1//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Analysis/LazyCallGraph.h"
10
11#include "llvm/ADT/ArrayRef.h"
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/ADT/Sequence.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Analysis/TargetLibraryInfo.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Function.h"
20#include "llvm/IR/GlobalVariable.h"
21#include "llvm/IR/InstIterator.h"
22#include "llvm/IR/Instruction.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/PassManager.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/GraphWriter.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31
32#ifdef EXPENSIVE_CHECKS
33#include "llvm/ADT/ScopeExit.h"
34#endif
35
36using namespace llvm;
37
38#define DEBUG_TYPE "lcg"
39
40void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
41                                                     Edge::Kind EK) {
42  EdgeIndexMap.try_emplace(&TargetN, Edges.size());
43  Edges.emplace_back(TargetN, EK);
44}
45
46void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
47  Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
48}
49
50bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
51  auto IndexMapI = EdgeIndexMap.find(&TargetN);
52  if (IndexMapI == EdgeIndexMap.end())
53    return false;
54
55  Edges[IndexMapI->second] = Edge();
56  EdgeIndexMap.erase(IndexMapI);
57  return true;
58}
59
60static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
61                    DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
62                    LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
63  if (!EdgeIndexMap.try_emplace(&N, Edges.size()).second)
64    return;
65
66  LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
67  Edges.emplace_back(LazyCallGraph::Edge(N, EK));
68}
69
70LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
71  assert(!Edges && "Must not have already populated the edges for this node!");
72
73  LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
74                    << "' to the graph.\n");
75
76  Edges = EdgeSequence();
77
78  SmallVector<Constant *, 16> Worklist;
79  SmallPtrSet<Function *, 4> Callees;
80  SmallPtrSet<Constant *, 16> Visited;
81
82  // Find all the potential call graph edges in this function. We track both
83  // actual call edges and indirect references to functions. The direct calls
84  // are trivially added, but to accumulate the latter we walk the instructions
85  // and add every operand which is a constant to the worklist to process
86  // afterward.
87  //
88  // Note that we consider *any* function with a definition to be a viable
89  // edge. Even if the function's definition is subject to replacement by
90  // some other module (say, a weak definition) there may still be
91  // optimizations which essentially speculate based on the definition and
92  // a way to check that the specific definition is in fact the one being
93  // used. For example, this could be done by moving the weak definition to
94  // a strong (internal) definition and making the weak definition be an
95  // alias. Then a test of the address of the weak function against the new
96  // strong definition's address would be an effective way to determine the
97  // safety of optimizing a direct call edge.
98  for (BasicBlock &BB : *F)
99    for (Instruction &I : BB) {
100      if (auto *CB = dyn_cast<CallBase>(&I))
101        if (Function *Callee = CB->getCalledFunction())
102          if (!Callee->isDeclaration())
103            if (Callees.insert(Callee).second) {
104              Visited.insert(Callee);
105              addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
106                      LazyCallGraph::Edge::Call);
107            }
108
109      for (Value *Op : I.operand_values())
110        if (Constant *C = dyn_cast<Constant>(Op))
111          if (Visited.insert(C).second)
112            Worklist.push_back(C);
113    }
114
115  // We've collected all the constant (and thus potentially function or
116  // function containing) operands to all the instructions in the function.
117  // Process them (recursively) collecting every function found.
118  visitReferences(Worklist, Visited, [&](Function &F) {
119    addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
120            LazyCallGraph::Edge::Ref);
121  });
122
123  // Add implicit reference edges to any defined libcall functions (if we
124  // haven't found an explicit edge).
125  for (auto *F : G->LibFunctions)
126    if (!Visited.count(F))
127      addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
128              LazyCallGraph::Edge::Ref);
129
130  return *Edges;
131}
132
133void LazyCallGraph::Node::replaceFunction(Function &NewF) {
134  assert(F != &NewF && "Must not replace a function with itself!");
135  F = &NewF;
136}
137
138#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
140  dbgs() << *this << '\n';
141}
142#endif
143
144static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
145  LibFunc LF;
146
147  // Either this is a normal library function or a "vectorizable"
148  // function.  Not using the VFDatabase here because this query
149  // is related only to libraries handled via the TLI.
150  return TLI.getLibFunc(F, LF) ||
151         TLI.isKnownVectorFunctionInLibrary(F.getName());
152}
153
154LazyCallGraph::LazyCallGraph(
155    Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
156  LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
157                    << "\n");
158  for (Function &F : M) {
159    if (F.isDeclaration())
160      continue;
161    // If this function is a known lib function to LLVM then we want to
162    // synthesize reference edges to it to model the fact that LLVM can turn
163    // arbitrary code into a library function call.
164    if (isKnownLibFunction(F, GetTLI(F)))
165      LibFunctions.insert(&F);
166
167    if (F.hasLocalLinkage())
168      continue;
169
170    // External linkage defined functions have edges to them from other
171    // modules.
172    LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
173                      << "' to entry set of the graph.\n");
174    addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
175  }
176
177  // Externally visible aliases of internal functions are also viable entry
178  // edges to the module.
179  for (auto &A : M.aliases()) {
180    if (A.hasLocalLinkage())
181      continue;
182    if (Function* F = dyn_cast<Function>(A.getAliasee())) {
183      LLVM_DEBUG(dbgs() << "  Adding '" << F->getName()
184                        << "' with alias '" << A.getName()
185                        << "' to entry set of the graph.\n");
186      addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
187    }
188  }
189
190  // Now add entry nodes for functions reachable via initializers to globals.
191  SmallVector<Constant *, 16> Worklist;
192  SmallPtrSet<Constant *, 16> Visited;
193  for (GlobalVariable &GV : M.globals())
194    if (GV.hasInitializer())
195      if (Visited.insert(GV.getInitializer()).second)
196        Worklist.push_back(GV.getInitializer());
197
198  LLVM_DEBUG(
199      dbgs() << "  Adding functions referenced by global initializers to the "
200                "entry set.\n");
201  visitReferences(Worklist, Visited, [&](Function &F) {
202    addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
203            LazyCallGraph::Edge::Ref);
204  });
205}
206
207LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
208    : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
209      EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
210      SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) {
211  updateGraphPtrs();
212}
213
214bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
215                               ModuleAnalysisManager::Invalidator &) {
216  // Check whether the analysis, all analyses on functions, or the function's
217  // CFG have been preserved.
218  auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
219  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
220}
221
222LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
223  BPA = std::move(G.BPA);
224  NodeMap = std::move(G.NodeMap);
225  EntryEdges = std::move(G.EntryEdges);
226  SCCBPA = std::move(G.SCCBPA);
227  SCCMap = std::move(G.SCCMap);
228  LibFunctions = std::move(G.LibFunctions);
229  updateGraphPtrs();
230  return *this;
231}
232
233#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
234LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
235  dbgs() << *this << '\n';
236}
237#endif
238
239#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
240void LazyCallGraph::SCC::verify() {
241  assert(OuterRefSCC && "Can't have a null RefSCC!");
242  assert(!Nodes.empty() && "Can't have an empty SCC!");
243
244  for (Node *N : Nodes) {
245    assert(N && "Can't have a null node!");
246    assert(OuterRefSCC->G->lookupSCC(*N) == this &&
247           "Node does not map to this SCC!");
248    assert(N->DFSNumber == -1 &&
249           "Must set DFS numbers to -1 when adding a node to an SCC!");
250    assert(N->LowLink == -1 &&
251           "Must set low link to -1 when adding a node to an SCC!");
252    for (Edge &E : **N)
253      assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
254
255#ifdef EXPENSIVE_CHECKS
256    // Verify that all nodes in this SCC can reach all other nodes.
257    SmallVector<Node *, 4> Worklist;
258    SmallPtrSet<Node *, 4> Visited;
259    Worklist.push_back(N);
260    while (!Worklist.empty()) {
261      Node *VisitingNode = Worklist.pop_back_val();
262      if (!Visited.insert(VisitingNode).second)
263        continue;
264      for (Edge &E : (*VisitingNode)->calls())
265        Worklist.push_back(&E.getNode());
266    }
267    for (Node *NodeToVisit : Nodes) {
268      assert(Visited.contains(NodeToVisit) &&
269             "Cannot reach all nodes within SCC");
270    }
271#endif
272  }
273}
274#endif
275
276bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
277  if (this == &C)
278    return false;
279
280  for (Node &N : *this)
281    for (Edge &E : N->calls())
282      if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
283        return true;
284
285  // No edges found.
286  return false;
287}
288
289bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
290  if (this == &TargetC)
291    return false;
292
293  LazyCallGraph &G = *OuterRefSCC->G;
294
295  // Start with this SCC.
296  SmallPtrSet<const SCC *, 16> Visited = {this};
297  SmallVector<const SCC *, 16> Worklist = {this};
298
299  // Walk down the graph until we run out of edges or find a path to TargetC.
300  do {
301    const SCC &C = *Worklist.pop_back_val();
302    for (Node &N : C)
303      for (Edge &E : N->calls()) {
304        SCC *CalleeC = G.lookupSCC(E.getNode());
305        if (!CalleeC)
306          continue;
307
308        // If the callee's SCC is the TargetC, we're done.
309        if (CalleeC == &TargetC)
310          return true;
311
312        // If this is the first time we've reached this SCC, put it on the
313        // worklist to recurse through.
314        if (Visited.insert(CalleeC).second)
315          Worklist.push_back(CalleeC);
316      }
317  } while (!Worklist.empty());
318
319  // No paths found.
320  return false;
321}
322
323LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
324
325#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
326LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
327  dbgs() << *this << '\n';
328}
329#endif
330
331#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
332void LazyCallGraph::RefSCC::verify() {
333  assert(G && "Can't have a null graph!");
334  assert(!SCCs.empty() && "Can't have an empty SCC!");
335
336  // Verify basic properties of the SCCs.
337  SmallPtrSet<SCC *, 4> SCCSet;
338  for (SCC *C : SCCs) {
339    assert(C && "Can't have a null SCC!");
340    C->verify();
341    assert(&C->getOuterRefSCC() == this &&
342           "SCC doesn't think it is inside this RefSCC!");
343    bool Inserted = SCCSet.insert(C).second;
344    assert(Inserted && "Found a duplicate SCC!");
345    auto IndexIt = SCCIndices.find(C);
346    assert(IndexIt != SCCIndices.end() &&
347           "Found an SCC that doesn't have an index!");
348  }
349
350  // Check that our indices map correctly.
351  for (auto [C, I] : SCCIndices) {
352    assert(C && "Can't have a null SCC in the indices!");
353    assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
354    assert(SCCs[I] == C && "Index doesn't point to SCC!");
355  }
356
357  // Check that the SCCs are in fact in post-order.
358  for (int I = 0, Size = SCCs.size(); I < Size; ++I) {
359    SCC &SourceSCC = *SCCs[I];
360    for (Node &N : SourceSCC)
361      for (Edge &E : *N) {
362        if (!E.isCall())
363          continue;
364        SCC &TargetSCC = *G->lookupSCC(E.getNode());
365        if (&TargetSCC.getOuterRefSCC() == this) {
366          assert(SCCIndices.find(&TargetSCC)->second <= I &&
367                 "Edge between SCCs violates post-order relationship.");
368          continue;
369        }
370      }
371  }
372
373#ifdef EXPENSIVE_CHECKS
374  // Verify that all nodes in this RefSCC can reach all other nodes.
375  SmallVector<Node *> Nodes;
376  for (SCC *C : SCCs) {
377    for (Node &N : *C)
378      Nodes.push_back(&N);
379  }
380  for (Node *N : Nodes) {
381    SmallVector<Node *, 4> Worklist;
382    SmallPtrSet<Node *, 4> Visited;
383    Worklist.push_back(N);
384    while (!Worklist.empty()) {
385      Node *VisitingNode = Worklist.pop_back_val();
386      if (!Visited.insert(VisitingNode).second)
387        continue;
388      for (Edge &E : **VisitingNode)
389        Worklist.push_back(&E.getNode());
390    }
391    for (Node *NodeToVisit : Nodes) {
392      assert(Visited.contains(NodeToVisit) &&
393             "Cannot reach all nodes within RefSCC");
394    }
395  }
396#endif
397}
398#endif
399
400bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
401  if (&RC == this)
402    return false;
403
404  // Search all edges to see if this is a parent.
405  for (SCC &C : *this)
406    for (Node &N : C)
407      for (Edge &E : *N)
408        if (G->lookupRefSCC(E.getNode()) == &RC)
409          return true;
410
411  return false;
412}
413
414bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
415  if (&RC == this)
416    return false;
417
418  // For each descendant of this RefSCC, see if one of its children is the
419  // argument. If not, add that descendant to the worklist and continue
420  // searching.
421  SmallVector<const RefSCC *, 4> Worklist;
422  SmallPtrSet<const RefSCC *, 4> Visited;
423  Worklist.push_back(this);
424  Visited.insert(this);
425  do {
426    const RefSCC &DescendantRC = *Worklist.pop_back_val();
427    for (SCC &C : DescendantRC)
428      for (Node &N : C)
429        for (Edge &E : *N) {
430          auto *ChildRC = G->lookupRefSCC(E.getNode());
431          if (ChildRC == &RC)
432            return true;
433          if (!ChildRC || !Visited.insert(ChildRC).second)
434            continue;
435          Worklist.push_back(ChildRC);
436        }
437  } while (!Worklist.empty());
438
439  return false;
440}
441
442/// Generic helper that updates a postorder sequence of SCCs for a potentially
443/// cycle-introducing edge insertion.
444///
445/// A postorder sequence of SCCs of a directed graph has one fundamental
446/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
447/// all edges in the SCC DAG point to prior SCCs in the sequence.
448///
449/// This routine both updates a postorder sequence and uses that sequence to
450/// compute the set of SCCs connected into a cycle. It should only be called to
451/// insert a "downward" edge which will require changing the sequence to
452/// restore it to a postorder.
453///
454/// When inserting an edge from an earlier SCC to a later SCC in some postorder
455/// sequence, all of the SCCs which may be impacted are in the closed range of
456/// those two within the postorder sequence. The algorithm used here to restore
457/// the state is as follows:
458///
459/// 1) Starting from the source SCC, construct a set of SCCs which reach the
460///    source SCC consisting of just the source SCC. Then scan toward the
461///    target SCC in postorder and for each SCC, if it has an edge to an SCC
462///    in the set, add it to the set. Otherwise, the source SCC is not
463///    a successor, move it in the postorder sequence to immediately before
464///    the source SCC, shifting the source SCC and all SCCs in the set one
465///    position toward the target SCC. Stop scanning after processing the
466///    target SCC.
467/// 2) If the source SCC is now past the target SCC in the postorder sequence,
468///    and thus the new edge will flow toward the start, we are done.
469/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
470///    SCC between the source and the target, and add them to the set of
471///    connected SCCs, then recurse through them. Once a complete set of the
472///    SCCs the target connects to is known, hoist the remaining SCCs between
473///    the source and the target to be above the target. Note that there is no
474///    need to process the source SCC, it is already known to connect.
475/// 4) At this point, all of the SCCs in the closed range between the source
476///    SCC and the target SCC in the postorder sequence are connected,
477///    including the target SCC and the source SCC. Inserting the edge from
478///    the source SCC to the target SCC will form a cycle out of precisely
479///    these SCCs. Thus we can merge all of the SCCs in this closed range into
480///    a single SCC.
481///
482/// This process has various important properties:
483/// - Only mutates the SCCs when adding the edge actually changes the SCC
484///   structure.
485/// - Never mutates SCCs which are unaffected by the change.
486/// - Updates the postorder sequence to correctly satisfy the postorder
487///   constraint after the edge is inserted.
488/// - Only reorders SCCs in the closed postorder sequence from the source to
489///   the target, so easy to bound how much has changed even in the ordering.
490/// - Big-O is the number of edges in the closed postorder range of SCCs from
491///   source to target.
492///
493/// This helper routine, in addition to updating the postorder sequence itself
494/// will also update a map from SCCs to indices within that sequence.
495///
496/// The sequence and the map must operate on pointers to the SCC type.
497///
498/// Two callbacks must be provided. The first computes the subset of SCCs in
499/// the postorder closed range from the source to the target which connect to
500/// the source SCC via some (transitive) set of edges. The second computes the
501/// subset of the same range which the target SCC connects to via some
502/// (transitive) set of edges. Both callbacks should populate the set argument
503/// provided.
504template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
505          typename ComputeSourceConnectedSetCallableT,
506          typename ComputeTargetConnectedSetCallableT>
507static iterator_range<typename PostorderSequenceT::iterator>
508updatePostorderSequenceForEdgeInsertion(
509    SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
510    SCCIndexMapT &SCCIndices,
511    ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
512    ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
513  int SourceIdx = SCCIndices[&SourceSCC];
514  int TargetIdx = SCCIndices[&TargetSCC];
515  assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
516
517  SmallPtrSet<SCCT *, 4> ConnectedSet;
518
519  // Compute the SCCs which (transitively) reach the source.
520  ComputeSourceConnectedSet(ConnectedSet);
521
522  // Partition the SCCs in this part of the port-order sequence so only SCCs
523  // connecting to the source remain between it and the target. This is
524  // a benign partition as it preserves postorder.
525  auto SourceI = std::stable_partition(
526      SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
527      [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
528  for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I)
529    SCCIndices.find(SCCs[I])->second = I;
530
531  // If the target doesn't connect to the source, then we've corrected the
532  // post-order and there are no cycles formed.
533  if (!ConnectedSet.count(&TargetSCC)) {
534    assert(SourceI > (SCCs.begin() + SourceIdx) &&
535           "Must have moved the source to fix the post-order.");
536    assert(*std::prev(SourceI) == &TargetSCC &&
537           "Last SCC to move should have bene the target.");
538
539    // Return an empty range at the target SCC indicating there is nothing to
540    // merge.
541    return make_range(std::prev(SourceI), std::prev(SourceI));
542  }
543
544  assert(SCCs[TargetIdx] == &TargetSCC &&
545         "Should not have moved target if connected!");
546  SourceIdx = SourceI - SCCs.begin();
547  assert(SCCs[SourceIdx] == &SourceSCC &&
548         "Bad updated index computation for the source SCC!");
549
550  // See whether there are any remaining intervening SCCs between the source
551  // and target. If so we need to make sure they all are reachable form the
552  // target.
553  if (SourceIdx + 1 < TargetIdx) {
554    ConnectedSet.clear();
555    ComputeTargetConnectedSet(ConnectedSet);
556
557    // Partition SCCs so that only SCCs reached from the target remain between
558    // the source and the target. This preserves postorder.
559    auto TargetI = std::stable_partition(
560        SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
561        [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
562    for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I)
563      SCCIndices.find(SCCs[I])->second = I;
564    TargetIdx = std::prev(TargetI) - SCCs.begin();
565    assert(SCCs[TargetIdx] == &TargetSCC &&
566           "Should always end with the target!");
567  }
568
569  // At this point, we know that connecting source to target forms a cycle
570  // because target connects back to source, and we know that all the SCCs
571  // between the source and target in the postorder sequence participate in that
572  // cycle.
573  return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
574}
575
576bool LazyCallGraph::RefSCC::switchInternalEdgeToCall(
577    Node &SourceN, Node &TargetN,
578    function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
579  assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
580  SmallVector<SCC *, 1> DeletedSCCs;
581
582#ifdef EXPENSIVE_CHECKS
583  verify();
584  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
585#endif
586
587  SCC &SourceSCC = *G->lookupSCC(SourceN);
588  SCC &TargetSCC = *G->lookupSCC(TargetN);
589
590  // If the two nodes are already part of the same SCC, we're also done as
591  // we've just added more connectivity.
592  if (&SourceSCC == &TargetSCC) {
593    SourceN->setEdgeKind(TargetN, Edge::Call);
594    return false; // No new cycle.
595  }
596
597  // At this point we leverage the postorder list of SCCs to detect when the
598  // insertion of an edge changes the SCC structure in any way.
599  //
600  // First and foremost, we can eliminate the need for any changes when the
601  // edge is toward the beginning of the postorder sequence because all edges
602  // flow in that direction already. Thus adding a new one cannot form a cycle.
603  int SourceIdx = SCCIndices[&SourceSCC];
604  int TargetIdx = SCCIndices[&TargetSCC];
605  if (TargetIdx < SourceIdx) {
606    SourceN->setEdgeKind(TargetN, Edge::Call);
607    return false; // No new cycle.
608  }
609
610  // Compute the SCCs which (transitively) reach the source.
611  auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
612#ifdef EXPENSIVE_CHECKS
613    // Check that the RefSCC is still valid before computing this as the
614    // results will be nonsensical of we've broken its invariants.
615    verify();
616#endif
617    ConnectedSet.insert(&SourceSCC);
618    auto IsConnected = [&](SCC &C) {
619      for (Node &N : C)
620        for (Edge &E : N->calls())
621          if (ConnectedSet.count(G->lookupSCC(E.getNode())))
622            return true;
623
624      return false;
625    };
626
627    for (SCC *C :
628         make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
629      if (IsConnected(*C))
630        ConnectedSet.insert(C);
631  };
632
633  // Use a normal worklist to find which SCCs the target connects to. We still
634  // bound the search based on the range in the postorder list we care about,
635  // but because this is forward connectivity we just "recurse" through the
636  // edges.
637  auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
638#ifdef EXPENSIVE_CHECKS
639    // Check that the RefSCC is still valid before computing this as the
640    // results will be nonsensical of we've broken its invariants.
641    verify();
642#endif
643    ConnectedSet.insert(&TargetSCC);
644    SmallVector<SCC *, 4> Worklist;
645    Worklist.push_back(&TargetSCC);
646    do {
647      SCC &C = *Worklist.pop_back_val();
648      for (Node &N : C)
649        for (Edge &E : *N) {
650          if (!E.isCall())
651            continue;
652          SCC &EdgeC = *G->lookupSCC(E.getNode());
653          if (&EdgeC.getOuterRefSCC() != this)
654            // Not in this RefSCC...
655            continue;
656          if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
657            // Not in the postorder sequence between source and target.
658            continue;
659
660          if (ConnectedSet.insert(&EdgeC).second)
661            Worklist.push_back(&EdgeC);
662        }
663    } while (!Worklist.empty());
664  };
665
666  // Use a generic helper to update the postorder sequence of SCCs and return
667  // a range of any SCCs connected into a cycle by inserting this edge. This
668  // routine will also take care of updating the indices into the postorder
669  // sequence.
670  auto MergeRange = updatePostorderSequenceForEdgeInsertion(
671      SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
672      ComputeTargetConnectedSet);
673
674  // Run the user's callback on the merged SCCs before we actually merge them.
675  if (MergeCB)
676    MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end()));
677
678  // If the merge range is empty, then adding the edge didn't actually form any
679  // new cycles. We're done.
680  if (MergeRange.empty()) {
681    // Now that the SCC structure is finalized, flip the kind to call.
682    SourceN->setEdgeKind(TargetN, Edge::Call);
683    return false; // No new cycle.
684  }
685
686#ifdef EXPENSIVE_CHECKS
687  // Before merging, check that the RefSCC remains valid after all the
688  // postorder updates.
689  verify();
690#endif
691
692  // Otherwise we need to merge all the SCCs in the cycle into a single result
693  // SCC.
694  //
695  // NB: We merge into the target because all of these functions were already
696  // reachable from the target, meaning any SCC-wide properties deduced about it
697  // other than the set of functions within it will not have changed.
698  for (SCC *C : MergeRange) {
699    assert(C != &TargetSCC &&
700           "We merge *into* the target and shouldn't process it here!");
701    SCCIndices.erase(C);
702    TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
703    for (Node *N : C->Nodes)
704      G->SCCMap[N] = &TargetSCC;
705    C->clear();
706    DeletedSCCs.push_back(C);
707  }
708
709  // Erase the merged SCCs from the list and update the indices of the
710  // remaining SCCs.
711  int IndexOffset = MergeRange.end() - MergeRange.begin();
712  auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
713  for (SCC *C : make_range(EraseEnd, SCCs.end()))
714    SCCIndices[C] -= IndexOffset;
715
716  // Now that the SCC structure is finalized, flip the kind to call.
717  SourceN->setEdgeKind(TargetN, Edge::Call);
718
719  // And we're done, but we did form a new cycle.
720  return true;
721}
722
723void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
724                                                           Node &TargetN) {
725  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
726
727#ifdef EXPENSIVE_CHECKS
728  verify();
729  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
730#endif
731
732  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
733  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
734  assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
735         "Source and Target must be in separate SCCs for this to be trivial!");
736
737  // Set the edge kind.
738  SourceN->setEdgeKind(TargetN, Edge::Ref);
739}
740
741iterator_range<LazyCallGraph::RefSCC::iterator>
742LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
743  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
744
745#ifdef EXPENSIVE_CHECKS
746  verify();
747  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
748#endif
749
750  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
751  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
752
753  SCC &TargetSCC = *G->lookupSCC(TargetN);
754  assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
755                                                "the same SCC to require the "
756                                                "full CG update.");
757
758  // Set the edge kind.
759  SourceN->setEdgeKind(TargetN, Edge::Ref);
760
761  // Otherwise we are removing a call edge from a single SCC. This may break
762  // the cycle. In order to compute the new set of SCCs, we need to do a small
763  // DFS over the nodes within the SCC to form any sub-cycles that remain as
764  // distinct SCCs and compute a postorder over the resulting SCCs.
765  //
766  // However, we specially handle the target node. The target node is known to
767  // reach all other nodes in the original SCC by definition. This means that
768  // we want the old SCC to be replaced with an SCC containing that node as it
769  // will be the root of whatever SCC DAG results from the DFS. Assumptions
770  // about an SCC such as the set of functions called will continue to hold,
771  // etc.
772
773  SCC &OldSCC = TargetSCC;
774  SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
775  SmallVector<Node *, 16> PendingSCCStack;
776  SmallVector<SCC *, 4> NewSCCs;
777
778  // Prepare the nodes for a fresh DFS.
779  SmallVector<Node *, 16> Worklist;
780  Worklist.swap(OldSCC.Nodes);
781  for (Node *N : Worklist) {
782    N->DFSNumber = N->LowLink = 0;
783    G->SCCMap.erase(N);
784  }
785
786  // Force the target node to be in the old SCC. This also enables us to take
787  // a very significant short-cut in the standard Tarjan walk to re-form SCCs
788  // below: whenever we build an edge that reaches the target node, we know
789  // that the target node eventually connects back to all other nodes in our
790  // walk. As a consequence, we can detect and handle participants in that
791  // cycle without walking all the edges that form this connection, and instead
792  // by relying on the fundamental guarantee coming into this operation (all
793  // nodes are reachable from the target due to previously forming an SCC).
794  TargetN.DFSNumber = TargetN.LowLink = -1;
795  OldSCC.Nodes.push_back(&TargetN);
796  G->SCCMap[&TargetN] = &OldSCC;
797
798  // Scan down the stack and DFS across the call edges.
799  for (Node *RootN : Worklist) {
800    assert(DFSStack.empty() &&
801           "Cannot begin a new root with a non-empty DFS stack!");
802    assert(PendingSCCStack.empty() &&
803           "Cannot begin a new root with pending nodes for an SCC!");
804
805    // Skip any nodes we've already reached in the DFS.
806    if (RootN->DFSNumber != 0) {
807      assert(RootN->DFSNumber == -1 &&
808             "Shouldn't have any mid-DFS root nodes!");
809      continue;
810    }
811
812    RootN->DFSNumber = RootN->LowLink = 1;
813    int NextDFSNumber = 2;
814
815    DFSStack.emplace_back(RootN, (*RootN)->call_begin());
816    do {
817      auto [N, I] = DFSStack.pop_back_val();
818      auto E = (*N)->call_end();
819      while (I != E) {
820        Node &ChildN = I->getNode();
821        if (ChildN.DFSNumber == 0) {
822          // We haven't yet visited this child, so descend, pushing the current
823          // node onto the stack.
824          DFSStack.emplace_back(N, I);
825
826          assert(!G->SCCMap.count(&ChildN) &&
827                 "Found a node with 0 DFS number but already in an SCC!");
828          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
829          N = &ChildN;
830          I = (*N)->call_begin();
831          E = (*N)->call_end();
832          continue;
833        }
834
835        // Check for the child already being part of some component.
836        if (ChildN.DFSNumber == -1) {
837          if (G->lookupSCC(ChildN) == &OldSCC) {
838            // If the child is part of the old SCC, we know that it can reach
839            // every other node, so we have formed a cycle. Pull the entire DFS
840            // and pending stacks into it. See the comment above about setting
841            // up the old SCC for why we do this.
842            int OldSize = OldSCC.size();
843            OldSCC.Nodes.push_back(N);
844            OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
845            PendingSCCStack.clear();
846            while (!DFSStack.empty())
847              OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
848            for (Node &N : drop_begin(OldSCC, OldSize)) {
849              N.DFSNumber = N.LowLink = -1;
850              G->SCCMap[&N] = &OldSCC;
851            }
852            N = nullptr;
853            break;
854          }
855
856          // If the child has already been added to some child component, it
857          // couldn't impact the low-link of this parent because it isn't
858          // connected, and thus its low-link isn't relevant so skip it.
859          ++I;
860          continue;
861        }
862
863        // Track the lowest linked child as the lowest link for this node.
864        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
865        if (ChildN.LowLink < N->LowLink)
866          N->LowLink = ChildN.LowLink;
867
868        // Move to the next edge.
869        ++I;
870      }
871      if (!N)
872        // Cleared the DFS early, start another round.
873        break;
874
875      // We've finished processing N and its descendants, put it on our pending
876      // SCC stack to eventually get merged into an SCC of nodes.
877      PendingSCCStack.push_back(N);
878
879      // If this node is linked to some lower entry, continue walking up the
880      // stack.
881      if (N->LowLink != N->DFSNumber)
882        continue;
883
884      // Otherwise, we've completed an SCC. Append it to our post order list of
885      // SCCs.
886      int RootDFSNumber = N->DFSNumber;
887      // Find the range of the node stack by walking down until we pass the
888      // root DFS number.
889      auto SCCNodes = make_range(
890          PendingSCCStack.rbegin(),
891          find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
892            return N->DFSNumber < RootDFSNumber;
893          }));
894
895      // Form a new SCC out of these nodes and then clear them off our pending
896      // stack.
897      NewSCCs.push_back(G->createSCC(*this, SCCNodes));
898      for (Node &N : *NewSCCs.back()) {
899        N.DFSNumber = N.LowLink = -1;
900        G->SCCMap[&N] = NewSCCs.back();
901      }
902      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
903    } while (!DFSStack.empty());
904  }
905
906  // Insert the remaining SCCs before the old one. The old SCC can reach all
907  // other SCCs we form because it contains the target node of the removed edge
908  // of the old SCC. This means that we will have edges into all the new SCCs,
909  // which means the old one must come last for postorder.
910  int OldIdx = SCCIndices[&OldSCC];
911  SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
912
913  // Update the mapping from SCC* to index to use the new SCC*s, and remove the
914  // old SCC from the mapping.
915  for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
916    SCCIndices[SCCs[Idx]] = Idx;
917
918  return make_range(SCCs.begin() + OldIdx,
919                    SCCs.begin() + OldIdx + NewSCCs.size());
920}
921
922void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
923                                                     Node &TargetN) {
924  assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
925
926  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
927  assert(G->lookupRefSCC(TargetN) != this &&
928         "Target must not be in this RefSCC.");
929#ifdef EXPENSIVE_CHECKS
930  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
931         "Target must be a descendant of the Source.");
932#endif
933
934  // Edges between RefSCCs are the same regardless of call or ref, so we can
935  // just flip the edge here.
936  SourceN->setEdgeKind(TargetN, Edge::Call);
937
938#ifdef EXPENSIVE_CHECKS
939  verify();
940#endif
941}
942
943void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
944                                                    Node &TargetN) {
945  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
946
947  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
948  assert(G->lookupRefSCC(TargetN) != this &&
949         "Target must not be in this RefSCC.");
950#ifdef EXPENSIVE_CHECKS
951  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
952         "Target must be a descendant of the Source.");
953#endif
954
955  // Edges between RefSCCs are the same regardless of call or ref, so we can
956  // just flip the edge here.
957  SourceN->setEdgeKind(TargetN, Edge::Ref);
958
959#ifdef EXPENSIVE_CHECKS
960  verify();
961#endif
962}
963
964void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
965                                                  Node &TargetN) {
966  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
967  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
968
969  SourceN->insertEdgeInternal(TargetN, Edge::Ref);
970
971#ifdef EXPENSIVE_CHECKS
972  verify();
973#endif
974}
975
976void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
977                                               Edge::Kind EK) {
978  // First insert it into the caller.
979  SourceN->insertEdgeInternal(TargetN, EK);
980
981  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
982
983  assert(G->lookupRefSCC(TargetN) != this &&
984         "Target must not be in this RefSCC.");
985#ifdef EXPENSIVE_CHECKS
986  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
987         "Target must be a descendant of the Source.");
988#endif
989
990#ifdef EXPENSIVE_CHECKS
991  verify();
992#endif
993}
994
995SmallVector<LazyCallGraph::RefSCC *, 1>
996LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
997  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
998  RefSCC &SourceC = *G->lookupRefSCC(SourceN);
999  assert(&SourceC != this && "Source must not be in this RefSCC.");
1000#ifdef EXPENSIVE_CHECKS
1001  assert(SourceC.isDescendantOf(*this) &&
1002         "Source must be a descendant of the Target.");
1003#endif
1004
1005  SmallVector<RefSCC *, 1> DeletedRefSCCs;
1006
1007#ifdef EXPENSIVE_CHECKS
1008  verify();
1009  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1010#endif
1011
1012  int SourceIdx = G->RefSCCIndices[&SourceC];
1013  int TargetIdx = G->RefSCCIndices[this];
1014  assert(SourceIdx < TargetIdx &&
1015         "Postorder list doesn't see edge as incoming!");
1016
1017  // Compute the RefSCCs which (transitively) reach the source. We do this by
1018  // working backwards from the source using the parent set in each RefSCC,
1019  // skipping any RefSCCs that don't fall in the postorder range. This has the
1020  // advantage of walking the sparser parent edge (in high fan-out graphs) but
1021  // more importantly this removes examining all forward edges in all RefSCCs
1022  // within the postorder range which aren't in fact connected. Only connected
1023  // RefSCCs (and their edges) are visited here.
1024  auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1025    Set.insert(&SourceC);
1026    auto IsConnected = [&](RefSCC &RC) {
1027      for (SCC &C : RC)
1028        for (Node &N : C)
1029          for (Edge &E : *N)
1030            if (Set.count(G->lookupRefSCC(E.getNode())))
1031              return true;
1032
1033      return false;
1034    };
1035
1036    for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1037                                G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1038      if (IsConnected(*C))
1039        Set.insert(C);
1040  };
1041
1042  // Use a normal worklist to find which SCCs the target connects to. We still
1043  // bound the search based on the range in the postorder list we care about,
1044  // but because this is forward connectivity we just "recurse" through the
1045  // edges.
1046  auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1047    Set.insert(this);
1048    SmallVector<RefSCC *, 4> Worklist;
1049    Worklist.push_back(this);
1050    do {
1051      RefSCC &RC = *Worklist.pop_back_val();
1052      for (SCC &C : RC)
1053        for (Node &N : C)
1054          for (Edge &E : *N) {
1055            RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1056            if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1057              // Not in the postorder sequence between source and target.
1058              continue;
1059
1060            if (Set.insert(&EdgeRC).second)
1061              Worklist.push_back(&EdgeRC);
1062          }
1063    } while (!Worklist.empty());
1064  };
1065
1066  // Use a generic helper to update the postorder sequence of RefSCCs and return
1067  // a range of any RefSCCs connected into a cycle by inserting this edge. This
1068  // routine will also take care of updating the indices into the postorder
1069  // sequence.
1070  iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1071      updatePostorderSequenceForEdgeInsertion(
1072          SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1073          ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1074
1075  // Build a set, so we can do fast tests for whether a RefSCC will end up as
1076  // part of the merged RefSCC.
1077  SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1078
1079  // This RefSCC will always be part of that set, so just insert it here.
1080  MergeSet.insert(this);
1081
1082  // Now that we have identified all the SCCs which need to be merged into
1083  // a connected set with the inserted edge, merge all of them into this SCC.
1084  SmallVector<SCC *, 16> MergedSCCs;
1085  int SCCIndex = 0;
1086  for (RefSCC *RC : MergeRange) {
1087    assert(RC != this && "We're merging into the target RefSCC, so it "
1088                         "shouldn't be in the range.");
1089
1090    // Walk the inner SCCs to update their up-pointer and walk all the edges to
1091    // update any parent sets.
1092    // FIXME: We should try to find a way to avoid this (rather expensive) edge
1093    // walk by updating the parent sets in some other manner.
1094    for (SCC &InnerC : *RC) {
1095      InnerC.OuterRefSCC = this;
1096      SCCIndices[&InnerC] = SCCIndex++;
1097      for (Node &N : InnerC)
1098        G->SCCMap[&N] = &InnerC;
1099    }
1100
1101    // Now merge in the SCCs. We can actually move here so try to reuse storage
1102    // the first time through.
1103    if (MergedSCCs.empty())
1104      MergedSCCs = std::move(RC->SCCs);
1105    else
1106      MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1107    RC->SCCs.clear();
1108    DeletedRefSCCs.push_back(RC);
1109  }
1110
1111  // Append our original SCCs to the merged list and move it into place.
1112  for (SCC &InnerC : *this)
1113    SCCIndices[&InnerC] = SCCIndex++;
1114  MergedSCCs.append(SCCs.begin(), SCCs.end());
1115  SCCs = std::move(MergedSCCs);
1116
1117  // Remove the merged away RefSCCs from the post order sequence.
1118  for (RefSCC *RC : MergeRange)
1119    G->RefSCCIndices.erase(RC);
1120  int IndexOffset = MergeRange.end() - MergeRange.begin();
1121  auto EraseEnd =
1122      G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1123  for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1124    G->RefSCCIndices[RC] -= IndexOffset;
1125
1126  // At this point we have a merged RefSCC with a post-order SCCs list, just
1127  // connect the nodes to form the new edge.
1128  SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1129
1130  // We return the list of SCCs which were merged so that callers can
1131  // invalidate any data they have associated with those SCCs. Note that these
1132  // SCCs are no longer in an interesting state (they are totally empty) but
1133  // the pointers will remain stable for the life of the graph itself.
1134  return DeletedRefSCCs;
1135}
1136
1137void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1138  assert(G->lookupRefSCC(SourceN) == this &&
1139         "The source must be a member of this RefSCC.");
1140  assert(G->lookupRefSCC(TargetN) != this &&
1141         "The target must not be a member of this RefSCC");
1142
1143#ifdef EXPENSIVE_CHECKS
1144  verify();
1145  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1146#endif
1147
1148  // First remove it from the node.
1149  bool Removed = SourceN->removeEdgeInternal(TargetN);
1150  (void)Removed;
1151  assert(Removed && "Target not in the edge set for this caller?");
1152}
1153
1154SmallVector<LazyCallGraph::RefSCC *, 1>
1155LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1156                                             ArrayRef<Node *> TargetNs) {
1157  // We return a list of the resulting *new* RefSCCs in post-order.
1158  SmallVector<RefSCC *, 1> Result;
1159
1160#ifdef EXPENSIVE_CHECKS
1161  // Verify the RefSCC is valid to start with and that either we return an empty
1162  // list of result RefSCCs and this RefSCC remains valid, or we return new
1163  // RefSCCs and this RefSCC is dead.
1164  verify();
1165  auto VerifyOnExit = make_scope_exit([&]() {
1166    // If we didn't replace our RefSCC with new ones, check that this one
1167    // remains valid.
1168    if (G)
1169      verify();
1170  });
1171#endif
1172
1173  // First remove the actual edges.
1174  for (Node *TargetN : TargetNs) {
1175    assert(!(*SourceN)[*TargetN].isCall() &&
1176           "Cannot remove a call edge, it must first be made a ref edge");
1177
1178    bool Removed = SourceN->removeEdgeInternal(*TargetN);
1179    (void)Removed;
1180    assert(Removed && "Target not in the edge set for this caller?");
1181  }
1182
1183  // Direct self references don't impact the ref graph at all.
1184  if (llvm::all_of(TargetNs,
1185                   [&](Node *TargetN) { return &SourceN == TargetN; }))
1186    return Result;
1187
1188  // If all targets are in the same SCC as the source, because no call edges
1189  // were removed there is no RefSCC structure change.
1190  SCC &SourceC = *G->lookupSCC(SourceN);
1191  if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1192        return G->lookupSCC(*TargetN) == &SourceC;
1193      }))
1194    return Result;
1195
1196  // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1197  // for each inner SCC. We store these inside the low-link field of the nodes
1198  // rather than associated with SCCs because this saves a round-trip through
1199  // the node->SCC map and in the common case, SCCs are small. We will verify
1200  // that we always give the same number to every node in the SCC such that
1201  // these are equivalent.
1202  int PostOrderNumber = 0;
1203
1204  // Reset all the other nodes to prepare for a DFS over them, and add them to
1205  // our worklist.
1206  SmallVector<Node *, 8> Worklist;
1207  for (SCC *C : SCCs) {
1208    for (Node &N : *C)
1209      N.DFSNumber = N.LowLink = 0;
1210
1211    Worklist.append(C->Nodes.begin(), C->Nodes.end());
1212  }
1213
1214  // Track the number of nodes in this RefSCC so that we can quickly recognize
1215  // an important special case of the edge removal not breaking the cycle of
1216  // this RefSCC.
1217  const int NumRefSCCNodes = Worklist.size();
1218
1219  SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1220  SmallVector<Node *, 4> PendingRefSCCStack;
1221  do {
1222    assert(DFSStack.empty() &&
1223           "Cannot begin a new root with a non-empty DFS stack!");
1224    assert(PendingRefSCCStack.empty() &&
1225           "Cannot begin a new root with pending nodes for an SCC!");
1226
1227    Node *RootN = Worklist.pop_back_val();
1228    // Skip any nodes we've already reached in the DFS.
1229    if (RootN->DFSNumber != 0) {
1230      assert(RootN->DFSNumber == -1 &&
1231             "Shouldn't have any mid-DFS root nodes!");
1232      continue;
1233    }
1234
1235    RootN->DFSNumber = RootN->LowLink = 1;
1236    int NextDFSNumber = 2;
1237
1238    DFSStack.emplace_back(RootN, (*RootN)->begin());
1239    do {
1240      auto [N, I] = DFSStack.pop_back_val();
1241      auto E = (*N)->end();
1242
1243      assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1244                                  "before processing a node.");
1245
1246      while (I != E) {
1247        Node &ChildN = I->getNode();
1248        if (ChildN.DFSNumber == 0) {
1249          // Mark that we should start at this child when next this node is the
1250          // top of the stack. We don't start at the next child to ensure this
1251          // child's lowlink is reflected.
1252          DFSStack.emplace_back(N, I);
1253
1254          // Continue, resetting to the child node.
1255          ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1256          N = &ChildN;
1257          I = ChildN->begin();
1258          E = ChildN->end();
1259          continue;
1260        }
1261        if (ChildN.DFSNumber == -1) {
1262          // If this child isn't currently in this RefSCC, no need to process
1263          // it.
1264          ++I;
1265          continue;
1266        }
1267
1268        // Track the lowest link of the children, if any are still in the stack.
1269        // Any child not on the stack will have a LowLink of -1.
1270        assert(ChildN.LowLink != 0 &&
1271               "Low-link must not be zero with a non-zero DFS number.");
1272        if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1273          N->LowLink = ChildN.LowLink;
1274        ++I;
1275      }
1276
1277      // We've finished processing N and its descendants, put it on our pending
1278      // stack to eventually get merged into a RefSCC.
1279      PendingRefSCCStack.push_back(N);
1280
1281      // If this node is linked to some lower entry, continue walking up the
1282      // stack.
1283      if (N->LowLink != N->DFSNumber) {
1284        assert(!DFSStack.empty() &&
1285               "We never found a viable root for a RefSCC to pop off!");
1286        continue;
1287      }
1288
1289      // Otherwise, form a new RefSCC from the top of the pending node stack.
1290      int RefSCCNumber = PostOrderNumber++;
1291      int RootDFSNumber = N->DFSNumber;
1292
1293      // Find the range of the node stack by walking down until we pass the
1294      // root DFS number. Update the DFS numbers and low link numbers in the
1295      // process to avoid re-walking this list where possible.
1296      auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1297        if (N->DFSNumber < RootDFSNumber)
1298          // We've found the bottom.
1299          return true;
1300
1301        // Update this node and keep scanning.
1302        N->DFSNumber = -1;
1303        // Save the post-order number in the lowlink field so that we can use
1304        // it to map SCCs into new RefSCCs after we finish the DFS.
1305        N->LowLink = RefSCCNumber;
1306        return false;
1307      });
1308      auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1309
1310      // If we find a cycle containing all nodes originally in this RefSCC then
1311      // the removal hasn't changed the structure at all. This is an important
1312      // special case, and we can directly exit the entire routine more
1313      // efficiently as soon as we discover it.
1314      if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1315        // Clear out the low link field as we won't need it.
1316        for (Node *N : RefSCCNodes)
1317          N->LowLink = -1;
1318        // Return the empty result immediately.
1319        return Result;
1320      }
1321
1322      // We've already marked the nodes internally with the RefSCC number so
1323      // just clear them off the stack and continue.
1324      PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1325    } while (!DFSStack.empty());
1326
1327    assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1328    assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1329  } while (!Worklist.empty());
1330
1331  assert(PostOrderNumber > 1 &&
1332         "Should never finish the DFS when the existing RefSCC remains valid!");
1333
1334  // Otherwise we create a collection of new RefSCC nodes and build
1335  // a radix-sort style map from postorder number to these new RefSCCs. We then
1336  // append SCCs to each of these RefSCCs in the order they occurred in the
1337  // original SCCs container.
1338  for (int I = 0; I < PostOrderNumber; ++I)
1339    Result.push_back(G->createRefSCC(*G));
1340
1341  // Insert the resulting postorder sequence into the global graph postorder
1342  // sequence before the current RefSCC in that sequence, and then remove the
1343  // current one.
1344  //
1345  // FIXME: It'd be nice to change the APIs so that we returned an iterator
1346  // range over the global postorder sequence and generally use that sequence
1347  // rather than building a separate result vector here.
1348  int Idx = G->getRefSCCIndex(*this);
1349  G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1350  G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1351                             Result.end());
1352  for (int I : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1353    G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I;
1354
1355  for (SCC *C : SCCs) {
1356    // We store the SCC number in the node's low-link field above.
1357    int SCCNumber = C->begin()->LowLink;
1358    // Clear out all the SCC's node's low-link fields now that we're done
1359    // using them as side-storage.
1360    for (Node &N : *C) {
1361      assert(N.LowLink == SCCNumber &&
1362             "Cannot have different numbers for nodes in the same SCC!");
1363      N.LowLink = -1;
1364    }
1365
1366    RefSCC &RC = *Result[SCCNumber];
1367    int SCCIndex = RC.SCCs.size();
1368    RC.SCCs.push_back(C);
1369    RC.SCCIndices[C] = SCCIndex;
1370    C->OuterRefSCC = &RC;
1371  }
1372
1373  // Now that we've moved things into the new RefSCCs, clear out our current
1374  // one.
1375  G = nullptr;
1376  SCCs.clear();
1377  SCCIndices.clear();
1378
1379#ifdef EXPENSIVE_CHECKS
1380  // Verify the new RefSCCs we've built.
1381  for (RefSCC *RC : Result)
1382    RC->verify();
1383#endif
1384
1385  // Return the new list of SCCs.
1386  return Result;
1387}
1388
1389void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1390                                                  Node &TargetN) {
1391#ifdef EXPENSIVE_CHECKS
1392  auto ExitVerifier = make_scope_exit([this] { verify(); });
1393
1394  // Check that we aren't breaking some invariants of the SCC graph. Note that
1395  // this is quadratic in the number of edges in the call graph!
1396  SCC &SourceC = *G->lookupSCC(SourceN);
1397  SCC &TargetC = *G->lookupSCC(TargetN);
1398  if (&SourceC != &TargetC)
1399    assert(SourceC.isAncestorOf(TargetC) &&
1400           "Call edge is not trivial in the SCC graph!");
1401#endif
1402
1403  // First insert it into the source or find the existing edge.
1404  auto [Iterator, Inserted] =
1405      SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1406  if (!Inserted) {
1407    // Already an edge, just update it.
1408    Edge &E = SourceN->Edges[Iterator->second];
1409    if (E.isCall())
1410      return; // Nothing to do!
1411    E.setKind(Edge::Call);
1412  } else {
1413    // Create the new edge.
1414    SourceN->Edges.emplace_back(TargetN, Edge::Call);
1415  }
1416}
1417
1418void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1419#ifdef EXPENSIVE_CHECKS
1420  auto ExitVerifier = make_scope_exit([this] { verify(); });
1421
1422  // Check that we aren't breaking some invariants of the RefSCC graph.
1423  RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1424  RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1425  if (&SourceRC != &TargetRC)
1426    assert(SourceRC.isAncestorOf(TargetRC) &&
1427           "Ref edge is not trivial in the RefSCC graph!");
1428#endif
1429
1430  // First insert it into the source or find the existing edge.
1431  auto [Iterator, Inserted] =
1432      SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1433  (void)Iterator;
1434  if (!Inserted)
1435    // Already an edge, we're done.
1436    return;
1437
1438  // Create the new edge.
1439  SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1440}
1441
1442void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1443  Function &OldF = N.getFunction();
1444
1445#ifdef EXPENSIVE_CHECKS
1446  auto ExitVerifier = make_scope_exit([this] { verify(); });
1447
1448  assert(G->lookupRefSCC(N) == this &&
1449         "Cannot replace the function of a node outside this RefSCC.");
1450
1451  assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1452         "Must not have already walked the new function!'");
1453
1454  // It is important that this replacement not introduce graph changes so we
1455  // insist that the caller has already removed every use of the original
1456  // function and that all uses of the new function correspond to existing
1457  // edges in the graph. The common and expected way to use this is when
1458  // replacing the function itself in the IR without changing the call graph
1459  // shape and just updating the analysis based on that.
1460  assert(&OldF != &NewF && "Cannot replace a function with itself!");
1461  assert(OldF.use_empty() &&
1462         "Must have moved all uses from the old function to the new!");
1463#endif
1464
1465  N.replaceFunction(NewF);
1466
1467  // Update various call graph maps.
1468  G->NodeMap.erase(&OldF);
1469  G->NodeMap[&NewF] = &N;
1470
1471  // Update lib functions.
1472  if (G->isLibFunction(OldF)) {
1473    G->LibFunctions.remove(&OldF);
1474    G->LibFunctions.insert(&NewF);
1475  }
1476}
1477
1478void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1479  assert(SCCMap.empty() &&
1480         "This method cannot be called after SCCs have been formed!");
1481
1482  return SourceN->insertEdgeInternal(TargetN, EK);
1483}
1484
1485void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1486  assert(SCCMap.empty() &&
1487         "This method cannot be called after SCCs have been formed!");
1488
1489  bool Removed = SourceN->removeEdgeInternal(TargetN);
1490  (void)Removed;
1491  assert(Removed && "Target not in the edge set for this caller?");
1492}
1493
1494void LazyCallGraph::removeDeadFunction(Function &F) {
1495  // FIXME: This is unnecessarily restrictive. We should be able to remove
1496  // functions which recursively call themselves.
1497  assert(F.hasZeroLiveUses() &&
1498         "This routine should only be called on trivially dead functions!");
1499
1500  // We shouldn't remove library functions as they are never really dead while
1501  // the call graph is in use -- every function definition refers to them.
1502  assert(!isLibFunction(F) &&
1503         "Must not remove lib functions from the call graph!");
1504
1505  auto NI = NodeMap.find(&F);
1506  if (NI == NodeMap.end())
1507    // Not in the graph at all!
1508    return;
1509
1510  Node &N = *NI->second;
1511
1512  // Cannot remove a function which has yet to be visited in the DFS walk, so
1513  // if we have a node at all then we must have an SCC and RefSCC.
1514  auto CI = SCCMap.find(&N);
1515  assert(CI != SCCMap.end() &&
1516         "Tried to remove a node without an SCC after DFS walk started!");
1517  SCC &C = *CI->second;
1518  RefSCC *RC = &C.getOuterRefSCC();
1519
1520  // In extremely rare cases, we can delete a dead function which is still in a
1521  // non-trivial RefSCC. This can happen due to spurious ref edges sticking
1522  // around after an IR function reference is removed.
1523  if (RC->size() != 1) {
1524    SmallVector<Node *, 0> NodesInRC;
1525    for (SCC &OtherC : *RC) {
1526      for (Node &OtherN : OtherC)
1527        NodesInRC.push_back(&OtherN);
1528    }
1529    for (Node *OtherN : NodesInRC) {
1530      if ((*OtherN)->lookup(N)) {
1531        auto NewRefSCCs =
1532            RC->removeInternalRefEdge(*OtherN, ArrayRef<Node *>(&N));
1533        // If we've split into multiple RefSCCs, RC is now invalid and the
1534        // RefSCC containing C will be different.
1535        if (!NewRefSCCs.empty())
1536          RC = &C.getOuterRefSCC();
1537      }
1538    }
1539  }
1540
1541  NodeMap.erase(NI);
1542  EntryEdges.removeEdgeInternal(N);
1543  SCCMap.erase(CI);
1544
1545  // This node must be the only member of its SCC as it has no callers, and
1546  // that SCC must be the only member of a RefSCC as it has no references.
1547  // Validate these properties first.
1548  assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1549  assert(RC->size() == 1 && "Dead functions must be in a singular RefSCC");
1550
1551  // Finally clear out all the data structures from the node down through the
1552  // components. postorder_ref_scc_iterator will skip empty RefSCCs, so no need
1553  // to adjust LazyCallGraph data structures.
1554  N.clear();
1555  N.G = nullptr;
1556  N.F = nullptr;
1557  C.clear();
1558  RC->clear();
1559  RC->G = nullptr;
1560
1561  // Nothing to delete as all the objects are allocated in stable bump pointer
1562  // allocators.
1563}
1564
1565// Gets the Edge::Kind from one function to another by looking at the function's
1566// instructions. Asserts if there is no edge.
1567// Useful for determining what type of edge should exist between functions when
1568// the edge hasn't been created yet.
1569static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1570                                             Function &NewFunction) {
1571  // In release builds, assume that if there are no direct calls to the new
1572  // function, then there is a ref edge. In debug builds, keep track of
1573  // references to assert that there is actually a ref edge if there is no call
1574  // edge.
1575#ifndef NDEBUG
1576  SmallVector<Constant *, 16> Worklist;
1577  SmallPtrSet<Constant *, 16> Visited;
1578#endif
1579
1580  for (Instruction &I : instructions(OriginalFunction)) {
1581    if (auto *CB = dyn_cast<CallBase>(&I)) {
1582      if (Function *Callee = CB->getCalledFunction()) {
1583        if (Callee == &NewFunction)
1584          return LazyCallGraph::Edge::Kind::Call;
1585      }
1586    }
1587#ifndef NDEBUG
1588    for (Value *Op : I.operand_values()) {
1589      if (Constant *C = dyn_cast<Constant>(Op)) {
1590        if (Visited.insert(C).second)
1591          Worklist.push_back(C);
1592      }
1593    }
1594#endif
1595  }
1596
1597#ifndef NDEBUG
1598  bool FoundNewFunction = false;
1599  LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1600    if (&F == &NewFunction)
1601      FoundNewFunction = true;
1602  });
1603  assert(FoundNewFunction && "No edge from original function to new function");
1604#endif
1605
1606  return LazyCallGraph::Edge::Kind::Ref;
1607}
1608
1609void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
1610                                     Function &NewFunction) {
1611  assert(lookup(OriginalFunction) &&
1612         "Original function's node should already exist");
1613  Node &OriginalN = get(OriginalFunction);
1614  SCC *OriginalC = lookupSCC(OriginalN);
1615  RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1616
1617#ifdef EXPENSIVE_CHECKS
1618  OriginalRC->verify();
1619  auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1620#endif
1621
1622  assert(!lookup(NewFunction) &&
1623         "New function's node should not already exist");
1624  Node &NewN = initNode(NewFunction);
1625
1626  Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1627
1628  SCC *NewC = nullptr;
1629  for (Edge &E : *NewN) {
1630    Node &EN = E.getNode();
1631    if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1632      // If the edge to the new function is a call edge and there is a call edge
1633      // from the new function to any function in the original function's SCC,
1634      // it is in the same SCC (and RefSCC) as the original function.
1635      NewC = OriginalC;
1636      NewC->Nodes.push_back(&NewN);
1637      break;
1638    }
1639  }
1640
1641  if (!NewC) {
1642    for (Edge &E : *NewN) {
1643      Node &EN = E.getNode();
1644      if (lookupRefSCC(EN) == OriginalRC) {
1645        // If there is any edge from the new function to any function in the
1646        // original function's RefSCC, it is in the same RefSCC as the original
1647        // function but a new SCC.
1648        RefSCC *NewRC = OriginalRC;
1649        NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1650
1651        // The new function's SCC is not the same as the original function's
1652        // SCC, since that case was handled earlier. If the edge from the
1653        // original function to the new function was a call edge, then we need
1654        // to insert the newly created function's SCC before the original
1655        // function's SCC. Otherwise, either the new SCC comes after the
1656        // original function's SCC, or it doesn't matter, and in both cases we
1657        // can add it to the very end.
1658        int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1659                                                 : NewRC->SCCIndices.size();
1660        NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1661        for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1662          NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1663
1664        break;
1665      }
1666    }
1667  }
1668
1669  if (!NewC) {
1670    // We didn't find any edges back to the original function's RefSCC, so the
1671    // new function belongs in a new RefSCC. The new RefSCC goes before the
1672    // original function's RefSCC.
1673    RefSCC *NewRC = createRefSCC(*this);
1674    NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1675    NewRC->SCCIndices[NewC] = 0;
1676    NewRC->SCCs.push_back(NewC);
1677    auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1678    PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1679    for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1680      RefSCCIndices[PostOrderRefSCCs[I]] = I;
1681  }
1682
1683  SCCMap[&NewN] = NewC;
1684
1685  OriginalN->insertEdgeInternal(NewN, EK);
1686}
1687
1688void LazyCallGraph::addSplitRefRecursiveFunctions(
1689    Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1690  assert(!NewFunctions.empty() && "Can't add zero functions");
1691  assert(lookup(OriginalFunction) &&
1692         "Original function's node should already exist");
1693  Node &OriginalN = get(OriginalFunction);
1694  RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1695
1696#ifdef EXPENSIVE_CHECKS
1697  OriginalRC->verify();
1698  auto VerifyOnExit = make_scope_exit([&]() {
1699    OriginalRC->verify();
1700    for (Function *NewFunction : NewFunctions)
1701      lookupRefSCC(get(*NewFunction))->verify();
1702  });
1703#endif
1704
1705  bool ExistsRefToOriginalRefSCC = false;
1706
1707  for (Function *NewFunction : NewFunctions) {
1708    Node &NewN = initNode(*NewFunction);
1709
1710    OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1711
1712    // Check if there is any edge from any new function back to any function in
1713    // the original function's RefSCC.
1714    for (Edge &E : *NewN) {
1715      if (lookupRefSCC(E.getNode()) == OriginalRC) {
1716        ExistsRefToOriginalRefSCC = true;
1717        break;
1718      }
1719    }
1720  }
1721
1722  RefSCC *NewRC;
1723  if (ExistsRefToOriginalRefSCC) {
1724    // If there is any edge from any new function to any function in the
1725    // original function's RefSCC, all new functions will be in the same RefSCC
1726    // as the original function.
1727    NewRC = OriginalRC;
1728  } else {
1729    // Otherwise the new functions are in their own RefSCC.
1730    NewRC = createRefSCC(*this);
1731    // The new RefSCC goes before the original function's RefSCC in postorder
1732    // since there are only edges from the original function's RefSCC to the new
1733    // RefSCC.
1734    auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1735    PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1736    for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1737      RefSCCIndices[PostOrderRefSCCs[I]] = I;
1738  }
1739
1740  for (Function *NewFunction : NewFunctions) {
1741    Node &NewN = get(*NewFunction);
1742    // Each new function is in its own new SCC. The original function can only
1743    // have a ref edge to new functions, and no other existing functions can
1744    // have references to new functions. Each new function only has a ref edge
1745    // to the other new functions.
1746    SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1747    // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1748    // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1749    // SCC list.
1750    auto Index = NewRC->SCCIndices.size();
1751    NewRC->SCCIndices[NewC] = Index;
1752    NewRC->SCCs.push_back(NewC);
1753    SCCMap[&NewN] = NewC;
1754  }
1755
1756#ifndef NDEBUG
1757  for (Function *F1 : NewFunctions) {
1758    assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1759           "Expected ref edges from original function to every new function");
1760    Node &N1 = get(*F1);
1761    for (Function *F2 : NewFunctions) {
1762      if (F1 == F2)
1763        continue;
1764      Node &N2 = get(*F2);
1765      assert(!N1->lookup(N2)->isCall() &&
1766             "Edges between new functions must be ref edges");
1767    }
1768  }
1769#endif
1770}
1771
1772LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1773  return *new (MappedN = BPA.Allocate()) Node(*this, F);
1774}
1775
1776void LazyCallGraph::updateGraphPtrs() {
1777  // Walk the node map to update their graph pointers. While this iterates in
1778  // an unstable order, the order has no effect, so it remains correct.
1779  for (auto &FunctionNodePair : NodeMap)
1780    FunctionNodePair.second->G = this;
1781
1782  for (auto *RC : PostOrderRefSCCs)
1783    RC->G = this;
1784}
1785
1786LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1787  Node &N = get(F);
1788  N.DFSNumber = N.LowLink = -1;
1789  N.populate();
1790  NodeMap[&F] = &N;
1791  return N;
1792}
1793
1794template <typename RootsT, typename GetBeginT, typename GetEndT,
1795          typename GetNodeT, typename FormSCCCallbackT>
1796void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1797                                     GetEndT &&GetEnd, GetNodeT &&GetNode,
1798                                     FormSCCCallbackT &&FormSCC) {
1799  using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1800
1801  SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1802  SmallVector<Node *, 16> PendingSCCStack;
1803
1804  // Scan down the stack and DFS across the call edges.
1805  for (Node *RootN : Roots) {
1806    assert(DFSStack.empty() &&
1807           "Cannot begin a new root with a non-empty DFS stack!");
1808    assert(PendingSCCStack.empty() &&
1809           "Cannot begin a new root with pending nodes for an SCC!");
1810
1811    // Skip any nodes we've already reached in the DFS.
1812    if (RootN->DFSNumber != 0) {
1813      assert(RootN->DFSNumber == -1 &&
1814             "Shouldn't have any mid-DFS root nodes!");
1815      continue;
1816    }
1817
1818    RootN->DFSNumber = RootN->LowLink = 1;
1819    int NextDFSNumber = 2;
1820
1821    DFSStack.emplace_back(RootN, GetBegin(*RootN));
1822    do {
1823      auto [N, I] = DFSStack.pop_back_val();
1824      auto E = GetEnd(*N);
1825      while (I != E) {
1826        Node &ChildN = GetNode(I);
1827        if (ChildN.DFSNumber == 0) {
1828          // We haven't yet visited this child, so descend, pushing the current
1829          // node onto the stack.
1830          DFSStack.emplace_back(N, I);
1831
1832          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1833          N = &ChildN;
1834          I = GetBegin(*N);
1835          E = GetEnd(*N);
1836          continue;
1837        }
1838
1839        // If the child has already been added to some child component, it
1840        // couldn't impact the low-link of this parent because it isn't
1841        // connected, and thus its low-link isn't relevant so skip it.
1842        if (ChildN.DFSNumber == -1) {
1843          ++I;
1844          continue;
1845        }
1846
1847        // Track the lowest linked child as the lowest link for this node.
1848        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1849        if (ChildN.LowLink < N->LowLink)
1850          N->LowLink = ChildN.LowLink;
1851
1852        // Move to the next edge.
1853        ++I;
1854      }
1855
1856      // We've finished processing N and its descendants, put it on our pending
1857      // SCC stack to eventually get merged into an SCC of nodes.
1858      PendingSCCStack.push_back(N);
1859
1860      // If this node is linked to some lower entry, continue walking up the
1861      // stack.
1862      if (N->LowLink != N->DFSNumber)
1863        continue;
1864
1865      // Otherwise, we've completed an SCC. Append it to our post order list of
1866      // SCCs.
1867      int RootDFSNumber = N->DFSNumber;
1868      // Find the range of the node stack by walking down until we pass the
1869      // root DFS number.
1870      auto SCCNodes = make_range(
1871          PendingSCCStack.rbegin(),
1872          find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1873            return N->DFSNumber < RootDFSNumber;
1874          }));
1875      // Form a new SCC out of these nodes and then clear them off our pending
1876      // stack.
1877      FormSCC(SCCNodes);
1878      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1879    } while (!DFSStack.empty());
1880  }
1881}
1882
1883/// Build the internal SCCs for a RefSCC from a sequence of nodes.
1884///
1885/// Appends the SCCs to the provided vector and updates the map with their
1886/// indices. Both the vector and map must be empty when passed into this
1887/// routine.
1888void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1889  assert(RC.SCCs.empty() && "Already built SCCs!");
1890  assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1891
1892  for (Node *N : Nodes) {
1893    assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1894           "We cannot have a low link in an SCC lower than its root on the "
1895           "stack!");
1896
1897    // This node will go into the next RefSCC, clear out its DFS and low link
1898    // as we scan.
1899    N->DFSNumber = N->LowLink = 0;
1900  }
1901
1902  // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1903  // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1904  // internal storage as we won't need it for the outer graph's DFS any longer.
1905  buildGenericSCCs(
1906      Nodes, [](Node &N) { return N->call_begin(); },
1907      [](Node &N) { return N->call_end(); },
1908      [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1909      [this, &RC](node_stack_range Nodes) {
1910        RC.SCCs.push_back(createSCC(RC, Nodes));
1911        for (Node &N : *RC.SCCs.back()) {
1912          N.DFSNumber = N.LowLink = -1;
1913          SCCMap[&N] = RC.SCCs.back();
1914        }
1915      });
1916
1917  // Wire up the SCC indices.
1918  for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I)
1919    RC.SCCIndices[RC.SCCs[I]] = I;
1920}
1921
1922void LazyCallGraph::buildRefSCCs() {
1923  if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1924    // RefSCCs are either non-existent or already built!
1925    return;
1926
1927  assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1928
1929  SmallVector<Node *, 16> Roots;
1930  for (Edge &E : *this)
1931    Roots.push_back(&E.getNode());
1932
1933  // The roots will be iterated in order.
1934  buildGenericSCCs(
1935      Roots,
1936      [](Node &N) {
1937        // We need to populate each node as we begin to walk its edges.
1938        N.populate();
1939        return N->begin();
1940      },
1941      [](Node &N) { return N->end(); },
1942      [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1943      [this](node_stack_range Nodes) {
1944        RefSCC *NewRC = createRefSCC(*this);
1945        buildSCCs(*NewRC, Nodes);
1946
1947        // Push the new node into the postorder list and remember its position
1948        // in the index map.
1949        bool Inserted =
1950            RefSCCIndices.try_emplace(NewRC, PostOrderRefSCCs.size()).second;
1951        (void)Inserted;
1952        assert(Inserted && "Cannot already have this RefSCC in the index map!");
1953        PostOrderRefSCCs.push_back(NewRC);
1954#ifdef EXPENSIVE_CHECKS
1955        NewRC->verify();
1956#endif
1957      });
1958}
1959
1960void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist,
1961                                    SmallPtrSetImpl<Constant *> &Visited,
1962                                    function_ref<void(Function &)> Callback) {
1963  while (!Worklist.empty()) {
1964    Constant *C = Worklist.pop_back_val();
1965
1966    if (Function *F = dyn_cast<Function>(C)) {
1967      if (!F->isDeclaration())
1968        Callback(*F);
1969      continue;
1970    }
1971
1972    // blockaddresses are weird and don't participate in the call graph anyway,
1973    // skip them.
1974    if (isa<BlockAddress>(C))
1975      continue;
1976
1977    for (Value *Op : C->operand_values())
1978      if (Visited.insert(cast<Constant>(Op)).second)
1979        Worklist.push_back(cast<Constant>(Op));
1980  }
1981}
1982
1983AnalysisKey LazyCallGraphAnalysis::Key;
1984
1985LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1986
1987static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1988  OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1989  for (LazyCallGraph::Edge &E : N.populate())
1990    OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1991       << E.getFunction().getName() << "\n";
1992
1993  OS << "\n";
1994}
1995
1996static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1997  OS << "    SCC with " << C.size() << " functions:\n";
1998
1999  for (LazyCallGraph::Node &N : C)
2000    OS << "      " << N.getFunction().getName() << "\n";
2001}
2002
2003static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
2004  OS << "  RefSCC with " << C.size() << " call SCCs:\n";
2005
2006  for (LazyCallGraph::SCC &InnerC : C)
2007    printSCC(OS, InnerC);
2008
2009  OS << "\n";
2010}
2011
2012PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
2013                                                ModuleAnalysisManager &AM) {
2014  LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2015
2016  OS << "Printing the call graph for module: " << M.getModuleIdentifier()
2017     << "\n\n";
2018
2019  for (Function &F : M)
2020    printNode(OS, G.get(F));
2021
2022  G.buildRefSCCs();
2023  for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2024    printRefSCC(OS, C);
2025
2026  return PreservedAnalyses::all();
2027}
2028
2029LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
2030    : OS(OS) {}
2031
2032static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
2033  std::string Name =
2034      "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2035
2036  for (LazyCallGraph::Edge &E : N.populate()) {
2037    OS << "  " << Name << " -> \""
2038       << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2039    if (!E.isCall()) // It is a ref edge.
2040      OS << " [style=dashed,label=\"ref\"]";
2041    OS << ";\n";
2042  }
2043
2044  OS << "\n";
2045}
2046
2047PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
2048                                                   ModuleAnalysisManager &AM) {
2049  LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2050
2051  OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2052
2053  for (Function &F : M)
2054    printNodeDOT(OS, G.get(F));
2055
2056  OS << "}\n";
2057
2058  return PreservedAnalyses::all();
2059}
2060