1//===- AbstractCallSite.h - Abstract call sites -----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the AbstractCallSite class, which is a is a wrapper that
10// allows treating direct, indirect, and callback calls the same.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_ABSTRACTCALLSITE_H
15#define LLVM_IR_ABSTRACTCALLSITE_H
16
17#include "llvm/IR/Constants.h"
18#include "llvm/IR/Function.h"
19#include "llvm/IR/InstrTypes.h"
20#include "llvm/IR/Value.h"
21#include <cassert>
22
23namespace llvm {
24
25class Argument;
26class Use;
27
28/// AbstractCallSite
29///
30/// An abstract call site is a wrapper that allows to treat direct,
31/// indirect, and callback calls the same. If an abstract call site
32/// represents a direct or indirect call site it behaves like a stripped
33/// down version of a normal call site object. The abstract call site can
34/// also represent a callback call, thus the fact that the initially
35/// called function (=broker) may invoke a third one (=callback callee).
36/// In this case, the abstract call site hides the middle man, hence the
37/// broker function. The result is a representation of the callback call,
38/// inside the broker, but in the context of the original call to the broker.
39///
40/// There are up to three functions involved when we talk about callback call
41/// sites. The caller (1), which invokes the broker function. The broker
42/// function (2), that will invoke the callee zero or more times. And finally
43/// the callee (3), which is the target of the callback call.
44///
45/// The abstract call site will handle the mapping from parameters to arguments
46/// depending on the semantic of the broker function. However, it is important
47/// to note that the mapping is often partial. Thus, some arguments of the
48/// call/invoke instruction are mapped to parameters of the callee while others
49/// are not.
50class AbstractCallSite {
51public:
52
53  /// The encoding of a callback with regards to the underlying instruction.
54  struct CallbackInfo {
55
56    /// For direct/indirect calls the parameter encoding is empty. If it is not,
57    /// the abstract call site represents a callback. In that case, the first
58    /// element of the encoding vector represents which argument of the call
59    /// site CB is the callback callee. The remaining elements map parameters
60    /// (identified by their position) to the arguments that will be passed
61    /// through (also identified by position but in the call site instruction).
62    ///
63    /// NOTE that we use LLVM argument numbers (starting at 0) and not
64    /// clang/source argument numbers (starting at 1). The -1 entries represent
65    /// unknown values that are passed to the callee.
66    using ParameterEncodingTy = SmallVector<int, 0>;
67    ParameterEncodingTy ParameterEncoding;
68
69  };
70
71private:
72
73  /// The underlying call site:
74  ///   caller -> callee,             if this is a direct or indirect call site
75  ///   caller -> broker function,    if this is a callback call site
76  CallBase *CB;
77
78  /// The encoding of a callback with regards to the underlying instruction.
79  CallbackInfo CI;
80
81public:
82  /// Sole constructor for abstract call sites (ACS).
83  ///
84  /// An abstract call site can only be constructed through a llvm::Use because
85  /// each operand (=use) of an instruction could potentially be a different
86  /// abstract call site. Furthermore, even if the value of the llvm::Use is the
87  /// same, and the user is as well, the abstract call sites might not be.
88  ///
89  /// If a use is not associated with an abstract call site the constructed ACS
90  /// will evaluate to false if converted to a boolean.
91  ///
92  /// If the use is the callee use of a call or invoke instruction, the
93  /// constructed abstract call site will behave as a llvm::CallSite would.
94  ///
95  /// If the use is not a callee use of a call or invoke instruction, the
96  /// callback metadata is used to determine the argument <-> parameter mapping
97  /// as well as the callee of the abstract call site.
98  AbstractCallSite(const Use *U);
99
100  /// Add operand uses of \p CB that represent callback uses into
101  /// \p CallbackUses.
102  ///
103  /// All uses added to \p CallbackUses can be used to create abstract call
104  /// sites for which AbstractCallSite::isCallbackCall() will return true.
105  static void getCallbackUses(const CallBase &CB,
106                              SmallVectorImpl<const Use *> &CallbackUses);
107
108  /// Conversion operator to conveniently check for a valid/initialized ACS.
109  explicit operator bool() const { return CB != nullptr; }
110
111  /// Return the underlying instruction.
112  CallBase *getInstruction() const { return CB; }
113
114  /// Return true if this ACS represents a direct call.
115  bool isDirectCall() const {
116    return !isCallbackCall() && !CB->isIndirectCall();
117  }
118
119  /// Return true if this ACS represents an indirect call.
120  bool isIndirectCall() const {
121    return !isCallbackCall() && CB->isIndirectCall();
122  }
123
124  /// Return true if this ACS represents a callback call.
125  bool isCallbackCall() const {
126    // For a callback call site the callee is ALWAYS stored first in the
127    // transitive values vector. Thus, a non-empty vector indicates a callback.
128    return !CI.ParameterEncoding.empty();
129  }
130
131  /// Return true if @p UI is the use that defines the callee of this ACS.
132  bool isCallee(Value::const_user_iterator UI) const {
133    return isCallee(&UI.getUse());
134  }
135
136  /// Return true if @p U is the use that defines the callee of this ACS.
137  bool isCallee(const Use *U) const {
138    if (isDirectCall())
139      return CB->isCallee(U);
140
141    assert(!CI.ParameterEncoding.empty() &&
142           "Callback without parameter encoding!");
143
144    // If the use is actually in a constant cast expression which itself
145    // has only one use, we look through the constant cast expression.
146    if (auto *CE = dyn_cast<ConstantExpr>(U->getUser()))
147      if (CE->hasOneUse() && CE->isCast())
148        U = &*CE->use_begin();
149
150    return (int)CB->getArgOperandNo(U) == CI.ParameterEncoding[0];
151  }
152
153  /// Return the number of parameters of the callee.
154  unsigned getNumArgOperands() const {
155    if (isDirectCall())
156      return CB->arg_size();
157    // Subtract 1 for the callee encoding.
158    return CI.ParameterEncoding.size() - 1;
159  }
160
161  /// Return the operand index of the underlying instruction associated with @p
162  /// Arg.
163  int getCallArgOperandNo(Argument &Arg) const {
164    return getCallArgOperandNo(Arg.getArgNo());
165  }
166
167  /// Return the operand index of the underlying instruction associated with
168  /// the function parameter number @p ArgNo or -1 if there is none.
169  int getCallArgOperandNo(unsigned ArgNo) const {
170    if (isDirectCall())
171      return ArgNo;
172    // Add 1 for the callee encoding.
173    return CI.ParameterEncoding[ArgNo + 1];
174  }
175
176  /// Return the operand of the underlying instruction associated with @p Arg.
177  Value *getCallArgOperand(Argument &Arg) const {
178    return getCallArgOperand(Arg.getArgNo());
179  }
180
181  /// Return the operand of the underlying instruction associated with the
182  /// function parameter number @p ArgNo or nullptr if there is none.
183  Value *getCallArgOperand(unsigned ArgNo) const {
184    if (isDirectCall())
185      return CB->getArgOperand(ArgNo);
186    // Add 1 for the callee encoding.
187    return CI.ParameterEncoding[ArgNo + 1] >= 0
188               ? CB->getArgOperand(CI.ParameterEncoding[ArgNo + 1])
189               : nullptr;
190  }
191
192  /// Return the operand index of the underlying instruction associated with the
193  /// callee of this ACS. Only valid for callback calls!
194  int getCallArgOperandNoForCallee() const {
195    assert(isCallbackCall());
196    assert(CI.ParameterEncoding.size() && CI.ParameterEncoding[0] >= 0);
197    return CI.ParameterEncoding[0];
198  }
199
200  /// Return the use of the callee value in the underlying instruction. Only
201  /// valid for callback calls!
202  const Use &getCalleeUseForCallback() const {
203    int CalleeArgIdx = getCallArgOperandNoForCallee();
204    assert(CalleeArgIdx >= 0 &&
205           unsigned(CalleeArgIdx) < getInstruction()->getNumOperands());
206    return getInstruction()->getOperandUse(CalleeArgIdx);
207  }
208
209  /// Return the pointer to function that is being called.
210  Value *getCalledOperand() const {
211    if (isDirectCall())
212      return CB->getCalledOperand();
213    return CB->getArgOperand(getCallArgOperandNoForCallee());
214  }
215
216  /// Return the function being called if this is a direct call, otherwise
217  /// return null (if it's an indirect call).
218  Function *getCalledFunction() const {
219    Value *V = getCalledOperand();
220    return V ? dyn_cast<Function>(V->stripPointerCasts()) : nullptr;
221  }
222};
223
224/// Apply function Func to each CB's callback call site.
225template <typename UnaryFunction>
226void forEachCallbackCallSite(const CallBase &CB, UnaryFunction Func) {
227  SmallVector<const Use *, 4u> CallbackUses;
228  AbstractCallSite::getCallbackUses(CB, CallbackUses);
229  for (const Use *U : CallbackUses) {
230    AbstractCallSite ACS(U);
231    assert(ACS && ACS.isCallbackCall() && "must be a callback call");
232    Func(ACS);
233  }
234}
235
236/// Apply function Func to each CB's callback function.
237template <typename UnaryFunction>
238void forEachCallbackFunction(const CallBase &CB, UnaryFunction Func) {
239  forEachCallbackCallSite(CB, [&Func](AbstractCallSite &ACS) {
240    if (Function *Callback = ACS.getCalledFunction())
241      Func(Callback);
242  });
243}
244
245} // end namespace llvm
246
247#endif // LLVM_IR_ABSTRACTCALLSITE_H
248