer type. For vector types,
88/// returns the element type's bitwidth.
89static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
90  if (unsigned BitWidth = Ty->getScalarSizeInBits())
91    return BitWidth;
92
93  return DL.getPointerTypeSizeInBits(Ty);
94}
95
96namespace {
97
98// Simplifying using an assume can only be done in a particular control-flow
99// context (the context instruction provides that context). If an assume and
100// the context instruction are not in the same block then the DT helps in
101// figuring out if we can use it.
102struct Query {
103  const DataLayout &DL;
104  AssumptionCache *AC;
105  const Instruction *CxtI;
106  const DominatorTree *DT;
107
108  // Unlike the other analyses, this may be a nullptr because not all clients
109  // provide it currently.
110  OptimizationRemarkEmitter *ORE;
111
112  /// If true, it is safe to use metadata during simplification.
113  InstrInfoQuery IIQ;
114
115  Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
116        const DominatorTree *DT, bool UseInstrInfo,
117        OptimizationRemarkEmitter *ORE = nullptr)
118      : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
119};
120
121} // end anonymous namespace
122
123// Given the provided Value and, potentially, a context instruction, return
124// the preferred context instruction (if any).
125static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
126  // If we've been provided with a context instruction, then use that (provided
127  // it has been inserted).
128  if (CxtI && CxtI->getParent())
129    return CxtI;
130
131  // If the value is really an already-inserted instruction, then use that.
132  CxtI = dyn_cast<Instruction>(V);
133  if (CxtI && CxtI->getParent())
134    return CxtI;
135
136  return nullptr;
137}
138
139static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
140  // If we've been provided with a context instruction, then use that (provided
141  // it has been inserted).
142  if (CxtI && CxtI->getParent())
143    return CxtI;
144
145  // If the value is really an already-inserted instruction, then use that.
146  CxtI = dyn_cast<Instruction>(V1);
147  if (CxtI && CxtI->getParent())
148    return CxtI;
149
150  CxtI = dyn_cast<Instruction>(V2);
151  if (CxtI && CxtI->getParent())
152    return CxtI;
153
154  return nullptr;
155}
156
157static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
158                                   const APInt &DemandedElts,
159                                   APInt &DemandedLHS, APInt &DemandedRHS) {
160  if (isa<ScalableVectorType>(Shuf->getType())) {
161    assert(DemandedElts == APInt(1,1));
162    DemandedLHS = DemandedRHS = DemandedElts;
163    return true;
164  }
165
166  int NumElts =
167      cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
168  return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(),
169                                      DemandedElts, DemandedLHS, DemandedRHS);
170}
171
172static void computeKnownBits(const Value *V, const APInt &DemandedElts,
173                             KnownBits &Known, unsigned Depth, const Query &Q);
174
175static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
176                             const Query &Q) {
177  // Since the number of lanes in a scalable vector is unknown at compile time,
178  // we track one bit which is implicitly broadcast to all lanes.  This means
179  // that all lanes in a scalable vector are considered demanded.
180  auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
181  APInt DemandedElts =
182      FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
183  computeKnownBits(V, DemandedElts, Known, Depth, Q);
184}
185
186void llvm::computeKnownBits(const Value *V, KnownBits &Known,
187                            const DataLayout &DL, unsigned Depth,
188                            AssumptionCache *AC, const Instruction *CxtI,
189                            const DominatorTree *DT,
190                            OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
191  ::computeKnownBits(V, Known, Depth,
192                     Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
193}
194
195void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
196                            KnownBits &Known, const DataLayout &DL,
197                            unsigned Depth, AssumptionCache *AC,
198                            const Instruction *CxtI, const DominatorTree *DT,
199                            OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
200  ::computeKnownBits(V, DemandedElts, Known, Depth,
201                     Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
202}
203
204static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
205                                  unsigned Depth, const Query &Q);
206
207static KnownBits computeKnownBits(const Value *V, unsigned Depth,
208                                  const Query &Q);
209
210KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
211                                 unsigned Depth, AssumptionCache *AC,
212                                 const Instruction *CxtI,
213                                 const DominatorTree *DT,
214                                 OptimizationRemarkEmitter *ORE,
215                                 bool UseInstrInfo) {
216  return ::computeKnownBits(
217      V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
218}
219
220KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
221                                 const DataLayout &DL, unsigned Depth,
222                                 AssumptionCache *AC, const Instruction *CxtI,
223                                 const DominatorTree *DT,
224                                 OptimizationRemarkEmitter *ORE,
225                                 bool UseInstrInfo) {
226  return ::computeKnownBits(
227      V, DemandedElts, Depth,
228      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229}
230
231bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
232                               const DataLayout &DL, AssumptionCache *AC,
233                               const Instruction *CxtI, const DominatorTree *DT,
234                               bool UseInstrInfo) {
235  assert(LHS->getType() == RHS->getType() &&
236         "LHS and RHS should have the same type");
237  assert(LHS->getType()->isIntOrIntVectorTy() &&
238         "LHS and RHS should be integers");
239  // Look for an inverted mask: (X & ~M) op (Y & M).
240  {
241    Value *M;
242    if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
243        match(RHS, m_c_And(m_Specific(M), m_Value())))
244      return true;
245    if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
246        match(LHS, m_c_And(m_Specific(M), m_Value())))
247      return true;
248  }
249
250  // X op (Y & ~X)
251  if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
252      match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
253    return true;
254
255  // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
256  // for constant Y.
257  Value *Y;
258  if (match(RHS,
259            m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
260      match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
261    return true;
262
263  // Peek through extends to find a 'not' of the other side:
264  // (ext Y) op ext(~Y)
265  // (ext ~Y) op ext(Y)
266  if ((match(LHS, m_ZExtOrSExt(m_Value(Y))) &&
267       match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))) ||
268      (match(RHS, m_ZExtOrSExt(m_Value(Y))) &&
269       match(LHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))))
270    return true;
271
272  // Look for: (A & B) op ~(A | B)
273  {
274    Value *A, *B;
275    if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
276        match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
277      return true;
278    if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
279        match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
280      return true;
281  }
282  IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
283  KnownBits LHSKnown(IT->getBitWidth());
284  KnownBits RHSKnown(IT->getBitWidth());
285  computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286  computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
287  return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
288}
289
290bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
291  return !I->user_empty() && all_of(I->users(), [](const User *U) {
292    ICmpInst::Predicate P;
293    return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
294  });
295}
296
297static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
298                                   const Query &Q);
299
300bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
301                                  bool OrZero, unsigned Depth,
302                                  AssumptionCache *AC, const Instruction *CxtI,
303                                  const DominatorTree *DT, bool UseInstrInfo) {
304  return ::isKnownToBeAPowerOfTwo(
305      V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
306}
307
308static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
309                           unsigned Depth, const Query &Q);
310
311static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
312
313bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
314                          AssumptionCache *AC, const Instruction *CxtI,
315                          const DominatorTree *DT, bool UseInstrInfo) {
316  return ::isKnownNonZero(V, Depth,
317                          Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
318}
319
320bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
321                              unsigned Depth, AssumptionCache *AC,
322                              const Instruction *CxtI, const DominatorTree *DT,
323                              bool UseInstrInfo) {
324  KnownBits Known =
325      computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
326  return Known.isNonNegative();
327}
328
329bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
330                           AssumptionCache *AC, const Instruction *CxtI,
331                           const DominatorTree *DT, bool UseInstrInfo) {
332  if (auto *CI = dyn_cast<ConstantInt>(V))
333    return CI->getValue().isStrictlyPositive();
334
335  // TODO: We'd doing two recursive queries here.  We should factor this such
336  // that only a single query is needed.
337  return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
338         isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
339}
340
341bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
342                           AssumptionCache *AC, const Instruction *CxtI,
343                           const DominatorTree *DT, bool UseInstrInfo) {
344  KnownBits Known =
345      computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
346  return Known.isNegative();
347}
348
349static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
350                            const Query &Q);
351
352bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
353                           const DataLayout &DL, AssumptionCache *AC,
354                           const Instruction *CxtI, const DominatorTree *DT,
355                           bool UseInstrInfo) {
356  return ::isKnownNonEqual(V1, V2, 0,
357                           Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
358                                 UseInstrInfo, /*ORE=*/nullptr));
359}
360
361static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
362                              const Query &Q);
363
364bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
365                             const DataLayout &DL, unsigned Depth,
366                             AssumptionCache *AC, const Instruction *CxtI,
367                             const DominatorTree *DT, bool UseInstrInfo) {
368  return ::MaskedValueIsZero(
369      V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
370}
371
372static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
373                                   unsigned Depth, const Query &Q);
374
375static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
376                                   const Query &Q) {
377  auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
378  APInt DemandedElts =
379      FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
380  return ComputeNumSignBits(V, DemandedElts, Depth, Q);
381}
382
383unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
384                                  unsigned Depth, AssumptionCache *AC,
385                                  const Instruction *CxtI,
386                                  const DominatorTree *DT, bool UseInstrInfo) {
387  return ::ComputeNumSignBits(
388      V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
389}
390
391unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
392                                         unsigned Depth, AssumptionCache *AC,
393                                         const Instruction *CxtI,
394                                         const DominatorTree *DT) {
395  unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
396  return V->getType()->getScalarSizeInBits() - SignBits + 1;
397}
398
399static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                   bool NSW, const APInt &DemandedElts,
401                                   KnownBits &KnownOut, KnownBits &Known2,
402                                   unsigned Depth, const Query &Q) {
403  computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404
405  // If one operand is unknown and we have no nowrap information,
406  // the result will be unknown independently of the second operand.
407  if (KnownOut.isUnknown() && !NSW)
408    return;
409
410  computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411  KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412}
413
414static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                const APInt &DemandedElts, KnownBits &Known,
416                                KnownBits &Known2, unsigned Depth,
417                                const Query &Q) {
418  computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
419  computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
420
421  bool isKnownNegative = false;
422  bool isKnownNonNegative = false;
423  // If the multiplication is known not to overflow, compute the sign bit.
424  if (NSW) {
425    if (Op0 == Op1) {
426      // The product of a number with itself is non-negative.
427      isKnownNonNegative = true;
428    } else {
429      bool isKnownNonNegativeOp1 = Known.isNonNegative();
430      bool isKnownNonNegativeOp0 = Known2.isNonNegative();
431      bool isKnownNegativeOp1 = Known.isNegative();
432      bool isKnownNegativeOp0 = Known2.isNegative();
433      // The product of two numbers with the same sign is non-negative.
434      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
435                           (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
436      // The product of a negative number and a non-negative number is either
437      // negative or zero.
438      if (!isKnownNonNegative)
439        isKnownNegative =
440            (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
441             Known2.isNonZero()) ||
442            (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
443    }
444  }
445
446  bool SelfMultiply = Op0 == Op1;
447  // TODO: SelfMultiply can be poison, but not undef.
448  if (SelfMultiply)
449    SelfMultiply &=
450        isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
451  Known = KnownBits::mul(Known, Known2, SelfMultiply);
452
453  // Only make use of no-wrap flags if we failed to compute the sign bit
454  // directly.  This matters if the multiplication always overflows, in
455  // which case we prefer to follow the result of the direct computation,
456  // though as the program is invoking undefined behaviour we can choose
457  // whatever we like here.
458  if (isKnownNonNegative && !Known.isNegative())
459    Known.makeNonNegative();
460  else if (isKnownNegative && !Known.isNonNegative())
461    Known.makeNegative();
462}
463
464void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
465                                             KnownBits &Known) {
466  unsigned BitWidth = Known.getBitWidth();
467  unsigned NumRanges = Ranges.getNumOperands() / 2;
468  assert(NumRanges >= 1);
469
470  Known.Zero.setAllBits();
471  Known.One.setAllBits();
472
473  for (unsigned i = 0; i < NumRanges; ++i) {
474    ConstantInt *Lower =
475        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
476    ConstantInt *Upper =
477        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
478    ConstantRange Range(Lower->getValue(), Upper->getValue());
479
480    // The first CommonPrefixBits of all values in Range are equal.
481    unsigned CommonPrefixBits =
482        (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
483    APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
484    APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
485    Known.One &= UnsignedMax & Mask;
486    Known.Zero &= ~UnsignedMax & Mask;
487  }
488}
489
490static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
491  SmallVector<const Value *, 16> WorkSet(1, I);
492  SmallPtrSet<const Value *, 32> Visited;
493  SmallPtrSet<const Value *, 16> EphValues;
494
495  // The instruction defining an assumption's condition itself is always
496  // considered ephemeral to that assumption (even if it has other
497  // non-ephemeral users). See r246696's test case for an example.
498  if (is_contained(I->operands(), E))
499    return true;
500
501  while (!WorkSet.empty()) {
502    const Value *V = WorkSet.pop_back_val();
503    if (!Visited.insert(V).second)
504      continue;
505
506    // If all uses of this value are ephemeral, then so is this value.
507    if (llvm::all_of(V->users(), [&](const User *U) {
508                                   return EphValues.count(U);
509                                 })) {
510      if (V == E)
511        return true;
512
513      if (V == I || (isa<Instruction>(V) &&
514                     !cast<Instruction>(V)->mayHaveSideEffects() &&
515                     !cast<Instruction>(V)->isTerminator())) {
516       EphValues.insert(V);
517       if (const User *U = dyn_cast<User>(V))
518         append_range(WorkSet, U->operands());
519      }
520    }
521  }
522
523  return false;
524}
525
526// Is this an intrinsic that cannot be speculated but also cannot trap?
527bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
528  if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
529    return CI->isAssumeLikeIntrinsic();
530
531  return false;
532}
533
534bool llvm::isValidAssumeForContext(const Instruction *Inv,
535                                   const Instruction *CxtI,
536                                   const DominatorTree *DT) {
537  // There are two restrictions on the use of an assume:
538  //  1. The assume must dominate the context (or the control flow must
539  //     reach the assume whenever it reaches the context).
540  //  2. The context must not be in the assume's set of ephemeral values
541  //     (otherwise we will use the assume to prove that the condition
542  //     feeding the assume is trivially true, thus causing the removal of
543  //     the assume).
544
545  if (Inv->getParent() == CxtI->getParent()) {
546    // If Inv and CtxI are in the same block, check if the assume (Inv) is first
547    // in the BB.
548    if (Inv->comesBefore(CxtI))
549      return true;
550
551    // Don't let an assume affect itself - this would cause the problems
552    // `isEphemeralValueOf` is trying to prevent, and it would also make
553    // the loop below go out of bounds.
554    if (Inv == CxtI)
555      return false;
556
557    // The context comes first, but they're both in the same block.
558    // Make sure there is nothing in between that might interrupt
559    // the control flow, not even CxtI itself.
560    // We limit the scan distance between the assume and its context instruction
561    // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
562    // it can be adjusted if needed (could be turned into a cl::opt).
563    auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
564    if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
565      return false;
566
567    return !isEphemeralValueOf(Inv, CxtI);
568  }
569
570  // Inv and CxtI are in different blocks.
571  if (DT) {
572    if (DT->dominates(Inv, CxtI))
573      return true;
574  } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
575    // We don't have a DT, but this trivially dominates.
576    return true;
577  }
578
579  return false;
580}
581
582static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
583  // v u> y implies v != 0.
584  if (Pred == ICmpInst::ICMP_UGT)
585    return true;
586
587  // Special-case v != 0 to also handle v != null.
588  if (Pred == ICmpInst::ICMP_NE)
589    return match(RHS, m_Zero());
590
591  // All other predicates - rely on generic ConstantRange handling.
592  const APInt *C;
593  if (!match(RHS, m_APInt(C)))
594    return false;
595
596  ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
597  return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
598}
599
600static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
601  // Use of assumptions is context-sensitive. If we don't have a context, we
602  // cannot use them!
603  if (!Q.AC || !Q.CxtI)
604    return false;
605
606  if (Q.CxtI && V->getType()->isPointerTy()) {
607    SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
608    if (!NullPointerIsDefined(Q.CxtI->getFunction(),
609                              V->getType()->getPointerAddressSpace()))
610      AttrKinds.push_back(Attribute::Dereferenceable);
611
612    if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
613      return true;
614  }
615
616  for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
617    if (!AssumeVH)
618      continue;
619    CondGuardInst *I = cast<CondGuardInst>(AssumeVH);
620    assert(I->getFunction() == Q.CxtI->getFunction() &&
621           "Got assumption for the wrong function!");
622
623    // Warning: This loop can end up being somewhat performance sensitive.
624    // We're running this loop for once for each value queried resulting in a
625    // runtime of ~O(#assumes * #values).
626
627    Value *RHS;
628    CmpInst::Predicate Pred;
629    auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
630    if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
631      return false;
632
633    if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
634      return true;
635  }
636
637  return false;
638}
639
640static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
641                                       unsigned Depth, const Query &Q) {
642  // Use of assumptions is context-sensitive. If we don't have a context, we
643  // cannot use them!
644  if (!Q.AC || !Q.CxtI)
645    return;
646
647  unsigned BitWidth = Known.getBitWidth();
648
649  // Refine Known set if the pointer alignment is set by assume bundles.
650  if (V->getType()->isPointerTy()) {
651    if (RetainedKnowledge RK = getKnowledgeValidInContext(
652            V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
653      if (isPowerOf2_64(RK.ArgValue))
654        Known.Zero.setLowBits(Log2_64(RK.ArgValue));
655    }
656  }
657
658  // Note that the patterns below need to be kept in sync with the code
659  // in AssumptionCache::updateAffectedValues.
660
661  for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
662    if (!AssumeVH)
663      continue;
664    CondGuardInst *I = cast<CondGuardInst>(AssumeVH);
665    assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
666           "Got assumption for the wrong function!");
667
668    // Warning: This loop can end up being somewhat performance sensitive.
669    // We're running this loop for once for each value queried resulting in a
670    // runtime of ~O(#assumes * #values).
671
672    Value *Arg = I->getArgOperand(0);
673
674    if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
675      assert(BitWidth == 1 && "assume operand is not i1?");
676      Known.setAllOnes();
677      return;
678    }
679    if (match(Arg, m_Not(m_Specific(V))) &&
680        isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
681      assert(BitWidth == 1 && "assume operand is not i1?");
682      Known.setAllZero();
683      return;
684    }
685
686    // The remaining tests are all recursive, so bail out if we hit the limit.
687    if (Depth == MaxAnalysisRecursionDepth)
688      continue;
689
690    ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
691    if (!Cmp)
692      continue;
693
694    // We are attempting to compute known bits for the operands of an assume.
695    // Do not try to use other assumptions for those recursive calls because
696    // that can lead to mutual recursion and a compile-time explosion.
697    // An example of the mutual recursion: computeKnownBits can call
698    // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
699    // and so on.
700    Query QueryNoAC = Q;
701    QueryNoAC.AC = nullptr;
702
703    // Note that ptrtoint may change the bitwidth.
704    Value *A, *B;
705    auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
706
707    CmpInst::Predicate Pred;
708    uint64_t C;
709    switch (Cmp->getPredicate()) {
710    default:
711      break;
712    case ICmpInst::ICMP_EQ:
713      // assume(v = a)
714      if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
715          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
716        KnownBits RHSKnown =
717            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
718        Known.Zero |= RHSKnown.Zero;
719        Known.One  |= RHSKnown.One;
720      // assume(v & b = a)
721      } else if (match(Cmp,
722                       m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
723                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
724        KnownBits RHSKnown =
725            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
726        KnownBits MaskKnown =
727            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
728
729        // For those bits in the mask that are known to be one, we can propagate
730        // known bits from the RHS to V.
731        Known.Zero |= RHSKnown.Zero & MaskKnown.One;
732        Known.One  |= RHSKnown.One  & MaskKnown.One;
733      // assume(~(v & b) = a)
734      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
735                                     m_Value(A))) &&
736                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
737        KnownBits RHSKnown =
738            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
739        KnownBits MaskKnown =
740            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
741
742        // For those bits in the mask that are known to be one, we can propagate
743        // inverted known bits from the RHS to V.
744        Known.Zero |= RHSKnown.One  & MaskKnown.One;
745        Known.One  |= RHSKnown.Zero & MaskKnown.One;
746      // assume(v | b = a)
747      } else if (match(Cmp,
748                       m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
749                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
750        KnownBits RHSKnown =
751            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
752        KnownBits BKnown =
753            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
754
755        // For those bits in B that are known to be zero, we can propagate known
756        // bits from the RHS to V.
757        Known.Zero |= RHSKnown.Zero & BKnown.Zero;
758        Known.One  |= RHSKnown.One  & BKnown.Zero;
759      // assume(~(v | b) = a)
760      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
761                                     m_Value(A))) &&
762                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
763        KnownBits RHSKnown =
764            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
765        KnownBits BKnown =
766            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
767
768        // For those bits in B that are known to be zero, we can propagate
769        // inverted known bits from the RHS to V.
770        Known.Zero |= RHSKnown.One  & BKnown.Zero;
771        Known.One  |= RHSKnown.Zero & BKnown.Zero;
772      // assume(v ^ b = a)
773      } else if (match(Cmp,
774                       m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
775                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
776        KnownBits RHSKnown =
777            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
778        KnownBits BKnown =
779            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
780
781        // For those bits in B that are known to be zero, we can propagate known
782        // bits from the RHS to V. For those bits in B that are known to be one,
783        // we can propagate inverted known bits from the RHS to V.
784        Known.Zero |= RHSKnown.Zero & BKnown.Zero;
785        Known.One  |= RHSKnown.One  & BKnown.Zero;
786        Known.Zero |= RHSKnown.One  & BKnown.One;
787        Known.One  |= RHSKnown.Zero & BKnown.One;
788      // assume(~(v ^ b) = a)
789      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
790                                     m_Value(A))) &&
791                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
792        KnownBits RHSKnown =
793            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
794        KnownBits BKnown =
795            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
796
797        // For those bits in B that are known to be zero, we can propagate
798        // inverted known bits from the RHS to V. For those bits in B that are
799        // known to be one, we can propagate known bits from the RHS to V.
800        Known.Zero |= RHSKnown.One  & BKnown.Zero;
801        Known.One  |= RHSKnown.Zero & BKnown.Zero;
802        Known.Zero |= RHSKnown.Zero & BKnown.One;
803        Known.One  |= RHSKnown.One  & BKnown.One;
804      // assume(v << c = a)
805      } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
806                                     m_Value(A))) &&
807                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
808        KnownBits RHSKnown =
809            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
810
811        // For those bits in RHS that are known, we can propagate them to known
812        // bits in V shifted to the right by C.
813        RHSKnown.Zero.lshrInPlace(C);
814        Known.Zero |= RHSKnown.Zero;
815        RHSKnown.One.lshrInPlace(C);
816        Known.One  |= RHSKnown.One;
817      // assume(~(v << c) = a)
818      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
819                                     m_Value(A))) &&
820                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
821        KnownBits RHSKnown =
822            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
823        // For those bits in RHS that are known, we can propagate them inverted
824        // to known bits in V shifted to the right by C.
825        RHSKnown.One.lshrInPlace(C);
826        Known.Zero |= RHSKnown.One;
827        RHSKnown.Zero.lshrInPlace(C);
828        Known.One  |= RHSKnown.Zero;
829      // assume(v >> c = a)
830      } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
831                                     m_Value(A))) &&
832                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
833        KnownBits RHSKnown =
834            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
835        // For those bits in RHS that are known, we can propagate them to known
836        // bits in V shifted to the right by C.
837        Known.Zero |= RHSKnown.Zero << C;
838        Known.One  |= RHSKnown.One  << C;
839      // assume(~(v >> c) = a)
840      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
841                                     m_Value(A))) &&
842                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
843        KnownBits RHSKnown =
844            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
845        // For those bits in RHS that are known, we can propagate them inverted
846        // to known bits in V shifted to the right by C.
847        Known.Zero |= RHSKnown.One  << C;
848        Known.One  |= RHSKnown.Zero << C;
849      }
850      break;
851    case ICmpInst::ICMP_SGE:
852      // assume(v >=_s c) where c is non-negative
853      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
854          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
855        KnownBits RHSKnown =
856            computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
857
858        if (RHSKnown.isNonNegative()) {
859          // We know that the sign bit is zero.
860          Known.makeNonNegative();
861        }
862      }
863      break;
864    case ICmpInst::ICMP_SGT:
865      // assume(v >_s c) where c is at least -1.
866      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
867          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
868        KnownBits RHSKnown =
869            computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
870
871        if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
872          // We know that the sign bit is zero.
873          Known.makeNonNegative();
874        }
875      }
876      break;
877    case ICmpInst::ICMP_SLE:
878      // assume(v <=_s c) where c is negative
879      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
880          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
881        KnownBits RHSKnown =
882            computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
883
884        if (RHSKnown.isNegative()) {
885          // We know that the sign bit is one.
886          Known.makeNegative();
887        }
888      }
889      break;
890    case ICmpInst::ICMP_SLT:
891      // assume(v <_s c) where c is non-positive
892      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
893          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
894        KnownBits RHSKnown =
895            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
896
897        if (RHSKnown.isZero() || RHSKnown.isNegative()) {
898          // We know that the sign bit is one.
899          Known.makeNegative();
900        }
901      }
902      break;
903    case ICmpInst::ICMP_ULE:
904      // assume(v <=_u c)
905      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
906          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
907        KnownBits RHSKnown =
908            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
909
910        // Whatever high bits in c are zero are known to be zero.
911        Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
912      }
913      break;
914    case ICmpInst::ICMP_ULT:
915      // assume(v <_u c)
916      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
917          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
918        KnownBits RHSKnown =
919            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
920
921        // If the RHS is known zero, then this assumption must be wrong (nothing
922        // is unsigned less than zero). Signal a conflict and get out of here.
923        if (RHSKnown.isZero()) {
924          Known.Zero.setAllBits();
925          Known.One.setAllBits();
926          break;
927        }
928
929        // Whatever high bits in c are zero are known to be zero (if c is a power
930        // of 2, then one more).
931        if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
932          Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
933        else
934          Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
935      }
936      break;
937    case ICmpInst::ICMP_NE: {
938      // assume (v & b != 0) where b is a power of 2
939      const APInt *BPow2;
940      if (match(Cmp, m_ICmp(Pred, m_c_And(m_V, m_Power2(BPow2)), m_Zero())) &&
941          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
942        Known.One |= BPow2->zextOrTrunc(BitWidth);
943      }
944    } break;
945    }
946  }
947
948  // If assumptions conflict with each other or previous known bits, then we
949  // have a logical fallacy. It's possible that the assumption is not reachable,
950  // so this isn't a real bug. On the other hand, the program may have undefined
951  // behavior, or we might have a bug in the compiler. We can't assert/crash, so
952  // clear out the known bits, try to warn the user, and hope for the best.
953  if (Known.Zero.intersects(Known.One)) {
954    Known.resetAll();
955
956    if (Q.ORE)
957      Q.ORE->emit([&]() {
958        auto *CxtI = const_cast<Instruction *>(Q.CxtI);
959        return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
960                                          CxtI)
961               << "Detected conflicting code assumptions. Program may "
962                  "have undefined behavior, or compiler may have "
963                  "internal error.";
964      });
965  }
966}
967
968/// Compute known bits from a shift operator, including those with a
969/// non-constant shift amount. Known is the output of this function. Known2 is a
970/// pre-allocated temporary with the same bit width as Known and on return
971/// contains the known bit of the shift value source. KF is an
972/// operator-specific function that, given the known-bits and a shift amount,
973/// compute the implied known-bits of the shift operator's result respectively
974/// for that shift amount. The results from calling KF are conservatively
975/// combined for all permitted shift amounts.
976static void computeKnownBitsFromShiftOperator(
977    const Operator *I, const APInt &DemandedElts, KnownBits &Known,
978    KnownBits &Known2, unsigned Depth, const Query &Q,
979    function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
980  unsigned BitWidth = Known.getBitWidth();
981  computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
982  computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
983
984  // Note: We cannot use Known.Zero.getLimitedValue() here, because if
985  // BitWidth > 64 and any upper bits are known, we'll end up returning the
986  // limit value (which implies all bits are known).
987  uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
988  uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
989  bool ShiftAmtIsConstant = Known.isConstant();
990  bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
991
992  if (ShiftAmtIsConstant) {
993    Known = KF(Known2, Known);
994
995    // If the known bits conflict, this must be an overflowing left shift, so
996    // the shift result is poison. We can return anything we want. Choose 0 for
997    // the best folding opportunity.
998    if (Known.hasConflict())
999      Known.setAllZero();
1000
1001    return;
1002  }
1003
1004  // If the shift amount could be greater than or equal to the bit-width of the
1005  // LHS, the value could be poison, but bail out because the check below is
1006  // expensive.
1007  // TODO: Should we just carry on?
1008  if (MaxShiftAmtIsOutOfRange) {
1009    Known.resetAll();
1010    return;
1011  }
1012
1013  // It would be more-clearly correct to use the two temporaries for this
1014  // calculation. Reusing the APInts here to prevent unnecessary allocations.
1015  Known.resetAll();
1016
1017  // If we know the shifter operand is nonzero, we can sometimes infer more
1018  // known bits. However this is expensive to compute, so be lazy about it and
1019  // only compute it when absolutely necessary.
1020  std::optional<bool> ShifterOperandIsNonZero;
1021
1022  // Early exit if we can't constrain any well-defined shift amount.
1023  if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1024      !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1025    ShifterOperandIsNonZero =
1026        isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1027    if (!*ShifterOperandIsNonZero)
1028      return;
1029  }
1030
1031  Known.Zero.setAllBits();
1032  Known.One.setAllBits();
1033  for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1034    // Combine the shifted known input bits only for those shift amounts
1035    // compatible with its known constraints.
1036    if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1037      continue;
1038    if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1039      continue;
1040    // If we know the shifter is nonzero, we may be able to infer more known
1041    // bits. This check is sunk down as far as possible to avoid the expensive
1042    // call to isKnownNonZero if the cheaper checks above fail.
1043    if (ShiftAmt == 0) {
1044      if (!ShifterOperandIsNonZero)
1045        ShifterOperandIsNonZero =
1046            isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1047      if (*ShifterOperandIsNonZero)
1048        continue;
1049    }
1050
1051    Known = KnownBits::commonBits(
1052        Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1053  }
1054
1055  // If the known bits conflict, the result is poison. Return a 0 and hope the
1056  // caller can further optimize that.
1057  if (Known.hasConflict())
1058    Known.setAllZero();
1059}
1060
1061static void computeKnownBitsFromOperator(const Operator *I,
1062                                         const APInt &DemandedElts,
1063                                         KnownBits &Known, unsigned Depth,
1064                                         const Query &Q) {
1065  unsigned BitWidth = Known.getBitWidth();
1066
1067  KnownBits Known2(BitWidth);
1068  switch (I->getOpcode()) {
1069  default: break;
1070  case Instruction::Load:
1071    if (MDNode *MD =
1072            Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1073      computeKnownBitsFromRangeMetadata(*MD, Known);
1074    break;
1075  case Instruction::And: {
1076    // If either the LHS or the RHS are Zero, the result is zero.
1077    computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1078    computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1079
1080    Known &= Known2;
1081
1082    // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1083    // here we handle the more general case of adding any odd number by
1084    // matching the form add(x, add(x, y)) where y is odd.
1085    // TODO: This could be generalized to clearing any bit set in y where the
1086    // following bit is known to be unset in y.
1087    Value *X = nullptr, *Y = nullptr;
1088    if (!Known.Zero[0] && !Known.One[0] &&
1089        match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1090      Known2.resetAll();
1091      computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1092      if (Known2.countMinTrailingOnes() > 0)
1093        Known.Zero.setBit(0);
1094    }
1095    break;
1096  }
1097  case Instruction::Or:
1098    computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1099    computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1100
1101    Known |= Known2;
1102    break;
1103  case Instruction::Xor:
1104    computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1105    computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1106
1107    Known ^= Known2;
1108    break;
1109  case Instruction::Mul: {
1110    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1111    computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1112                        Known, Known2, Depth, Q);
1113    break;
1114  }
1115  case Instruction::UDiv: {
1116    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1117    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1118    Known = KnownBits::udiv(Known, Known2);
1119    break;
1120  }
1121  case Instruction::Select: {
1122    const Value *LHS = nullptr, *RHS = nullptr;
1123    SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1124    if (SelectPatternResult::isMinOrMax(SPF)) {
1125      computeKnownBits(RHS, Known, Depth + 1, Q);
1126      computeKnownBits(LHS, Known2, Depth + 1, Q);
1127      switch (SPF) {
1128      default:
1129        llvm_unreachable("Unhandled select pattern flavor!");
1130      case SPF_SMAX:
1131        Known = KnownBits::smax(Known, Known2);
1132        break;
1133      case SPF_SMIN:
1134        Known = KnownBits::smin(Known, Known2);
1135        break;
1136      case SPF_UMAX:
1137        Known = KnownBits::umax(Known, Known2);
1138        break;
1139      case SPF_UMIN:
1140        Known = KnownBits::umin(Known, Known2);
1141        break;
1142      }
1143      break;
1144    }
1145
1146    computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1147    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1148
1149    // Only known if known in both the LHS and RHS.
1150    Known = KnownBits::commonBits(Known, Known2);
1151
1152    if (SPF == SPF_ABS) {
1153      // RHS from matchSelectPattern returns the negation part of abs pattern.
1154      // If the negate has an NSW flag we can assume the sign bit of the result
1155      // will be 0 because that makes abs(INT_MIN) undefined.
1156      if (match(RHS, m_Neg(m_Specific(LHS))) &&
1157          Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1158        Known.Zero.setSignBit();
1159    }
1160
1161    break;
1162  }
1163  case Instruction::FPTrunc:
1164  case Instruction::FPExt:
1165  case Instruction::FPToUI:
1166  case Instruction::FPToSI:
1167  case Instruction::SIToFP:
1168  case Instruction::UIToFP:
1169    break; // Can't work with floating point.
1170  case Instruction::PtrToInt:
1171  case Instruction::IntToPtr:
1172    // Fall through and handle them the same as zext/trunc.
1173    [[fallthrough]];
1174  case Instruction::ZExt:
1175  case Instruction::Trunc: {
1176    Type *SrcTy = I->getOperand(0)->getType();
1177
1178    unsigned SrcBitWidth;
1179    // Note that we handle pointer operands here because of inttoptr/ptrtoint
1180    // which fall through here.
1181    Type *ScalarTy = SrcTy->getScalarType();
1182    SrcBitWidth = ScalarTy->isPointerTy() ?
1183      Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1184      Q.DL.getTypeSizeInBits(ScalarTy);
1185
1186    assert(SrcBitWidth && "SrcBitWidth can't be zero");
1187    Known = Known.anyextOrTrunc(SrcBitWidth);
1188    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1189    Known = Known.zextOrTrunc(BitWidth);
1190    break;
1191  }
1192  case Instruction::BitCast: {
1193    Type *SrcTy = I->getOperand(0)->getType();
1194    if (SrcTy->isIntOrPtrTy() &&
1195        // TODO: For now, not handling conversions like:
1196        // (bitcast i64 %x to <2 x i32>)
1197        !I->getType()->isVectorTy()) {
1198      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1199      break;
1200    }
1201
1202    // Handle cast from vector integer type to scalar or vector integer.
1203    auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1204    if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1205        !I->getType()->isIntOrIntVectorTy() ||
1206        isa<ScalableVectorType>(I->getType()))
1207      break;
1208
1209    // Look through a cast from narrow vector elements to wider type.
1210    // Examples: v4i32 -> v2i64, v3i8 -> v24
1211    unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1212    if (BitWidth % SubBitWidth == 0) {
1213      // Known bits are automatically intersected across demanded elements of a
1214      // vector. So for example, if a bit is computed as known zero, it must be
1215      // zero across all demanded elements of the vector.
1216      //
1217      // For this bitcast, each demanded element of the output is sub-divided
1218      // across a set of smaller vector elements in the source vector. To get
1219      // the known bits for an entire element of the output, compute the known
1220      // bits for each sub-element sequentially. This is done by shifting the
1221      // one-set-bit demanded elements parameter across the sub-elements for
1222      // consecutive calls to computeKnownBits. We are using the demanded
1223      // elements parameter as a mask operator.
1224      //
1225      // The known bits of each sub-element are then inserted into place
1226      // (dependent on endian) to form the full result of known bits.
1227      unsigned NumElts = DemandedElts.getBitWidth();
1228      unsigned SubScale = BitWidth / SubBitWidth;
1229      APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1230      for (unsigned i = 0; i != NumElts; ++i) {
1231        if (DemandedElts[i])
1232          SubDemandedElts.setBit(i * SubScale);
1233      }
1234
1235      KnownBits KnownSrc(SubBitWidth);
1236      for (unsigned i = 0; i != SubScale; ++i) {
1237        computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1238                         Depth + 1, Q);
1239        unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1240        Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1241      }
1242    }
1243    break;
1244  }
1245  case Instruction::SExt: {
1246    // Compute the bits in the result that are not present in the input.
1247    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1248
1249    Known = Known.trunc(SrcBitWidth);
1250    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1251    // If the sign bit of the input is known set or clear, then we know the
1252    // top bits of the result.
1253    Known = Known.sext(BitWidth);
1254    break;
1255  }
1256  case Instruction::Shl: {
1257    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1258    auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1259      KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1260      // If this shift has "nsw" keyword, then the result is either a poison
1261      // value or has the same sign bit as the first operand.
1262      if (NSW) {
1263        if (KnownVal.Zero.isSignBitSet())
1264          Result.Zero.setSignBit();
1265        if (KnownVal.One.isSignBitSet())
1266          Result.One.setSignBit();
1267      }
1268      return Result;
1269    };
1270    computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1271                                      KF);
1272    // Trailing zeros of a right-shifted constant never decrease.
1273    const APInt *C;
1274    if (match(I->getOperand(0), m_APInt(C)))
1275      Known.Zero.setLowBits(C->countTrailingZeros());
1276    break;
1277  }
1278  case Instruction::LShr: {
1279    auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1280      return KnownBits::lshr(KnownVal, KnownAmt);
1281    };
1282    computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1283                                      KF);
1284    // Leading zeros of a left-shifted constant never decrease.
1285    const APInt *C;
1286    if (match(I->getOperand(0), m_APInt(C)))
1287      Known.Zero.setHighBits(C->countLeadingZeros());
1288    break;
1289  }
1290  case Instruction::AShr: {
1291    auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1292      return KnownBits::ashr(KnownVal, KnownAmt);
1293    };
1294    computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1295                                      KF);
1296    break;
1297  }
1298  case Instruction::Sub: {
1299    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1300    computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1301                           DemandedElts, Known, Known2, Depth, Q);
1302    break;
1303  }
1304  case Instruction::Add: {
1305    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1306    computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1307                           DemandedElts, Known, Known2, Depth, Q);
1308    break;
1309  }
1310  case Instruction::SRem:
1311    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1312    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1313    Known = KnownBits::srem(Known, Known2);
1314    break;
1315
1316  case Instruction::URem:
1317    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1318    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1319    Known = KnownBits::urem(Known, Known2);
1320    break;
1321  case Instruction::Alloca:
1322    Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1323    break;
1324  case Instruction::GetElementPtr: {
1325    // Analyze all of the subscripts of this getelementptr instruction
1326    // to determine if we can prove known low zero bits.
1327    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1328    // Accumulate the constant indices in a separate variable
1329    // to minimize the number of calls to computeForAddSub.
1330    APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1331
1332    gep_type_iterator GTI = gep_type_begin(I);
1333    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1334      // TrailZ can only become smaller, short-circuit if we hit zero.
1335      if (Known.isUnknown())
1336        break;
1337
1338      Value *Index = I->getOperand(i);
1339
1340      // Handle case when index is zero.
1341      Constant *CIndex = dyn_cast<Constant>(Index);
1342      if (CIndex && CIndex->isZeroValue())
1343        continue;
1344
1345      if (StructType *STy = GTI.getStructTypeOrNull()) {
1346        // Handle struct member offset arithmetic.
1347
1348        assert(CIndex &&
1349               "Access to structure field must be known at compile time");
1350
1351        if (CIndex->getType()->isVectorTy())
1352          Index = CIndex->getSplatValue();
1353
1354        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1355        const StructLayout *SL = Q.DL.getStructLayout(STy);
1356        uint64_t Offset = SL->getElementOffset(Idx);
1357        AccConstIndices += Offset;
1358        continue;
1359      }
1360
1361      // Handle array index arithmetic.
1362      Type *IndexedTy = GTI.getIndexedType();
1363      if (!IndexedTy->isSized()) {
1364        Known.resetAll();
1365        break;
1366      }
1367
1368      unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1369      KnownBits IndexBits(IndexBitWidth);
1370      computeKnownBits(Index, IndexBits, Depth + 1, Q);
1371      TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1372      uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue();
1373      KnownBits ScalingFactor(IndexBitWidth);
1374      // Multiply by current sizeof type.
1375      // &A[i] == A + i * sizeof(*A[i]).
1376      if (IndexTypeSize.isScalable()) {
1377        // For scalable types the only thing we know about sizeof is
1378        // that this is a multiple of the minimum size.
1379        ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1380      } else if (IndexBits.isConstant()) {
1381        APInt IndexConst = IndexBits.getConstant();
1382        APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1383        IndexConst *= ScalingFactor;
1384        AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1385        continue;
1386      } else {
1387        ScalingFactor =
1388            KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1389      }
1390      IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1391
1392      // If the offsets have a different width from the pointer, according
1393      // to the language reference we need to sign-extend or truncate them
1394      // to the width of the pointer.
1395      IndexBits = IndexBits.sextOrTrunc(BitWidth);
1396
1397      // Note that inbounds does *not* guarantee nsw for the addition, as only
1398      // the offset is signed, while the base address is unsigned.
1399      Known = KnownBits::computeForAddSub(
1400          /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1401    }
1402    if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1403      KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1404      Known = KnownBits::computeForAddSub(
1405          /*Add=*/true, /*NSW=*/false, Known, Index);
1406    }
1407    break;
1408  }
1409  case Instruction::PHI: {
1410    const PHINode *P = cast<PHINode>(I);
1411    BinaryOperator *BO = nullptr;
1412    Value *R = nullptr, *L = nullptr;
1413    if (matchSimpleRecurrence(P, BO, R, L)) {
1414      // Handle the case of a simple two-predecessor recurrence PHI.
1415      // There's a lot more that could theoretically be done here, but
1416      // this is sufficient to catch some interesting cases.
1417      unsigned Opcode = BO->getOpcode();
1418
1419      // If this is a shift recurrence, we know the bits being shifted in.
1420      // We can combine that with information about the start value of the
1421      // recurrence to conclude facts about the result.
1422      if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1423           Opcode == Instruction::Shl) &&
1424          BO->getOperand(0) == I) {
1425
1426        // We have matched a recurrence of the form:
1427        // %iv = [R, %entry], [%iv.next, %backedge]
1428        // %iv.next = shift_op %iv, L
1429
1430        // Recurse with the phi context to avoid concern about whether facts
1431        // inferred hold at original context instruction.  TODO: It may be
1432        // correct to use the original context.  IF warranted, explore and
1433        // add sufficient tests to cover.
1434        Query RecQ = Q;
1435        RecQ.CxtI = P;
1436        computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1437        switch (Opcode) {
1438        case Instruction::Shl:
1439          // A shl recurrence will only increase the tailing zeros
1440          Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1441          break;
1442        case Instruction::LShr:
1443          // A lshr recurrence will preserve the leading zeros of the
1444          // start value
1445          Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1446          break;
1447        case Instruction::AShr:
1448          // An ashr recurrence will extend the initial sign bit
1449          Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1450          Known.One.setHighBits(Known2.countMinLeadingOnes());
1451          break;
1452        };
1453      }
1454
1455      // Check for operations that have the property that if
1456      // both their operands have low zero bits, the result
1457      // will have low zero bits.
1458      if (Opcode == Instruction::Add ||
1459          Opcode == Instruction::Sub ||
1460          Opcode == Instruction::And ||
1461          Opcode == Instruction::Or ||
1462          Opcode == Instruction::Mul) {
1463        // Change the context instruction to the "edge" that flows into the
1464        // phi. This is important because that is where the value is actually
1465        // "evaluated" even though it is used later somewhere else. (see also
1466        // D69571).
1467        Query RecQ = Q;
1468
1469        unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1470        Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1471        Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1472
1473        // Ok, we have a PHI of the form L op= R. Check for low
1474        // zero bits.
1475        RecQ.CxtI = RInst;
1476        computeKnownBits(R, Known2, Depth + 1, RecQ);
1477
1478        // We need to take the minimum number of known bits
1479        KnownBits Known3(BitWidth);
1480        RecQ.CxtI = LInst;
1481        computeKnownBits(L, Known3, Depth + 1, RecQ);
1482
1483        Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1484                                       Known3.countMinTrailingZeros()));
1485
1486        auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1487        if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1488          // If initial value of recurrence is nonnegative, and we are adding
1489          // a nonnegative number with nsw, the result can only be nonnegative
1490          // or poison value regardless of the number of times we execute the
1491          // add in phi recurrence. If initial value is negative and we are
1492          // adding a negative number with nsw, the result can only be
1493          // negative or poison value. Similar arguments apply to sub and mul.
1494          //
1495          // (add non-negative, non-negative) --> non-negative
1496          // (add negative, negative) --> negative
1497          if (Opcode == Instruction::Add) {
1498            if (Known2.isNonNegative() && Known3.isNonNegative())
1499              Known.makeNonNegative();
1500            else if (Known2.isNegative() && Known3.isNegative())
1501              Known.makeNegative();
1502          }
1503
1504          // (sub nsw non-negative, negative) --> non-negative
1505          // (sub nsw negative, non-negative) --> negative
1506          else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1507            if (Known2.isNonNegative() && Known3.isNegative())
1508              Known.makeNonNegative();
1509            else if (Known2.isNegative() && Known3.isNonNegative())
1510              Known.makeNegative();
1511          }
1512
1513          // (mul nsw non-negative, non-negative) --> non-negative
1514          else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1515                   Known3.isNonNegative())
1516            Known.makeNonNegative();
1517        }
1518
1519        break;
1520      }
1521    }
1522
1523    // Unreachable blocks may have zero-operand PHI nodes.
1524    if (P->getNumIncomingValues() == 0)
1525      break;
1526
1527    // Otherwise take the unions of the known bit sets of the operands,
1528    // taking conservative care to avoid excessive recursion.
1529    if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1530      // Skip if every incoming value references to ourself.
1531      if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1532        break;
1533
1534      Known.Zero.setAllBits();
1535      Known.One.setAllBits();
1536      for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1537        Value *IncValue = P->getIncomingValue(u);
1538        // Skip direct self references.
1539        if (IncValue == P) continue;
1540
1541        // Change the context instruction to the "edge" that flows into the
1542        // phi. This is important because that is where the value is actually
1543        // "evaluated" even though it is used later somewhere else. (see also
1544        // D69571).
1545        Query RecQ = Q;
1546        RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1547
1548        Known2 = KnownBits(BitWidth);
1549
1550        // Recurse, but cap the recursion to one level, because we don't
1551        // want to waste time spinning around in loops.
1552        computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1553
1554        // If this failed, see if we can use a conditional branch into the phi
1555        // to help us determine the range of the value.
1556        if (Known2.isUnknown()) {
1557          ICmpInst::Predicate Pred;
1558          const APInt *RHSC;
1559          BasicBlock *TrueSucc, *FalseSucc;
1560          // TODO: Use RHS Value and compute range from its known bits.
1561          if (match(RecQ.CxtI,
1562                    m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)),
1563                         m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
1564            // Check for cases of duplicate successors.
1565            if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) {
1566              // If we're using the false successor, invert the predicate.
1567              if (FalseSucc == P->getParent())
1568                Pred = CmpInst::getInversePredicate(Pred);
1569
1570              switch (Pred) {
1571              case CmpInst::Predicate::ICMP_EQ:
1572                Known2 = KnownBits::makeConstant(*RHSC);
1573                break;
1574              case CmpInst::Predicate::ICMP_ULE:
1575                Known2.Zero.setHighBits(RHSC->countLeadingZeros());
1576                break;
1577              case CmpInst::Predicate::ICMP_ULT:
1578                Known2.Zero.setHighBits((*RHSC - 1).countLeadingZeros());
1579                break;
1580              default:
1581                // TODO - add additional integer predicate handling.
1582                break;
1583              }
1584            }
1585          }
1586        }
1587
1588        Known = KnownBits::commonBits(Known, Known2);
1589        // If all bits have been ruled out, there's no need to check
1590        // more operands.
1591        if (Known.isUnknown())
1592          break;
1593      }
1594    }
1595    break;
1596  }
1597  case Instruction::Call:
1598  case Instruction::Invoke:
1599    // If range metadata is attached to this call, set known bits from that,
1600    // and then intersect with known bits based on other properties of the
1601    // function.
1602    if (MDNode *MD =
1603            Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1604      computeKnownBitsFromRangeMetadata(*MD, Known);
1605    if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1606      computeKnownBits(RV, Known2, Depth + 1, Q);
1607      Known.Zero |= Known2.Zero;
1608      Known.One |= Known2.One;
1609    }
1610    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1611      switch (II->getIntrinsicID()) {
1612      default: break;
1613      case Intrinsic::abs: {
1614        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1615        bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1616        Known = Known2.abs(IntMinIsPoison);
1617        break;
1618      }
1619      case Intrinsic::bitreverse:
1620        computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1621        Known.Zero |= Known2.Zero.reverseBits();
1622        Known.One |= Known2.One.reverseBits();
1623        break;
1624      case Intrinsic::bswap:
1625        computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1626        Known.Zero |= Known2.Zero.byteSwap();
1627        Known.One |= Known2.One.byteSwap();
1628        break;
1629      case Intrinsic::ctlz: {
1630        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1631        // If we have a known 1, its position is our upper bound.
1632        unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1633        // If this call is poison for 0 input, the result will be less than 2^n.
1634        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1635          PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1636        unsigned LowBits = llvm::bit_width(PossibleLZ);
1637        Known.Zero.setBitsFrom(LowBits);
1638        break;
1639      }
1640      case Intrinsic::cttz: {
1641        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1642        // If we have a known 1, its position is our upper bound.
1643        unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1644        // If this call is poison for 0 input, the result will be less than 2^n.
1645        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1646          PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1647        unsigned LowBits = llvm::bit_width(PossibleTZ);
1648        Known.Zero.setBitsFrom(LowBits);
1649        break;
1650      }
1651      case Intrinsic::ctpop: {
1652        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1653        // We can bound the space the count needs.  Also, bits known to be zero
1654        // can't contribute to the population.
1655        unsigned BitsPossiblySet = Known2.countMaxPopulation();
1656        unsigned LowBits = llvm::bit_width(BitsPossiblySet);
1657        Known.Zero.setBitsFrom(LowBits);
1658        // TODO: we could bound KnownOne using the lower bound on the number
1659        // of bits which might be set provided by popcnt KnownOne2.
1660        break;
1661      }
1662      case Intrinsic::fshr:
1663      case Intrinsic::fshl: {
1664        const APInt *SA;
1665        if (!match(I->getOperand(2), m_APInt(SA)))
1666          break;
1667
1668        // Normalize to funnel shift left.
1669        uint64_t ShiftAmt = SA->urem(BitWidth);
1670        if (II->getIntrinsicID() == Intrinsic::fshr)
1671          ShiftAmt = BitWidth - ShiftAmt;
1672
1673        KnownBits Known3(BitWidth);
1674        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1675        computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1676
1677        Known.Zero =
1678            Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1679        Known.One =
1680            Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1681        break;
1682      }
1683      case Intrinsic::uadd_sat:
1684      case Intrinsic::usub_sat: {
1685        bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1686        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1687        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1688
1689        // Add: Leading ones of either operand are preserved.
1690        // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1691        // as leading zeros in the result.
1692        unsigned LeadingKnown;
1693        if (IsAdd)
1694          LeadingKnown = std::max(Known.countMinLeadingOnes(),
1695                                  Known2.countMinLeadingOnes());
1696        else
1697          LeadingKnown = std::max(Known.countMinLeadingZeros(),
1698                                  Known2.countMinLeadingOnes());
1699
1700        Known = KnownBits::computeForAddSub(
1701            IsAdd, /* NSW */ false, Known, Known2);
1702
1703        // We select between the operation result and all-ones/zero
1704        // respectively, so we can preserve known ones/zeros.
1705        if (IsAdd) {
1706          Known.One.setHighBits(LeadingKnown);
1707          Known.Zero.clearAllBits();
1708        } else {
1709          Known.Zero.setHighBits(LeadingKnown);
1710          Known.One.clearAllBits();
1711        }
1712        break;
1713      }
1714      case Intrinsic::umin:
1715        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1716        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1717        Known = KnownBits::umin(Known, Known2);
1718        break;
1719      case Intrinsic::umax:
1720        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1721        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1722        Known = KnownBits::umax(Known, Known2);
1723        break;
1724      case Intrinsic::smin:
1725        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1726        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1727        Known = KnownBits::smin(Known, Known2);
1728        break;
1729      case Intrinsic::smax:
1730        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1731        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1732        Known = KnownBits::smax(Known, Known2);
1733        break;
1734      case Intrinsic::x86_sse42_crc32_64_64:
1735        Known.Zero.setBitsFrom(32);
1736        break;
1737      case Intrinsic::riscv_vsetvli:
1738      case Intrinsic::riscv_vsetvlimax:
1739        // Assume that VL output is positive and would fit in an int32_t.
1740        // TODO: VLEN might be capped at 16 bits in a future V spec update.
1741        if (BitWidth >= 32)
1742          Known.Zero.setBitsFrom(31);
1743        break;
1744      case Intrinsic::vscale: {
1745        if (!II->getParent() || !II->getFunction() ||
1746            !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1747          break;
1748
1749        auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1750        std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1751
1752        if (!VScaleMax)
1753          break;
1754
1755        unsigned VScaleMin = Attr.getVScaleRangeMin();
1756
1757        // If vscale min = max then we know the exact value at compile time
1758        // and hence we know the exact bits.
1759        if (VScaleMin == VScaleMax) {
1760          Known.One = VScaleMin;
1761          Known.Zero = VScaleMin;
1762          Known.Zero.flipAllBits();
1763          break;
1764        }
1765
1766        unsigned FirstZeroHighBit = llvm::bit_width(*VScaleMax);
1767        if (FirstZeroHighBit < BitWidth)
1768          Known.Zero.setBitsFrom(FirstZeroHighBit);
1769
1770        break;
1771      }
1772      }
1773    }
1774    break;
1775  case Instruction::ShuffleVector: {
1776    auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1777    // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1778    if (!Shuf) {
1779      Known.resetAll();
1780      return;
1781    }
1782    // For undef elements, we don't know anything about the common state of
1783    // the shuffle result.
1784    APInt DemandedLHS, DemandedRHS;
1785    if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1786      Known.resetAll();
1787      return;
1788    }
1789    Known.One.setAllBits();
1790    Known.Zero.setAllBits();
1791    if (!!DemandedLHS) {
1792      const Value *LHS = Shuf->getOperand(0);
1793      computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1794      // If we don't know any bits, early out.
1795      if (Known.isUnknown())
1796        break;
1797    }
1798    if (!!DemandedRHS) {
1799      const Value *RHS = Shuf->getOperand(1);
1800      computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1801      Known = KnownBits::commonBits(Known, Known2);
1802    }
1803    break;
1804  }
1805  case Instruction::InsertElement: {
1806    if (isa<ScalableVectorType>(I->getType())) {
1807      Known.resetAll();
1808      return;
1809    }
1810    const Value *Vec = I->getOperand(0);
1811    const Value *Elt = I->getOperand(1);
1812    auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1813    // Early out if the index is non-constant or out-of-range.
1814    unsigned NumElts = DemandedElts.getBitWidth();
1815    if (!CIdx || CIdx->getValue().uge(NumElts)) {
1816      Known.resetAll();
1817      return;
1818    }
1819    Known.One.setAllBits();
1820    Known.Zero.setAllBits();
1821    unsigned EltIdx = CIdx->getZExtValue();
1822    // Do we demand the inserted element?
1823    if (DemandedElts[EltIdx]) {
1824      computeKnownBits(Elt, Known, Depth + 1, Q);
1825      // If we don't know any bits, early out.
1826      if (Known.isUnknown())
1827        break;
1828    }
1829    // We don't need the base vector element that has been inserted.
1830    APInt DemandedVecElts = DemandedElts;
1831    DemandedVecElts.clearBit(EltIdx);
1832    if (!!DemandedVecElts) {
1833      computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1834      Known = KnownBits::commonBits(Known, Known2);
1835    }
1836    break;
1837  }
1838  case Instruction::ExtractElement: {
1839    // Look through extract element. If the index is non-constant or
1840    // out-of-range demand all elements, otherwise just the extracted element.
1841    const Value *Vec = I->getOperand(0);
1842    const Value *Idx = I->getOperand(1);
1843    auto *CIdx = dyn_cast<ConstantInt>(Idx);
1844    if (isa<ScalableVectorType>(Vec->getType())) {
1845      // FIXME: there's probably *something* we can do with scalable vectors
1846      Known.resetAll();
1847      break;
1848    }
1849    unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1850    APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1851    if (CIdx && CIdx->getValue().ult(NumElts))
1852      DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1853    computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1854    break;
1855  }
1856  case Instruction::ExtractValue:
1857    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1858      const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1859      if (EVI->getNumIndices() != 1) break;
1860      if (EVI->getIndices()[0] == 0) {
1861        switch (II->getIntrinsicID()) {
1862        default: break;
1863        case Intrinsic::uadd_with_overflow:
1864        case Intrinsic::sadd_with_overflow:
1865          computeKnownBitsAddSub(true, II->getArgOperand(0),
1866                                 II->getArgOperand(1), false, DemandedElts,
1867                                 Known, Known2, Depth, Q);
1868          break;
1869        case Intrinsic::usub_with_overflow:
1870        case Intrinsic::ssub_with_overflow:
1871          computeKnownBitsAddSub(false, II->getArgOperand(0),
1872                                 II->getArgOperand(1), false, DemandedElts,
1873                                 Known, Known2, Depth, Q);
1874          break;
1875        case Intrinsic::umul_with_overflow:
1876        case Intrinsic::smul_with_overflow:
1877          computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1878                              DemandedElts, Known, Known2, Depth, Q);
1879          break;
1880        }
1881      }
1882    }
1883    break;
1884  case Instruction::Freeze:
1885    if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1886                                  Depth + 1))
1887      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1888    break;
1889  }
1890}
1891
1892/// Determine which bits of V are known to be either zero or one and return
1893/// them.
1894KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1895                           unsigned Depth, const Query &Q) {
1896  KnownBits Known(getBitWidth(V->getType(), Q.DL));
1897  computeKnownBits(V, DemandedElts, Known, Depth, Q);
1898  return Known;
1899}
1900
1901/// Determine which bits of V are known to be either zero or one and return
1902/// them.
1903KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1904  KnownBits Known(getBitWidth(V->getType(), Q.DL));
1905  computeKnownBits(V, Known, Depth, Q);
1906  return Known;
1907}
1908
1909/// Determine which bits of V are known to be either zero or one and return
1910/// them in the Known bit set.
1911///
1912/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1913/// we cannot optimize based on the assumption that it is zero without changing
1914/// it to be an explicit zero.  If we don't change it to zero, other code could
1915/// optimized based on the contradictory assumption that it is non-zero.
1916/// Because instcombine aggressively folds operations with undef args anyway,
1917/// this won't lose us code quality.
1918///
1919/// This function is defined on values with integer type, values with pointer
1920/// type, and vectors of integers.  In the case
1921/// where V is a vector, known zero, and known one values are the
1922/// same width as the vector element, and the bit is set only if it is true
1923/// for all of the demanded elements in the vector specified by DemandedElts.
1924void computeKnownBits(const Value *V, const APInt &DemandedElts,
1925                      KnownBits &Known, unsigned Depth, const Query &Q) {
1926  if (!DemandedElts) {
1927    // No demanded elts, better to assume we don't know anything.
1928    Known.resetAll();
1929    return;
1930  }
1931
1932  assert(V && "No Value?");
1933  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1934
1935#ifndef NDEBUG
1936  Type *Ty = V->getType();
1937  unsigned BitWidth = Known.getBitWidth();
1938
1939  assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1940         "Not integer or pointer type!");
1941
1942  if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1943    assert(
1944        FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1945        "DemandedElt width should equal the fixed vector number of elements");
1946  } else {
1947    assert(DemandedElts == APInt(1, 1) &&
1948           "DemandedElt width should be 1 for scalars or scalable vectors");
1949  }
1950
1951  Type *ScalarTy = Ty->getScalarType();
1952  if (ScalarTy->isPointerTy()) {
1953    assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1954           "V and Known should have same BitWidth");
1955  } else {
1956    assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1957           "V and Known should have same BitWidth");
1958  }
1959#endif
1960
1961  const APInt *C;
1962  if (match(V, m_APInt(C))) {
1963    // We know all of the bits for a scalar constant or a splat vector constant!
1964    Known = KnownBits::makeConstant(*C);
1965    return;
1966  }
1967  // Null and aggregate-zero are all-zeros.
1968  if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1969    Known.setAllZero();
1970    return;
1971  }
1972  // Handle a constant vector by taking the intersection of the known bits of
1973  // each element.
1974  if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1975    assert(!isa<ScalableVectorType>(V->getType()));
1976    // We know that CDV must be a vector of integers. Take the intersection of
1977    // each element.
1978    Known.Zero.setAllBits(); Known.One.setAllBits();
1979    for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1980      if (!DemandedElts[i])
1981        continue;
1982      APInt Elt = CDV->getElementAsAPInt(i);
1983      Known.Zero &= ~Elt;
1984      Known.One &= Elt;
1985    }
1986    return;
1987  }
1988
1989  if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1990    assert(!isa<ScalableVectorType>(V->getType()));
1991    // We know that CV must be a vector of integers. Take the intersection of
1992    // each element.
1993    Known.Zero.setAllBits(); Known.One.setAllBits();
1994    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1995      if (!DemandedElts[i])
1996        continue;
1997      Constant *Element = CV->getAggregateElement(i);
1998      auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1999      if (!ElementCI) {
2000        Known.resetAll();
2001        return;
2002      }
2003      const APInt &Elt = ElementCI->getValue();
2004      Known.Zero &= ~Elt;
2005      Known.One &= Elt;
2006    }
2007    return;
2008  }
2009
2010  // Start out not knowing anything.
2011  Known.resetAll();
2012
2013  // We can't imply anything about undefs.
2014  if (isa<UndefValue>(V))
2015    return;
2016
2017  // There's no point in looking through other users of ConstantData for
2018  // assumptions.  Confirm that we've handled them all.
2019  assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2020
2021  // All recursive calls that increase depth must come after this.
2022  if (Depth == MaxAnalysisRecursionDepth)
2023    return;
2024
2025  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2026  // the bits of its aliasee.
2027  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2028    if (!GA->isInterposable())
2029      computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2030    return;
2031  }
2032
2033  if (const Operator *I = dyn_cast<Operator>(V))
2034    computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2035
2036  // Aligned pointers have trailing zeros - refine Known.Zero set
2037  if (isa<PointerType>(V->getType())) {
2038    Align Alignment = V->getPointerAlignment(Q.DL);
2039    Known.Zero.setLowBits(Log2(Alignment));
2040  }
2041
2042  // computeKnownBitsFromAssume strictly refines Known.
2043  // Therefore, we run them after computeKnownBitsFromOperator.
2044
2045  // Check whether a nearby assume intrinsic can determine some known bits.
2046  computeKnownBitsFromAssume(V, Known, Depth, Q);
2047
2048  assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2049}
2050
2051/// Try to detect a recurrence that the value of the induction variable is
2052/// always a power of two (or zero).
2053static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
2054                                   unsigned Depth, Query &Q) {
2055  BinaryOperator *BO = nullptr;
2056  Value *Start = nullptr, *Step = nullptr;
2057  if (!matchSimpleRecurrence(PN, BO, Start, Step))
2058    return false;
2059
2060  // Initial value must be a power of two.
2061  for (const Use &U : PN->operands()) {
2062    if (U.get() == Start) {
2063      // Initial value comes from a different BB, need to adjust context
2064      // instruction for analysis.
2065      Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
2066      if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
2067        return false;
2068    }
2069  }
2070
2071  // Except for Mul, the induction variable must be on the left side of the
2072  // increment expression, otherwise its value can be arbitrary.
2073  if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
2074    return false;
2075
2076  Q.CxtI = BO->getParent()->getTerminator();
2077  switch (BO->getOpcode()) {
2078  case Instruction::Mul:
2079    // Power of two is closed under multiplication.
2080    return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
2081            Q.IIQ.hasNoSignedWrap(BO)) &&
2082           isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
2083  case Instruction::SDiv:
2084    // Start value must not be signmask for signed division, so simply being a
2085    // power of two is not sufficient, and it has to be a constant.
2086    if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2087      return false;
2088    [[fallthrough]];
2089  case Instruction::UDiv:
2090    // Divisor must be a power of two.
2091    // If OrZero is false, cannot guarantee induction variable is non-zero after
2092    // division, same for Shr, unless it is exact division.
2093    return (OrZero || Q.IIQ.isExact(BO)) &&
2094           isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
2095  case Instruction::Shl:
2096    return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
2097  case Instruction::AShr:
2098    if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2099      return false;
2100    [[fallthrough]];
2101  case Instruction::LShr:
2102    return OrZero || Q.IIQ.isExact(BO);
2103  default:
2104    return false;
2105  }
2106}
2107
2108/// Return true if the given value is known to have exactly one
2109/// bit set when defined. For vectors return true if every element is known to
2110/// be a power of two when defined. Supports values with integer or pointer
2111/// types and vectors of integers.
2112bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2113                            const Query &Q) {
2114  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2115
2116  // Attempt to match against constants.
2117  if (OrZero && match(V, m_Power2OrZero()))
2118      return true;
2119  if (match(V, m_Power2()))
2120      return true;
2121
2122  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2123  // it is shifted off the end then the result is undefined.
2124  if (match(V, m_Shl(m_One(), m_Value())))
2125    return true;
2126
2127  // (signmask) >>l X is clearly a power of two if the one is not shifted off
2128  // the bottom.  If it is shifted off the bottom then the result is undefined.
2129  if (match(V, m_LShr(m_SignMask(), m_Value())))
2130    return true;
2131
2132  // The remaining tests are all recursive, so bail out if we hit the limit.
2133  if (Depth++ == MaxAnalysisRecursionDepth)
2134    return false;
2135
2136  Value *X = nullptr, *Y = nullptr;
2137  // A shift left or a logical shift right of a power of two is a power of two
2138  // or zero.
2139  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2140                 match(V, m_LShr(m_Value(X), m_Value()))))
2141    return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2142
2143  if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2144    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2145
2146  if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2147    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2148           isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2149
2150  // Peek through min/max.
2151  if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2152    return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2153           isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2154  }
2155
2156  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2157    // A power of two and'd with anything is a power of two or zero.
2158    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2159        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2160      return true;
2161    // X & (-X) is always a power of two or zero.
2162    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2163      return true;
2164    return false;
2165  }
2166
2167  // Adding a power-of-two or zero to the same power-of-two or zero yields
2168  // either the original power-of-two, a larger power-of-two or zero.
2169  if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2170    const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2171    if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2172        Q.IIQ.hasNoSignedWrap(VOBO)) {
2173      if (match(X, m_And(m_Specific(Y), m_Value())) ||
2174          match(X, m_And(m_Value(), m_Specific(Y))))
2175        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2176          return true;
2177      if (match(Y, m_And(m_Specific(X), m_Value())) ||
2178          match(Y, m_And(m_Value(), m_Specific(X))))
2179        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2180          return true;
2181
2182      unsigned BitWidth = V->getType()->getScalarSizeInBits();
2183      KnownBits LHSBits(BitWidth);
2184      computeKnownBits(X, LHSBits, Depth, Q);
2185
2186      KnownBits RHSBits(BitWidth);
2187      computeKnownBits(Y, RHSBits, Depth, Q);
2188      // If i8 V is a power of two or zero:
2189      //  ZeroBits: 1 1 1 0 1 1 1 1
2190      // ~ZeroBits: 0 0 0 1 0 0 0 0
2191      if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2192        // If OrZero isn't set, we cannot give back a zero result.
2193        // Make sure either the LHS or RHS has a bit set.
2194        if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2195          return true;
2196    }
2197  }
2198
2199  // A PHI node is power of two if all incoming values are power of two, or if
2200  // it is an induction variable where in each step its value is a power of two.
2201  if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2202    Query RecQ = Q;
2203
2204    // Check if it is an induction variable and always power of two.
2205    if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
2206      return true;
2207
2208    // Recursively check all incoming values. Limit recursion to 2 levels, so
2209    // that search complexity is limited to number of operands^2.
2210    unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2211    return llvm::all_of(PN->operands(), [&](const Use &U) {
2212      // Value is power of 2 if it is coming from PHI node itself by induction.
2213      if (U.get() == PN)
2214        return true;
2215
2216      // Change the context instruction to the incoming block where it is
2217      // evaluated.
2218      RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2219      return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2220    });
2221  }
2222
2223  // An exact divide or right shift can only shift off zero bits, so the result
2224  // is a power of two only if the first operand is a power of two and not
2225  // copying a sign bit (sdiv int_min, 2).
2226  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2227      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2228    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2229                                  Depth, Q);
2230  }
2231
2232  return false;
2233}
2234
2235/// Test whether a GEP's result is known to be non-null.
2236///
2237/// Uses properties inherent in a GEP to try to determine whether it is known
2238/// to be non-null.
2239///
2240/// Currently this routine does not support vector GEPs.
2241static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2242                              const Query &Q) {
2243  const Function *F = nullptr;
2244  if (const Instruction *I = dyn_cast<Instruction>(GEP))
2245    F = I->getFunction();
2246
2247  if (!GEP->isInBounds() ||
2248      NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2249    return false;
2250
2251  // FIXME: Support vector-GEPs.
2252  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2253
2254  // If the base pointer is non-null, we cannot walk to a null address with an
2255  // inbounds GEP in address space zero.
2256  if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2257    return true;
2258
2259  // Walk the GEP operands and see if any operand introduces a non-zero offset.
2260  // If so, then the GEP cannot produce a null pointer, as doing so would
2261  // inherently violate the inbounds contract within address space zero.
2262  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2263       GTI != GTE; ++GTI) {
2264    // Struct types are easy -- they must always be indexed by a constant.
2265    if (StructType *STy = GTI.getStructTypeOrNull()) {
2266      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2267      unsigned ElementIdx = OpC->getZExtValue();
2268      const StructLayout *SL = Q.DL.getStructLayout(STy);
2269      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2270      if (ElementOffset > 0)
2271        return true;
2272      continue;
2273    }
2274
2275    // If we have a zero-sized type, the index doesn't matter. Keep looping.
2276    if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).isZero())
2277      continue;
2278
2279    // Fast path the constant operand case both for efficiency and so we don't
2280    // increment Depth when just zipping down an all-constant GEP.
2281    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2282      if (!OpC->isZero())
2283        return true;
2284      continue;
2285    }
2286
2287    // We post-increment Depth here because while isKnownNonZero increments it
2288    // as well, when we pop back up that increment won't persist. We don't want
2289    // to recurse 10k times just because we have 10k GEP operands. We don't
2290    // bail completely out because we want to handle constant GEPs regardless
2291    // of depth.
2292    if (Depth++ >= MaxAnalysisRecursionDepth)
2293      continue;
2294
2295    if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2296      return true;
2297  }
2298
2299  return false;
2300}
2301
2302static bool isKnownNonNullFromDominatingCondition(const Value *V,
2303                                                  const Instruction *CtxI,
2304                                                  const DominatorTree *DT) {
2305  if (isa<Constant>(V))
2306    return false;
2307
2308  if (!CtxI || !DT)
2309    return false;
2310
2311  unsigned NumUsesExplored = 0;
2312  for (const auto *U : V->users()) {
2313    // Avoid massive lists
2314    if (NumUsesExplored >= DomConditionsMaxUses)
2315      break;
2316    NumUsesExplored++;
2317
2318    // If the value is used as an argument to a call or invoke, then argument
2319    // attributes may provide an answer about null-ness.
2320    if (const auto *CB = dyn_cast<CallBase>(U))
2321      if (auto *CalledFunc = CB->getCalledFunction())
2322        for (const Argument &Arg : CalledFunc->args())
2323          if (CB->getArgOperand(Arg.getArgNo()) == V &&
2324              Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2325              DT->dominates(CB, CtxI))
2326            return true;
2327
2328    // If the value is used as a load/store, then the pointer must be non null.
2329    if (V == getLoadStorePointerOperand(U)) {
2330      const Instruction *I = cast<Instruction>(U);
2331      if (!NullPointerIsDefined(I->getFunction(),
2332                                V->getType()->getPointerAddressSpace()) &&
2333          DT->dominates(I, CtxI))
2334        return true;
2335    }
2336
2337    // Consider only compare instructions uniquely controlling a branch
2338    Value *RHS;
2339    CmpInst::Predicate Pred;
2340    if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2341      continue;
2342
2343    bool NonNullIfTrue;
2344    if (cmpExcludesZero(Pred, RHS))
2345      NonNullIfTrue = true;
2346    else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2347      NonNullIfTrue = false;
2348    else
2349      continue;
2350
2351    SmallVector<const User *, 4> WorkList;
2352    SmallPtrSet<const User *, 4> Visited;
2353    for (const auto *CmpU : U->users()) {
2354      assert(WorkList.empty() && "Should be!");
2355      if (Visited.insert(CmpU).second)
2356        WorkList.push_back(CmpU);
2357
2358      while (!WorkList.empty()) {
2359        auto *Curr = WorkList.pop_back_val();
2360
2361        // If a user is an AND, add all its users to the work list. We only
2362        // propagate "pred != null" condition through AND because it is only
2363        // correct to assume that all conditions of AND are met in true branch.
2364        // TODO: Support similar logic of OR and EQ predicate?
2365        if (NonNullIfTrue)
2366          if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2367            for (const auto *CurrU : Curr->users())
2368              if (Visited.insert(CurrU).second)
2369                WorkList.push_back(CurrU);
2370            continue;
2371          }
2372
2373        if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2374          assert(BI->isConditional() && "uses a comparison!");
2375
2376          BasicBlock *NonNullSuccessor =
2377              BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2378          BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2379          if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2380            return true;
2381        } else if (NonNullIfTrue && isGuard(Curr) &&
2382                   DT->dominates(cast<Instruction>(Curr), CtxI)) {
2383          return true;
2384        }
2385      }
2386    }
2387  }
2388
2389  return false;
2390}
2391
2392/// Does the 'Range' metadata (which must be a valid MD_range operand list)
2393/// ensure that the value it's attached to is never Value?  'RangeType' is
2394/// is the type of the value described by the range.
2395static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2396  const unsigned NumRanges = Ranges->getNumOperands() / 2;
2397  assert(NumRanges >= 1);
2398  for (unsigned i = 0; i < NumRanges; ++i) {
2399    ConstantInt *Lower =
2400        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2401    ConstantInt *Upper =
2402        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2403    ConstantRange Range(Lower->getValue(), Upper->getValue());
2404    if (Range.contains(Value))
2405      return false;
2406  }
2407  return true;
2408}
2409
2410/// Try to detect a recurrence that monotonically increases/decreases from a
2411/// non-zero starting value. These are common as induction variables.
2412static bool isNonZeroRecurrence(const PHINode *PN) {
2413  BinaryOperator *BO = nullptr;
2414  Value *Start = nullptr, *Step = nullptr;
2415  const APInt *StartC, *StepC;
2416  if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2417      !match(Start, m_APInt(StartC)) || StartC->isZero())
2418    return false;
2419
2420  switch (BO->getOpcode()) {
2421  case Instruction::Add:
2422    // Starting from non-zero and stepping away from zero can never wrap back
2423    // to zero.
2424    return BO->hasNoUnsignedWrap() ||
2425           (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2426            StartC->isNegative() == StepC->isNegative());
2427  case Instruction::Mul:
2428    return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2429           match(Step, m_APInt(StepC)) && !StepC->isZero();
2430  case Instruction::Shl:
2431    return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2432  case Instruction::AShr:
2433  case Instruction::LShr:
2434    return BO->isExact();
2435  default:
2436    return false;
2437  }
2438}
2439
2440/// Return true if the given value is known to be non-zero when defined. For
2441/// vectors, return true if every demanded element is known to be non-zero when
2442/// defined. For pointers, if the context instruction and dominator tree are
2443/// specified, perform context-sensitive analysis and return true if the
2444/// pointer couldn't possibly be null at the specified instruction.
2445/// Supports values with integer or pointer type and vectors of integers.
2446bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2447                    const Query &Q) {
2448
2449#ifndef NDEBUG
2450  Type *Ty = V->getType();
2451  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2452
2453  if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2454    assert(
2455        FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2456        "DemandedElt width should equal the fixed vector number of elements");
2457  } else {
2458    assert(DemandedElts == APInt(1, 1) &&
2459           "DemandedElt width should be 1 for scalars");
2460  }
2461#endif
2462
2463  if (auto *C = dyn_cast<Constant>(V)) {
2464    if (C->isNullValue())
2465      return false;
2466    if (isa<ConstantInt>(C))
2467      // Must be non-zero due to null test above.
2468      return true;
2469
2470    // For constant vectors, check that all elements are undefined or known
2471    // non-zero to determine that the whole vector is known non-zero.
2472    if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2473      for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2474        if (!DemandedElts[i])
2475          continue;
2476        Constant *Elt = C->getAggregateElement(i);
2477        if (!Elt || Elt->isNullValue())
2478          return false;
2479        if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2480          return false;
2481      }
2482      return true;
2483    }
2484
2485    // A global variable in address space 0 is non null unless extern weak
2486    // or an absolute symbol reference. Other address spaces may have null as a
2487    // valid address for a global, so we can't assume anything.
2488    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2489      if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2490          GV->getType()->getAddressSpace() == 0)
2491        return true;
2492    }
2493
2494    // For constant expressions, fall through to the Operator code below.
2495    if (!isa<ConstantExpr>(V))
2496      return false;
2497  }
2498
2499  if (auto *I = dyn_cast<Instruction>(V)) {
2500    if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2501      // If the possible ranges don't contain zero, then the value is
2502      // definitely non-zero.
2503      if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2504        const APInt ZeroValue(Ty->getBitWidth(), 0);
2505        if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2506          return true;
2507      }
2508    }
2509  }
2510
2511  if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q))
2512    return true;
2513
2514  // Some of the tests below are recursive, so bail out if we hit the limit.
2515  if (Depth++ >= MaxAnalysisRecursionDepth)
2516    return false;
2517
2518  // Check for pointer simplifications.
2519
2520  if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2521    // Alloca never returns null, malloc might.
2522    if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2523      return true;
2524
2525    // A byval, inalloca may not be null in a non-default addres space. A
2526    // nonnull argument is assumed never 0.
2527    if (const Argument *A = dyn_cast<Argument>(V)) {
2528      if (((A->hasPassPointeeByValueCopyAttr() &&
2529            !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2530           A->hasNonNullAttr()))
2531        return true;
2532    }
2533
2534    // A Load tagged with nonnull metadata is never null.
2535    if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2536      if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2537        return true;
2538
2539    if (const auto *Call = dyn_cast<CallBase>(V)) {
2540      if (Call->isReturnNonNull())
2541        return true;
2542      if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2543        return isKnownNonZero(RP, Depth, Q);
2544    }
2545  }
2546
2547  if (!isa<Constant>(V) &&
2548      isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2549    return true;
2550
2551  const Operator *I = dyn_cast<Operator>(V);
2552  if (!I)
2553    return false;
2554
2555  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2556  switch (I->getOpcode()) {
2557  case Instruction::GetElementPtr:
2558    if (I->getType()->isPointerTy())
2559      return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q);
2560    break;
2561  case Instruction::BitCast:
2562    if (I->getType()->isPointerTy())
2563      return isKnownNonZero(I->getOperand(0), Depth, Q);
2564    break;
2565  case Instruction::IntToPtr:
2566    // Note that we have to take special care to avoid looking through
2567    // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2568    // as casts that can alter the value, e.g., AddrSpaceCasts.
2569    if (!isa<ScalableVectorType>(I->getType()) &&
2570        Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2571            Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2572      return isKnownNonZero(I->getOperand(0), Depth, Q);
2573    break;
2574  case Instruction::PtrToInt:
2575    // Similar to int2ptr above, we can look through ptr2int here if the cast
2576    // is a no-op or an extend and not a truncate.
2577    if (!isa<ScalableVectorType>(I->getType()) &&
2578        Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2579            Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2580      return isKnownNonZero(I->getOperand(0), Depth, Q);
2581    break;
2582  case Instruction::Or:
2583    // X | Y != 0 if X != 0 or Y != 0.
2584    return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) ||
2585           isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q);
2586  case Instruction::SExt:
2587  case Instruction::ZExt:
2588    // ext X != 0 if X != 0.
2589    return isKnownNonZero(I->getOperand(0), Depth, Q);
2590
2591  case Instruction::Shl: {
2592    // shl nuw can't remove any non-zero bits.
2593    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2594    if (Q.IIQ.hasNoUnsignedWrap(BO))
2595      return isKnownNonZero(I->getOperand(0), Depth, Q);
2596
2597    // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2598    // if the lowest bit is shifted off the end.
2599    KnownBits Known(BitWidth);
2600    computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q);
2601    if (Known.One[0])
2602      return true;
2603    break;
2604  }
2605  case Instruction::LShr:
2606  case Instruction::AShr: {
2607    // shr exact can only shift out zero bits.
2608    const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2609    if (BO->isExact())
2610      return isKnownNonZero(I->getOperand(0), Depth, Q);
2611
2612    // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2613    // defined if the sign bit is shifted off the end.
2614    KnownBits Known =
2615        computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2616    if (Known.isNegative())
2617      return true;
2618
2619    // If the shifter operand is a constant, and all of the bits shifted
2620    // out are known to be zero, and X is known non-zero then at least one
2621    // non-zero bit must remain.
2622    if (ConstantInt *Shift = dyn_cast<ConstantInt>(I->getOperand(1))) {
2623      auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2624      // Is there a known one in the portion not shifted out?
2625      if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2626        return true;
2627      // Are all the bits to be shifted out known zero?
2628      if (Known.countMinTrailingZeros() >= ShiftVal)
2629        return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
2630    }
2631    break;
2632  }
2633  case Instruction::UDiv:
2634  case Instruction::SDiv:
2635    // div exact can only produce a zero if the dividend is zero.
2636    if (cast<PossiblyExactOperator>(I)->isExact())
2637      return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
2638    break;
2639  case Instruction::Add: {
2640    // X + Y.
2641    KnownBits XKnown =
2642        computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2643    KnownBits YKnown =
2644        computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2645
2646    // If X and Y are both non-negative (as signed values) then their sum is not
2647    // zero unless both X and Y are zero.
2648    if (XKnown.isNonNegative() && YKnown.isNonNegative())
2649      if (isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) ||
2650          isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q))
2651        return true;
2652
2653    // If X and Y are both negative (as signed values) then their sum is not
2654    // zero unless both X and Y equal INT_MIN.
2655    if (XKnown.isNegative() && YKnown.isNegative()) {
2656      APInt Mask = APInt::getSignedMaxValue(BitWidth);
2657      // The sign bit of X is set.  If some other bit is set then X is not equal
2658      // to INT_MIN.
2659      if (XKnown.One.intersects(Mask))
2660        return true;
2661      // The sign bit of Y is set.  If some other bit is set then Y is not equal
2662      // to INT_MIN.
2663      if (YKnown.One.intersects(Mask))
2664        return true;
2665    }
2666
2667    // The sum of a non-negative number and a power of two is not zero.
2668    if (XKnown.isNonNegative() &&
2669        isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ false, Depth, Q))
2670      return true;
2671    if (YKnown.isNonNegative() &&
2672        isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ false, Depth, Q))
2673      return true;
2674    break;
2675  }
2676  case Instruction::Mul: {
2677    // If X and Y are non-zero then so is X * Y as long as the multiplication
2678    // does not overflow.
2679    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2680    if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2681        isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) &&
2682        isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q))
2683      return true;
2684    break;
2685  }
2686  case Instruction::Select:
2687    // (C ? X : Y) != 0 if X != 0 and Y != 0.
2688    if (isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q) &&
2689        isKnownNonZero(I->getOperand(2), DemandedElts, Depth, Q))
2690      return true;
2691    break;
2692  case Instruction::PHI: {
2693    auto *PN = cast<PHINode>(I);
2694    if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2695      return true;
2696
2697    // Check if all incoming values are non-zero using recursion.
2698    Query RecQ = Q;
2699    unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2700    return llvm::all_of(PN->operands(), [&](const Use &U) {
2701      if (U.get() == PN)
2702        return true;
2703      RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2704      return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2705    });
2706  }
2707  case Instruction::ExtractElement:
2708    if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2709      const Value *Vec = EEI->getVectorOperand();
2710      const Value *Idx = EEI->getIndexOperand();
2711      auto *CIdx = dyn_cast<ConstantInt>(Idx);
2712      if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2713        unsigned NumElts = VecTy->getNumElements();
2714        APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2715        if (CIdx && CIdx->getValue().ult(NumElts))
2716          DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2717        return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2718      }
2719    }
2720    break;
2721  case Instruction::Freeze:
2722    return isKnownNonZero(I->getOperand(0), Depth, Q) &&
2723           isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
2724                                     Depth);
2725  case Instruction::Call:
2726    if (cast<CallInst>(I)->getIntrinsicID() == Intrinsic::vscale)
2727      return true;
2728    break;
2729  }
2730
2731  KnownBits Known(BitWidth);
2732  computeKnownBits(V, DemandedElts, Known, Depth, Q);
2733  return Known.One != 0;
2734}
2735
2736bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2737  auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2738  APInt DemandedElts =
2739      FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2740  return isKnownNonZero(V, DemandedElts, Depth, Q);
2741}
2742
2743/// If the pair of operators are the same invertible function, return the
2744/// the operands of the function corresponding to each input. Otherwise,
2745/// return std::nullopt.  An invertible function is one that is 1-to-1 and maps
2746/// every input value to exactly one output value.  This is equivalent to
2747/// saying that Op1 and Op2 are equal exactly when the specified pair of
2748/// operands are equal, (except that Op1 and Op2 may be poison more often.)
2749static std::optional<std::pair<Value*, Value*>>
2750getInvertibleOperands(const Operator *Op1,
2751                      const Operator *Op2) {
2752  if (Op1->getOpcode() != Op2->getOpcode())
2753    return std::nullopt;
2754
2755  auto getOperands = [&](unsigned OpNum) -> auto {
2756    return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2757  };
2758
2759  switch (Op1->getOpcode()) {
2760  default:
2761    break;
2762  case Instruction::Add:
2763  case Instruction::Sub:
2764    if (Op1->getOperand(0) == Op2->getOperand(0))
2765      return getOperands(1);
2766    if (Op1->getOperand(1) == Op2->getOperand(1))
2767      return getOperands(0);
2768    break;
2769  case Instruction::Mul: {
2770    // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2771    // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2772    // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2773    auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2774    auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2775    if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2776        (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2777      break;
2778
2779    // Assume operand order has been canonicalized
2780    if (Op1->getOperand(1) == Op2->getOperand(1) &&
2781        isa<ConstantInt>(Op1->getOperand(1)) &&
2782        !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2783      return getOperands(0);
2784    break;
2785  }
2786  case Instruction::Shl: {
2787    // Same as multiplies, with the difference that we don't need to check
2788    // for a non-zero multiply. Shifts always multiply by non-zero.
2789    auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2790    auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2791    if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2792        (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2793      break;
2794
2795    if (Op1->getOperand(1) == Op2->getOperand(1))
2796      return getOperands(0);
2797    break;
2798  }
2799  case Instruction::AShr:
2800  case Instruction::LShr: {
2801    auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2802    auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2803    if (!PEO1->isExact() || !PEO2->isExact())
2804      break;
2805
2806    if (Op1->getOperand(1) == Op2->getOperand(1))
2807      return getOperands(0);
2808    break;
2809  }
2810  case Instruction::SExt:
2811  case Instruction::ZExt:
2812    if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2813      return getOperands(0);
2814    break;
2815  case Instruction::PHI: {
2816    const PHINode *PN1 = cast<PHINode>(Op1);
2817    const PHINode *PN2 = cast<PHINode>(Op2);
2818
2819    // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2820    // are a single invertible function of the start values? Note that repeated
2821    // application of an invertible function is also invertible
2822    BinaryOperator *BO1 = nullptr;
2823    Value *Start1 = nullptr, *Step1 = nullptr;
2824    BinaryOperator *BO2 = nullptr;
2825    Value *Start2 = nullptr, *Step2 = nullptr;
2826    if (PN1->getParent() != PN2->getParent() ||
2827        !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2828        !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2829      break;
2830
2831    auto Values = getInvertibleOperands(cast<Operator>(BO1),
2832                                        cast<Operator>(BO2));
2833    if (!Values)
2834       break;
2835
2836    // We have to be careful of mutually defined recurrences here.  Ex:
2837    // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2838    // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2839    // The invertibility of these is complicated, and not worth reasoning
2840    // about (yet?).
2841    if (Values->first != PN1 || Values->second != PN2)
2842      break;
2843
2844    return std::make_pair(Start1, Start2);
2845  }
2846  }
2847  return std::nullopt;
2848}
2849
2850/// Return true if V2 == V1 + X, where X is known non-zero.
2851static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2852                           const Query &Q) {
2853  const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2854  if (!BO || BO->getOpcode() != Instruction::Add)
2855    return false;
2856  Value *Op = nullptr;
2857  if (V2 == BO->getOperand(0))
2858    Op = BO->getOperand(1);
2859  else if (V2 == BO->getOperand(1))
2860    Op = BO->getOperand(0);
2861  else
2862    return false;
2863  return isKnownNonZero(Op, Depth + 1, Q);
2864}
2865
2866/// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2867/// the multiplication is nuw or nsw.
2868static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2869                          const Query &Q) {
2870  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2871    const APInt *C;
2872    return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2873           (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2874           !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2875  }
2876  return false;
2877}
2878
2879/// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2880/// the shift is nuw or nsw.
2881static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2882                          const Query &Q) {
2883  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2884    const APInt *C;
2885    return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2886           (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2887           !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2888  }
2889  return false;
2890}
2891
2892static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2893                           unsigned Depth, const Query &Q) {
2894  // Check two PHIs are in same block.
2895  if (PN1->getParent() != PN2->getParent())
2896    return false;
2897
2898  SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2899  bool UsedFullRecursion = false;
2900  for (const BasicBlock *IncomBB : PN1->blocks()) {
2901    if (!VisitedBBs.insert(IncomBB).second)
2902      continue; // Don't reprocess blocks that we have dealt with already.
2903    const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2904    const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2905    const APInt *C1, *C2;
2906    if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2907      continue;
2908
2909    // Only one pair of phi operands is allowed for full recursion.
2910    if (UsedFullRecursion)
2911      return false;
2912
2913    Query RecQ = Q;
2914    RecQ.CxtI = IncomBB->getTerminator();
2915    if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2916      return false;
2917    UsedFullRecursion = true;
2918  }
2919  return true;
2920}
2921
2922/// Return true if it is known that V1 != V2.
2923static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2924                            const Query &Q) {
2925  if (V1 == V2)
2926    return false;
2927  if (V1->getType() != V2->getType())
2928    // We can't look through casts yet.
2929    return false;
2930
2931  if (Depth >= MaxAnalysisRecursionDepth)
2932    return false;
2933
2934  // See if we can recurse through (exactly one of) our operands.  This
2935  // requires our operation be 1-to-1 and map every input value to exactly
2936  // one output value.  Such an operation is invertible.
2937  auto *O1 = dyn_cast<Operator>(V1);
2938  auto *O2 = dyn_cast<Operator>(V2);
2939  if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2940    if (auto Values = getInvertibleOperands(O1, O2))
2941      return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2942
2943    if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2944      const PHINode *PN2 = cast<PHINode>(V2);
2945      // FIXME: This is missing a generalization to handle the case where one is
2946      // a PHI and another one isn't.
2947      if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2948        return true;
2949    };
2950  }
2951
2952  if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2953    return true;
2954
2955  if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2956    return true;
2957
2958  if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2959    return true;
2960
2961  if (V1->getType()->isIntOrIntVectorTy()) {
2962    // Are any known bits in V1 contradictory to known bits in V2? If V1
2963    // has a known zero where V2 has a known one, they must not be equal.
2964    KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2965    KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2966
2967    if (Known1.Zero.intersects(Known2.One) ||
2968        Known2.Zero.intersects(Known1.One))
2969      return true;
2970  }
2971  return false;
2972}
2973
2974/// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2975/// simplify operations downstream. Mask is known to be zero for bits that V
2976/// cannot have.
2977///
2978/// This function is defined on values with integer type, values with pointer
2979/// type, and vectors of integers.  In the case
2980/// where V is a vector, the mask, known zero, and known one values are the
2981/// same width as the vector element, and the bit is set only if it is true
2982/// for all of the elements in the vector.
2983bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2984                       const Query &Q) {
2985  KnownBits Known(Mask.getBitWidth());
2986  computeKnownBits(V, Known, Depth, Q);
2987  return Mask.isSubsetOf(Known.Zero);
2988}
2989
2990// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2991// Returns the input and lower/upper bounds.
2992static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2993                                const APInt *&CLow, const APInt *&CHigh) {
2994  assert(isa<Operator>(Select) &&
2995         cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2996         "Input should be a Select!");
2997
2998  const Value *LHS = nullptr, *RHS = nullptr;
2999  SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
3000  if (SPF != SPF_SMAX && SPF != SPF_SMIN)
3001    return false;
3002
3003  if (!match(RHS, m_APInt(CLow)))
3004    return false;
3005
3006  const Value *LHS2 = nullptr, *RHS2 = nullptr;
3007  SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
3008  if (getInverseMinMaxFlavor(SPF) != SPF2)
3009    return false;
3010
3011  if (!match(RHS2, m_APInt(CHigh)))
3012    return false;
3013
3014  if (SPF == SPF_SMIN)
3015    std::swap(CLow, CHigh);
3016
3017  In = LHS2;
3018  return CLow->sle(*CHigh);
3019}
3020
3021static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
3022                                         const APInt *&CLow,
3023                                         const APInt *&CHigh) {
3024  assert((II->getIntrinsicID() == Intrinsic::smin ||
3025          II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
3026
3027  Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3028  auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
3029  if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
3030      !match(II->getArgOperand(1), m_APInt(CLow)) ||
3031      !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
3032    return false;
3033
3034  if (II->getIntrinsicID() == Intrinsic::smin)
3035    std::swap(CLow, CHigh);
3036  return CLow->sle(*CHigh);
3037}
3038
3039/// For vector constants, loop over the elements and find the constant with the
3040/// minimum number of sign bits. Return 0 if the value is not a vector constant
3041/// or if any element was not analyzed; otherwise, return the count for the
3042/// element with the minimum number of sign bits.
3043static unsigned computeNumSignBitsVectorConstant(const Value *V,
3044                                                 const APInt &DemandedElts,
3045                                                 unsigned TyBits) {
3046  const auto *CV = dyn_cast<Constant>(V);
3047  if (!CV || !isa<FixedVectorType>(CV->getType()))
3048    return 0;
3049
3050  unsigned MinSignBits = TyBits;
3051  unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
3052  for (unsigned i = 0; i != NumElts; ++i) {
3053    if (!DemandedElts[i])
3054      continue;
3055    // If we find a non-ConstantInt, bail out.
3056    auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
3057    if (!Elt)
3058      return 0;
3059
3060    MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
3061  }
3062
3063  return MinSignBits;
3064}
3065
3066static unsigned ComputeNumSignBitsImpl(const Value *V,
3067                                       const APInt &DemandedElts,
3068                                       unsigned Depth, const Query &Q);
3069
3070static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
3071                                   unsigned Depth, const Query &Q) {
3072  unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
3073  assert(Result > 0 && "At least one sign bit needs to be present!");
3074  return Result;
3075}
3076
3077/// Return the number of times the sign bit of the register is replicated into
3078/// the other bits. We know that at least 1 bit is always equal to the sign bit
3079/// (itself), but other cases can give us information. For example, immediately
3080/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3081/// other, so we return 3. For vectors, return the number of sign bits for the
3082/// vector element with the minimum number of known sign bits of the demanded
3083/// elements in the vector specified by DemandedElts.
3084static unsigned ComputeNumSignBitsImpl(const Value *V,
3085                                       const APInt &DemandedElts,
3086                                       unsigned Depth, const Query &Q) {
3087  Type *Ty = V->getType();
3088#ifndef NDEBUG
3089  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3090
3091  if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3092    assert(
3093        FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3094        "DemandedElt width should equal the fixed vector number of elements");
3095  } else {
3096    assert(DemandedElts == APInt(1, 1) &&
3097           "DemandedElt width should be 1 for scalars");
3098  }
3099#endif
3100
3101  // We return the minimum number of sign bits that are guaranteed to be present
3102  // in V, so for undef we have to conservatively return 1.  We don't have the
3103  // same behavior for poison though -- that's a FIXME today.
3104
3105  Type *ScalarTy = Ty->getScalarType();
3106  unsigned TyBits = ScalarTy->isPointerTy() ?
3107    Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3108    Q.DL.getTypeSizeInBits(ScalarTy);
3109
3110  unsigned Tmp, Tmp2;
3111  unsigned FirstAnswer = 1;
3112
3113  // Note that ConstantInt is handled by the general computeKnownBits case
3114  // below.
3115
3116  if (Depth == MaxAnalysisRecursionDepth)
3117    return 1;
3118
3119  if (auto *U = dyn_cast<Operator>(V)) {
3120    switch (Operator::getOpcode(V)) {
3121    default: break;
3122    case Instruction::SExt:
3123      Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3124      return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3125
3126    case Instruction::SDiv: {
3127      const APInt *Denominator;
3128      // sdiv X, C -> adds log(C) sign bits.
3129      if (match(U->getOperand(1), m_APInt(Denominator))) {
3130
3131        // Ignore non-positive denominator.
3132        if (!Denominator->isStrictlyPositive())
3133          break;
3134
3135        // Calculate the incoming numerator bits.
3136        unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3137
3138        // Add floor(log(C)) bits to the numerator bits.
3139        return std::min(TyBits, NumBits + Denominator->logBase2());
3140      }
3141      break;
3142    }
3143
3144    case Instruction::SRem: {
3145      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3146
3147      const APInt *Denominator;
3148      // srem X, C -> we know that the result is within [-C+1,C) when C is a
3149      // positive constant.  This let us put a lower bound on the number of sign
3150      // bits.
3151      if (match(U->getOperand(1), m_APInt(Denominator))) {
3152
3153        // Ignore non-positive denominator.
3154        if (Denominator->isStrictlyPositive()) {
3155          // Calculate the leading sign bit constraints by examining the
3156          // denominator.  Given that the denominator is positive, there are two
3157          // cases:
3158          //
3159          //  1. The numerator is positive. The result range is [0,C) and
3160          //     [0,C) u< (1 << ceilLogBase2(C)).
3161          //
3162          //  2. The numerator is negative. Then the result range is (-C,0] and
3163          //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3164          //
3165          // Thus a lower bound on the number of sign bits is `TyBits -
3166          // ceilLogBase2(C)`.
3167
3168          unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3169          Tmp = std::max(Tmp, ResBits);
3170        }
3171      }
3172      return Tmp;
3173    }
3174
3175    case Instruction::AShr: {
3176      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3177      // ashr X, C   -> adds C sign bits.  Vectors too.
3178      const APInt *ShAmt;
3179      if (match(U->getOperand(1), m_APInt(ShAmt))) {
3180        if (ShAmt->uge(TyBits))
3181          break; // Bad shift.
3182        unsigned ShAmtLimited = ShAmt->getZExtValue();
3183        Tmp += ShAmtLimited;
3184        if (Tmp > TyBits) Tmp = TyBits;
3185      }
3186      return Tmp;
3187    }
3188    case Instruction::Shl: {
3189      const APInt *ShAmt;
3190      if (match(U->getOperand(1), m_APInt(ShAmt))) {
3191        // shl destroys sign bits.
3192        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3193        if (ShAmt->uge(TyBits) ||   // Bad shift.
3194            ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3195        Tmp2 = ShAmt->getZExtValue();
3196        return Tmp - Tmp2;
3197      }
3198      break;
3199    }
3200    case Instruction::And:
3201    case Instruction::Or:
3202    case Instruction::Xor: // NOT is handled here.
3203      // Logical binary ops preserve the number of sign bits at the worst.
3204      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3205      if (Tmp != 1) {
3206        Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3207        FirstAnswer = std::min(Tmp, Tmp2);
3208        // We computed what we know about the sign bits as our first
3209        // answer. Now proceed to the generic code that uses
3210        // computeKnownBits, and pick whichever answer is better.
3211      }
3212      break;
3213
3214    case Instruction::Select: {
3215      // If we have a clamp pattern, we know that the number of sign bits will
3216      // be the minimum of the clamp min/max range.
3217      const Value *X;
3218      const APInt *CLow, *CHigh;
3219      if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3220        return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3221
3222      Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3223      if (Tmp == 1) break;
3224      Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3225      return std::min(Tmp, Tmp2);
3226    }
3227
3228    case Instruction::Add:
3229      // Add can have at most one carry bit.  Thus we know that the output
3230      // is, at worst, one more bit than the inputs.
3231      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3232      if (Tmp == 1) break;
3233
3234      // Special case decrementing a value (ADD X, -1):
3235      if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3236        if (CRHS->isAllOnesValue()) {
3237          KnownBits Known(TyBits);
3238          computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3239
3240          // If the input is known to be 0 or 1, the output is 0/-1, which is
3241          // all sign bits set.
3242          if ((Known.Zero | 1).isAllOnes())
3243            return TyBits;
3244
3245          // If we are subtracting one from a positive number, there is no carry
3246          // out of the result.
3247          if (Known.isNonNegative())
3248            return Tmp;
3249        }
3250
3251      Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3252      if (Tmp2 == 1) break;
3253      return std::min(Tmp, Tmp2) - 1;
3254
3255    case Instruction::Sub:
3256      Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3257      if (Tmp2 == 1) break;
3258
3259      // Handle NEG.
3260      if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3261        if (CLHS->isNullValue()) {
3262          KnownBits Known(TyBits);
3263          computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3264          // If the input is known to be 0 or 1, the output is 0/-1, which is
3265          // all sign bits set.
3266          if ((Known.Zero | 1).isAllOnes())
3267            return TyBits;
3268
3269          // If the input is known to be positive (the sign bit is known clear),
3270          // the output of the NEG has the same number of sign bits as the
3271          // input.
3272          if (Known.isNonNegative())
3273            return Tmp2;
3274
3275          // Otherwise, we treat this like a SUB.
3276        }
3277
3278      // Sub can have at most one carry bit.  Thus we know that the output
3279      // is, at worst, one more bit than the inputs.
3280      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3281      if (Tmp == 1) break;
3282      return std::min(Tmp, Tmp2) - 1;
3283
3284    case Instruction::Mul: {
3285      // The output of the Mul can be at most twice the valid bits in the
3286      // inputs.
3287      unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3288      if (SignBitsOp0 == 1) break;
3289      unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3290      if (SignBitsOp1 == 1) break;
3291      unsigned OutValidBits =
3292          (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3293      return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3294    }
3295
3296    case Instruction::PHI: {
3297      const PHINode *PN = cast<PHINode>(U);
3298      unsigned NumIncomingValues = PN->getNumIncomingValues();
3299      // Don't analyze large in-degree PHIs.
3300      if (NumIncomingValues > 4) break;
3301      // Unreachable blocks may have zero-operand PHI nodes.
3302      if (NumIncomingValues == 0) break;
3303
3304      // Take the minimum of all incoming values.  This can't infinitely loop
3305      // because of our depth threshold.
3306      Query RecQ = Q;
3307      Tmp = TyBits;
3308      for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3309        if (Tmp == 1) return Tmp;
3310        RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3311        Tmp = std::min(
3312            Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3313      }
3314      return Tmp;
3315    }
3316
3317    case Instruction::Trunc: {
3318      // If the input contained enough sign bits that some remain after the
3319      // truncation, then we can make use of that. Otherwise we don't know
3320      // anything.
3321      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3322      unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
3323      if (Tmp > (OperandTyBits - TyBits))
3324        return Tmp - (OperandTyBits - TyBits);
3325
3326      return 1;
3327    }
3328
3329    case Instruction::ExtractElement:
3330      // Look through extract element. At the moment we keep this simple and
3331      // skip tracking the specific element. But at least we might find
3332      // information valid for all elements of the vector (for example if vector
3333      // is sign extended, shifted, etc).
3334      return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3335
3336    case Instruction::ShuffleVector: {
3337      // Collect the minimum number of sign bits that are shared by every vector
3338      // element referenced by the shuffle.
3339      auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3340      if (!Shuf) {
3341        // FIXME: Add support for shufflevector constant expressions.
3342        return 1;
3343      }
3344      APInt DemandedLHS, DemandedRHS;
3345      // For undef elements, we don't know anything about the common state of
3346      // the shuffle result.
3347      if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3348        return 1;
3349      Tmp = std::numeric_limits<unsigned>::max();
3350      if (!!DemandedLHS) {
3351        const Value *LHS = Shuf->getOperand(0);
3352        Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3353      }
3354      // If we don't know anything, early out and try computeKnownBits
3355      // fall-back.
3356      if (Tmp == 1)
3357        break;
3358      if (!!DemandedRHS) {
3359        const Value *RHS = Shuf->getOperand(1);
3360        Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3361        Tmp = std::min(Tmp, Tmp2);
3362      }
3363      // If we don't know anything, early out and try computeKnownBits
3364      // fall-back.
3365      if (Tmp == 1)
3366        break;
3367      assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3368      return Tmp;
3369    }
3370    case Instruction::Call: {
3371      if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3372        switch (II->getIntrinsicID()) {
3373        default: break;
3374        case Intrinsic::abs:
3375          Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3376          if (Tmp == 1) break;
3377
3378          // Absolute value reduces number of sign bits by at most 1.
3379          return Tmp - 1;
3380        case Intrinsic::smin:
3381        case Intrinsic::smax: {
3382          const APInt *CLow, *CHigh;
3383          if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3384            return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3385        }
3386        }
3387      }
3388    }
3389    }
3390  }
3391
3392  // Finally, if we can prove that the top bits of the result are 0's or 1's,
3393  // use this information.
3394
3395  // If we can examine all elements of a vector constant successfully, we're
3396  // done (we can't do any better than that). If not, keep trying.
3397  if (unsigned VecSignBits =
3398          computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3399    return VecSignBits;
3400
3401  KnownBits Known(TyBits);
3402  computeKnownBits(V, DemandedElts, Known, Depth, Q);
3403
3404  // If we know that the sign bit is either zero or one, determine the number of
3405  // identical bits in the top of the input value.
3406  return std::max(FirstAnswer, Known.countMinSignBits());
3407}
3408
3409Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3410                                            const TargetLibraryInfo *TLI) {
3411  const Function *F = CB.getCalledFunction();
3412  if (!F)
3413    return Intrinsic::not_intrinsic;
3414
3415  if (F->isIntrinsic())
3416    return F->getIntrinsicID();
3417
3418  // We are going to infer semantics of a library function based on mapping it
3419  // to an LLVM intrinsic. Check that the library function is available from
3420  // this callbase and in this environment.
3421  LibFunc Func;
3422  if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3423      !CB.onlyReadsMemory())
3424    return Intrinsic::not_intrinsic;
3425
3426  switch (Func) {
3427  default:
3428    break;
3429  case LibFunc_sin:
3430  case LibFunc_sinf:
3431  case LibFunc_sinl:
3432    return Intrinsic::sin;
3433  case LibFunc_cos:
3434  case LibFunc_cosf:
3435  case LibFunc_cosl:
3436    return Intrinsic::cos;
3437  case LibFunc_exp:
3438  case LibFunc_expf:
3439  case LibFunc_expl:
3440    return Intrinsic::exp;
3441  case LibFunc_exp2:
3442  case LibFunc_exp2f:
3443  case LibFunc_exp2l:
3444    return Intrinsic::exp2;
3445  case LibFunc_log:
3446  case LibFunc_logf:
3447  case LibFunc_logl:
3448    return Intrinsic::log;
3449  case LibFunc_log10:
3450  case LibFunc_log10f:
3451  case LibFunc_log10l:
3452    return Intrinsic::log10;
3453  case LibFunc_log2:
3454  case LibFunc_log2f:
3455  case LibFunc_log2l:
3456    return Intrinsic::log2;
3457  case LibFunc_fabs:
3458  case LibFunc_fabsf:
3459  case LibFunc_fabsl:
3460    return Intrinsic::fabs;
3461  case LibFunc_fmin:
3462  case LibFunc_fminf:
3463  case LibFunc_fminl:
3464    return Intrinsic::minnum;
3465  case LibFunc_fmax:
3466  case LibFunc_fmaxf:
3467  case LibFunc_fmaxl:
3468    return Intrinsic::maxnum;
3469  case LibFunc_copysign:
3470  case LibFunc_copysignf:
3471  case LibFunc_copysignl:
3472    return Intrinsic::copysign;
3473  case LibFunc_floor:
3474  case LibFunc_floorf:
3475  case LibFunc_floorl:
3476    return Intrinsic::floor;
3477  case LibFunc_ceil:
3478  case LibFunc_ceilf:
3479  case LibFunc_ceill:
3480    return Intrinsic::ceil;
3481  case LibFunc_trunc:
3482  case LibFunc_truncf:
3483  case LibFunc_truncl:
3484    return Intrinsic::trunc;
3485  case LibFunc_rint:
3486  case LibFunc_rintf:
3487  case LibFunc_rintl:
3488    return Intrinsic::rint;
3489  case LibFunc_nearbyint:
3490  case LibFunc_nearbyintf:
3491  case LibFunc_nearbyintl:
3492    return Intrinsic::nearbyint;
3493  case LibFunc_round:
3494  case LibFunc_roundf:
3495  case LibFunc_roundl:
3496    return Intrinsic::round;
3497  case LibFunc_roundeven:
3498  case LibFunc_roundevenf:
3499  case LibFunc_roundevenl:
3500    return Intrinsic::roundeven;
3501  case LibFunc_pow:
3502  case LibFunc_powf:
3503  case LibFunc_powl:
3504    return Intrinsic::pow;
3505  case LibFunc_sqrt:
3506  case LibFunc_sqrtf:
3507  case LibFunc_sqrtl:
3508    return Intrinsic::sqrt;
3509  }
3510
3511  return Intrinsic::not_intrinsic;
3512}
3513
3514/// Return true if we can prove that the specified FP value is never equal to
3515/// -0.0.
3516/// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3517///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3518///       the same as +0.0 in floating-point ops.
3519bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3520                                unsigned Depth) {
3521  if (auto *CFP = dyn_cast<ConstantFP>(V))
3522    return !CFP->getValueAPF().isNegZero();
3523
3524  if (Depth == MaxAnalysisRecursionDepth)
3525    return false;
3526
3527  auto *Op = dyn_cast<Operator>(V);
3528  if (!Op)
3529    return false;
3530
3531  // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3532  if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3533    return true;
3534
3535  // sitofp and uitofp turn into +0.0 for zero.
3536  if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3537    return true;
3538
3539  if (auto *Call = dyn_cast<CallInst>(Op)) {
3540    Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3541    switch (IID) {
3542    default:
3543      break;
3544    // sqrt(-0.0) = -0.0, no other negative results are possible.
3545    case Intrinsic::sqrt:
3546    case Intrinsic::canonicalize:
3547      return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3548    case Intrinsic::experimental_constrained_sqrt: {
3549      // NOTE: This rounding mode restriction may be too strict.
3550      const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
3551      if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
3552        return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3553      else
3554        return false;
3555    }
3556    // fabs(x) != -0.0
3557    case Intrinsic::fabs:
3558      return true;
3559    // sitofp and uitofp turn into +0.0 for zero.
3560    case Intrinsic::experimental_constrained_sitofp:
3561    case Intrinsic::experimental_constrained_uitofp:
3562      return true;
3563    }
3564  }
3565
3566  return false;
3567}
3568
3569/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3570/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3571/// bit despite comparing equal.
3572static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3573                                            const TargetLibraryInfo *TLI,
3574                                            bool SignBitOnly,
3575                                            unsigned Depth) {
3576  // TODO: This function does not do the right thing when SignBitOnly is true
3577  // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3578  // which flips the sign bits of NaNs.  See
3579  // https://llvm.org/bugs/show_bug.cgi?id=31702.
3580
3581  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3582    return !CFP->getValueAPF().isNegative() ||
3583           (!SignBitOnly && CFP->getValueAPF().isZero());
3584  }
3585
3586  // Handle vector of constants.
3587  if (auto *CV = dyn_cast<Constant>(V)) {
3588    if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3589      unsigned NumElts = CVFVTy->getNumElements();
3590      for (unsigned i = 0; i != NumElts; ++i) {
3591        auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3592        if (!CFP)
3593          return false;
3594        if (CFP->getValueAPF().isNegative() &&
3595            (SignBitOnly || !CFP->getValueAPF().isZero()))
3596          return false;
3597      }
3598
3599      // All non-negative ConstantFPs.
3600      return true;
3601    }
3602  }
3603
3604  if (Depth == MaxAnalysisRecursionDepth)
3605    return false;
3606
3607  const Operator *I = dyn_cast<Operator>(V);
3608  if (!I)
3609    return false;
3610
3611  switch (I->getOpcode()) {
3612  default:
3613    break;
3614  // Unsigned integers are always nonnegative.
3615  case Instruction::UIToFP:
3616    return true;
3617  case Instruction::FDiv:
3618    // X / X is always exactly 1.0 or a NaN.
3619    if (I->getOperand(0) == I->getOperand(1) &&
3620        (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3621      return true;
3622
3623    // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN).
3624    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3625                                           Depth + 1) &&
3626           cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3627                                           /*SignBitOnly*/ true, Depth + 1);
3628  case Instruction::FMul:
3629    // X * X is always non-negative or a NaN.
3630    if (I->getOperand(0) == I->getOperand(1) &&
3631        (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3632      return true;
3633
3634    [[fallthrough]];
3635  case Instruction::FAdd:
3636  case Instruction::FRem:
3637    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3638                                           Depth + 1) &&
3639           cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3640                                           Depth + 1);
3641  case Instruction::Select:
3642    return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3643                                           Depth + 1) &&
3644           cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3645                                           Depth + 1);
3646  case Instruction::FPExt:
3647  case Instruction::FPTrunc:
3648    // Widening/narrowing never change sign.
3649    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3650                                           Depth + 1);
3651  case Instruction::ExtractElement:
3652    // Look through extract element. At the moment we keep this simple and skip
3653    // tracking the specific element. But at least we might find information
3654    // valid for all elements of the vector.
3655    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3656                                           Depth + 1);
3657  case Instruction::Call:
3658    const auto *CI = cast<CallInst>(I);
3659    Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3660    switch (IID) {
3661    default:
3662      break;
3663    case Intrinsic::canonicalize:
3664    case Intrinsic::arithmetic_fence:
3665    case Intrinsic::floor:
3666    case Intrinsic::ceil:
3667    case Intrinsic::trunc:
3668    case Intrinsic::rint:
3669    case Intrinsic::nearbyint:
3670    case Intrinsic::round:
3671    case Intrinsic::roundeven:
3672    case Intrinsic::fptrunc_round:
3673      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1);
3674    case Intrinsic::maxnum: {
3675      Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3676      auto isPositiveNum = [&](Value *V) {
3677        if (SignBitOnly) {
3678          // With SignBitOnly, this is tricky because the result of
3679          // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3680          // a constant strictly greater than 0.0.
3681          const APFloat *C;
3682          return match(V, m_APFloat(C)) &&
3683                 *C > APFloat::getZero(C->getSemantics());
3684        }
3685
3686        // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3687        // maxnum can't be ordered-less-than-zero.
3688        return isKnownNeverNaN(V, TLI) &&
3689               cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3690      };
3691
3692      // TODO: This could be improved. We could also check that neither operand
3693      //       has its sign bit set (and at least 1 is not-NAN?).
3694      return isPositiveNum(V0) || isPositiveNum(V1);
3695    }
3696
3697    case Intrinsic::maximum:
3698      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3699                                             Depth + 1) ||
3700             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3701                                             Depth + 1);
3702    case Intrinsic::minnum:
3703    case Intrinsic::minimum:
3704      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3705                                             Depth + 1) &&
3706             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3707                                             Depth + 1);
3708    case Intrinsic::exp:
3709    case Intrinsic::exp2:
3710    case Intrinsic::fabs:
3711      return true;
3712    case Intrinsic::copysign:
3713      // Only the sign operand matters.
3714      return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, true,
3715                                             Depth + 1);
3716    case Intrinsic::sqrt:
3717      // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3718      if (!SignBitOnly)
3719        return true;
3720      return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3721                                 CannotBeNegativeZero(CI->getOperand(0), TLI));
3722
3723    case Intrinsic::powi:
3724      if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3725        // powi(x,n) is non-negative if n is even.
3726        if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3727          return true;
3728      }
3729      // TODO: This is not correct.  Given that exp is an integer, here are the
3730      // ways that pow can return a negative value:
3731      //
3732      //   pow(x, exp)    --> negative if exp is odd and x is negative.
3733      //   pow(-0, exp)   --> -inf if exp is negative odd.
3734      //   pow(-0, exp)   --> -0 if exp is positive odd.
3735      //   pow(-inf, exp) --> -0 if exp is negative odd.
3736      //   pow(-inf, exp) --> -inf if exp is positive odd.
3737      //
3738      // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3739      // but we must return false if x == -0.  Unfortunately we do not currently
3740      // have a way of expressing this constraint.  See details in
3741      // https://llvm.org/bugs/show_bug.cgi?id=31702.
3742      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3743                                             Depth + 1);
3744
3745    case Intrinsic::fma:
3746    case Intrinsic::fmuladd:
3747      // x*x+y is non-negative if y is non-negative.
3748      return I->getOperand(0) == I->getOperand(1) &&
3749             (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3750             cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3751                                             Depth + 1);
3752    }
3753    break;
3754  }
3755  return false;
3756}
3757
3758bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3759                                       const TargetLibraryInfo *TLI) {
3760  return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3761}
3762
3763bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3764  return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3765}
3766
3767bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3768                                unsigned Depth) {
3769  assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3770
3771  // If we're told that infinities won't happen, assume they won't.
3772  if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3773    if (FPMathOp->hasNoInfs())
3774      return true;
3775
3776  // Handle scalar constants.
3777  if (auto *CFP = dyn_cast<ConstantFP>(V))
3778    return !CFP->isInfinity();
3779
3780  if (Depth == MaxAnalysisRecursionDepth)
3781    return false;
3782
3783  if (auto *Inst = dyn_cast<Instruction>(V)) {
3784    switch (Inst->getOpcode()) {
3785    case Instruction::Select: {
3786      return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3787             isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3788    }
3789    case Instruction::SIToFP:
3790    case Instruction::UIToFP: {
3791      // Get width of largest magnitude integer (remove a bit if signed).
3792      // This still works for a signed minimum value because the largest FP
3793      // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3794      int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3795      if (Inst->getOpcode() == Instruction::SIToFP)
3796        --IntSize;
3797
3798      // If the exponent of the largest finite FP value can hold the largest
3799      // integer, the result of the cast must be finite.
3800      Type *FPTy = Inst->getType()->getScalarType();
3801      return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3802    }
3803    case Instruction::FNeg:
3804    case Instruction::FPExt: {
3805      // Peek through to source op. If it is not infinity, this is not infinity.
3806      return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
3807    }
3808    case Instruction::FPTrunc: {
3809      // Need a range check.
3810      return false;
3811    }
3812    default:
3813      break;
3814    }
3815
3816    if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3817      switch (II->getIntrinsicID()) {
3818      case Intrinsic::sin:
3819      case Intrinsic::cos:
3820        // Return NaN on infinite inputs.
3821        return true;
3822      case Intrinsic::fabs:
3823      case Intrinsic::sqrt:
3824      case Intrinsic::canonicalize:
3825      case Intrinsic::copysign:
3826      case Intrinsic::arithmetic_fence:
3827      case Intrinsic::trunc:
3828        return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
3829      case Intrinsic::floor:
3830      case Intrinsic::ceil:
3831      case Intrinsic::rint:
3832      case Intrinsic::nearbyint:
3833      case Intrinsic::round:
3834      case Intrinsic::roundeven:
3835        // PPC_FP128 is a special case.
3836        if (V->getType()->isMultiUnitFPType())
3837          return false;
3838        return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
3839      case Intrinsic::fptrunc_round:
3840        // Requires knowing the value range.
3841        return false;
3842      case Intrinsic::minnum:
3843      case Intrinsic::maxnum:
3844      case Intrinsic::minimum:
3845      case Intrinsic::maximum:
3846        return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3847               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3848      case Intrinsic::log:
3849      case Intrinsic::log10:
3850      case Intrinsic::log2:
3851        // log(+inf) -> +inf
3852        // log([+-]0.0) -> -inf
3853        // log(-inf) -> nan
3854        // log(-x) -> nan
3855        // TODO: We lack API to check the == 0 case.
3856        return false;
3857      case Intrinsic::exp:
3858      case Intrinsic::exp2:
3859      case Intrinsic::pow:
3860      case Intrinsic::powi:
3861      case Intrinsic::fma:
3862      case Intrinsic::fmuladd:
3863        // These can return infinities on overflow cases, so it's hard to prove
3864        // anything about it.
3865        return false;
3866      default:
3867        break;
3868      }
3869    }
3870  }
3871
3872  // try to handle fixed width vector constants
3873  auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3874  if (VFVTy && isa<Constant>(V)) {
3875    // For vectors, verify that each element is not infinity.
3876    unsigned NumElts = VFVTy->getNumElements();
3877    for (unsigned i = 0; i != NumElts; ++i) {
3878      Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3879      if (!Elt)
3880        return false;
3881      if (isa<UndefValue>(Elt))
3882        continue;
3883      auto *CElt = dyn_cast<ConstantFP>(Elt);
3884      if (!CElt || CElt->isInfinity())
3885        return false;
3886    }
3887    // All elements were confirmed non-infinity or undefined.
3888    return true;
3889  }
3890
3891  // was not able to prove that V never contains infinity
3892  return false;
3893}
3894
3895bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3896                           unsigned Depth) {
3897  assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3898
3899  // If we're told that NaNs won't happen, assume they won't.
3900  if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3901    if (FPMathOp->hasNoNaNs())
3902      return true;
3903
3904  // Handle scalar constants.
3905  if (auto *CFP = dyn_cast<ConstantFP>(V))
3906    return !CFP->isNaN();
3907
3908  if (Depth == MaxAnalysisRecursionDepth)
3909    return false;
3910
3911  if (auto *Inst = dyn_cast<Instruction>(V)) {
3912    switch (Inst->getOpcode()) {
3913    case Instruction::FAdd:
3914    case Instruction::FSub:
3915      // Adding positive and negative infinity produces NaN.
3916      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3917             isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3918             (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3919              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3920
3921    case Instruction::FMul:
3922      // Zero multiplied with infinity produces NaN.
3923      // FIXME: If neither side can be zero fmul never produces NaN.
3924      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3925             isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3926             isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3927             isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3928
3929    case Instruction::FDiv:
3930    case Instruction::FRem:
3931      // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3932      return false;
3933
3934    case Instruction::Select: {
3935      return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3936             isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3937    }
3938    case Instruction::SIToFP:
3939    case Instruction::UIToFP:
3940      return true;
3941    case Instruction::FPTrunc:
3942    case Instruction::FPExt:
3943    case Instruction::FNeg:
3944      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3945    default:
3946      break;
3947    }
3948  }
3949
3950  if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3951    switch (II->getIntrinsicID()) {
3952    case Intrinsic::canonicalize:
3953    case Intrinsic::fabs:
3954    case Intrinsic::copysign:
3955    case Intrinsic::exp:
3956    case Intrinsic::exp2:
3957    case Intrinsic::floor:
3958    case Intrinsic::ceil:
3959    case Intrinsic::trunc:
3960    case Intrinsic::rint:
3961    case Intrinsic::nearbyint:
3962    case Intrinsic::round:
3963    case Intrinsic::roundeven:
3964    case Intrinsic::arithmetic_fence:
3965      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3966    case Intrinsic::sqrt:
3967      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3968             CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3969    case Intrinsic::minnum:
3970    case Intrinsic::maxnum:
3971      // If either operand is not NaN, the result is not NaN.
3972      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3973             isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3974    default:
3975      return false;
3976    }
3977  }
3978
3979  // Try to handle fixed width vector constants
3980  auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3981  if (VFVTy && isa<Constant>(V)) {
3982    // For vectors, verify that each element is not NaN.
3983    unsigned NumElts = VFVTy->getNumElements();
3984    for (unsigned i = 0; i != NumElts; ++i) {
3985      Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3986      if (!Elt)
3987        return false;
3988      if (isa<UndefValue>(Elt))
3989        continue;
3990      auto *CElt = dyn_cast<ConstantFP>(Elt);
3991      if (!CElt || CElt->isNaN())
3992        return false;
3993    }
3994    // All elements were confirmed not-NaN or undefined.
3995    return true;
3996  }
3997
3998  // Was not able to prove that V never contains NaN
3999  return false;
4000}
4001
4002Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
4003
4004  // All byte-wide stores are splatable, even of arbitrary variables.
4005  if (V->getType()->isIntegerTy(8))
4006    return V;
4007
4008  LLVMContext &Ctx = V->getContext();
4009
4010  // Undef don't care.
4011  auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
4012  if (isa<UndefValue>(V))
4013    return UndefInt8;
4014
4015  // Return Undef for zero-sized type.
4016  if (!DL.getTypeStoreSize(V->getType()).isNonZero())
4017    return UndefInt8;
4018
4019  Constant *C = dyn_cast<Constant>(V);
4020  if (!C) {
4021    // Conceptually, we could handle things like:
4022    //   %a = zext i8 %X to i16
4023    //   %b = shl i16 %a, 8
4024    //   %c = or i16 %a, %b
4025    // but until there is an example that actually needs this, it doesn't seem
4026    // worth worrying about.
4027    return nullptr;
4028  }
4029
4030  // Handle 'null' ConstantArrayZero etc.
4031  if (C->isNullValue())
4032    return Constant::getNullValue(Type::getInt8Ty(Ctx));
4033
4034  // Constant floating-point values can be handled as integer values if the
4035  // corresponding integer value is "byteable".  An important case is 0.0.
4036  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4037    Type *Ty = nullptr;
4038    if (CFP->getType()->isHalfTy())
4039      Ty = Type::getInt16Ty(Ctx);
4040    else if (CFP->getType()->isFloatTy())
4041      Ty = Type::getInt32Ty(Ctx);
4042    else if (CFP->getType()->isDoubleTy())
4043      Ty = Type::getInt64Ty(Ctx);
4044    // Don't handle long double formats, which have strange constraints.
4045    return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
4046              : nullptr;
4047  }
4048
4049  // We can handle constant integers that are multiple of 8 bits.
4050  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
4051    if (CI->getBitWidth() % 8 == 0) {
4052      assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
4053      if (!CI->getValue().isSplat(8))
4054        return nullptr;
4055      return ConstantInt::get(Ctx, CI->getValue().trunc(8));
4056    }
4057  }
4058
4059  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
4060    if (CE->getOpcode() == Instruction::IntToPtr) {
4061      if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
4062        unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
4063        return isBytewiseValue(
4064            ConstantExpr::getIntegerCast(CE->getOperand(0),
4065                                         Type::getIntNTy(Ctx, BitWidth), false),
4066            DL);
4067      }
4068    }
4069  }
4070
4071  auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
4072    if (LHS == RHS)
4073      return LHS;
4074    if (!LHS || !RHS)
4075      return nullptr;
4076    if (LHS == UndefInt8)
4077      return RHS;
4078    if (RHS == UndefInt8)
4079      return LHS;
4080    return nullptr;
4081  };
4082
4083  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
4084    Value *Val = UndefInt8;
4085    for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
4086      if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
4087        return nullptr;
4088    return Val;
4089  }
4090
4091  if (isa<ConstantAggregate>(C)) {
4092    Value *Val = UndefInt8;
4093    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
4094      if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
4095        return nullptr;
4096    return Val;
4097  }
4098
4099  // Don't try to handle the handful of other constants.
4100  return nullptr;
4101}
4102
4103// This is the recursive version of BuildSubAggregate. It takes a few different
4104// arguments. Idxs is the index within the nested struct From that we are
4105// looking at now (which is of type IndexedType). IdxSkip is the number of
4106// indices from Idxs that should be left out when inserting into the resulting
4107// struct. To is the result struct built so far, new insertvalue instructions
4108// build on that.
4109static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
4110                                SmallVectorImpl<unsigned> &Idxs,
4111                                unsigned IdxSkip,
4112                                Instruction *InsertBefore) {
4113  StructType *STy = dyn_cast<StructType>(IndexedType);
4114  if (STy) {
4115    // Save the original To argument so we can modify it
4116    Value *OrigTo = To;
4117    // General case, the type indexed by Idxs is a struct
4118    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4119      // Process each struct element recursively
4120      Idxs.push_back(i);
4121      Value *PrevTo = To;
4122      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
4123                             InsertBefore);
4124      Idxs.pop_back();
4125      if (!To) {
4126        // Couldn't find any inserted value for this index? Cleanup
4127        while (PrevTo != OrigTo) {
4128          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
4129          PrevTo = Del->getAggregateOperand();
4130          Del->eraseFromParent();
4131        }
4132        // Stop processing elements
4133        break;
4134      }
4135    }
4136    // If we successfully found a value for each of our subaggregates
4137    if (To)
4138      return To;
4139  }
4140  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
4141  // the struct's elements had a value that was inserted directly. In the latter
4142  // case, perhaps we can't determine each of the subelements individually, but
4143  // we might be able to find the complete struct somewhere.
4144
4145  // Find the value that is at that particular spot
4146  Value *V = FindInsertedValue(From, Idxs);
4147
4148  if (!V)
4149    return nullptr;
4150
4151  // Insert the value in the new (sub) aggregate
4152  return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp",
4153                                 InsertBefore);
4154}
4155
4156// This helper takes a nested struct and extracts a part of it (which is again a
4157// struct) into a new value. For example, given the struct:
4158// { a, { b, { c, d }, e } }
4159// and the indices "1, 1" this returns
4160// { c, d }.
4161//
4162// It does this by inserting an insertvalue for each element in the resulting
4163// struct, as opposed to just inserting a single struct. This will only work if
4164// each of the elements of the substruct are known (ie, inserted into From by an
4165// insertvalue instruction somewhere).
4166//
4167// All inserted insertvalue instructions are inserted before InsertBefore
4168static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
4169                                Instruction *InsertBefore) {
4170  assert(InsertBefore && "Must have someplace to insert!");
4171  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
4172                                                             idx_range);
4173  Value *To = PoisonValue::get(IndexedType);
4174  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
4175  unsigned IdxSkip = Idxs.size();
4176
4177  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
4178}
4179
4180/// Given an aggregate and a sequence of indices, see if the scalar value
4181/// indexed is already around as a register, for example if it was inserted
4182/// directly into the aggregate.
4183///
4184/// If InsertBefore is not null, this function will duplicate (modified)
4185/// insertvalues when a part of a nested struct is extracted.
4186Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
4187                               Instruction *InsertBefore) {
4188  // Nothing to index? Just return V then (this is useful at the end of our
4189  // recursion).
4190  if (idx_range.empty())
4191    return V;
4192  // We have indices, so V should have an indexable type.
4193  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
4194         "Not looking at a struct or array?");
4195  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
4196         "Invalid indices for type?");
4197
4198  if (Constant *C = dyn_cast<Constant>(V)) {
4199    C = C->getAggregateElement(idx_range[0]);
4200    if (!C) return nullptr;
4201    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
4202  }
4203
4204  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
4205    // Loop the indices for the insertvalue instruction in parallel with the
4206    // requested indices
4207    const unsigned *req_idx = idx_range.begin();
4208    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4209         i != e; ++i, ++req_idx) {
4210      if (req_idx == idx_range.end()) {
4211        // We can't handle this without inserting insertvalues
4212        if (!InsertBefore)
4213          return nullptr;
4214
4215        // The requested index identifies a part of a nested aggregate. Handle
4216        // this specially. For example,
4217        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4218        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4219        // %C = extractvalue {i32, { i32, i32 } } %B, 1
4220        // This can be changed into
4221        // %A = insertvalue {i32, i32 } undef, i32 10, 0
4222        // %C = insertvalue {i32, i32 } %A, i32 11, 1
4223        // which allows the unused 0,0 element from the nested struct to be
4224        // removed.
4225        return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx),
4226                                 InsertBefore);
4227      }
4228
4229      // This insert value inserts something else than what we are looking for.
4230      // See if the (aggregate) value inserted into has the value we are
4231      // looking for, then.
4232      if (*req_idx != *i)
4233        return FindInsertedValue(I->getAggregateOperand(), idx_range,
4234                                 InsertBefore);
4235    }
4236    // If we end up here, the indices of the insertvalue match with those
4237    // requested (though possibly only partially). Now we recursively look at
4238    // the inserted value, passing any remaining indices.
4239    return FindInsertedValue(I->getInsertedValueOperand(),
4240                             ArrayRef(req_idx, idx_range.end()), InsertBefore);
4241  }
4242
4243  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4244    // If we're extracting a value from an aggregate that was extracted from
4245    // something else, we can extract from that something else directly instead.
4246    // However, we will need to chain I's indices with the requested indices.
4247
4248    // Calculate the number of indices required
4249    unsigned size = I->getNumIndices() + idx_range.size();
4250    // Allocate some space to put the new indices in
4251    SmallVector<unsigned, 5> Idxs;
4252    Idxs.reserve(size);
4253    // Add indices from the extract value instruction
4254    Idxs.append(I->idx_begin(), I->idx_end());
4255
4256    // Add requested indices
4257    Idxs.append(idx_range.begin(), idx_range.end());
4258
4259    assert(Idxs.size() == size
4260           && "Number of indices added not correct?");
4261
4262    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4263  }
4264  // Otherwise, we don't know (such as, extracting from a function return value
4265  // or load instruction)
4266  return nullptr;
4267}
4268
4269bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4270                                       unsigned CharSize) {
4271  // Make sure the GEP has exactly three arguments.
4272  if (GEP->getNumOperands() != 3)
4273    return false;
4274
4275  // Make sure the index-ee is a pointer to array of \p CharSize integers.
4276  // CharSize.
4277  ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4278  if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4279    return false;
4280
4281  // Check to make sure that the first operand of the GEP is an integer and
4282  // has value 0 so that we are sure we're indexing into the initializer.
4283  const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4284  if (!FirstIdx || !FirstIdx->isZero())
4285    return false;
4286
4287  return true;
4288}
4289
4290// If V refers to an initialized global constant, set Slice either to
4291// its initializer if the size of its elements equals ElementSize, or,
4292// for ElementSize == 8, to its representation as an array of unsiged
4293// char. Return true on success.
4294// Offset is in the unit "nr of ElementSize sized elements".
4295bool llvm::getConstantDataArrayInfo(const Value *V,
4296                                    ConstantDataArraySlice &Slice,
4297                                    unsigned ElementSize, uint64_t Offset) {
4298  assert(V && "V should not be null.");
4299  assert((ElementSize % 8) == 0 &&
4300         "ElementSize expected to be a multiple of the size of a byte.");
4301  unsigned ElementSizeInBytes = ElementSize / 8;
4302
4303  // Drill down into the pointer expression V, ignoring any intervening
4304  // casts, and determine the identity of the object it references along
4305  // with the cumulative byte offset into it.
4306  const GlobalVariable *GV =
4307    dyn_cast<GlobalVariable>(getUnderlyingObject(V));
4308  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4309    // Fail if V is not based on constant global object.
4310    return false;
4311
4312  const DataLayout &DL = GV->getParent()->getDataLayout();
4313  APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
4314
4315  if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
4316                                                 /*AllowNonInbounds*/ true))
4317    // Fail if a constant offset could not be determined.
4318    return false;
4319
4320  uint64_t StartIdx = Off.getLimitedValue();
4321  if (StartIdx == UINT64_MAX)
4322    // Fail if the constant offset is excessive.
4323    return false;
4324
4325  // Off/StartIdx is in the unit of bytes. So we need to convert to number of
4326  // elements. Simply bail out if that isn't possible.
4327  if ((StartIdx % ElementSizeInBytes) != 0)
4328    return false;
4329
4330  Offset += StartIdx / ElementSizeInBytes;
4331  ConstantDataArray *Array = nullptr;
4332  ArrayType *ArrayTy = nullptr;
4333
4334  if (GV->getInitializer()->isNullValue()) {
4335    Type *GVTy = GV->getValueType();
4336    uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
4337    uint64_t Length = SizeInBytes / ElementSizeInBytes;
4338
4339    Slice.Array = nullptr;
4340    Slice.Offset = 0;
4341    // Return an empty Slice for undersized constants to let callers
4342    // transform even undefined library calls into simpler, well-defined
4343    // expressions.  This is preferable to making the calls although it
4344    // prevents sanitizers from detecting such calls.
4345    Slice.Length = Length < Offset ? 0 : Length - Offset;
4346    return true;
4347  }
4348
4349  auto *Init = const_cast<Constant *>(GV->getInitializer());
4350  if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
4351    Type *InitElTy = ArrayInit->getElementType();
4352    if (InitElTy->isIntegerTy(ElementSize)) {
4353      // If Init is an initializer for an array of the expected type
4354      // and size, use it as is.
4355      Array = ArrayInit;
4356      ArrayTy = ArrayInit->getType();
4357    }
4358  }
4359
4360  if (!Array) {
4361    if (ElementSize != 8)
4362      // TODO: Handle conversions to larger integral types.
4363      return false;
4364
4365    // Otherwise extract the portion of the initializer starting
4366    // at Offset as an array of bytes, and reset Offset.
4367    Init = ReadByteArrayFromGlobal(GV, Offset);
4368    if (!Init)
4369      return false;
4370
4371    Offset = 0;
4372    Array = dyn_cast<ConstantDataArray>(Init);
4373    ArrayTy = dyn_cast<ArrayType>(Init->getType());
4374  }
4375
4376  uint64_t NumElts = ArrayTy->getArrayNumElements();
4377  if (Offset > NumElts)
4378    return false;
4379
4380  Slice.Array = Array;
4381  Slice.Offset = Offset;
4382  Slice.Length = NumElts - Offset;
4383  return true;
4384}
4385
4386/// Extract bytes from the initializer of the constant array V, which need
4387/// not be a nul-terminated string.  On success, store the bytes in Str and
4388/// return true.  When TrimAtNul is set, Str will contain only the bytes up
4389/// to but not including the first nul.  Return false on failure.
4390bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4391                                 bool TrimAtNul) {
4392  ConstantDataArraySlice Slice;
4393  if (!getConstantDataArrayInfo(V, Slice, 8))
4394    return false;
4395
4396  if (Slice.Array == nullptr) {
4397    if (TrimAtNul) {
4398      // Return a nul-terminated string even for an empty Slice.  This is
4399      // safe because all existing SimplifyLibcalls callers require string
4400      // arguments and the behavior of the functions they fold is undefined
4401      // otherwise.  Folding the calls this way is preferable to making
4402      // the undefined library calls, even though it prevents sanitizers
4403      // from reporting such calls.
4404      Str = StringRef();
4405      return true;
4406    }
4407    if (Slice.Length == 1) {
4408      Str = StringRef("", 1);
4409      return true;
4410    }
4411    // We cannot instantiate a StringRef as we do not have an appropriate string
4412    // of 0s at hand.
4413    return false;
4414  }
4415
4416  // Start out with the entire array in the StringRef.
4417  Str = Slice.Array->getAsString();
4418  // Skip over 'offset' bytes.
4419  Str = Str.substr(Slice.Offset);
4420
4421  if (TrimAtNul) {
4422    // Trim off the \0 and anything after it.  If the array is not nul
4423    // terminated, we just return the whole end of string.  The client may know
4424    // some other way that the string is length-bound.
4425    Str = Str.substr(0, Str.find('\0'));
4426  }
4427  return true;
4428}
4429
4430// These next two are very similar to the above, but also look through PHI
4431// nodes.
4432// TODO: See if we can integrate these two together.
4433
4434/// If we can compute the length of the string pointed to by
4435/// the specified pointer, return 'len+1'.  If we can't, return 0.
4436static uint64_t GetStringLengthH(const Value *V,
4437                                 SmallPtrSetImpl<const PHINode*> &PHIs,
4438                                 unsigned CharSize) {
4439  // Look through noop bitcast instructions.
4440  V = V->stripPointerCasts();
4441
4442  // If this is a PHI node, there are two cases: either we have already seen it
4443  // or we haven't.
4444  if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4445    if (!PHIs.insert(PN).second)
4446      return ~0ULL;  // already in the set.
4447
4448    // If it was new, see if all the input strings are the same length.
4449    uint64_t LenSoFar = ~0ULL;
4450    for (Value *IncValue : PN->incoming_values()) {
4451      uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4452      if (Len == 0) return 0; // Unknown length -> unknown.
4453
4454      if (Len == ~0ULL) continue;
4455
4456      if (Len != LenSoFar && LenSoFar != ~0ULL)
4457        return 0;    // Disagree -> unknown.
4458      LenSoFar = Len;
4459    }
4460
4461    // Success, all agree.
4462    return LenSoFar;
4463  }
4464
4465  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4466  if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4467    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4468    if (Len1 == 0) return 0;
4469    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4470    if (Len2 == 0) return 0;
4471    if (Len1 == ~0ULL) return Len2;
4472    if (Len2 == ~0ULL) return Len1;
4473    if (Len1 != Len2) return 0;
4474    return Len1;
4475  }
4476
4477  // Otherwise, see if we can read the string.
4478  ConstantDataArraySlice Slice;
4479  if (!getConstantDataArrayInfo(V, Slice, CharSize))
4480    return 0;
4481
4482  if (Slice.Array == nullptr)
4483    // Zeroinitializer (including an empty one).
4484    return 1;
4485
4486  // Search for the first nul character.  Return a conservative result even
4487  // when there is no nul.  This is safe since otherwise the string function
4488  // being folded such as strlen is undefined, and can be preferable to
4489  // making the undefined library call.
4490  unsigned NullIndex = 0;
4491  for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4492    if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4493      break;
4494  }
4495
4496  return NullIndex + 1;
4497}
4498
4499/// If we can compute the length of the string pointed to by
4500/// the specified pointer, return 'len+1'.  If we can't, return 0.
4501uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4502  if (!V->getType()->isPointerTy())
4503    return 0;
4504
4505  SmallPtrSet<const PHINode*, 32> PHIs;
4506  uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4507  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4508  // an empty string as a length.
4509  return Len == ~0ULL ? 1 : Len;
4510}
4511
4512const Value *
4513llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4514                                           bool MustPreserveNullness) {
4515  assert(Call &&
4516         "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4517  if (const Value *RV = Call->getReturnedArgOperand())
4518    return RV;
4519  // This can be used only as a aliasing property.
4520  if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4521          Call, MustPreserveNullness))
4522    return Call->getArgOperand(0);
4523  return nullptr;
4524}
4525
4526bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4527    const CallBase *Call, bool MustPreserveNullness) {
4528  switch (Call->getIntrinsicID()) {
4529  case Intrinsic::launder_invariant_group:
4530  case Intrinsic::strip_invariant_group:
4531  case Intrinsic::aarch64_irg:
4532  case Intrinsic::aarch64_tagp:
4533    return true;
4534  case Intrinsic::ptrmask:
4535    return !MustPreserveNullness;
4536  default:
4537    return false;
4538  }
4539}
4540
4541/// \p PN defines a loop-variant pointer to an object.  Check if the
4542/// previous iteration of the loop was referring to the same object as \p PN.
4543static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4544                                         const LoopInfo *LI) {
4545  // Find the loop-defined value.
4546  Loop *L = LI->getLoopFor(PN->getParent());
4547  if (PN->getNumIncomingValues() != 2)
4548    return true;
4549
4550  // Find the value from previous iteration.
4551  auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4552  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4553    PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4554  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4555    return true;
4556
4557  // If a new pointer is loaded in the loop, the pointer references a different
4558  // object in every iteration.  E.g.:
4559  //    for (i)
4560  //       int *p = a[i];
4561  //       ...
4562  if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4563    if (!L->isLoopInvariant(Load->getPointerOperand()))
4564      return false;
4565  return true;
4566}
4567
4568const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4569  if (!V->getType()->isPointerTy())
4570    return V;
4571  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4572    if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4573      V = GEP->getPointerOperand();
4574    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4575               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4576      V = cast<Operator>(V)->getOperand(0);
4577      if (!V->getType()->isPointerTy())
4578        return V;
4579    } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4580      if (GA->isInterposable())
4581        return V;
4582      V = GA->getAliasee();
4583    } else {
4584      if (auto *PHI = dyn_cast<PHINode>(V)) {
4585        // Look through single-arg phi nodes created by LCSSA.
4586        if (PHI->getNumIncomingValues() == 1) {
4587          V = PHI->getIncomingValue(0);
4588          continue;
4589        }
4590      } else if (auto *Call = dyn_cast<CallBase>(V)) {
4591        // CaptureTracking can know about special capturing properties of some
4592        // intrinsics like launder.invariant.group, that can't be expressed with
4593        // the attributes, but have properties like returning aliasing pointer.
4594        // Because some analysis may assume that nocaptured pointer is not
4595        // returned from some special intrinsic (because function would have to
4596        // be marked with returns attribute), it is crucial to use this function
4597        // because it should be in sync with CaptureTracking. Not using it may
4598        // cause weird miscompilations where 2 aliasing pointers are assumed to
4599        // noalias.
4600        if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4601          V = RP;
4602          continue;
4603        }
4604      }
4605
4606      return V;
4607    }
4608    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4609  }
4610  return V;
4611}
4612
4613void llvm::getUnderlyingObjects(const Value *V,
4614                                SmallVectorImpl<const Value *> &Objects,
4615                                LoopInfo *LI, unsigned MaxLookup) {
4616  SmallPtrSet<const Value *, 4> Visited;
4617  SmallVector<const Value *, 4> Worklist;
4618  Worklist.push_back(V);
4619  do {
4620    const Value *P = Worklist.pop_back_val();
4621    P = getUnderlyingObject(P, MaxLookup);
4622
4623    if (!Visited.insert(P).second)
4624      continue;
4625
4626    if (auto *SI = dyn_cast<SelectInst>(P)) {
4627      Worklist.push_back(SI->getTrueValue());
4628      Worklist.push_back(SI->getFalseValue());
4629      continue;
4630    }
4631
4632    if (auto *PN = dyn_cast<PHINode>(P)) {
4633      // If this PHI changes the underlying object in every iteration of the
4634      // loop, don't look through it.  Consider:
4635      //   int **A;
4636      //   for (i) {
4637      //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4638      //     Curr = A[i];
4639      //     *Prev, *Curr;
4640      //
4641      // Prev is tracking Curr one iteration behind so they refer to different
4642      // underlying objects.
4643      if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4644          isSameUnderlyingObjectInLoop(PN, LI))
4645        append_range(Worklist, PN->incoming_values());
4646      continue;
4647    }
4648
4649    Objects.push_back(P);
4650  } while (!Worklist.empty());
4651}
4652
4653/// This is the function that does the work of looking through basic
4654/// ptrtoint+arithmetic+inttoptr sequences.
4655static const Value *getUnderlyingObjectFromInt(const Value *V) {
4656  do {
4657    if (const Operator *U = dyn_cast<Operator>(V)) {
4658      // If we find a ptrtoint, we can transfer control back to the
4659      // regular getUnderlyingObjectFromInt.
4660      if (U->getOpcode() == Instruction::PtrToInt)
4661        return U->getOperand(0);
4662      // If we find an add of a constant, a multiplied value, or a phi, it's
4663      // likely that the other operand will lead us to the base
4664      // object. We don't have to worry about the case where the
4665      // object address is somehow being computed by the multiply,
4666      // because our callers only care when the result is an
4667      // identifiable object.
4668      if (U->getOpcode() != Instruction::Add ||
4669          (!isa<ConstantInt>(U->getOperand(1)) &&
4670           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4671           !isa<PHINode>(U->getOperand(1))))
4672        return V;
4673      V = U->getOperand(0);
4674    } else {
4675      return V;
4676    }
4677    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4678  } while (true);
4679}
4680
4681/// This is a wrapper around getUnderlyingObjects and adds support for basic
4682/// ptrtoint+arithmetic+inttoptr sequences.
4683/// It returns false if unidentified object is found in getUnderlyingObjects.
4684bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4685                                          SmallVectorImpl<Value *> &Objects) {
4686  SmallPtrSet<const Value *, 16> Visited;
4687  SmallVector<const Value *, 4> Working(1, V);
4688  do {
4689    V = Working.pop_back_val();
4690
4691    SmallVector<const Value *, 4> Objs;
4692    getUnderlyingObjects(V, Objs);
4693
4694    for (const Value *V : Objs) {
4695      if (!Visited.insert(V).second)
4696        continue;
4697      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4698        const Value *O =
4699          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4700        if (O->getType()->isPointerTy()) {
4701          Working.push_back(O);
4702          continue;
4703        }
4704      }
4705      // If getUnderlyingObjects fails to find an identifiable object,
4706      // getUnderlyingObjectsForCodeGen also fails for safety.
4707      if (!isIdentifiedObject(V)) {
4708        Objects.clear();
4709        return false;
4710      }
4711      Objects.push_back(const_cast<Value *>(V));
4712    }
4713  } while (!Working.empty());
4714  return true;
4715}
4716
4717AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4718  AllocaInst *Result = nullptr;
4719  SmallPtrSet<Value *, 4> Visited;
4720  SmallVector<Value *, 4> Worklist;
4721
4722  auto AddWork = [&](Value *V) {
4723    if (Visited.insert(V).second)
4724      Worklist.push_back(V);
4725  };
4726
4727  AddWork(V);
4728  do {
4729    V = Worklist.pop_back_val();
4730    assert(Visited.count(V));
4731
4732    if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4733      if (Result && Result != AI)
4734        return nullptr;
4735      Result = AI;
4736    } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4737      AddWork(CI->getOperand(0));
4738    } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4739      for (Value *IncValue : PN->incoming_values())
4740        AddWork(IncValue);
4741    } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4742      AddWork(SI->getTrueValue());
4743      AddWork(SI->getFalseValue());
4744    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4745      if (OffsetZero && !GEP->hasAllZeroIndices())
4746        return nullptr;
4747      AddWork(GEP->getPointerOperand());
4748    } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4749      Value *Returned = CB->getReturnedArgOperand();
4750      if (Returned)
4751        AddWork(Returned);
4752      else
4753        return nullptr;
4754    } else {
4755      return nullptr;
4756    }
4757  } while (!Worklist.empty());
4758
4759  return Result;
4760}
4761
4762static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4763    const Value *V, bool AllowLifetime, bool AllowDroppable) {
4764  for (const User *U : V->users()) {
4765    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4766    if (!II)
4767      return false;
4768
4769    if (AllowLifetime && II->isLifetimeStartOrEnd())
4770      continue;
4771
4772    if (AllowDroppable && II->isDroppable())
4773      continue;
4774
4775    return false;
4776  }
4777  return true;
4778}
4779
4780bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4781  return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4782      V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4783}
4784bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4785  return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4786      V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4787}
4788
4789bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4790  if (!LI.isUnordered())
4791    return true;
4792  const Function &F = *LI.getFunction();
4793  // Speculative load may create a race that did not exist in the source.
4794  return F.hasFnAttribute(Attribute::SanitizeThread) ||
4795    // Speculative load may load data from dirty regions.
4796    F.hasFnAttribute(Attribute::SanitizeAddress) ||
4797    F.hasFnAttribute(Attribute::SanitizeHWAddress);
4798}
4799
4800bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
4801                                        const Instruction *CtxI,
4802                                        AssumptionCache *AC,
4803                                        const DominatorTree *DT,
4804                                        const TargetLibraryInfo *TLI) {
4805  return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
4806                                                AC, DT, TLI);
4807}
4808
4809bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
4810    unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
4811    AssumptionCache *AC, const DominatorTree *DT,
4812    const TargetLibraryInfo *TLI) {
4813#ifndef NDEBUG
4814  if (Inst->getOpcode() != Opcode) {
4815    // Check that the operands are actually compatible with the Opcode override.
4816    auto hasEqualReturnAndLeadingOperandTypes =
4817        [](const Instruction *Inst, unsigned NumLeadingOperands) {
4818          if (Inst->getNumOperands() < NumLeadingOperands)
4819            return false;
4820          const Type *ExpectedType = Inst->getType();
4821          for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
4822            if (Inst->getOperand(ItOp)->getType() != ExpectedType)
4823              return false;
4824          return true;
4825        };
4826    assert(!Instruction::isBinaryOp(Opcode) ||
4827           hasEqualReturnAndLeadingOperandTypes(Inst, 2));
4828    assert(!Instruction::isUnaryOp(Opcode) ||
4829           hasEqualReturnAndLeadingOperandTypes(Inst, 1));
4830  }
4831#endif
4832
4833  switch (Opcode) {
4834  default:
4835    return true;
4836  case Instruction::UDiv:
4837  case Instruction::URem: {
4838    // x / y is undefined if y == 0.
4839    const APInt *V;
4840    if (match(Inst->getOperand(1), m_APInt(V)))
4841      return *V != 0;
4842    return false;
4843  }
4844  case Instruction::SDiv:
4845  case Instruction::SRem: {
4846    // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4847    const APInt *Numerator, *Denominator;
4848    if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4849      return false;
4850    // We cannot hoist this division if the denominator is 0.
4851    if (*Denominator == 0)
4852      return false;
4853    // It's safe to hoist if the denominator is not 0 or -1.
4854    if (!Denominator->isAllOnes())
4855      return true;
4856    // At this point we know that the denominator is -1.  It is safe to hoist as
4857    // long we know that the numerator is not INT_MIN.
4858    if (match(Inst->getOperand(0), m_APInt(Numerator)))
4859      return !Numerator->isMinSignedValue();
4860    // The numerator *might* be MinSignedValue.
4861    return false;
4862  }
4863  case Instruction::Load: {
4864    const LoadInst *LI = dyn_cast<LoadInst>(Inst);
4865    if (!LI)
4866      return false;
4867    if (mustSuppressSpeculation(*LI))
4868      return false;
4869    const DataLayout &DL = LI->getModule()->getDataLayout();
4870    return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
4871                                              LI->getType(), LI->getAlign(), DL,
4872                                              CtxI, AC, DT, TLI);
4873  }
4874  case Instruction::Call: {
4875    auto *CI = dyn_cast<const CallInst>(Inst);
4876    if (!CI)
4877      return false;
4878    const Function *Callee = CI->getCalledFunction();
4879
4880    // The called function could have undefined behavior or side-effects, even
4881    // if marked readnone nounwind.
4882    return Callee && Callee->isSpeculatable();
4883  }
4884  case Instruction::VAArg:
4885  case Instruction::Alloca:
4886  case Instruction::Invoke:
4887  case Instruction::CallBr:
4888  case Instruction::PHI:
4889  case Instruction::Store:
4890  case Instruction::Ret:
4891  case Instruction::Br:
4892  case Instruction::IndirectBr:
4893  case Instruction::Switch:
4894  case Instruction::Unreachable:
4895  case Instruction::Fence:
4896  case Instruction::AtomicRMW:
4897  case Instruction::AtomicCmpXchg:
4898  case Instruction::LandingPad:
4899  case Instruction::Resume:
4900  case Instruction::CatchSwitch:
4901  case Instruction::CatchPad:
4902  case Instruction::CatchRet:
4903  case Instruction::CleanupPad:
4904  case Instruction::CleanupRet:
4905    return false; // Misc instructions which have effects
4906  }
4907}
4908
4909bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
4910  if (I.mayReadOrWriteMemory())
4911    // Memory dependency possible
4912    return true;
4913  if (!isSafeToSpeculativelyExecute(&I))
4914    // Can't move above a maythrow call or infinite loop.  Or if an
4915    // inalloca alloca, above a stacksave call.
4916    return true;
4917  if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4918    // 1) Can't reorder two inf-loop calls, even if readonly
4919    // 2) Also can't reorder an inf-loop call below a instruction which isn't
4920    //    safe to speculative execute.  (Inverse of above)
4921    return true;
4922  return false;
4923}
4924
4925/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4926static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4927  switch (OR) {
4928    case ConstantRange::OverflowResult::MayOverflow:
4929      return OverflowResult::MayOverflow;
4930    case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4931      return OverflowResult::AlwaysOverflowsLow;
4932    case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4933      return OverflowResult::AlwaysOverflowsHigh;
4934    case ConstantRange::OverflowResult::NeverOverflows:
4935      return OverflowResult::NeverOverflows;
4936  }
4937  llvm_unreachable("Unknown OverflowResult");
4938}
4939
4940/// Combine constant ranges from computeConstantRange() and computeKnownBits().
4941static ConstantRange computeConstantRangeIncludingKnownBits(
4942    const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4943    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4944    OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4945  KnownBits Known = computeKnownBits(
4946      V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4947  ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4948  ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4949  ConstantRange::PreferredRangeType RangeType =
4950      ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4951  return CR1.intersectWith(CR2, RangeType);
4952}
4953
4954OverflowResult llvm::computeOverflowForUnsignedMul(
4955    const Value *LHS, const Value *RHS, const DataLayout &DL,
4956    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4957    bool UseInstrInfo) {
4958  KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4959                                        nullptr, UseInstrInfo);
4960  KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4961                                        nullptr, UseInstrInfo);
4962  ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4963  ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4964  return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4965}
4966
4967OverflowResult
4968llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4969                                  const DataLayout &DL, AssumptionCache *AC,
4970                                  const Instruction *CxtI,
4971                                  const DominatorTree *DT, bool UseInstrInfo) {
4972  // Multiplying n * m significant bits yields a result of n + m significant
4973  // bits. If the total number of significant bits does not exceed the
4974  // result bit width (minus 1), there is no overflow.
4975  // This means if we have enough leading sign bits in the operands
4976  // we can guarantee that the result does not overflow.
4977  // Ref: "Hacker's Delight" by Henry Warren
4978  unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4979
4980  // Note that underestimating the number of sign bits gives a more
4981  // conservative answer.
4982  unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4983                      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4984
4985  // First handle the easy case: if we have enough sign bits there's
4986  // definitely no overflow.
4987  if (SignBits > BitWidth + 1)
4988    return OverflowResult::NeverOverflows;
4989
4990  // There are two ambiguous cases where there can be no overflow:
4991  //   SignBits == BitWidth + 1    and
4992  //   SignBits == BitWidth
4993  // The second case is difficult to check, therefore we only handle the
4994  // first case.
4995  if (SignBits == BitWidth + 1) {
4996    // It overflows only when both arguments are negative and the true
4997    // product is exactly the minimum negative number.
4998    // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4999    // For simplicity we just check if at least one side is not negative.
5000    KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
5001                                          nullptr, UseInstrInfo);
5002    KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
5003                                          nullptr, UseInstrInfo);
5004    if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
5005      return OverflowResult::NeverOverflows;
5006  }
5007  return OverflowResult::MayOverflow;
5008}
5009
5010OverflowResult llvm::computeOverflowForUnsignedAdd(
5011    const Value *LHS, const Value *RHS, const DataLayout &DL,
5012    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
5013    bool UseInstrInfo) {
5014  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5015      LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
5016      nullptr, UseInstrInfo);
5017  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5018      RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
5019      nullptr, UseInstrInfo);
5020  return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
5021}
5022
5023static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
5024                                                  const Value *RHS,
5025                                                  const AddOperator *Add,
5026                                                  const DataLayout &DL,
5027                                                  AssumptionCache *AC,
5028                                                  const Instruction *CxtI,
5029                                                  const DominatorTree *DT) {
5030  if (Add && Add->hasNoSignedWrap()) {
5031    return OverflowResult::NeverOverflows;
5032  }
5033
5034  // If LHS and RHS each have at least two sign bits, the addition will look
5035  // like
5036  //
5037  // XX..... +
5038  // YY.....
5039  //
5040  // If the carry into the most significant position is 0, X and Y can't both
5041  // be 1 and therefore the carry out of the addition is also 0.
5042  //
5043  // If the carry into the most significant position is 1, X and Y can't both
5044  // be 0 and therefore the carry out of the addition is also 1.
5045  //
5046  // Since the carry into the most significant position is always equal to
5047  // the carry out of the addition, there is no signed overflow.
5048  if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
5049      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
5050    return OverflowResult::NeverOverflows;
5051
5052  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5053      LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5054  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5055      RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5056  OverflowResult OR =
5057      mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
5058  if (OR != OverflowResult::MayOverflow)
5059    return OR;
5060
5061  // The remaining code needs Add to be available. Early returns if not so.
5062  if (!Add)
5063    return OverflowResult::MayOverflow;
5064
5065  // If the sign of Add is the same as at least one of the operands, this add
5066  // CANNOT overflow. If this can be determined from the known bits of the
5067  // operands the above signedAddMayOverflow() check will have already done so.
5068  // The only other way to improve on the known bits is from an assumption, so
5069  // call computeKnownBitsFromAssume() directly.
5070  bool LHSOrRHSKnownNonNegative =
5071      (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
5072  bool LHSOrRHSKnownNegative =
5073      (LHSRange.isAllNegative() || RHSRange.isAllNegative());
5074  if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
5075    KnownBits AddKnown(LHSRange.getBitWidth());
5076    computeKnownBitsFromAssume(
5077        Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
5078    if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
5079        (AddKnown.isNegative() && LHSOrRHSKnownNegative))
5080      return OverflowResult::NeverOverflows;
5081  }
5082
5083  return OverflowResult::MayOverflow;
5084}
5085
5086OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
5087                                                   const Value *RHS,
5088                                                   const DataLayout &DL,
5089                                                   AssumptionCache *AC,
5090                                                   const Instruction *CxtI,
5091                                                   const DominatorTree *DT) {
5092  // X - (X % ?)
5093  // The remainder of a value can't have greater magnitude than itself,
5094  // so the subtraction can't overflow.
5095
5096  // X - (X -nuw ?)
5097  // In the minimal case, this would simplify to "?", so there's no subtract
5098  // at all. But if this analysis is used to peek through casts, for example,
5099  // then determining no-overflow may allow other transforms.
5100
5101  // TODO: There are other patterns like this.
5102  //       See simplifyICmpWithBinOpOnLHS() for candidates.
5103  if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
5104      match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
5105    if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
5106      return OverflowResult::NeverOverflows;
5107
5108  // Checking for conditions implied by dominating conditions may be expensive.
5109  // Limit it to usub_with_overflow calls for now.
5110  if (match(CxtI,
5111            m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
5112    if (auto C =
5113            isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
5114      if (*C)
5115        return OverflowResult::NeverOverflows;
5116      return OverflowResult::AlwaysOverflowsLow;
5117    }
5118  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5119      LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5120  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5121      RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5122  return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
5123}
5124
5125OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
5126                                                 const Value *RHS,
5127                                                 const DataLayout &DL,
5128                                                 AssumptionCache *AC,
5129                                                 const Instruction *CxtI,
5130                                                 const DominatorTree *DT) {
5131  // X - (X % ?)
5132  // The remainder of a value can't have greater magnitude than itself,
5133  // so the subtraction can't overflow.
5134
5135  // X - (X -nsw ?)
5136  // In the minimal case, this would simplify to "?", so there's no subtract
5137  // at all. But if this analysis is used to peek through casts, for example,
5138  // then determining no-overflow may allow other transforms.
5139  if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
5140      match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
5141    if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
5142      return OverflowResult::NeverOverflows;
5143
5144  // If LHS and RHS each have at least two sign bits, the subtraction
5145  // cannot overflow.
5146  if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
5147      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
5148    return OverflowResult::NeverOverflows;
5149
5150  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5151      LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5152  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5153      RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5154  return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
5155}
5156
5157bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
5158                                     const DominatorTree &DT) {
5159  SmallVector<const BranchInst *, 2> GuardingBranches;
5160  SmallVector<const ExtractValueInst *, 2> Results;
5161
5162  for (const User *U : WO->users()) {
5163    if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
5164      assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
5165
5166      if (EVI->getIndices()[0] == 0)
5167        Results.push_back(EVI);
5168      else {
5169        assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
5170
5171        for (const auto *U : EVI->users())
5172          if (const auto *B = dyn_cast<BranchInst>(U)) {
5173            assert(B->isConditional() && "How else is it using an i1?");
5174            GuardingBranches.push_back(B);
5175          }
5176      }
5177    } else {
5178      // We are using the aggregate directly in a way we don't want to analyze
5179      // here (storing it to a global, say).
5180      return false;
5181    }
5182  }
5183
5184  auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
5185    BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
5186    if (!NoWrapEdge.isSingleEdge())
5187      return false;
5188
5189    // Check if all users of the add are provably no-wrap.
5190    for (const auto *Result : Results) {
5191      // If the extractvalue itself is not executed on overflow, the we don't
5192      // need to check each use separately, since domination is transitive.
5193      if (DT.dominates(NoWrapEdge, Result->getParent()))
5194        continue;
5195
5196      for (const auto &RU : Result->uses())
5197        if (!DT.dominates(NoWrapEdge, RU))
5198          return false;
5199    }
5200
5201    return true;
5202  };
5203
5204  return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
5205}
5206
5207/// Shifts return poison if shiftwidth is larger than the bitwidth.
5208static bool shiftAmountKnownInRange(const Value *ShiftAmount) {
5209  auto *C = dyn_cast<Constant>(ShiftAmount);
5210  if (!C)
5211    return false;
5212
5213  // Shifts return poison if shiftwidth is larger than the bitwidth.
5214  SmallVector<const Constant *, 4> ShiftAmounts;
5215  if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
5216    unsigned NumElts = FVTy->getNumElements();
5217    for (unsigned i = 0; i < NumElts; ++i)
5218      ShiftAmounts.push_back(C->getAggregateElement(i));
5219  } else if (isa<ScalableVectorType>(C->getType()))
5220    return false; // Can't tell, just return false to be safe
5221  else
5222    ShiftAmounts.push_back(C);
5223
5224  bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) {
5225    auto *CI = dyn_cast_or_null<ConstantInt>(C);
5226    return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
5227  });
5228
5229  return Safe;
5230}
5231
5232static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
5233                                   bool ConsiderFlagsAndMetadata) {
5234
5235  if (ConsiderFlagsAndMetadata && Op->hasPoisonGeneratingFlagsOrMetadata())
5236    return true;
5237
5238  unsigned Opcode = Op->getOpcode();
5239
5240  // Check whether opcode is a poison/undef-generating operation
5241  switch (Opcode) {
5242  case Instruction::Shl:
5243  case Instruction::AShr:
5244  case Instruction::LShr:
5245    return !shiftAmountKnownInRange(Op->getOperand(1));
5246  case Instruction::FPToSI:
5247  case Instruction::FPToUI:
5248    // fptosi/ui yields poison if the resulting value does not fit in the
5249    // destination type.
5250    return true;
5251  case Instruction::Call:
5252    if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
5253      switch (II->getIntrinsicID()) {
5254      // TODO: Add more intrinsics.
5255      case Intrinsic::ctlz:
5256      case Intrinsic::cttz:
5257      case Intrinsic::abs:
5258        if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue())
5259          return false;
5260        break;
5261      case Intrinsic::ctpop:
5262      case Intrinsic::bswap:
5263      case Intrinsic::bitreverse:
5264      case Intrinsic::fshl:
5265      case Intrinsic::fshr:
5266      case Intrinsic::smax:
5267      case Intrinsic::smin:
5268      case Intrinsic::umax:
5269      case Intrinsic::umin:
5270      case Intrinsic::ptrmask:
5271      case Intrinsic::fptoui_sat:
5272      case Intrinsic::fptosi_sat:
5273      case Intrinsic::sadd_with_overflow:
5274      case Intrinsic::ssub_with_overflow:
5275      case Intrinsic::smul_with_overflow:
5276      case Intrinsic::uadd_with_overflow:
5277      case Intrinsic::usub_with_overflow:
5278      case Intrinsic::umul_with_overflow:
5279      case Intrinsic::sadd_sat:
5280      case Intrinsic::uadd_sat:
5281      case Intrinsic::ssub_sat:
5282      case Intrinsic::usub_sat:
5283        return false;
5284      case Intrinsic::sshl_sat:
5285      case Intrinsic::ushl_sat:
5286        return !shiftAmountKnownInRange(II->getArgOperand(1));
5287      case Intrinsic::fma:
5288      case Intrinsic::fmuladd:
5289      case Intrinsic::sqrt:
5290      case Intrinsic::powi:
5291      case Intrinsic::sin:
5292      case Intrinsic::cos:
5293      case Intrinsic::pow:
5294      case Intrinsic::log:
5295      case Intrinsic::log10:
5296      case Intrinsic::log2:
5297      case Intrinsic::exp:
5298      case Intrinsic::exp2:
5299      case Intrinsic::fabs:
5300      case Intrinsic::copysign:
5301      case Intrinsic::floor:
5302      case Intrinsic::ceil:
5303      case Intrinsic::trunc:
5304      case Intrinsic::rint:
5305      case Intrinsic::nearbyint:
5306      case Intrinsic::round:
5307      case Intrinsic::roundeven:
5308      case Intrinsic::fptrunc_round:
5309      case Intrinsic::canonicalize:
5310      case Intrinsic::arithmetic_fence:
5311      case Intrinsic::minnum:
5312      case Intrinsic::maxnum:
5313      case Intrinsic::minimum:
5314      case Intrinsic::maximum:
5315      case Intrinsic::is_fpclass:
5316        return false;
5317      case Intrinsic::lround:
5318      case Intrinsic::llround:
5319      case Intrinsic::lrint:
5320      case Intrinsic::llrint:
5321        // If the value doesn't fit an unspecified value is returned (but this
5322        // is not poison).
5323        return false;
5324      }
5325    }
5326    [[fallthrough]];
5327  case Instruction::CallBr:
5328  case Instruction::Invoke: {
5329    const auto *CB = cast<CallBase>(Op);
5330    return !CB->hasRetAttr(Attribute::NoUndef);
5331  }
5332  case Instruction::InsertElement:
5333  case Instruction::ExtractElement: {
5334    // If index exceeds the length of the vector, it returns poison
5335    auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
5336    unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
5337    auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
5338    if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
5339      return true;
5340    return false;
5341  }
5342  case Instruction::ShuffleVector: {
5343    // shufflevector may return undef.
5344    if (PoisonOnly)
5345      return false;
5346    ArrayRef<int> Mask = isa<ConstantExpr>(Op)
5347                             ? cast<ConstantExpr>(Op)->getShuffleMask()
5348                             : cast<ShuffleVectorInst>(Op)->getShuffleMask();
5349    return is_contained(Mask, UndefMaskElem);
5350  }
5351  case Instruction::FNeg:
5352  case Instruction::PHI:
5353  case Instruction::Select:
5354  case Instruction::URem:
5355  case Instruction::SRem:
5356  case Instruction::ExtractValue:
5357  case Instruction::InsertValue:
5358  case Instruction::Freeze:
5359  case Instruction::ICmp:
5360  case Instruction::FCmp:
5361  case Instruction::FAdd:
5362  case Instruction::FSub:
5363  case Instruction::FMul:
5364  case Instruction::FDiv:
5365  case Instruction::FRem:
5366    return false;
5367  case Instruction::GetElementPtr:
5368    // inbounds is handled above
5369    // TODO: what about inrange on constexpr?
5370    return false;
5371  default: {
5372    const auto *CE = dyn_cast<ConstantExpr>(Op);
5373    if (isa<CastInst>(Op) || (CE && CE->isCast()))
5374      return false;
5375    else if (Instruction::isBinaryOp(Opcode))
5376      return false;
5377    // Be conservative and return true.
5378    return true;
5379  }
5380  }
5381}
5382
5383bool llvm::canCreateUndefOrPoison(const Operator *Op,
5384                                  bool ConsiderFlagsAndMetadata) {
5385  return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false,
5386                                  ConsiderFlagsAndMetadata);
5387}
5388
5389bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) {
5390  return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true,
5391                                  ConsiderFlagsAndMetadata);
5392}
5393
5394static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5395                                  const Value *V, unsigned Depth) {
5396  if (ValAssumedPoison == V)
5397    return true;
5398
5399  const unsigned MaxDepth = 2;
5400  if (Depth >= MaxDepth)
5401    return false;
5402
5403  if (const auto *I = dyn_cast<Instruction>(V)) {
5404    if (any_of(I->operands(), [=](const Use &Op) {
5405          return propagatesPoison(Op) &&
5406                 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5407        }))
5408      return true;
5409
5410    // V  = extractvalue V0, idx
5411    // V2 = extractvalue V0, idx2
5412    // V0's elements are all poison or not. (e.g., add_with_overflow)
5413    const WithOverflowInst *II;
5414    if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5415        (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5416         llvm::is_contained(II->args(), ValAssumedPoison)))
5417      return true;
5418  }
5419  return false;
5420}
5421
5422static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5423                          unsigned Depth) {
5424  if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5425    return true;
5426
5427  if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5428    return true;
5429
5430  const unsigned MaxDepth = 2;
5431  if (Depth >= MaxDepth)
5432    return false;
5433
5434  const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5435  if (I && !canCreatePoison(cast<Operator>(I))) {
5436    return all_of(I->operands(), [=](const Value *Op) {
5437      return impliesPoison(Op, V, Depth + 1);
5438    });
5439  }
5440  return false;
5441}
5442
5443bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5444  return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5445}
5446
5447static bool programUndefinedIfUndefOrPoison(const Value *V,
5448                                            bool PoisonOnly);
5449
5450static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5451                                             AssumptionCache *AC,
5452                                             const Instruction *CtxI,
5453                                             const DominatorTree *DT,
5454                                             unsigned Depth, bool PoisonOnly) {
5455  if (Depth >= MaxAnalysisRecursionDepth)
5456    return false;
5457
5458  if (isa<MetadataAsValue>(V))
5459    return false;
5460
5461  if (const auto *A = dyn_cast<Argument>(V)) {
5462    if (A->hasAttribute(Attribute::NoUndef))
5463      return true;
5464  }
5465
5466  if (auto *C = dyn_cast<Constant>(V)) {
5467    if (isa<UndefValue>(C))
5468      return PoisonOnly && !isa<PoisonValue>(C);
5469
5470    if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5471        isa<ConstantPointerNull>(C) || isa<Function>(C))
5472      return true;
5473
5474    if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5475      return (PoisonOnly ? !C->containsPoisonElement()
5476                         : !C->containsUndefOrPoisonElement()) &&
5477             !C->containsConstantExpression();
5478  }
5479
5480  // Strip cast operations from a pointer value.
5481  // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5482  // inbounds with zero offset. To guarantee that the result isn't poison, the
5483  // stripped pointer is checked as it has to be pointing into an allocated
5484  // object or be null `null` to ensure `inbounds` getelement pointers with a
5485  // zero offset could not produce poison.
5486  // It can strip off addrspacecast that do not change bit representation as
5487  // well. We believe that such addrspacecast is equivalent to no-op.
5488  auto *StrippedV = V->stripPointerCastsSameRepresentation();
5489  if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5490      isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5491    return true;
5492
5493  auto OpCheck = [&](const Value *V) {
5494    return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5495                                            PoisonOnly);
5496  };
5497
5498  if (auto *Opr = dyn_cast<Operator>(V)) {
5499    // If the value is a freeze instruction, then it can never
5500    // be undef or poison.
5501    if (isa<FreezeInst>(V))
5502      return true;
5503
5504    if (const auto *CB = dyn_cast<CallBase>(V)) {
5505      if (CB->hasRetAttr(Attribute::NoUndef))
5506        return true;
5507    }
5508
5509    if (const auto *PN = dyn_cast<PHINode>(V)) {
5510      unsigned Num = PN->getNumIncomingValues();
5511      bool IsWellDefined = true;
5512      for (unsigned i = 0; i < Num; ++i) {
5513        auto *TI = PN->getIncomingBlock(i)->getTerminator();
5514        if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5515                                              DT, Depth + 1, PoisonOnly)) {
5516          IsWellDefined = false;
5517          break;
5518        }
5519      }
5520      if (IsWellDefined)
5521        return true;
5522    } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5523      return true;
5524  }
5525
5526  if (auto *I = dyn_cast<LoadInst>(V))
5527    if (I->hasMetadata(LLVMContext::MD_noundef) ||
5528        I->hasMetadata(LLVMContext::MD_dereferenceable) ||
5529        I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
5530      return true;
5531
5532  if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5533    return true;
5534
5535  // CxtI may be null or a cloned instruction.
5536  if (!CtxI || !CtxI->getParent() || !DT)
5537    return false;
5538
5539  auto *DNode = DT->getNode(CtxI->getParent());
5540  if (!DNode)
5541    // Unreachable block
5542    return false;
5543
5544  // If V is used as a branch condition before reaching CtxI, V cannot be
5545  // undef or poison.
5546  //   br V, BB1, BB2
5547  // BB1:
5548  //   CtxI ; V cannot be undef or poison here
5549  auto *Dominator = DNode->getIDom();
5550  while (Dominator) {
5551    auto *TI = Dominator->getBlock()->getTerminator();
5552
5553    Value *Cond = nullptr;
5554    if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
5555      if (BI->isConditional())
5556        Cond = BI->getCondition();
5557    } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
5558      Cond = SI->getCondition();
5559    }
5560
5561    if (Cond) {
5562      if (Cond == V)
5563        return true;
5564      else if (PoisonOnly && isa<Operator>(Cond)) {
5565        // For poison, we can analyze further
5566        auto *Opr = cast<Operator>(Cond);
5567        if (any_of(Opr->operands(),
5568                   [V](const Use &U) { return V == U && propagatesPoison(U); }))
5569          return true;
5570      }
5571    }
5572
5573    Dominator = Dominator->getIDom();
5574  }
5575
5576  if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5577    return true;
5578
5579  return false;
5580}
5581
5582bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5583                                            const Instruction *CtxI,
5584                                            const DominatorTree *DT,
5585                                            unsigned Depth) {
5586  return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5587}
5588
5589bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5590                                     const Instruction *CtxI,
5591                                     const DominatorTree *DT, unsigned Depth) {
5592  return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5593}
5594
5595OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5596                                                 const DataLayout &DL,
5597                                                 AssumptionCache *AC,
5598                                                 const Instruction *CxtI,
5599                                                 const DominatorTree *DT) {
5600  return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5601                                       Add, DL, AC, CxtI, DT);
5602}
5603
5604OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5605                                                 const Value *RHS,
5606                                                 const DataLayout &DL,
5607                                                 AssumptionCache *AC,
5608                                                 const Instruction *CxtI,
5609                                                 const DominatorTree *DT) {
5610  return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5611}
5612
5613bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5614  // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5615  // of time because it's possible for another thread to interfere with it for an
5616  // arbitrary length of time, but programs aren't allowed to rely on that.
5617
5618  // If there is no successor, then execution can't transfer to it.
5619  if (isa<ReturnInst>(I))
5620    return false;
5621  if (isa<UnreachableInst>(I))
5622    return false;
5623
5624  // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5625  // Instruction::willReturn.
5626  //
5627  // FIXME: Move this check into Instruction::willReturn.
5628  if (isa<CatchPadInst>(I)) {
5629    switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5630    default:
5631      // A catchpad may invoke exception object constructors and such, which
5632      // in some languages can be arbitrary code, so be conservative by default.
5633      return false;
5634    case EHPersonality::CoreCLR:
5635      // For CoreCLR, it just involves a type test.
5636      return true;
5637    }
5638  }
5639
5640  // An instruction that returns without throwing must transfer control flow
5641  // to a successor.
5642  return !I->mayThrow() && I->willReturn();
5643}
5644
5645bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5646  // TODO: This is slightly conservative for invoke instruction since exiting
5647  // via an exception *is* normal control for them.
5648  for (const Instruction &I : *BB)
5649    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5650      return false;
5651  return true;
5652}
5653
5654bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5655   BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5656   unsigned ScanLimit) {
5657  return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5658                                                    ScanLimit);
5659}
5660
5661bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5662   iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5663  assert(ScanLimit && "scan limit must be non-zero");
5664  for (const Instruction &I : Range) {
5665    if (isa<DbgInfoIntrinsic>(I))
5666        continue;
5667    if (--ScanLimit == 0)
5668      return false;
5669    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5670      return false;
5671  }
5672  return true;
5673}
5674
5675bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5676                                                  const Loop *L) {
5677  // The loop header is guaranteed to be executed for every iteration.
5678  //
5679  // FIXME: Relax this constraint to cover all basic blocks that are
5680  // guaranteed to be executed at every iteration.
5681  if (I->getParent() != L->getHeader()) return false;
5682
5683  for (const Instruction &LI : *L->getHeader()) {
5684    if (&LI == I) return true;
5685    if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5686  }
5687  llvm_unreachable("Instruction not contained in its own parent basic block.");
5688}
5689
5690bool llvm::propagatesPoison(const Use &PoisonOp) {
5691  const Operator *I = cast<Operator>(PoisonOp.getUser());
5692  switch (I->getOpcode()) {
5693  case Instruction::Freeze:
5694  case Instruction::PHI:
5695  case Instruction::Invoke:
5696    return false;
5697  case Instruction::Select:
5698    return PoisonOp.getOperandNo() == 0;
5699  case Instruction::Call:
5700    if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5701      switch (II->getIntrinsicID()) {
5702      // TODO: Add more intrinsics.
5703      case Intrinsic::sadd_with_overflow:
5704      case Intrinsic::ssub_with_overflow:
5705      case Intrinsic::smul_with_overflow:
5706      case Intrinsic::uadd_with_overflow:
5707      case Intrinsic::usub_with_overflow:
5708      case Intrinsic::umul_with_overflow:
5709        // If an input is a vector containing a poison element, the
5710        // two output vectors (calculated results, overflow bits)'
5711        // corresponding lanes are poison.
5712        return true;
5713      case Intrinsic::ctpop:
5714        return true;
5715      }
5716    }
5717    return false;
5718  case Instruction::ICmp:
5719  case Instruction::FCmp:
5720  case Instruction::GetElementPtr:
5721    return true;
5722  default:
5723    if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5724      return true;
5725
5726    // Be conservative and return false.
5727    return false;
5728  }
5729}
5730
5731void llvm::getGuaranteedWellDefinedOps(
5732    const Instruction *I, SmallVectorImpl<const Value *> &Operands) {
5733  switch (I->getOpcode()) {
5734    case Instruction::Store:
5735      Operands.push_back(cast<StoreInst>(I)->getPointerOperand());
5736      break;
5737
5738    case Instruction::Load:
5739      Operands.push_back(cast<LoadInst>(I)->getPointerOperand());
5740      break;
5741
5742    // Since dereferenceable attribute imply noundef, atomic operations
5743    // also implicitly have noundef pointers too
5744    case Instruction::AtomicCmpXchg:
5745      Operands.push_back(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5746      break;
5747
5748    case Instruction::AtomicRMW:
5749      Operands.push_back(cast<AtomicRMWInst>(I)->getPointerOperand());
5750      break;
5751
5752    case Instruction::Call:
5753    case Instruction::Invoke: {
5754      const CallBase *CB = cast<CallBase>(I);
5755      if (CB->isIndirectCall())
5756        Operands.push_back(CB->getCalledOperand());
5757      for (unsigned i = 0; i < CB->arg_size(); ++i) {
5758        if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5759            CB->paramHasAttr(i, Attribute::Dereferenceable))
5760          Operands.push_back(CB->getArgOperand(i));
5761      }
5762      break;
5763    }
5764    case Instruction::Ret:
5765      if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5766        Operands.push_back(I->getOperand(0));
5767      break;
5768    case Instruction::Switch:
5769      Operands.push_back(cast<SwitchInst>(I)->getCondition());
5770      break;
5771    case Instruction::Br: {
5772      auto *BR = cast<BranchInst>(I);
5773      if (BR->isConditional())
5774        Operands.push_back(BR->getCondition());
5775      break;
5776    }
5777    default:
5778      break;
5779  }
5780}
5781
5782void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5783                                     SmallVectorImpl<const Value *> &Operands) {
5784  getGuaranteedWellDefinedOps(I, Operands);
5785  switch (I->getOpcode()) {
5786  // Divisors of these operations are allowed to be partially undef.
5787  case Instruction::UDiv:
5788  case Instruction::SDiv:
5789  case Instruction::URem:
5790  case Instruction::SRem:
5791    Operands.push_back(I->getOperand(1));
5792    break;
5793  default:
5794    break;
5795  }
5796}
5797
5798bool llvm::mustTriggerUB(const Instruction *I,
5799                         const SmallSet<const Value *, 16>& KnownPoison) {
5800  SmallVector<const Value *, 4> NonPoisonOps;
5801  getGuaranteedNonPoisonOps(I, NonPoisonOps);
5802
5803  for (const auto *V : NonPoisonOps)
5804    if (KnownPoison.count(V))
5805      return true;
5806
5807  return false;
5808}
5809
5810static bool programUndefinedIfUndefOrPoison(const Value *V,
5811                                            bool PoisonOnly) {
5812  // We currently only look for uses of values within the same basic
5813  // block, as that makes it easier to guarantee that the uses will be
5814  // executed given that Inst is executed.
5815  //
5816  // FIXME: Expand this to consider uses beyond the same basic block. To do
5817  // this, look out for the distinction between post-dominance and strong
5818  // post-dominance.
5819  const BasicBlock *BB = nullptr;
5820  BasicBlock::const_iterator Begin;
5821  if (const auto *Inst = dyn_cast<Instruction>(V)) {
5822    BB = Inst->getParent();
5823    Begin = Inst->getIterator();
5824    Begin++;
5825  } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5826    BB = &Arg->getParent()->getEntryBlock();
5827    Begin = BB->begin();
5828  } else {
5829    return false;
5830  }
5831
5832  // Limit number of instructions we look at, to avoid scanning through large
5833  // blocks. The current limit is chosen arbitrarily.
5834  unsigned ScanLimit = 32;
5835  BasicBlock::const_iterator End = BB->end();
5836
5837  if (!PoisonOnly) {
5838    // Since undef does not propagate eagerly, be conservative & just check
5839    // whether a value is directly passed to an instruction that must take
5840    // well-defined operands.
5841
5842    for (const auto &I : make_range(Begin, End)) {
5843      if (isa<DbgInfoIntrinsic>(I))
5844        continue;
5845      if (--ScanLimit == 0)
5846        break;
5847
5848      SmallVector<const Value *, 4> WellDefinedOps;
5849      getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5850      if (is_contained(WellDefinedOps, V))
5851        return true;
5852
5853      if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5854        break;
5855    }
5856    return false;
5857  }
5858
5859  // Set of instructions that we have proved will yield poison if Inst
5860  // does.
5861  SmallSet<const Value *, 16> YieldsPoison;
5862  SmallSet<const BasicBlock *, 4> Visited;
5863
5864  YieldsPoison.insert(V);
5865  Visited.insert(BB);
5866
5867  while (true) {
5868    for (const auto &I : make_range(Begin, End)) {
5869      if (isa<DbgInfoIntrinsic>(I))
5870        continue;
5871      if (--ScanLimit == 0)
5872        return false;
5873      if (mustTriggerUB(&I, YieldsPoison))
5874        return true;
5875      if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5876        return false;
5877
5878      // If an operand is poison and propagates it, mark I as yielding poison.
5879      for (const Use &Op : I.operands()) {
5880        if (YieldsPoison.count(Op) && propagatesPoison(Op)) {
5881          YieldsPoison.insert(&I);
5882          break;
5883        }
5884      }
5885    }
5886
5887    BB = BB->getSingleSuccessor();
5888    if (!BB || !Visited.insert(BB).second)
5889      break;
5890
5891    Begin = BB->getFirstNonPHI()->getIterator();
5892    End = BB->end();
5893  }
5894  return false;
5895}
5896
5897bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5898  return ::programUndefinedIfUndefOrPoison(Inst, false);
5899}
5900
5901bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5902  return ::programUndefinedIfUndefOrPoison(Inst, true);
5903}
5904
5905static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5906  if (FMF.noNaNs())
5907    return true;
5908
5909  if (auto *C = dyn_cast<ConstantFP>(V))
5910    return !C->isNaN();
5911
5912  if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5913    if (!C->getElementType()->isFloatingPointTy())
5914      return false;
5915    for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5916      if (C->getElementAsAPFloat(I).isNaN())
5917        return false;
5918    }
5919    return true;
5920  }
5921
5922  if (isa<ConstantAggregateZero>(V))
5923    return true;
5924
5925  return false;
5926}
5927
5928static bool isKnownNonZero(const Value *V) {
5929  if (auto *C = dyn_cast<ConstantFP>(V))
5930    return !C->isZero();
5931
5932  if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5933    if (!C->getElementType()->isFloatingPointTy())
5934      return false;
5935    for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5936      if (C->getElementAsAPFloat(I).isZero())
5937        return false;
5938    }
5939    return true;
5940  }
5941
5942  return false;
5943}
5944
5945/// Match clamp pattern for float types without care about NaNs or signed zeros.
5946/// Given non-min/max outer cmp/select from the clamp pattern this
5947/// function recognizes if it can be substitued by a "canonical" min/max
5948/// pattern.
5949static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5950                                               Value *CmpLHS, Value *CmpRHS,
5951                                               Value *TrueVal, Value *FalseVal,
5952                                               Value *&LHS, Value *&RHS) {
5953  // Try to match
5954  //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5955  //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5956  // and return description of the outer Max/Min.
5957
5958  // First, check if select has inverse order:
5959  if (CmpRHS == FalseVal) {
5960    std::swap(TrueVal, FalseVal);
5961    Pred = CmpInst::getInversePredicate(Pred);
5962  }
5963
5964  // Assume success now. If there's no match, callers should not use these anyway.
5965  LHS = TrueVal;
5966  RHS = FalseVal;
5967
5968  const APFloat *FC1;
5969  if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5970    return {SPF_UNKNOWN, SPNB_NA, false};
5971
5972  const APFloat *FC2;
5973  switch (Pred) {
5974  case CmpInst::FCMP_OLT:
5975  case CmpInst::FCMP_OLE:
5976  case CmpInst::FCMP_ULT:
5977  case CmpInst::FCMP_ULE:
5978    if (match(FalseVal,
5979              m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5980                          m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5981        *FC1 < *FC2)
5982      return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5983    break;
5984  case CmpInst::FCMP_OGT:
5985  case CmpInst::FCMP_OGE:
5986  case CmpInst::FCMP_UGT:
5987  case CmpInst::FCMP_UGE:
5988    if (match(FalseVal,
5989              m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5990                          m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5991        *FC1 > *FC2)
5992      return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5993    break;
5994  default:
5995    break;
5996  }
5997
5998  return {SPF_UNKNOWN, SPNB_NA, false};
5999}
6000
6001/// Recognize variations of:
6002///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
6003static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
6004                                      Value *CmpLHS, Value *CmpRHS,
6005                                      Value *TrueVal, Value *FalseVal) {
6006  // Swap the select operands and predicate to match the patterns below.
6007  if (CmpRHS != TrueVal) {
6008    Pred = ICmpInst::getSwappedPredicate(Pred);
6009    std::swap(TrueVal, FalseVal);
6010  }
6011  const APInt *C1;
6012  if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
6013    const APInt *C2;
6014    // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
6015    if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
6016        C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
6017      return {SPF_SMAX, SPNB_NA, false};
6018
6019    // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
6020    if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
6021        C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
6022      return {SPF_SMIN, SPNB_NA, false};
6023
6024    // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
6025    if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
6026        C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
6027      return {SPF_UMAX, SPNB_NA, false};
6028
6029    // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
6030    if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
6031        C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
6032      return {SPF_UMIN, SPNB_NA, false};
6033  }
6034  return {SPF_UNKNOWN, SPNB_NA, false};
6035}
6036
6037/// Recognize variations of:
6038///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
6039static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
6040                                               Value *CmpLHS, Value *CmpRHS,
6041                                               Value *TVal, Value *FVal,
6042                                               unsigned Depth) {
6043  // TODO: Allow FP min/max with nnan/nsz.
6044  assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
6045
6046  Value *A = nullptr, *B = nullptr;
6047  SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
6048  if (!SelectPatternResult::isMinOrMax(L.Flavor))
6049    return {SPF_UNKNOWN, SPNB_NA, false};
6050
6051  Value *C = nullptr, *D = nullptr;
6052  SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
6053  if (L.Flavor != R.Flavor)
6054    return {SPF_UNKNOWN, SPNB_NA, false};
6055
6056  // We have something like: x Pred y ? min(a, b) : min(c, d).
6057  // Try to match the compare to the min/max operations of the select operands.
6058  // First, make sure we have the right compare predicate.
6059  switch (L.Flavor) {
6060  case SPF_SMIN:
6061    if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
6062      Pred = ICmpInst::getSwappedPredicate(Pred);
6063      std::swap(CmpLHS, CmpRHS);
6064    }
6065    if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
6066      break;
6067    return {SPF_UNKNOWN, SPNB_NA, false};
6068  case SPF_SMAX:
6069    if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
6070      Pred = ICmpInst::getSwappedPredicate(Pred);
6071      std::swap(CmpLHS, CmpRHS);
6072    }
6073    if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
6074      break;
6075    return {SPF_UNKNOWN, SPNB_NA, false};
6076  case SPF_UMIN:
6077    if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
6078      Pred = ICmpInst::getSwappedPredicate(Pred);
6079      std::swap(CmpLHS, CmpRHS);
6080    }
6081    if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
6082      break;
6083    return {SPF_UNKNOWN, SPNB_NA, false};
6084  case SPF_UMAX:
6085    if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
6086      Pred = ICmpInst::getSwappedPredicate(Pred);
6087      std::swap(CmpLHS, CmpRHS);
6088    }
6089    if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
6090      break;
6091    return {SPF_UNKNOWN, SPNB_NA, false};
6092  default:
6093    return {SPF_UNKNOWN, SPNB_NA, false};
6094  }
6095
6096  // If there is a common operand in the already matched min/max and the other
6097  // min/max operands match the compare operands (either directly or inverted),
6098  // then this is min/max of the same flavor.
6099
6100  // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
6101  // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
6102  if (D == B) {
6103    if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
6104                                         match(A, m_Not(m_Specific(CmpRHS)))))
6105      return {L.Flavor, SPNB_NA, false};
6106  }
6107  // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
6108  // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
6109  if (C == B) {
6110    if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
6111                                         match(A, m_Not(m_Specific(CmpRHS)))))
6112      return {L.Flavor, SPNB_NA, false};
6113  }
6114  // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
6115  // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
6116  if (D == A) {
6117    if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
6118                                         match(B, m_Not(m_Specific(CmpRHS)))))
6119      return {L.Flavor, SPNB_NA, false};
6120  }
6121  // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
6122  // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
6123  if (C == A) {
6124    if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
6125                                         match(B, m_Not(m_Specific(CmpRHS)))))
6126      return {L.Flavor, SPNB_NA, false};
6127  }
6128
6129  return {SPF_UNKNOWN, SPNB_NA, false};
6130}
6131
6132/// If the input value is the result of a 'not' op, constant integer, or vector
6133/// splat of a constant integer, return the bitwise-not source value.
6134/// TODO: This could be extended to handle non-splat vector integer constants.
6135static Value *getNotValue(Value *V) {
6136  Value *NotV;
6137  if (match(V, m_Not(m_Value(NotV))))
6138    return NotV;
6139
6140  const APInt *C;
6141  if (match(V, m_APInt(C)))
6142    return ConstantInt::get(V->getType(), ~(*C));
6143
6144  return nullptr;
6145}
6146
6147/// Match non-obvious integer minimum and maximum sequences.
6148static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
6149                                       Value *CmpLHS, Value *CmpRHS,
6150                                       Value *TrueVal, Value *FalseVal,
6151                                       Value *&LHS, Value *&RHS,
6152                                       unsigned Depth) {
6153  // Assume success. If there's no match, callers should not use these anyway.
6154  LHS = TrueVal;
6155  RHS = FalseVal;
6156
6157  SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
6158  if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
6159    return SPR;
6160
6161  SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
6162  if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
6163    return SPR;
6164
6165  // Look through 'not' ops to find disguised min/max.
6166  // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
6167  // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
6168  if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
6169    switch (Pred) {
6170    case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
6171    case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
6172    case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
6173    case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
6174    default: break;
6175    }
6176  }
6177
6178  // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
6179  // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
6180  if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
6181    switch (Pred) {
6182    case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
6183    case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
6184    case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
6185    case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
6186    default: break;
6187    }
6188  }
6189
6190  if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
6191    return {SPF_UNKNOWN, SPNB_NA, false};
6192
6193  const APInt *C1;
6194  if (!match(CmpRHS, m_APInt(C1)))
6195    return {SPF_UNKNOWN, SPNB_NA, false};
6196
6197  // An unsigned min/max can be written with a signed compare.
6198  const APInt *C2;
6199  if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
6200      (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
6201    // Is the sign bit set?
6202    // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
6203    // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
6204    if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
6205      return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6206
6207    // Is the sign bit clear?
6208    // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
6209    // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
6210    if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
6211      return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6212  }
6213
6214  return {SPF_UNKNOWN, SPNB_NA, false};
6215}
6216
6217bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
6218  assert(X && Y && "Invalid operand");
6219
6220  // X = sub (0, Y) || X = sub nsw (0, Y)
6221  if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
6222      (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
6223    return true;
6224
6225  // Y = sub (0, X) || Y = sub nsw (0, X)
6226  if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
6227      (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
6228    return true;
6229
6230  // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
6231  Value *A, *B;
6232  return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
6233                        match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
6234         (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
6235                       match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
6236}
6237
6238static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
6239                                              FastMathFlags FMF,
6240                                              Value *CmpLHS, Value *CmpRHS,
6241                                              Value *TrueVal, Value *FalseVal,
6242                                              Value *&LHS, Value *&RHS,
6243                                              unsigned Depth) {
6244  bool HasMismatchedZeros = false;
6245  if (CmpInst::isFPPredicate(Pred)) {
6246    // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
6247    // 0.0 operand, set the compare's 0.0 operands to that same value for the
6248    // purpose of identifying min/max. Disregard vector constants with undefined
6249    // elements because those can not be back-propagated for analysis.
6250    Value *OutputZeroVal = nullptr;
6251    if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
6252        !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
6253      OutputZeroVal = TrueVal;
6254    else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
6255             !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
6256      OutputZeroVal = FalseVal;
6257
6258    if (OutputZeroVal) {
6259      if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
6260        HasMismatchedZeros = true;
6261        CmpLHS = OutputZeroVal;
6262      }
6263      if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
6264        HasMismatchedZeros = true;
6265        CmpRHS = OutputZeroVal;
6266      }
6267    }
6268  }
6269
6270  LHS = CmpLHS;
6271  RHS = CmpRHS;
6272
6273  // Signed zero may return inconsistent results between implementations.
6274  //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
6275  //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
6276  // Therefore, we behave conservatively and only proceed if at least one of the
6277  // operands is known to not be zero or if we don't care about signed zero.
6278  switch (Pred) {
6279  default: break;
6280  case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT:
6281  case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT:
6282    if (!HasMismatchedZeros)
6283      break;
6284    [[fallthrough]];
6285  case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
6286  case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
6287    if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6288        !isKnownNonZero(CmpRHS))
6289      return {SPF_UNKNOWN, SPNB_NA, false};
6290  }
6291
6292  SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
6293  bool Ordered = false;
6294
6295  // When given one NaN and one non-NaN input:
6296  //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
6297  //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
6298  //     ordered comparison fails), which could be NaN or non-NaN.
6299  // so here we discover exactly what NaN behavior is required/accepted.
6300  if (CmpInst::isFPPredicate(Pred)) {
6301    bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
6302    bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
6303
6304    if (LHSSafe && RHSSafe) {
6305      // Both operands are known non-NaN.
6306      NaNBehavior = SPNB_RETURNS_ANY;
6307    } else if (CmpInst::isOrdered(Pred)) {
6308      // An ordered comparison will return false when given a NaN, so it
6309      // returns the RHS.
6310      Ordered = true;
6311      if (LHSSafe)
6312        // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
6313        NaNBehavior = SPNB_RETURNS_NAN;
6314      else if (RHSSafe)
6315        NaNBehavior = SPNB_RETURNS_OTHER;
6316      else
6317        // Completely unsafe.
6318        return {SPF_UNKNOWN, SPNB_NA, false};
6319    } else {
6320      Ordered = false;
6321      // An unordered comparison will return true when given a NaN, so it
6322      // returns the LHS.
6323      if (LHSSafe)
6324        // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
6325        NaNBehavior = SPNB_RETURNS_OTHER;
6326      else if (RHSSafe)
6327        NaNBehavior = SPNB_RETURNS_NAN;
6328      else
6329        // Completely unsafe.
6330        return {SPF_UNKNOWN, SPNB_NA, false};
6331    }
6332  }
6333
6334  if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6335    std::swap(CmpLHS, CmpRHS);
6336    Pred = CmpInst::getSwappedPredicate(Pred);
6337    if (NaNBehavior == SPNB_RETURNS_NAN)
6338      NaNBehavior = SPNB_RETURNS_OTHER;
6339    else if (NaNBehavior == SPNB_RETURNS_OTHER)
6340      NaNBehavior = SPNB_RETURNS_NAN;
6341    Ordered = !Ordered;
6342  }
6343
6344  // ([if]cmp X, Y) ? X : Y
6345  if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
6346    switch (Pred) {
6347    default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
6348    case ICmpInst::ICMP_UGT:
6349    case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
6350    case ICmpInst::ICMP_SGT:
6351    case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
6352    case ICmpInst::ICMP_ULT:
6353    case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
6354    case ICmpInst::ICMP_SLT:
6355    case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
6356    case FCmpInst::FCMP_UGT:
6357    case FCmpInst::FCMP_UGE:
6358    case FCmpInst::FCMP_OGT:
6359    case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
6360    case FCmpInst::FCMP_ULT:
6361    case FCmpInst::FCMP_ULE:
6362    case FCmpInst::FCMP_OLT:
6363    case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
6364    }
6365  }
6366
6367  if (isKnownNegation(TrueVal, FalseVal)) {
6368    // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
6369    // match against either LHS or sext(LHS).
6370    auto MaybeSExtCmpLHS =
6371        m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
6372    auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
6373    auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
6374    if (match(TrueVal, MaybeSExtCmpLHS)) {
6375      // Set the return values. If the compare uses the negated value (-X >s 0),
6376      // swap the return values because the negated value is always 'RHS'.
6377      LHS = TrueVal;
6378      RHS = FalseVal;
6379      if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6380        std::swap(LHS, RHS);
6381
6382      // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6383      // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6384      if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6385        return {SPF_ABS, SPNB_NA, false};
6386
6387      // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6388      if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6389        return {SPF_ABS, SPNB_NA, false};
6390
6391      // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6392      // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6393      if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6394        return {SPF_NABS, SPNB_NA, false};
6395    }
6396    else if (match(FalseVal, MaybeSExtCmpLHS)) {
6397      // Set the return values. If the compare uses the negated value (-X >s 0),
6398      // swap the return values because the negated value is always 'RHS'.
6399      LHS = FalseVal;
6400      RHS = TrueVal;
6401      if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6402        std::swap(LHS, RHS);
6403
6404      // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6405      // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6406      if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6407        return {SPF_NABS, SPNB_NA, false};
6408
6409      // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6410      // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6411      if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6412        return {SPF_ABS, SPNB_NA, false};
6413    }
6414  }
6415
6416  if (CmpInst::isIntPredicate(Pred))
6417    return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6418
6419  // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6420  // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6421  // semantics than minNum. Be conservative in such case.
6422  if (NaNBehavior != SPNB_RETURNS_ANY ||
6423      (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6424       !isKnownNonZero(CmpRHS)))
6425    return {SPF_UNKNOWN, SPNB_NA, false};
6426
6427  return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6428}
6429
6430/// Helps to match a select pattern in case of a type mismatch.
6431///
6432/// The function processes the case when type of true and false values of a
6433/// select instruction differs from type of the cmp instruction operands because
6434/// of a cast instruction. The function checks if it is legal to move the cast
6435/// operation after "select". If yes, it returns the new second value of
6436/// "select" (with the assumption that cast is moved):
6437/// 1. As operand of cast instruction when both values of "select" are same cast
6438/// instructions.
6439/// 2. As restored constant (by applying reverse cast operation) when the first
6440/// value of the "select" is a cast operation and the second value is a
6441/// constant.
6442/// NOTE: We return only the new second value because the first value could be
6443/// accessed as operand of cast instruction.
6444static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6445                              Instruction::CastOps *CastOp) {
6446  auto *Cast1 = dyn_cast<CastInst>(V1);
6447  if (!Cast1)
6448    return nullptr;
6449
6450  *CastOp = Cast1->getOpcode();
6451  Type *SrcTy = Cast1->getSrcTy();
6452  if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6453    // If V1 and V2 are both the same cast from the same type, look through V1.
6454    if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6455      return Cast2->getOperand(0);
6456    return nullptr;
6457  }
6458
6459  auto *C = dyn_cast<Constant>(V2);
6460  if (!C)
6461    return nullptr;
6462
6463  Constant *CastedTo = nullptr;
6464  switch (*CastOp) {
6465  case Instruction::ZExt:
6466    if (CmpI->isUnsigned())
6467      CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6468    break;
6469  case Instruction::SExt:
6470    if (CmpI->isSigned())
6471      CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6472    break;
6473  case Instruction::Trunc:
6474    Constant *CmpConst;
6475    if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6476        CmpConst->getType() == SrcTy) {
6477      // Here we have the following case:
6478      //
6479      //   %cond = cmp iN %x, CmpConst
6480      //   %tr = trunc iN %x to iK
6481      //   %narrowsel = select i1 %cond, iK %t, iK C
6482      //
6483      // We can always move trunc after select operation:
6484      //
6485      //   %cond = cmp iN %x, CmpConst
6486      //   %widesel = select i1 %cond, iN %x, iN CmpConst
6487      //   %tr = trunc iN %widesel to iK
6488      //
6489      // Note that C could be extended in any way because we don't care about
6490      // upper bits after truncation. It can't be abs pattern, because it would
6491      // look like:
6492      //
6493      //   select i1 %cond, x, -x.
6494      //
6495      // So only min/max pattern could be matched. Such match requires widened C
6496      // == CmpConst. That is why set widened C = CmpConst, condition trunc
6497      // CmpConst == C is checked below.
6498      CastedTo = CmpConst;
6499    } else {
6500      CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6501    }
6502    break;
6503  case Instruction::FPTrunc:
6504    CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6505    break;
6506  case Instruction::FPExt:
6507    CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6508    break;
6509  case Instruction::FPToUI:
6510    CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6511    break;
6512  case Instruction::FPToSI:
6513    CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6514    break;
6515  case Instruction::UIToFP:
6516    CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6517    break;
6518  case Instruction::SIToFP:
6519    CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6520    break;
6521  default:
6522    break;
6523  }
6524
6525  if (!CastedTo)
6526    return nullptr;
6527
6528  // Make sure the cast doesn't lose any information.
6529  Constant *CastedBack =
6530      ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6531  if (CastedBack != C)
6532    return nullptr;
6533
6534  return CastedTo;
6535}
6536
6537SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6538                                             Instruction::CastOps *CastOp,
6539                                             unsigned Depth) {
6540  if (Depth >= MaxAnalysisRecursionDepth)
6541    return {SPF_UNKNOWN, SPNB_NA, false};
6542
6543  SelectInst *SI = dyn_cast<SelectInst>(V);
6544  if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6545
6546  CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6547  if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6548
6549  Value *TrueVal = SI->getTrueValue();
6550  Value *FalseVal = SI->getFalseValue();
6551
6552  return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6553                                            CastOp, Depth);
6554}
6555
6556SelectPatternResult llvm::matchDecomposedSelectPattern(
6557    CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6558    Instruction::CastOps *CastOp, unsigned Depth) {
6559  CmpInst::Predicate Pred = CmpI->getPredicate();
6560  Value *CmpLHS = CmpI->getOperand(0);
6561  Value *CmpRHS = CmpI->getOperand(1);
6562  FastMathFlags FMF;
6563  if (isa<FPMathOperator>(CmpI))
6564    FMF = CmpI->getFastMathFlags();
6565
6566  // Bail out early.
6567  if (CmpI->isEquality())
6568    return {SPF_UNKNOWN, SPNB_NA, false};
6569
6570  // Deal with type mismatches.
6571  if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6572    if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6573      // If this is a potential fmin/fmax with a cast to integer, then ignore
6574      // -0.0 because there is no corresponding integer value.
6575      if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6576        FMF.setNoSignedZeros();
6577      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6578                                  cast<CastInst>(TrueVal)->getOperand(0), C,
6579                                  LHS, RHS, Depth);
6580    }
6581    if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6582      // If this is a potential fmin/fmax with a cast to integer, then ignore
6583      // -0.0 because there is no corresponding integer value.
6584      if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6585        FMF.setNoSignedZeros();
6586      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6587                                  C, cast<CastInst>(FalseVal)->getOperand(0),
6588                                  LHS, RHS, Depth);
6589    }
6590  }
6591  return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6592                              LHS, RHS, Depth);
6593}
6594
6595CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6596  if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6597  if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6598  if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6599  if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6600  if (SPF == SPF_FMINNUM)
6601    return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6602  if (SPF == SPF_FMAXNUM)
6603    return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6604  llvm_unreachable("unhandled!");
6605}
6606
6607SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6608  if (SPF == SPF_SMIN) return SPF_SMAX;
6609  if (SPF == SPF_UMIN) return SPF_UMAX;
6610  if (SPF == SPF_SMAX) return SPF_SMIN;
6611  if (SPF == SPF_UMAX) return SPF_UMIN;
6612  llvm_unreachable("unhandled!");
6613}
6614
6615Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6616  switch (MinMaxID) {
6617  case Intrinsic::smax: return Intrinsic::smin;
6618  case Intrinsic::smin: return Intrinsic::smax;
6619  case Intrinsic::umax: return Intrinsic::umin;
6620  case Intrinsic::umin: return Intrinsic::umax;
6621  default: llvm_unreachable("Unexpected intrinsic");
6622  }
6623}
6624
6625APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6626  switch (SPF) {
6627  case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6628  case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6629  case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6630  case SPF_UMIN: return APInt::getMinValue(BitWidth);
6631  default: llvm_unreachable("Unexpected flavor");
6632  }
6633}
6634
6635std::pair<Intrinsic::ID, bool>
6636llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6637  // Check if VL contains select instructions that can be folded into a min/max
6638  // vector intrinsic and return the intrinsic if it is possible.
6639  // TODO: Support floating point min/max.
6640  bool AllCmpSingleUse = true;
6641  SelectPatternResult SelectPattern;
6642  SelectPattern.Flavor = SPF_UNKNOWN;
6643  if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6644        Value *LHS, *RHS;
6645        auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6646        if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6647            CurrentPattern.Flavor == SPF_FMINNUM ||
6648            CurrentPattern.Flavor == SPF_FMAXNUM ||
6649            !I->getType()->isIntOrIntVectorTy())
6650          return false;
6651        if (SelectPattern.Flavor != SPF_UNKNOWN &&
6652            SelectPattern.Flavor != CurrentPattern.Flavor)
6653          return false;
6654        SelectPattern = CurrentPattern;
6655        AllCmpSingleUse &=
6656            match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6657        return true;
6658      })) {
6659    switch (SelectPattern.Flavor) {
6660    case SPF_SMIN:
6661      return {Intrinsic::smin, AllCmpSingleUse};
6662    case SPF_UMIN:
6663      return {Intrinsic::umin, AllCmpSingleUse};
6664    case SPF_SMAX:
6665      return {Intrinsic::smax, AllCmpSingleUse};
6666    case SPF_UMAX:
6667      return {Intrinsic::umax, AllCmpSingleUse};
6668    default:
6669      llvm_unreachable("unexpected select pattern flavor");
6670    }
6671  }
6672  return {Intrinsic::not_intrinsic, false};
6673}
6674
6675bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6676                                 Value *&Start, Value *&Step) {
6677  // Handle the case of a simple two-predecessor recurrence PHI.
6678  // There's a lot more that could theoretically be done here, but
6679  // this is sufficient to catch some interesting cases.
6680  if (P->getNumIncomingValues() != 2)
6681    return false;
6682
6683  for (unsigned i = 0; i != 2; ++i) {
6684    Value *L = P->getIncomingValue(i);
6685    Value *R = P->getIncomingValue(!i);
6686    Operator *LU = dyn_cast<Operator>(L);
6687    if (!LU)
6688      continue;
6689    unsigned Opcode = LU->getOpcode();
6690
6691    switch (Opcode) {
6692    default:
6693      continue;
6694    // TODO: Expand list -- xor, div, gep, uaddo, etc..
6695    case Instruction::LShr:
6696    case Instruction::AShr:
6697    case Instruction::Shl:
6698    case Instruction::Add:
6699    case Instruction::Sub:
6700    case Instruction::And:
6701    case Instruction::Or:
6702    case Instruction::Mul:
6703    case Instruction::FMul: {
6704      Value *LL = LU->getOperand(0);
6705      Value *LR = LU->getOperand(1);
6706      // Find a recurrence.
6707      if (LL == P)
6708        L = LR;
6709      else if (LR == P)
6710        L = LL;
6711      else
6712        continue; // Check for recurrence with L and R flipped.
6713
6714      break; // Match!
6715    }
6716    };
6717
6718    // We have matched a recurrence of the form:
6719    //   %iv = [R, %entry], [%iv.next, %backedge]
6720    //   %iv.next = binop %iv, L
6721    // OR
6722    //   %iv = [R, %entry], [%iv.next, %backedge]
6723    //   %iv.next = binop L, %iv
6724    BO = cast<BinaryOperator>(LU);
6725    Start = R;
6726    Step = L;
6727    return true;
6728  }
6729  return false;
6730}
6731
6732bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6733                                 Value *&Start, Value *&Step) {
6734  BinaryOperator *BO = nullptr;
6735  P = dyn_cast<PHINode>(I->getOperand(0));
6736  if (!P)
6737    P = dyn_cast<PHINode>(I->getOperand(1));
6738  return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6739}
6740
6741/// Return true if "icmp Pred LHS RHS" is always true.
6742static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6743                            const Value *RHS, const DataLayout &DL,
6744                            unsigned Depth) {
6745  if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6746    return true;
6747
6748  switch (Pred) {
6749  default:
6750    return false;
6751
6752  case CmpInst::ICMP_SLE: {
6753    const APInt *C;
6754
6755    // LHS s<= LHS +_{nsw} C   if C >= 0
6756    if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6757      return !C->isNegative();
6758    return false;
6759  }
6760
6761  case CmpInst::ICMP_ULE: {
6762    const APInt *C;
6763
6764    // LHS u<= LHS +_{nuw} C   for any C
6765    if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6766      return true;
6767
6768    // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6769    auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6770                                       const Value *&X,
6771                                       const APInt *&CA, const APInt *&CB) {
6772      if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6773          match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6774        return true;
6775
6776      // If X & C == 0 then (X | C) == X +_{nuw} C
6777      if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6778          match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6779        KnownBits Known(CA->getBitWidth());
6780        computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6781                         /*CxtI*/ nullptr, /*DT*/ nullptr);
6782        if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6783          return true;
6784      }
6785
6786      return false;
6787    };
6788
6789    const Value *X;
6790    const APInt *CLHS, *CRHS;
6791    if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6792      return CLHS->ule(*CRHS);
6793
6794    return false;
6795  }
6796  }
6797}
6798
6799/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6800/// ALHS ARHS" is true.  Otherwise, return std::nullopt.
6801static std::optional<bool>
6802isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6803                      const Value *ARHS, const Value *BLHS, const Value *BRHS,
6804                      const DataLayout &DL, unsigned Depth) {
6805  switch (Pred) {
6806  default:
6807    return std::nullopt;
6808
6809  case CmpInst::ICMP_SLT:
6810  case CmpInst::ICMP_SLE:
6811    if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6812        isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6813      return true;
6814    return std::nullopt;
6815
6816  case CmpInst::ICMP_ULT:
6817  case CmpInst::ICMP_ULE:
6818    if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6819        isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6820      return true;
6821    return std::nullopt;
6822  }
6823}
6824
6825/// Return true if the operands of two compares (expanded as "L0 pred L1" and
6826/// "R0 pred R1") match. IsSwappedOps is true when the operands match, but are
6827/// swapped.
6828static bool areMatchingOperands(const Value *L0, const Value *L1, const Value *R0,
6829                           const Value *R1, bool &AreSwappedOps) {
6830  bool AreMatchingOps = (L0 == R0 && L1 == R1);
6831  AreSwappedOps = (L0 == R1 && L1 == R0);
6832  return AreMatchingOps || AreSwappedOps;
6833}
6834
6835/// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true.
6836/// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false.
6837/// Otherwise, return std::nullopt if we can't infer anything.
6838static std::optional<bool>
6839isImpliedCondMatchingOperands(CmpInst::Predicate LPred,
6840                              CmpInst::Predicate RPred, bool AreSwappedOps) {
6841  // Canonicalize the predicate as if the operands were not commuted.
6842  if (AreSwappedOps)
6843    RPred = ICmpInst::getSwappedPredicate(RPred);
6844
6845  if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred))
6846    return true;
6847  if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred))
6848    return false;
6849
6850  return std::nullopt;
6851}
6852
6853/// Return true if "icmp LPred X, LC" implies "icmp RPred X, RC" is true.
6854/// Return false if "icmp LPred X, LC" implies "icmp RPred X, RC" is false.
6855/// Otherwise, return std::nullopt if we can't infer anything.
6856static std::optional<bool> isImpliedCondCommonOperandWithConstants(
6857    CmpInst::Predicate LPred, const APInt &LC, CmpInst::Predicate RPred,
6858    const APInt &RC) {
6859  ConstantRange DomCR = ConstantRange::makeExactICmpRegion(LPred, LC);
6860  ConstantRange CR = ConstantRange::makeExactICmpRegion(RPred, RC);
6861  ConstantRange Intersection = DomCR.intersectWith(CR);
6862  ConstantRange Difference = DomCR.difference(CR);
6863  if (Intersection.isEmptySet())
6864    return false;
6865  if (Difference.isEmptySet())
6866    return true;
6867  return std::nullopt;
6868}
6869
6870/// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
6871/// is true.  Return false if LHS implies RHS is false. Otherwise, return
6872/// std::nullopt if we can't infer anything.
6873static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6874                                              CmpInst::Predicate RPred,
6875                                              const Value *R0, const Value *R1,
6876                                              const DataLayout &DL,
6877                                              bool LHSIsTrue, unsigned Depth) {
6878  Value *L0 = LHS->getOperand(0);
6879  Value *L1 = LHS->getOperand(1);
6880
6881  // The rest of the logic assumes the LHS condition is true.  If that's not the
6882  // case, invert the predicate to make it so.
6883  CmpInst::Predicate LPred =
6884      LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6885
6886  // Can we infer anything when the two compares have matching operands?
6887  bool AreSwappedOps;
6888  if (areMatchingOperands(L0, L1, R0, R1, AreSwappedOps))
6889    return isImpliedCondMatchingOperands(LPred, RPred, AreSwappedOps);
6890
6891  // Can we infer anything when the 0-operands match and the 1-operands are
6892  // constants (not necessarily matching)?
6893  const APInt *LC, *RC;
6894  if (L0 == R0 && match(L1, m_APInt(LC)) && match(R1, m_APInt(RC)))
6895    return isImpliedCondCommonOperandWithConstants(LPred, *LC, RPred, *RC);
6896
6897  if (LPred == RPred)
6898    return isImpliedCondOperands(LPred, L0, L1, R0, R1, DL, Depth);
6899
6900  return std::nullopt;
6901}
6902
6903/// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6904/// false.  Otherwise, return std::nullopt if we can't infer anything.  We
6905/// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
6906/// instruction.
6907static std::optional<bool>
6908isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6909                   const Value *RHSOp0, const Value *RHSOp1,
6910                   const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6911  // The LHS must be an 'or', 'and', or a 'select' instruction.
6912  assert((LHS->getOpcode() == Instruction::And ||
6913          LHS->getOpcode() == Instruction::Or ||
6914          LHS->getOpcode() == Instruction::Select) &&
6915         "Expected LHS to be 'and', 'or', or 'select'.");
6916
6917  assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6918
6919  // If the result of an 'or' is false, then we know both legs of the 'or' are
6920  // false.  Similarly, if the result of an 'and' is true, then we know both
6921  // legs of the 'and' are true.
6922  const Value *ALHS, *ARHS;
6923  if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6924      (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6925    // FIXME: Make this non-recursion.
6926    if (std::optional<bool> Implication = isImpliedCondition(
6927            ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6928      return Implication;
6929    if (std::optional<bool> Implication = isImpliedCondition(
6930            ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6931      return Implication;
6932    return std::nullopt;
6933  }
6934  return std::nullopt;
6935}
6936
6937std::optional<bool>
6938llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6939                         const Value *RHSOp0, const Value *RHSOp1,
6940                         const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6941  // Bail out when we hit the limit.
6942  if (Depth == MaxAnalysisRecursionDepth)
6943    return std::nullopt;
6944
6945  // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6946  // example.
6947  if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6948    return std::nullopt;
6949
6950  assert(LHS->getType()->isIntOrIntVectorTy(1) &&
6951         "Expected integer type only!");
6952
6953  // Both LHS and RHS are icmps.
6954  const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6955  if (LHSCmp)
6956    return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6957                              Depth);
6958
6959  /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6960  /// the RHS to be an icmp.
6961  /// FIXME: Add support for and/or/select on the RHS.
6962  if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6963    if ((LHSI->getOpcode() == Instruction::And ||
6964         LHSI->getOpcode() == Instruction::Or ||
6965         LHSI->getOpcode() == Instruction::Select))
6966      return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6967                                Depth);
6968  }
6969  return std::nullopt;
6970}
6971
6972std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6973                                             const DataLayout &DL,
6974                                             bool LHSIsTrue, unsigned Depth) {
6975  // LHS ==> RHS by definition
6976  if (LHS == RHS)
6977    return LHSIsTrue;
6978
6979  if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
6980    return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6981                              RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6982                              LHSIsTrue, Depth);
6983
6984  if (Depth == MaxAnalysisRecursionDepth)
6985    return std::nullopt;
6986
6987  // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
6988  // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
6989  const Value *RHS1, *RHS2;
6990  if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
6991    if (std::optional<bool> Imp =
6992            isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6993      if (*Imp == true)
6994        return true;
6995    if (std::optional<bool> Imp =
6996            isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6997      if (*Imp == true)
6998        return true;
6999  }
7000  if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
7001    if (std::optional<bool> Imp =
7002            isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
7003      if (*Imp == false)
7004        return false;
7005    if (std::optional<bool> Imp =
7006            isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
7007      if (*Imp == false)
7008        return false;
7009  }
7010
7011  return std::nullopt;
7012}
7013
7014// Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
7015// condition dominating ContextI or nullptr, if no condition is found.
7016static std::pair<Value *, bool>
7017getDomPredecessorCondition(const Instruction *ContextI) {
7018  if (!ContextI || !ContextI->getParent())
7019    return {nullptr, false};
7020
7021  // TODO: This is a poor/cheap way to determine dominance. Should we use a
7022  // dominator tree (eg, from a SimplifyQuery) instead?
7023  const BasicBlock *ContextBB = ContextI->getParent();
7024  const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
7025  if (!PredBB)
7026    return {nullptr, false};
7027
7028  // We need a conditional branch in the predecessor.
7029  Value *PredCond;
7030  BasicBlock *TrueBB, *FalseBB;
7031  if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
7032    return {nullptr, false};
7033
7034  // The branch should get simplified. Don't bother simplifying this condition.
7035  if (TrueBB == FalseBB)
7036    return {nullptr, false};
7037
7038  assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
7039         "Predecessor block does not point to successor?");
7040
7041  // Is this condition implied by the predecessor condition?
7042  return {PredCond, TrueBB == ContextBB};
7043}
7044
7045std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
7046                                                  const Instruction *ContextI,
7047                                                  const DataLayout &DL) {
7048  assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
7049  auto PredCond = getDomPredecessorCondition(ContextI);
7050  if (PredCond.first)
7051    return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
7052  return std::nullopt;
7053}
7054
7055std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
7056                                                  const Value *LHS,
7057                                                  const Value *RHS,
7058                                                  const Instruction *ContextI,
7059                                                  const DataLayout &DL) {
7060  auto PredCond = getDomPredecessorCondition(ContextI);
7061  if (PredCond.first)
7062    return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
7063                              PredCond.second);
7064  return std::nullopt;
7065}
7066
7067static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
7068                              APInt &Upper, const InstrInfoQuery &IIQ,
7069                              bool PreferSignedRange) {
7070  unsigned Width = Lower.getBitWidth();
7071  const APInt *C;
7072  switch (BO.getOpcode()) {
7073  case Instruction::Add:
7074    if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
7075      bool HasNSW = IIQ.hasNoSignedWrap(&BO);
7076      bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
7077
7078      // If the caller expects a signed compare, then try to use a signed range.
7079      // Otherwise if both no-wraps are set, use the unsigned range because it
7080      // is never larger than the signed range. Example:
7081      // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
7082      if (PreferSignedRange && HasNSW && HasNUW)
7083        HasNUW = false;
7084
7085      if (HasNUW) {
7086        // 'add nuw x, C' produces [C, UINT_MAX].
7087        Lower = *C;
7088      } else if (HasNSW) {
7089        if (C->isNegative()) {
7090          // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
7091          Lower = APInt::getSignedMinValue(Width);
7092          Upper = APInt::getSignedMaxValue(Width) + *C + 1;
7093        } else {
7094          // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
7095          Lower = APInt::getSignedMinValue(Width) + *C;
7096          Upper = APInt::getSignedMaxValue(Width) + 1;
7097        }
7098      }
7099    }
7100    break;
7101
7102  case Instruction::And:
7103    if (match(BO.getOperand(1), m_APInt(C)))
7104      // 'and x, C' produces [0, C].
7105      Upper = *C + 1;
7106    break;
7107
7108  case Instruction::Or:
7109    if (match(BO.getOperand(1), m_APInt(C)))
7110      // 'or x, C' produces [C, UINT_MAX].
7111      Lower = *C;
7112    break;
7113
7114  case Instruction::AShr:
7115    if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
7116      // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
7117      Lower = APInt::getSignedMinValue(Width).ashr(*C);
7118      Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
7119    } else if (match(BO.getOperand(0), m_APInt(C))) {
7120      unsigned ShiftAmount = Width - 1;
7121      if (!C->isZero() && IIQ.isExact(&BO))
7122        ShiftAmount = C->countTrailingZeros();
7123      if (C->isNegative()) {
7124        // 'ashr C, x' produces [C, C >> (Width-1)]
7125        Lower = *C;
7126        Upper = C->ashr(ShiftAmount) + 1;
7127      } else {
7128        // 'ashr C, x' produces [C >> (Width-1), C]
7129        Lower = C->ashr(ShiftAmount);
7130        Upper = *C + 1;
7131      }
7132    }
7133    break;
7134
7135  case Instruction::LShr:
7136    if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
7137      // 'lshr x, C' produces [0, UINT_MAX >> C].
7138      Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
7139    } else if (match(BO.getOperand(0), m_APInt(C))) {
7140      // 'lshr C, x' produces [C >> (Width-1), C].
7141      unsigned ShiftAmount = Width - 1;
7142      if (!C->isZero() && IIQ.isExact(&BO))
7143        ShiftAmount = C->countTrailingZeros();
7144      Lower = C->lshr(ShiftAmount);
7145      Upper = *C + 1;
7146    }
7147    break;
7148
7149  case Instruction::Shl:
7150    if (match(BO.getOperand(0), m_APInt(C))) {
7151      if (IIQ.hasNoUnsignedWrap(&BO)) {
7152        // 'shl nuw C, x' produces [C, C << CLZ(C)]
7153        Lower = *C;
7154        Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
7155      } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
7156        if (C->isNegative()) {
7157          // 'shl nsw C, x' produces [C << CLO(C)-1, C]
7158          unsigned ShiftAmount = C->countLeadingOnes() - 1;
7159          Lower = C->shl(ShiftAmount);
7160          Upper = *C + 1;
7161        } else {
7162          // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
7163          unsigned ShiftAmount = C->countLeadingZeros() - 1;
7164          Lower = *C;
7165          Upper = C->shl(ShiftAmount) + 1;
7166        }
7167      }
7168    }
7169    break;
7170
7171  case Instruction::SDiv:
7172    if (match(BO.getOperand(1), m_APInt(C))) {
7173      APInt IntMin = APInt::getSignedMinValue(Width);
7174      APInt IntMax = APInt::getSignedMaxValue(Width);
7175      if (C->isAllOnes()) {
7176        // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
7177        //    where C != -1 and C != 0 and C != 1
7178        Lower = IntMin + 1;
7179        Upper = IntMax + 1;
7180      } else if (C->countLeadingZeros() < Width - 1) {
7181        // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
7182        //    where C != -1 and C != 0 and C != 1
7183        Lower = IntMin.sdiv(*C);
7184        Upper = IntMax.sdiv(*C);
7185        if (Lower.sgt(Upper))
7186          std::swap(Lower, Upper);
7187        Upper = Upper + 1;
7188        assert(Upper != Lower && "Upper part of range has wrapped!");
7189      }
7190    } else if (match(BO.getOperand(0), m_APInt(C))) {
7191      if (C->isMinSignedValue()) {
7192        // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
7193        Lower = *C;
7194        Upper = Lower.lshr(1) + 1;
7195      } else {
7196        // 'sdiv C, x' produces [-|C|, |C|].
7197        Upper = C->abs() + 1;
7198        Lower = (-Upper) + 1;
7199      }
7200    }
7201    break;
7202
7203  case Instruction::UDiv:
7204    if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
7205      // 'udiv x, C' produces [0, UINT_MAX / C].
7206      Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
7207    } else if (match(BO.getOperand(0), m_APInt(C))) {
7208      // 'udiv C, x' produces [0, C].
7209      Upper = *C + 1;
7210    }
7211    break;
7212
7213  case Instruction::SRem:
7214    if (match(BO.getOperand(1), m_APInt(C))) {
7215      // 'srem x, C' produces (-|C|, |C|).
7216      Upper = C->abs();
7217      Lower = (-Upper) + 1;
7218    }
7219    break;
7220
7221  case Instruction::URem:
7222    if (match(BO.getOperand(1), m_APInt(C)))
7223      // 'urem x, C' produces [0, C).
7224      Upper = *C;
7225    break;
7226
7227  default:
7228    break;
7229  }
7230}
7231
7232static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
7233                                  APInt &Upper) {
7234  unsigned Width = Lower.getBitWidth();
7235  const APInt *C;
7236  switch (II.getIntrinsicID()) {
7237  case Intrinsic::ctpop:
7238  case Intrinsic::ctlz:
7239  case Intrinsic::cttz:
7240    // Maximum of set/clear bits is the bit width.
7241    assert(Lower == 0 && "Expected lower bound to be zero");
7242    Upper = Width + 1;
7243    break;
7244  case Intrinsic::uadd_sat:
7245    // uadd.sat(x, C) produces [C, UINT_MAX].
7246    if (match(II.getOperand(0), m_APInt(C)) ||
7247        match(II.getOperand(1), m_APInt(C)))
7248      Lower = *C;
7249    break;
7250  case Intrinsic::sadd_sat:
7251    if (match(II.getOperand(0), m_APInt(C)) ||
7252        match(II.getOperand(1), m_APInt(C))) {
7253      if (C->isNegative()) {
7254        // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
7255        Lower = APInt::getSignedMinValue(Width);
7256        Upper = APInt::getSignedMaxValue(Width) + *C + 1;
7257      } else {
7258        // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
7259        Lower = APInt::getSignedMinValue(Width) + *C;
7260        Upper = APInt::getSignedMaxValue(Width) + 1;
7261      }
7262    }
7263    break;
7264  case Intrinsic::usub_sat:
7265    // usub.sat(C, x) produces [0, C].
7266    if (match(II.getOperand(0), m_APInt(C)))
7267      Upper = *C + 1;
7268    // usub.sat(x, C) produces [0, UINT_MAX - C].
7269    else if (match(II.getOperand(1), m_APInt(C)))
7270      Upper = APInt::getMaxValue(Width) - *C + 1;
7271    break;
7272  case Intrinsic::ssub_sat:
7273    if (match(II.getOperand(0), m_APInt(C))) {
7274      if (C->isNegative()) {
7275        // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
7276        Lower = APInt::getSignedMinValue(Width);
7277        Upper = *C - APInt::getSignedMinValue(Width) + 1;
7278      } else {
7279        // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
7280        Lower = *C - APInt::getSignedMaxValue(Width);
7281        Upper = APInt::getSignedMaxValue(Width) + 1;
7282      }
7283    } else if (match(II.getOperand(1), m_APInt(C))) {
7284      if (C->isNegative()) {
7285        // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
7286        Lower = APInt::getSignedMinValue(Width) - *C;
7287        Upper = APInt::getSignedMaxValue(Width) + 1;
7288      } else {
7289        // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
7290        Lower = APInt::getSignedMinValue(Width);
7291        Upper = APInt::getSignedMaxValue(Width) - *C + 1;
7292      }
7293    }
7294    break;
7295  case Intrinsic::umin:
7296  case Intrinsic::umax:
7297  case Intrinsic::smin:
7298  case Intrinsic::smax:
7299    if (!match(II.getOperand(0), m_APInt(C)) &&
7300        !match(II.getOperand(1), m_APInt(C)))
7301      break;
7302
7303    switch (II.getIntrinsicID()) {
7304    case Intrinsic::umin:
7305      Upper = *C + 1;
7306      break;
7307    case Intrinsic::umax:
7308      Lower = *C;
7309      break;
7310    case Intrinsic::smin:
7311      Lower = APInt::getSignedMinValue(Width);
7312      Upper = *C + 1;
7313      break;
7314    case Intrinsic::smax:
7315      Lower = *C;
7316      Upper = APInt::getSignedMaxValue(Width) + 1;
7317      break;
7318    default:
7319      llvm_unreachable("Must be min/max intrinsic");
7320    }
7321    break;
7322  case Intrinsic::abs:
7323    // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
7324    // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7325    if (match(II.getOperand(1), m_One()))
7326      Upper = APInt::getSignedMaxValue(Width) + 1;
7327    else
7328      Upper = APInt::getSignedMinValue(Width) + 1;
7329    break;
7330  default:
7331    break;
7332  }
7333}
7334
7335static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
7336                                      APInt &Upper, const InstrInfoQuery &IIQ) {
7337  const Value *LHS = nullptr, *RHS = nullptr;
7338  SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
7339  if (R.Flavor == SPF_UNKNOWN)
7340    return;
7341
7342  unsigned BitWidth = SI.getType()->getScalarSizeInBits();
7343
7344  if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
7345    // If the negation part of the abs (in RHS) has the NSW flag,
7346    // then the result of abs(X) is [0..SIGNED_MAX],
7347    // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7348    Lower = APInt::getZero(BitWidth);
7349    if (match(RHS, m_Neg(m_Specific(LHS))) &&
7350        IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
7351      Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7352    else
7353      Upper = APInt::getSignedMinValue(BitWidth) + 1;
7354    return;
7355  }
7356
7357  if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
7358    // The result of -abs(X) is <= 0.
7359    Lower = APInt::getSignedMinValue(BitWidth);
7360    Upper = APInt(BitWidth, 1);
7361    return;
7362  }
7363
7364  const APInt *C;
7365  if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
7366    return;
7367
7368  switch (R.Flavor) {
7369    case SPF_UMIN:
7370      Upper = *C + 1;
7371      break;
7372    case SPF_UMAX:
7373      Lower = *C;
7374      break;
7375    case SPF_SMIN:
7376      Lower = APInt::getSignedMinValue(BitWidth);
7377      Upper = *C + 1;
7378      break;
7379    case SPF_SMAX:
7380      Lower = *C;
7381      Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7382      break;
7383    default:
7384      break;
7385  }
7386}
7387
7388static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
7389  // The maximum representable value of a half is 65504. For floats the maximum
7390  // value is 3.4e38 which requires roughly 129 bits.
7391  unsigned BitWidth = I->getType()->getScalarSizeInBits();
7392  if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
7393    return;
7394  if (isa<FPToSIInst>(I) && BitWidth >= 17) {
7395    Lower = APInt(BitWidth, -65504);
7396    Upper = APInt(BitWidth, 65505);
7397  }
7398
7399  if (isa<FPToUIInst>(I) && BitWidth >= 16) {
7400    // For a fptoui the lower limit is left as 0.
7401    Upper = APInt(BitWidth, 65505);
7402  }
7403}
7404
7405ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
7406                                         bool UseInstrInfo, AssumptionCache *AC,
7407                                         const Instruction *CtxI,
7408                                         const DominatorTree *DT,
7409                                         unsigned Depth) {
7410  assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
7411
7412  if (Depth == MaxAnalysisRecursionDepth)
7413    return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7414
7415  const APInt *C;
7416  if (match(V, m_APInt(C)))
7417    return ConstantRange(*C);
7418
7419  InstrInfoQuery IIQ(UseInstrInfo);
7420  unsigned BitWidth = V->getType()->getScalarSizeInBits();
7421  APInt Lower = APInt(BitWidth, 0);
7422  APInt Upper = APInt(BitWidth, 0);
7423  if (auto *BO = dyn_cast<BinaryOperator>(V))
7424    setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
7425  else if (auto *II = dyn_cast<IntrinsicInst>(V))
7426    setLimitsForIntrinsic(*II, Lower, Upper);
7427  else if (auto *SI = dyn_cast<SelectInst>(V))
7428    setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7429  else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7430    setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7431
7432  ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7433
7434  if (auto *I = dyn_cast<Instruction>(V))
7435    if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7436      CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7437
7438  if (CtxI && AC) {
7439    // Try to restrict the range based on information from assumptions.
7440    for (auto &AssumeVH : AC->assumptionsFor(V)) {
7441      if (!AssumeVH)
7442        continue;
7443      IntrinsicInst *I = cast<IntrinsicInst>(AssumeVH);
7444      assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7445             "Got assumption for the wrong function!");
7446
7447      if (!isValidAssumeForContext(I, CtxI, DT))
7448        continue;
7449      Value *Arg = I->getArgOperand(0);
7450      ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7451      // Currently we just use information from comparisons.
7452      if (!Cmp || Cmp->getOperand(0) != V)
7453        continue;
7454      // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7455      ConstantRange RHS =
7456          computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7457                               UseInstrInfo, AC, I, DT, Depth + 1);
7458      CR = CR.intersectWith(
7459          ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7460    }
7461  }
7462
7463  return CR;
7464}
7465
7466static std::optional<int64_t>
7467getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7468  // Skip over the first indices.
7469  gep_type_iterator GTI = gep_type_begin(GEP);
7470  for (unsigned i = 1; i != Idx; ++i, ++GTI)
7471    /*skip along*/;
7472
7473  // Compute the offset implied by the rest of the indices.
7474  int64_t Offset = 0;
7475  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7476    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7477    if (!OpC)
7478      return std::nullopt;
7479    if (OpC->isZero())
7480      continue; // No offset.
7481
7482    // Handle struct indices, which add their field offset to the pointer.
7483    if (StructType *STy = GTI.getStructTypeOrNull()) {
7484      Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7485      continue;
7486    }
7487
7488    // Otherwise, we have a sequential type like an array or fixed-length
7489    // vector. Multiply the index by the ElementSize.
7490    TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7491    if (Size.isScalable())
7492      return std::nullopt;
7493    Offset += Size.getFixedValue() * OpC->getSExtValue();
7494  }
7495
7496  return Offset;
7497}
7498
7499std::optional<int64_t> llvm::isPointerOffset(const Value *Ptr1,
7500                                             const Value *Ptr2,
7501                                             const DataLayout &DL) {
7502  APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
7503  APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
7504  Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
7505  Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
7506
7507  // Handle the trivial case first.
7508  if (Ptr1 == Ptr2)
7509    return Offset2.getSExtValue() - Offset1.getSExtValue();
7510
7511  const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7512  const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7513
7514  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7515  // base.  After that base, they may have some number of common (and
7516  // potentially variable) indices.  After that they handle some constant
7517  // offset, which determines their offset from each other.  At this point, we
7518  // handle no other case.
7519  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
7520      GEP1->getSourceElementType() != GEP2->getSourceElementType())
7521    return std::nullopt;
7522
7523  // Skip any common indices and track the GEP types.
7524  unsigned Idx = 1;
7525  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7526    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7527      break;
7528
7529  auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
7530  auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
7531  if (!IOffset1 || !IOffset2)
7532    return std::nullopt;
7533  return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
7534         Offset1.getSExtValue();
7535}
7536