1//===-- ObjectFileMachO.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/ADT/ScopeExit.h"
10#include "llvm/ADT/StringRef.h"
11
12#include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13#include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14#include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15#include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16#include "lldb/Core/Debugger.h"
17#include "lldb/Core/FileSpecList.h"
18#include "lldb/Core/Module.h"
19#include "lldb/Core/ModuleSpec.h"
20#include "lldb/Core/PluginManager.h"
21#include "lldb/Core/Progress.h"
22#include "lldb/Core/Section.h"
23#include "lldb/Core/StreamFile.h"
24#include "lldb/Host/Host.h"
25#include "lldb/Symbol/DWARFCallFrameInfo.h"
26#include "lldb/Symbol/LocateSymbolFile.h"
27#include "lldb/Symbol/ObjectFile.h"
28#include "lldb/Target/DynamicLoader.h"
29#include "lldb/Target/MemoryRegionInfo.h"
30#include "lldb/Target/Platform.h"
31#include "lldb/Target/Process.h"
32#include "lldb/Target/SectionLoadList.h"
33#include "lldb/Target/Target.h"
34#include "lldb/Target/Thread.h"
35#include "lldb/Target/ThreadList.h"
36#include "lldb/Utility/ArchSpec.h"
37#include "lldb/Utility/DataBuffer.h"
38#include "lldb/Utility/FileSpec.h"
39#include "lldb/Utility/LLDBLog.h"
40#include "lldb/Utility/Log.h"
41#include "lldb/Utility/RangeMap.h"
42#include "lldb/Utility/RegisterValue.h"
43#include "lldb/Utility/Status.h"
44#include "lldb/Utility/StreamString.h"
45#include "lldb/Utility/Timer.h"
46#include "lldb/Utility/UUID.h"
47
48#include "lldb/Host/SafeMachO.h"
49
50#include "llvm/ADT/DenseSet.h"
51#include "llvm/Support/FormatVariadic.h"
52#include "llvm/Support/MemoryBuffer.h"
53
54#include "ObjectFileMachO.h"
55
56#if defined(__APPLE__)
57#include <TargetConditionals.h>
58// GetLLDBSharedCacheUUID() needs to call dlsym()
59#include <dlfcn.h>
60#include <mach/mach_init.h>
61#include <mach/vm_map.h>
62#include <lldb/Host/SafeMachO.h>
63#endif
64
65#ifndef __APPLE__
66#include "Utility/UuidCompatibility.h"
67#else
68#include <uuid/uuid.h>
69#endif
70
71#include <bitset>
72#include <memory>
73#include <optional>
74
75// Unfortunately the signpost header pulls in the system MachO header, too.
76#ifdef CPU_TYPE_ARM
77#undef CPU_TYPE_ARM
78#endif
79#ifdef CPU_TYPE_ARM64
80#undef CPU_TYPE_ARM64
81#endif
82#ifdef CPU_TYPE_ARM64_32
83#undef CPU_TYPE_ARM64_32
84#endif
85#ifdef CPU_TYPE_I386
86#undef CPU_TYPE_I386
87#endif
88#ifdef CPU_TYPE_X86_64
89#undef CPU_TYPE_X86_64
90#endif
91#ifdef MH_DYLINKER
92#undef MH_DYLINKER
93#endif
94#ifdef MH_OBJECT
95#undef MH_OBJECT
96#endif
97#ifdef LC_VERSION_MIN_MACOSX
98#undef LC_VERSION_MIN_MACOSX
99#endif
100#ifdef LC_VERSION_MIN_IPHONEOS
101#undef LC_VERSION_MIN_IPHONEOS
102#endif
103#ifdef LC_VERSION_MIN_TVOS
104#undef LC_VERSION_MIN_TVOS
105#endif
106#ifdef LC_VERSION_MIN_WATCHOS
107#undef LC_VERSION_MIN_WATCHOS
108#endif
109#ifdef LC_BUILD_VERSION
110#undef LC_BUILD_VERSION
111#endif
112#ifdef PLATFORM_MACOS
113#undef PLATFORM_MACOS
114#endif
115#ifdef PLATFORM_MACCATALYST
116#undef PLATFORM_MACCATALYST
117#endif
118#ifdef PLATFORM_IOS
119#undef PLATFORM_IOS
120#endif
121#ifdef PLATFORM_IOSSIMULATOR
122#undef PLATFORM_IOSSIMULATOR
123#endif
124#ifdef PLATFORM_TVOS
125#undef PLATFORM_TVOS
126#endif
127#ifdef PLATFORM_TVOSSIMULATOR
128#undef PLATFORM_TVOSSIMULATOR
129#endif
130#ifdef PLATFORM_WATCHOS
131#undef PLATFORM_WATCHOS
132#endif
133#ifdef PLATFORM_WATCHOSSIMULATOR
134#undef PLATFORM_WATCHOSSIMULATOR
135#endif
136
137#define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
138using namespace lldb;
139using namespace lldb_private;
140using namespace llvm::MachO;
141
142LLDB_PLUGIN_DEFINE(ObjectFileMachO)
143
144// Some structure definitions needed for parsing the dyld shared cache files
145// found on iOS devices.
146
147struct lldb_copy_dyld_cache_header_v1 {
148  char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
149  uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
150  uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
151  uint32_t imagesOffset;
152  uint32_t imagesCount;
153  uint64_t dyldBaseAddress;
154  uint64_t codeSignatureOffset;
155  uint64_t codeSignatureSize;
156  uint64_t slideInfoOffset;
157  uint64_t slideInfoSize;
158  uint64_t localSymbolsOffset;
159  uint64_t localSymbolsSize;
160  uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
161                    // and later
162};
163
164static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
165                               const char *alt_name, size_t reg_byte_size,
166                               Stream &data) {
167  const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
168  if (reg_info == nullptr)
169    reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
170  if (reg_info) {
171    lldb_private::RegisterValue reg_value;
172    if (reg_ctx->ReadRegister(reg_info, reg_value)) {
173      if (reg_info->byte_size >= reg_byte_size)
174        data.Write(reg_value.GetBytes(), reg_byte_size);
175      else {
176        data.Write(reg_value.GetBytes(), reg_info->byte_size);
177        for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
178          data.PutChar(0);
179      }
180      return;
181    }
182  }
183  // Just write zeros if all else fails
184  for (size_t i = 0; i < reg_byte_size; ++i)
185    data.PutChar(0);
186}
187
188class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
189public:
190  RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
191                                    const DataExtractor &data)
192      : RegisterContextDarwin_x86_64(thread, 0) {
193    SetRegisterDataFrom_LC_THREAD(data);
194  }
195
196  void InvalidateAllRegisters() override {
197    // Do nothing... registers are always valid...
198  }
199
200  void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
201    lldb::offset_t offset = 0;
202    SetError(GPRRegSet, Read, -1);
203    SetError(FPURegSet, Read, -1);
204    SetError(EXCRegSet, Read, -1);
205    bool done = false;
206
207    while (!done) {
208      int flavor = data.GetU32(&offset);
209      if (flavor == 0)
210        done = true;
211      else {
212        uint32_t i;
213        uint32_t count = data.GetU32(&offset);
214        switch (flavor) {
215        case GPRRegSet:
216          for (i = 0; i < count; ++i)
217            (&gpr.rax)[i] = data.GetU64(&offset);
218          SetError(GPRRegSet, Read, 0);
219          done = true;
220
221          break;
222        case FPURegSet:
223          // TODO: fill in FPU regs....
224          // SetError (FPURegSet, Read, -1);
225          done = true;
226
227          break;
228        case EXCRegSet:
229          exc.trapno = data.GetU32(&offset);
230          exc.err = data.GetU32(&offset);
231          exc.faultvaddr = data.GetU64(&offset);
232          SetError(EXCRegSet, Read, 0);
233          done = true;
234          break;
235        case 7:
236        case 8:
237        case 9:
238          // fancy flavors that encapsulate of the above flavors...
239          break;
240
241        default:
242          done = true;
243          break;
244        }
245      }
246    }
247  }
248
249  static bool Create_LC_THREAD(Thread *thread, Stream &data) {
250    RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
251    if (reg_ctx_sp) {
252      RegisterContext *reg_ctx = reg_ctx_sp.get();
253
254      data.PutHex32(GPRRegSet); // Flavor
255      data.PutHex32(GPRWordCount);
256      PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
257      PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
258      PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
259      PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
260      PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
261      PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
262      PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
263      PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
264      PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
265      PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
266      PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
267      PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
268      PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
269      PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
270      PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
271      PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
272      PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
273      PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
274      PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
275      PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
276      PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
277
278      //            // Write out the FPU registers
279      //            const size_t fpu_byte_size = sizeof(FPU);
280      //            size_t bytes_written = 0;
281      //            data.PutHex32 (FPURegSet);
282      //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
283      //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
284      //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
285      //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
286      //            data);   // uint16_t    fcw;    // "fctrl"
287      //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
288      //            data);  // uint16_t    fsw;    // "fstat"
289      //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
290      //            data);   // uint8_t     ftw;    // "ftag"
291      //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
292      //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
293      //            data);     // uint16_t    fop;    // "fop"
294      //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
295      //            data);    // uint32_t    ip;     // "fioff"
296      //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
297      //            data);    // uint16_t    cs;     // "fiseg"
298      //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
299      //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
300      //            data);   // uint32_t    dp;     // "fooff"
301      //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
302      //            data);    // uint16_t    ds;     // "foseg"
303      //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
304      //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
305      //            data);    // uint32_t    mxcsr;
306      //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
307      //            4, data);// uint32_t    mxcsrmask;
308      //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
309      //            sizeof(MMSReg), data);
310      //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
311      //            sizeof(MMSReg), data);
312      //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
313      //            sizeof(MMSReg), data);
314      //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
315      //            sizeof(MMSReg), data);
316      //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
317      //            sizeof(MMSReg), data);
318      //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
319      //            sizeof(MMSReg), data);
320      //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
321      //            sizeof(MMSReg), data);
322      //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
323      //            sizeof(MMSReg), data);
324      //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
325      //            sizeof(XMMReg), data);
326      //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
327      //            sizeof(XMMReg), data);
328      //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
329      //            sizeof(XMMReg), data);
330      //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
331      //            sizeof(XMMReg), data);
332      //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
333      //            sizeof(XMMReg), data);
334      //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
335      //            sizeof(XMMReg), data);
336      //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
337      //            sizeof(XMMReg), data);
338      //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
339      //            sizeof(XMMReg), data);
340      //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
341      //            sizeof(XMMReg), data);
342      //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
343      //            sizeof(XMMReg), data);
344      //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
345      //            sizeof(XMMReg), data);
346      //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
347      //            sizeof(XMMReg), data);
348      //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
349      //            sizeof(XMMReg), data);
350      //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
351      //            sizeof(XMMReg), data);
352      //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
353      //            sizeof(XMMReg), data);
354      //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
355      //            sizeof(XMMReg), data);
356      //
357      //            // Fill rest with zeros
358      //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
359      //            i)
360      //                data.PutChar(0);
361
362      // Write out the EXC registers
363      data.PutHex32(EXCRegSet);
364      data.PutHex32(EXCWordCount);
365      PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
366      PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
367      PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
368      return true;
369    }
370    return false;
371  }
372
373protected:
374  int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
375
376  int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
377
378  int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
379
380  int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
381    return 0;
382  }
383
384  int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
385    return 0;
386  }
387
388  int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
389    return 0;
390  }
391};
392
393class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
394public:
395  RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
396                                  const DataExtractor &data)
397      : RegisterContextDarwin_i386(thread, 0) {
398    SetRegisterDataFrom_LC_THREAD(data);
399  }
400
401  void InvalidateAllRegisters() override {
402    // Do nothing... registers are always valid...
403  }
404
405  void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
406    lldb::offset_t offset = 0;
407    SetError(GPRRegSet, Read, -1);
408    SetError(FPURegSet, Read, -1);
409    SetError(EXCRegSet, Read, -1);
410    bool done = false;
411
412    while (!done) {
413      int flavor = data.GetU32(&offset);
414      if (flavor == 0)
415        done = true;
416      else {
417        uint32_t i;
418        uint32_t count = data.GetU32(&offset);
419        switch (flavor) {
420        case GPRRegSet:
421          for (i = 0; i < count; ++i)
422            (&gpr.eax)[i] = data.GetU32(&offset);
423          SetError(GPRRegSet, Read, 0);
424          done = true;
425
426          break;
427        case FPURegSet:
428          // TODO: fill in FPU regs....
429          // SetError (FPURegSet, Read, -1);
430          done = true;
431
432          break;
433        case EXCRegSet:
434          exc.trapno = data.GetU32(&offset);
435          exc.err = data.GetU32(&offset);
436          exc.faultvaddr = data.GetU32(&offset);
437          SetError(EXCRegSet, Read, 0);
438          done = true;
439          break;
440        case 7:
441        case 8:
442        case 9:
443          // fancy flavors that encapsulate of the above flavors...
444          break;
445
446        default:
447          done = true;
448          break;
449        }
450      }
451    }
452  }
453
454  static bool Create_LC_THREAD(Thread *thread, Stream &data) {
455    RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
456    if (reg_ctx_sp) {
457      RegisterContext *reg_ctx = reg_ctx_sp.get();
458
459      data.PutHex32(GPRRegSet); // Flavor
460      data.PutHex32(GPRWordCount);
461      PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
462      PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
463      PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
464      PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
465      PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
466      PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
467      PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
468      PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
469      PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
470      PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
471      PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
472      PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
473      PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
474      PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
475      PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
476      PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
477
478      // Write out the EXC registers
479      data.PutHex32(EXCRegSet);
480      data.PutHex32(EXCWordCount);
481      PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
482      PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
483      PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
484      return true;
485    }
486    return false;
487  }
488
489protected:
490  int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
491
492  int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
493
494  int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
495
496  int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
497    return 0;
498  }
499
500  int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
501    return 0;
502  }
503
504  int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
505    return 0;
506  }
507};
508
509class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
510public:
511  RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
512                                 const DataExtractor &data)
513      : RegisterContextDarwin_arm(thread, 0) {
514    SetRegisterDataFrom_LC_THREAD(data);
515  }
516
517  void InvalidateAllRegisters() override {
518    // Do nothing... registers are always valid...
519  }
520
521  void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
522    lldb::offset_t offset = 0;
523    SetError(GPRRegSet, Read, -1);
524    SetError(FPURegSet, Read, -1);
525    SetError(EXCRegSet, Read, -1);
526    bool done = false;
527
528    while (!done) {
529      int flavor = data.GetU32(&offset);
530      uint32_t count = data.GetU32(&offset);
531      lldb::offset_t next_thread_state = offset + (count * 4);
532      switch (flavor) {
533      case GPRAltRegSet:
534      case GPRRegSet:
535        // On ARM, the CPSR register is also included in the count but it is
536        // not included in gpr.r so loop until (count-1).
537
538        // Prevent static analysis warnings by explicitly contstraining 'count'
539        // to acceptable range. Handle possible underflow of count-1
540        if (count > 0 && count <= sizeof(gpr.r) / sizeof(gpr.r[0])) {
541          for (uint32_t i = 0; i < (count - 1); ++i) {
542            gpr.r[i] = data.GetU32(&offset);
543          }
544        }
545        // Save cpsr explicitly.
546        gpr.cpsr = data.GetU32(&offset);
547
548        SetError(GPRRegSet, Read, 0);
549        offset = next_thread_state;
550        break;
551
552      case FPURegSet: {
553        uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats;
554        const int fpu_reg_buf_size = sizeof(fpu.floats);
555        if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
556                              fpu_reg_buf) == fpu_reg_buf_size) {
557          offset += fpu_reg_buf_size;
558          fpu.fpscr = data.GetU32(&offset);
559          SetError(FPURegSet, Read, 0);
560        } else {
561          done = true;
562        }
563      }
564        offset = next_thread_state;
565        break;
566
567      case EXCRegSet:
568        if (count == 3) {
569          exc.exception = data.GetU32(&offset);
570          exc.fsr = data.GetU32(&offset);
571          exc.far = data.GetU32(&offset);
572          SetError(EXCRegSet, Read, 0);
573        }
574        done = true;
575        offset = next_thread_state;
576        break;
577
578      // Unknown register set flavor, stop trying to parse.
579      default:
580        done = true;
581      }
582    }
583  }
584
585  static bool Create_LC_THREAD(Thread *thread, Stream &data) {
586    RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
587    if (reg_ctx_sp) {
588      RegisterContext *reg_ctx = reg_ctx_sp.get();
589
590      data.PutHex32(GPRRegSet); // Flavor
591      data.PutHex32(GPRWordCount);
592      PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
593      PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
594      PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
595      PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
596      PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
597      PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
598      PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
599      PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
600      PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
601      PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
602      PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
603      PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
604      PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
605      PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
606      PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
607      PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
608      PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
609
610      // Write out the EXC registers
611      //            data.PutHex32 (EXCRegSet);
612      //            data.PutHex32 (EXCWordCount);
613      //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
614      //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
615      //            WriteRegister (reg_ctx, "far", NULL, 4, data);
616      return true;
617    }
618    return false;
619  }
620
621protected:
622  int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
623
624  int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
625
626  int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
627
628  int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
629
630  int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
631    return 0;
632  }
633
634  int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
635    return 0;
636  }
637
638  int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
639    return 0;
640  }
641
642  int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
643    return -1;
644  }
645};
646
647class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
648public:
649  RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
650                                   const DataExtractor &data)
651      : RegisterContextDarwin_arm64(thread, 0) {
652    SetRegisterDataFrom_LC_THREAD(data);
653  }
654
655  void InvalidateAllRegisters() override {
656    // Do nothing... registers are always valid...
657  }
658
659  void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
660    lldb::offset_t offset = 0;
661    SetError(GPRRegSet, Read, -1);
662    SetError(FPURegSet, Read, -1);
663    SetError(EXCRegSet, Read, -1);
664    bool done = false;
665    while (!done) {
666      int flavor = data.GetU32(&offset);
667      uint32_t count = data.GetU32(&offset);
668      lldb::offset_t next_thread_state = offset + (count * 4);
669      switch (flavor) {
670      case GPRRegSet:
671        // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
672        // 32-bit register)
673        if (count >= (33 * 2) + 1) {
674          for (uint32_t i = 0; i < 29; ++i)
675            gpr.x[i] = data.GetU64(&offset);
676          gpr.fp = data.GetU64(&offset);
677          gpr.lr = data.GetU64(&offset);
678          gpr.sp = data.GetU64(&offset);
679          gpr.pc = data.GetU64(&offset);
680          gpr.cpsr = data.GetU32(&offset);
681          SetError(GPRRegSet, Read, 0);
682        }
683        offset = next_thread_state;
684        break;
685      case FPURegSet: {
686        uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
687        const int fpu_reg_buf_size = sizeof(fpu);
688        if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
689            data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
690                              fpu_reg_buf) == fpu_reg_buf_size) {
691          SetError(FPURegSet, Read, 0);
692        } else {
693          done = true;
694        }
695      }
696        offset = next_thread_state;
697        break;
698      case EXCRegSet:
699        if (count == 4) {
700          exc.far = data.GetU64(&offset);
701          exc.esr = data.GetU32(&offset);
702          exc.exception = data.GetU32(&offset);
703          SetError(EXCRegSet, Read, 0);
704        }
705        offset = next_thread_state;
706        break;
707      default:
708        done = true;
709        break;
710      }
711    }
712  }
713
714  static bool Create_LC_THREAD(Thread *thread, Stream &data) {
715    RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
716    if (reg_ctx_sp) {
717      RegisterContext *reg_ctx = reg_ctx_sp.get();
718
719      data.PutHex32(GPRRegSet); // Flavor
720      data.PutHex32(GPRWordCount);
721      PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
722      PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
723      PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
724      PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
725      PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
726      PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
727      PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
728      PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
729      PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
730      PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
731      PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
732      PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
733      PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
734      PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
735      PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
736      PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
737      PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
738      PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
739      PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
740      PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
741      PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
742      PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
743      PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
744      PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
745      PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
746      PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
747      PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
748      PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
749      PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
750      PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
751      PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
752      PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
753      PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
754      PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
755      data.PutHex32(0); // uint32_t pad at the end
756
757      // Write out the EXC registers
758      data.PutHex32(EXCRegSet);
759      data.PutHex32(EXCWordCount);
760      PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
761      PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
762      PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
763      return true;
764    }
765    return false;
766  }
767
768protected:
769  int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
770
771  int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
772
773  int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
774
775  int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
776
777  int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
778    return 0;
779  }
780
781  int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
782    return 0;
783  }
784
785  int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
786    return 0;
787  }
788
789  int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
790    return -1;
791  }
792};
793
794static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
795  switch (magic) {
796  case MH_MAGIC:
797  case MH_CIGAM:
798    return sizeof(struct llvm::MachO::mach_header);
799
800  case MH_MAGIC_64:
801  case MH_CIGAM_64:
802    return sizeof(struct llvm::MachO::mach_header_64);
803    break;
804
805  default:
806    break;
807  }
808  return 0;
809}
810
811#define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
812
813char ObjectFileMachO::ID;
814
815void ObjectFileMachO::Initialize() {
816  PluginManager::RegisterPlugin(
817      GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
818      CreateMemoryInstance, GetModuleSpecifications, SaveCore);
819}
820
821void ObjectFileMachO::Terminate() {
822  PluginManager::UnregisterPlugin(CreateInstance);
823}
824
825ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
826                                            DataBufferSP data_sp,
827                                            lldb::offset_t data_offset,
828                                            const FileSpec *file,
829                                            lldb::offset_t file_offset,
830                                            lldb::offset_t length) {
831  if (!data_sp) {
832    data_sp = MapFileData(*file, length, file_offset);
833    if (!data_sp)
834      return nullptr;
835    data_offset = 0;
836  }
837
838  if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
839    return nullptr;
840
841  // Update the data to contain the entire file if it doesn't already
842  if (data_sp->GetByteSize() < length) {
843    data_sp = MapFileData(*file, length, file_offset);
844    if (!data_sp)
845      return nullptr;
846    data_offset = 0;
847  }
848  auto objfile_up = std::make_unique<ObjectFileMachO>(
849      module_sp, data_sp, data_offset, file, file_offset, length);
850  if (!objfile_up || !objfile_up->ParseHeader())
851    return nullptr;
852
853  return objfile_up.release();
854}
855
856ObjectFile *ObjectFileMachO::CreateMemoryInstance(
857    const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
858    const ProcessSP &process_sp, lldb::addr_t header_addr) {
859  if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
860    std::unique_ptr<ObjectFile> objfile_up(
861        new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
862    if (objfile_up.get() && objfile_up->ParseHeader())
863      return objfile_up.release();
864  }
865  return nullptr;
866}
867
868size_t ObjectFileMachO::GetModuleSpecifications(
869    const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
870    lldb::offset_t data_offset, lldb::offset_t file_offset,
871    lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
872  const size_t initial_count = specs.GetSize();
873
874  if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
875    DataExtractor data;
876    data.SetData(data_sp);
877    llvm::MachO::mach_header header;
878    if (ParseHeader(data, &data_offset, header)) {
879      size_t header_and_load_cmds =
880          header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
881      if (header_and_load_cmds >= data_sp->GetByteSize()) {
882        data_sp = MapFileData(file, header_and_load_cmds, file_offset);
883        data.SetData(data_sp);
884        data_offset = MachHeaderSizeFromMagic(header.magic);
885      }
886      if (data_sp) {
887        ModuleSpec base_spec;
888        base_spec.GetFileSpec() = file;
889        base_spec.SetObjectOffset(file_offset);
890        base_spec.SetObjectSize(length);
891        GetAllArchSpecs(header, data, data_offset, base_spec, specs);
892      }
893    }
894  }
895  return specs.GetSize() - initial_count;
896}
897
898ConstString ObjectFileMachO::GetSegmentNameTEXT() {
899  static ConstString g_segment_name_TEXT("__TEXT");
900  return g_segment_name_TEXT;
901}
902
903ConstString ObjectFileMachO::GetSegmentNameDATA() {
904  static ConstString g_segment_name_DATA("__DATA");
905  return g_segment_name_DATA;
906}
907
908ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
909  static ConstString g_segment_name("__DATA_DIRTY");
910  return g_segment_name;
911}
912
913ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
914  static ConstString g_segment_name("__DATA_CONST");
915  return g_segment_name;
916}
917
918ConstString ObjectFileMachO::GetSegmentNameOBJC() {
919  static ConstString g_segment_name_OBJC("__OBJC");
920  return g_segment_name_OBJC;
921}
922
923ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
924  static ConstString g_section_name_LINKEDIT("__LINKEDIT");
925  return g_section_name_LINKEDIT;
926}
927
928ConstString ObjectFileMachO::GetSegmentNameDWARF() {
929  static ConstString g_section_name("__DWARF");
930  return g_section_name;
931}
932
933ConstString ObjectFileMachO::GetSectionNameEHFrame() {
934  static ConstString g_section_name_eh_frame("__eh_frame");
935  return g_section_name_eh_frame;
936}
937
938bool ObjectFileMachO::MagicBytesMatch(DataBufferSP data_sp,
939                                      lldb::addr_t data_offset,
940                                      lldb::addr_t data_length) {
941  DataExtractor data;
942  data.SetData(data_sp, data_offset, data_length);
943  lldb::offset_t offset = 0;
944  uint32_t magic = data.GetU32(&offset);
945
946  offset += 4; // cputype
947  offset += 4; // cpusubtype
948  uint32_t filetype = data.GetU32(&offset);
949
950  // A fileset has a Mach-O header but is not an
951  // individual file and must be handled via an
952  // ObjectContainer plugin.
953  if (filetype == llvm::MachO::MH_FILESET)
954    return false;
955
956  return MachHeaderSizeFromMagic(magic) != 0;
957}
958
959ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
960                                 DataBufferSP data_sp,
961                                 lldb::offset_t data_offset,
962                                 const FileSpec *file,
963                                 lldb::offset_t file_offset,
964                                 lldb::offset_t length)
965    : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
966      m_mach_segments(), m_mach_sections(), m_entry_point_address(),
967      m_thread_context_offsets(), m_thread_context_offsets_valid(false),
968      m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
969  ::memset(&m_header, 0, sizeof(m_header));
970  ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
971}
972
973ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
974                                 lldb::WritableDataBufferSP header_data_sp,
975                                 const lldb::ProcessSP &process_sp,
976                                 lldb::addr_t header_addr)
977    : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
978      m_mach_segments(), m_mach_sections(), m_entry_point_address(),
979      m_thread_context_offsets(), m_thread_context_offsets_valid(false),
980      m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
981  ::memset(&m_header, 0, sizeof(m_header));
982  ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
983}
984
985bool ObjectFileMachO::ParseHeader(DataExtractor &data,
986                                  lldb::offset_t *data_offset_ptr,
987                                  llvm::MachO::mach_header &header) {
988  data.SetByteOrder(endian::InlHostByteOrder());
989  // Leave magic in the original byte order
990  header.magic = data.GetU32(data_offset_ptr);
991  bool can_parse = false;
992  bool is_64_bit = false;
993  switch (header.magic) {
994  case MH_MAGIC:
995    data.SetByteOrder(endian::InlHostByteOrder());
996    data.SetAddressByteSize(4);
997    can_parse = true;
998    break;
999
1000  case MH_MAGIC_64:
1001    data.SetByteOrder(endian::InlHostByteOrder());
1002    data.SetAddressByteSize(8);
1003    can_parse = true;
1004    is_64_bit = true;
1005    break;
1006
1007  case MH_CIGAM:
1008    data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1009                          ? eByteOrderLittle
1010                          : eByteOrderBig);
1011    data.SetAddressByteSize(4);
1012    can_parse = true;
1013    break;
1014
1015  case MH_CIGAM_64:
1016    data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1017                          ? eByteOrderLittle
1018                          : eByteOrderBig);
1019    data.SetAddressByteSize(8);
1020    is_64_bit = true;
1021    can_parse = true;
1022    break;
1023
1024  default:
1025    break;
1026  }
1027
1028  if (can_parse) {
1029    data.GetU32(data_offset_ptr, &header.cputype, 6);
1030    if (is_64_bit)
1031      *data_offset_ptr += 4;
1032    return true;
1033  } else {
1034    memset(&header, 0, sizeof(header));
1035  }
1036  return false;
1037}
1038
1039bool ObjectFileMachO::ParseHeader() {
1040  ModuleSP module_sp(GetModule());
1041  if (!module_sp)
1042    return false;
1043
1044  std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1045  bool can_parse = false;
1046  lldb::offset_t offset = 0;
1047  m_data.SetByteOrder(endian::InlHostByteOrder());
1048  // Leave magic in the original byte order
1049  m_header.magic = m_data.GetU32(&offset);
1050  switch (m_header.magic) {
1051  case MH_MAGIC:
1052    m_data.SetByteOrder(endian::InlHostByteOrder());
1053    m_data.SetAddressByteSize(4);
1054    can_parse = true;
1055    break;
1056
1057  case MH_MAGIC_64:
1058    m_data.SetByteOrder(endian::InlHostByteOrder());
1059    m_data.SetAddressByteSize(8);
1060    can_parse = true;
1061    break;
1062
1063  case MH_CIGAM:
1064    m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1065                            ? eByteOrderLittle
1066                            : eByteOrderBig);
1067    m_data.SetAddressByteSize(4);
1068    can_parse = true;
1069    break;
1070
1071  case MH_CIGAM_64:
1072    m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1073                            ? eByteOrderLittle
1074                            : eByteOrderBig);
1075    m_data.SetAddressByteSize(8);
1076    can_parse = true;
1077    break;
1078
1079  default:
1080    break;
1081  }
1082
1083  if (can_parse) {
1084    m_data.GetU32(&offset, &m_header.cputype, 6);
1085
1086    ModuleSpecList all_specs;
1087    ModuleSpec base_spec;
1088    GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1089                    base_spec, all_specs);
1090
1091    for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1092      ArchSpec mach_arch =
1093          all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1094
1095      // Check if the module has a required architecture
1096      const ArchSpec &module_arch = module_sp->GetArchitecture();
1097      if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1098        continue;
1099
1100      if (SetModulesArchitecture(mach_arch)) {
1101        const size_t header_and_lc_size =
1102            m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1103        if (m_data.GetByteSize() < header_and_lc_size) {
1104          DataBufferSP data_sp;
1105          ProcessSP process_sp(m_process_wp.lock());
1106          if (process_sp) {
1107            data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1108          } else {
1109            // Read in all only the load command data from the file on disk
1110            data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1111            if (data_sp->GetByteSize() != header_and_lc_size)
1112              continue;
1113          }
1114          if (data_sp)
1115            m_data.SetData(data_sp);
1116        }
1117      }
1118      return true;
1119    }
1120    // None found.
1121    return false;
1122  } else {
1123    memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1124  }
1125  return false;
1126}
1127
1128ByteOrder ObjectFileMachO::GetByteOrder() const {
1129  return m_data.GetByteOrder();
1130}
1131
1132bool ObjectFileMachO::IsExecutable() const {
1133  return m_header.filetype == MH_EXECUTE;
1134}
1135
1136bool ObjectFileMachO::IsDynamicLoader() const {
1137  return m_header.filetype == MH_DYLINKER;
1138}
1139
1140bool ObjectFileMachO::IsSharedCacheBinary() const {
1141  return m_header.flags & MH_DYLIB_IN_CACHE;
1142}
1143
1144uint32_t ObjectFileMachO::GetAddressByteSize() const {
1145  return m_data.GetAddressByteSize();
1146}
1147
1148AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1149  Symtab *symtab = GetSymtab();
1150  if (!symtab)
1151    return AddressClass::eUnknown;
1152
1153  Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1154  if (symbol) {
1155    if (symbol->ValueIsAddress()) {
1156      SectionSP section_sp(symbol->GetAddressRef().GetSection());
1157      if (section_sp) {
1158        const lldb::SectionType section_type = section_sp->GetType();
1159        switch (section_type) {
1160        case eSectionTypeInvalid:
1161          return AddressClass::eUnknown;
1162
1163        case eSectionTypeCode:
1164          if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1165            // For ARM we have a bit in the n_desc field of the symbol that
1166            // tells us ARM/Thumb which is bit 0x0008.
1167            if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1168              return AddressClass::eCodeAlternateISA;
1169          }
1170          return AddressClass::eCode;
1171
1172        case eSectionTypeContainer:
1173          return AddressClass::eUnknown;
1174
1175        case eSectionTypeData:
1176        case eSectionTypeDataCString:
1177        case eSectionTypeDataCStringPointers:
1178        case eSectionTypeDataSymbolAddress:
1179        case eSectionTypeData4:
1180        case eSectionTypeData8:
1181        case eSectionTypeData16:
1182        case eSectionTypeDataPointers:
1183        case eSectionTypeZeroFill:
1184        case eSectionTypeDataObjCMessageRefs:
1185        case eSectionTypeDataObjCCFStrings:
1186        case eSectionTypeGoSymtab:
1187          return AddressClass::eData;
1188
1189        case eSectionTypeDebug:
1190        case eSectionTypeDWARFDebugAbbrev:
1191        case eSectionTypeDWARFDebugAbbrevDwo:
1192        case eSectionTypeDWARFDebugAddr:
1193        case eSectionTypeDWARFDebugAranges:
1194        case eSectionTypeDWARFDebugCuIndex:
1195        case eSectionTypeDWARFDebugFrame:
1196        case eSectionTypeDWARFDebugInfo:
1197        case eSectionTypeDWARFDebugInfoDwo:
1198        case eSectionTypeDWARFDebugLine:
1199        case eSectionTypeDWARFDebugLineStr:
1200        case eSectionTypeDWARFDebugLoc:
1201        case eSectionTypeDWARFDebugLocDwo:
1202        case eSectionTypeDWARFDebugLocLists:
1203        case eSectionTypeDWARFDebugLocListsDwo:
1204        case eSectionTypeDWARFDebugMacInfo:
1205        case eSectionTypeDWARFDebugMacro:
1206        case eSectionTypeDWARFDebugNames:
1207        case eSectionTypeDWARFDebugPubNames:
1208        case eSectionTypeDWARFDebugPubTypes:
1209        case eSectionTypeDWARFDebugRanges:
1210        case eSectionTypeDWARFDebugRngLists:
1211        case eSectionTypeDWARFDebugRngListsDwo:
1212        case eSectionTypeDWARFDebugStr:
1213        case eSectionTypeDWARFDebugStrDwo:
1214        case eSectionTypeDWARFDebugStrOffsets:
1215        case eSectionTypeDWARFDebugStrOffsetsDwo:
1216        case eSectionTypeDWARFDebugTuIndex:
1217        case eSectionTypeDWARFDebugTypes:
1218        case eSectionTypeDWARFDebugTypesDwo:
1219        case eSectionTypeDWARFAppleNames:
1220        case eSectionTypeDWARFAppleTypes:
1221        case eSectionTypeDWARFAppleNamespaces:
1222        case eSectionTypeDWARFAppleObjC:
1223        case eSectionTypeDWARFGNUDebugAltLink:
1224          return AddressClass::eDebug;
1225
1226        case eSectionTypeEHFrame:
1227        case eSectionTypeARMexidx:
1228        case eSectionTypeARMextab:
1229        case eSectionTypeCompactUnwind:
1230          return AddressClass::eRuntime;
1231
1232        case eSectionTypeAbsoluteAddress:
1233        case eSectionTypeELFSymbolTable:
1234        case eSectionTypeELFDynamicSymbols:
1235        case eSectionTypeELFRelocationEntries:
1236        case eSectionTypeELFDynamicLinkInfo:
1237        case eSectionTypeOther:
1238          return AddressClass::eUnknown;
1239        }
1240      }
1241    }
1242
1243    const SymbolType symbol_type = symbol->GetType();
1244    switch (symbol_type) {
1245    case eSymbolTypeAny:
1246      return AddressClass::eUnknown;
1247    case eSymbolTypeAbsolute:
1248      return AddressClass::eUnknown;
1249
1250    case eSymbolTypeCode:
1251    case eSymbolTypeTrampoline:
1252    case eSymbolTypeResolver:
1253      if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1254        // For ARM we have a bit in the n_desc field of the symbol that tells
1255        // us ARM/Thumb which is bit 0x0008.
1256        if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1257          return AddressClass::eCodeAlternateISA;
1258      }
1259      return AddressClass::eCode;
1260
1261    case eSymbolTypeData:
1262      return AddressClass::eData;
1263    case eSymbolTypeRuntime:
1264      return AddressClass::eRuntime;
1265    case eSymbolTypeException:
1266      return AddressClass::eRuntime;
1267    case eSymbolTypeSourceFile:
1268      return AddressClass::eDebug;
1269    case eSymbolTypeHeaderFile:
1270      return AddressClass::eDebug;
1271    case eSymbolTypeObjectFile:
1272      return AddressClass::eDebug;
1273    case eSymbolTypeCommonBlock:
1274      return AddressClass::eDebug;
1275    case eSymbolTypeBlock:
1276      return AddressClass::eDebug;
1277    case eSymbolTypeLocal:
1278      return AddressClass::eData;
1279    case eSymbolTypeParam:
1280      return AddressClass::eData;
1281    case eSymbolTypeVariable:
1282      return AddressClass::eData;
1283    case eSymbolTypeVariableType:
1284      return AddressClass::eDebug;
1285    case eSymbolTypeLineEntry:
1286      return AddressClass::eDebug;
1287    case eSymbolTypeLineHeader:
1288      return AddressClass::eDebug;
1289    case eSymbolTypeScopeBegin:
1290      return AddressClass::eDebug;
1291    case eSymbolTypeScopeEnd:
1292      return AddressClass::eDebug;
1293    case eSymbolTypeAdditional:
1294      return AddressClass::eUnknown;
1295    case eSymbolTypeCompiler:
1296      return AddressClass::eDebug;
1297    case eSymbolTypeInstrumentation:
1298      return AddressClass::eDebug;
1299    case eSymbolTypeUndefined:
1300      return AddressClass::eUnknown;
1301    case eSymbolTypeObjCClass:
1302      return AddressClass::eRuntime;
1303    case eSymbolTypeObjCMetaClass:
1304      return AddressClass::eRuntime;
1305    case eSymbolTypeObjCIVar:
1306      return AddressClass::eRuntime;
1307    case eSymbolTypeReExported:
1308      return AddressClass::eRuntime;
1309    }
1310  }
1311  return AddressClass::eUnknown;
1312}
1313
1314bool ObjectFileMachO::IsStripped() {
1315  if (m_dysymtab.cmd == 0) {
1316    ModuleSP module_sp(GetModule());
1317    if (module_sp) {
1318      lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1319      for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1320        const lldb::offset_t load_cmd_offset = offset;
1321
1322        llvm::MachO::load_command lc = {};
1323        if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1324          break;
1325        if (lc.cmd == LC_DYSYMTAB) {
1326          m_dysymtab.cmd = lc.cmd;
1327          m_dysymtab.cmdsize = lc.cmdsize;
1328          if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1329                            (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1330              nullptr) {
1331            // Clear m_dysymtab if we were unable to read all items from the
1332            // load command
1333            ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1334          }
1335        }
1336        offset = load_cmd_offset + lc.cmdsize;
1337      }
1338    }
1339  }
1340  if (m_dysymtab.cmd)
1341    return m_dysymtab.nlocalsym <= 1;
1342  return false;
1343}
1344
1345ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1346  EncryptedFileRanges result;
1347  lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1348
1349  llvm::MachO::encryption_info_command encryption_cmd;
1350  for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1351    const lldb::offset_t load_cmd_offset = offset;
1352    if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1353      break;
1354
1355    // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1356    // 3 fields we care about, so treat them the same.
1357    if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1358        encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1359      if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1360        if (encryption_cmd.cryptid != 0) {
1361          EncryptedFileRanges::Entry entry;
1362          entry.SetRangeBase(encryption_cmd.cryptoff);
1363          entry.SetByteSize(encryption_cmd.cryptsize);
1364          result.Append(entry);
1365        }
1366      }
1367    }
1368    offset = load_cmd_offset + encryption_cmd.cmdsize;
1369  }
1370
1371  return result;
1372}
1373
1374void ObjectFileMachO::SanitizeSegmentCommand(
1375    llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1376  if (m_length == 0 || seg_cmd.filesize == 0)
1377    return;
1378
1379  if (IsSharedCacheBinary() && !IsInMemory()) {
1380    // In shared cache images, the load commands are relative to the
1381    // shared cache file, and not the specific image we are
1382    // examining. Let's fix this up so that it looks like a normal
1383    // image.
1384    if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1385      m_text_address = seg_cmd.vmaddr;
1386    if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1387      m_linkedit_original_offset = seg_cmd.fileoff;
1388
1389    seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1390  }
1391
1392  if (seg_cmd.fileoff > m_length) {
1393    // We have a load command that says it extends past the end of the file.
1394    // This is likely a corrupt file.  We don't have any way to return an error
1395    // condition here (this method was likely invoked from something like
1396    // ObjectFile::GetSectionList()), so we just null out the section contents,
1397    // and dump a message to stdout.  The most common case here is core file
1398    // debugging with a truncated file.
1399    const char *lc_segment_name =
1400        seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1401    GetModule()->ReportWarning(
1402        "load command {0} {1} has a fileoff ({2:x16}) that extends beyond "
1403        "the end of the file ({3:x16}), ignoring this section",
1404        cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1405
1406    seg_cmd.fileoff = 0;
1407    seg_cmd.filesize = 0;
1408  }
1409
1410  if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1411    // We have a load command that says it extends past the end of the file.
1412    // This is likely a corrupt file.  We don't have any way to return an error
1413    // condition here (this method was likely invoked from something like
1414    // ObjectFile::GetSectionList()), so we just null out the section contents,
1415    // and dump a message to stdout.  The most common case here is core file
1416    // debugging with a truncated file.
1417    const char *lc_segment_name =
1418        seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1419    GetModule()->ReportWarning(
1420        "load command {0} {1} has a fileoff + filesize ({2:x16}) that "
1421        "extends beyond the end of the file ({4:x16}), the segment will be "
1422        "truncated to match",
1423        cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1424
1425    // Truncate the length
1426    seg_cmd.filesize = m_length - seg_cmd.fileoff;
1427  }
1428}
1429
1430static uint32_t
1431GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1432  uint32_t result = 0;
1433  if (seg_cmd.initprot & VM_PROT_READ)
1434    result |= ePermissionsReadable;
1435  if (seg_cmd.initprot & VM_PROT_WRITE)
1436    result |= ePermissionsWritable;
1437  if (seg_cmd.initprot & VM_PROT_EXECUTE)
1438    result |= ePermissionsExecutable;
1439  return result;
1440}
1441
1442static lldb::SectionType GetSectionType(uint32_t flags,
1443                                        ConstString section_name) {
1444
1445  if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1446    return eSectionTypeCode;
1447
1448  uint32_t mach_sect_type = flags & SECTION_TYPE;
1449  static ConstString g_sect_name_objc_data("__objc_data");
1450  static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1451  static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1452  static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1453  static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1454  static ConstString g_sect_name_objc_const("__objc_const");
1455  static ConstString g_sect_name_objc_classlist("__objc_classlist");
1456  static ConstString g_sect_name_cfstring("__cfstring");
1457
1458  static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1459  static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1460  static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1461  static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1462  static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1463  static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1464  static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1465  static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1466  static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1467  static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1468  static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1469  static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1470  static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1471  static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1472  static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1473  static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1474  static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1475  static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1476  static ConstString g_sect_name_eh_frame("__eh_frame");
1477  static ConstString g_sect_name_compact_unwind("__unwind_info");
1478  static ConstString g_sect_name_text("__text");
1479  static ConstString g_sect_name_data("__data");
1480  static ConstString g_sect_name_go_symtab("__gosymtab");
1481
1482  if (section_name == g_sect_name_dwarf_debug_abbrev)
1483    return eSectionTypeDWARFDebugAbbrev;
1484  if (section_name == g_sect_name_dwarf_debug_aranges)
1485    return eSectionTypeDWARFDebugAranges;
1486  if (section_name == g_sect_name_dwarf_debug_frame)
1487    return eSectionTypeDWARFDebugFrame;
1488  if (section_name == g_sect_name_dwarf_debug_info)
1489    return eSectionTypeDWARFDebugInfo;
1490  if (section_name == g_sect_name_dwarf_debug_line)
1491    return eSectionTypeDWARFDebugLine;
1492  if (section_name == g_sect_name_dwarf_debug_loc)
1493    return eSectionTypeDWARFDebugLoc;
1494  if (section_name == g_sect_name_dwarf_debug_loclists)
1495    return eSectionTypeDWARFDebugLocLists;
1496  if (section_name == g_sect_name_dwarf_debug_macinfo)
1497    return eSectionTypeDWARFDebugMacInfo;
1498  if (section_name == g_sect_name_dwarf_debug_names)
1499    return eSectionTypeDWARFDebugNames;
1500  if (section_name == g_sect_name_dwarf_debug_pubnames)
1501    return eSectionTypeDWARFDebugPubNames;
1502  if (section_name == g_sect_name_dwarf_debug_pubtypes)
1503    return eSectionTypeDWARFDebugPubTypes;
1504  if (section_name == g_sect_name_dwarf_debug_ranges)
1505    return eSectionTypeDWARFDebugRanges;
1506  if (section_name == g_sect_name_dwarf_debug_str)
1507    return eSectionTypeDWARFDebugStr;
1508  if (section_name == g_sect_name_dwarf_debug_types)
1509    return eSectionTypeDWARFDebugTypes;
1510  if (section_name == g_sect_name_dwarf_apple_names)
1511    return eSectionTypeDWARFAppleNames;
1512  if (section_name == g_sect_name_dwarf_apple_types)
1513    return eSectionTypeDWARFAppleTypes;
1514  if (section_name == g_sect_name_dwarf_apple_namespaces)
1515    return eSectionTypeDWARFAppleNamespaces;
1516  if (section_name == g_sect_name_dwarf_apple_objc)
1517    return eSectionTypeDWARFAppleObjC;
1518  if (section_name == g_sect_name_objc_selrefs)
1519    return eSectionTypeDataCStringPointers;
1520  if (section_name == g_sect_name_objc_msgrefs)
1521    return eSectionTypeDataObjCMessageRefs;
1522  if (section_name == g_sect_name_eh_frame)
1523    return eSectionTypeEHFrame;
1524  if (section_name == g_sect_name_compact_unwind)
1525    return eSectionTypeCompactUnwind;
1526  if (section_name == g_sect_name_cfstring)
1527    return eSectionTypeDataObjCCFStrings;
1528  if (section_name == g_sect_name_go_symtab)
1529    return eSectionTypeGoSymtab;
1530  if (section_name == g_sect_name_objc_data ||
1531      section_name == g_sect_name_objc_classrefs ||
1532      section_name == g_sect_name_objc_superrefs ||
1533      section_name == g_sect_name_objc_const ||
1534      section_name == g_sect_name_objc_classlist) {
1535    return eSectionTypeDataPointers;
1536  }
1537
1538  switch (mach_sect_type) {
1539  // TODO: categorize sections by other flags for regular sections
1540  case S_REGULAR:
1541    if (section_name == g_sect_name_text)
1542      return eSectionTypeCode;
1543    if (section_name == g_sect_name_data)
1544      return eSectionTypeData;
1545    return eSectionTypeOther;
1546  case S_ZEROFILL:
1547    return eSectionTypeZeroFill;
1548  case S_CSTRING_LITERALS: // section with only literal C strings
1549    return eSectionTypeDataCString;
1550  case S_4BYTE_LITERALS: // section with only 4 byte literals
1551    return eSectionTypeData4;
1552  case S_8BYTE_LITERALS: // section with only 8 byte literals
1553    return eSectionTypeData8;
1554  case S_LITERAL_POINTERS: // section with only pointers to literals
1555    return eSectionTypeDataPointers;
1556  case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1557    return eSectionTypeDataPointers;
1558  case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1559    return eSectionTypeDataPointers;
1560  case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1561                       // the reserved2 field
1562    return eSectionTypeCode;
1563  case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1564                                 // initialization
1565    return eSectionTypeDataPointers;
1566  case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1567                                 // termination
1568    return eSectionTypeDataPointers;
1569  case S_COALESCED:
1570    return eSectionTypeOther;
1571  case S_GB_ZEROFILL:
1572    return eSectionTypeZeroFill;
1573  case S_INTERPOSING: // section with only pairs of function pointers for
1574                      // interposing
1575    return eSectionTypeCode;
1576  case S_16BYTE_LITERALS: // section with only 16 byte literals
1577    return eSectionTypeData16;
1578  case S_DTRACE_DOF:
1579    return eSectionTypeDebug;
1580  case S_LAZY_DYLIB_SYMBOL_POINTERS:
1581    return eSectionTypeDataPointers;
1582  default:
1583    return eSectionTypeOther;
1584  }
1585}
1586
1587struct ObjectFileMachO::SegmentParsingContext {
1588  const EncryptedFileRanges EncryptedRanges;
1589  lldb_private::SectionList &UnifiedList;
1590  uint32_t NextSegmentIdx = 0;
1591  uint32_t NextSectionIdx = 0;
1592  bool FileAddressesChanged = false;
1593
1594  SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1595                        lldb_private::SectionList &UnifiedList)
1596      : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1597};
1598
1599void ObjectFileMachO::ProcessSegmentCommand(
1600    const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1601    uint32_t cmd_idx, SegmentParsingContext &context) {
1602  llvm::MachO::segment_command_64 load_cmd;
1603  memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1604
1605  if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1606    return;
1607
1608  ModuleSP module_sp = GetModule();
1609  const bool is_core = GetType() == eTypeCoreFile;
1610  const bool is_dsym = (m_header.filetype == MH_DSYM);
1611  bool add_section = true;
1612  bool add_to_unified = true;
1613  ConstString const_segname(
1614      load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1615
1616  SectionSP unified_section_sp(
1617      context.UnifiedList.FindSectionByName(const_segname));
1618  if (is_dsym && unified_section_sp) {
1619    if (const_segname == GetSegmentNameLINKEDIT()) {
1620      // We need to keep the __LINKEDIT segment private to this object file
1621      // only
1622      add_to_unified = false;
1623    } else {
1624      // This is the dSYM file and this section has already been created by the
1625      // object file, no need to create it.
1626      add_section = false;
1627    }
1628  }
1629  load_cmd.vmaddr = m_data.GetAddress(&offset);
1630  load_cmd.vmsize = m_data.GetAddress(&offset);
1631  load_cmd.fileoff = m_data.GetAddress(&offset);
1632  load_cmd.filesize = m_data.GetAddress(&offset);
1633  if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1634    return;
1635
1636  SanitizeSegmentCommand(load_cmd, cmd_idx);
1637
1638  const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1639  const bool segment_is_encrypted =
1640      (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1641
1642  // Keep a list of mach segments around in case we need to get at data that
1643  // isn't stored in the abstracted Sections.
1644  m_mach_segments.push_back(load_cmd);
1645
1646  // Use a segment ID of the segment index shifted left by 8 so they never
1647  // conflict with any of the sections.
1648  SectionSP segment_sp;
1649  if (add_section && (const_segname || is_core)) {
1650    segment_sp = std::make_shared<Section>(
1651        module_sp, // Module to which this section belongs
1652        this,      // Object file to which this sections belongs
1653        ++context.NextSegmentIdx
1654            << 8, // Section ID is the 1 based segment index
1655        // shifted right by 8 bits as not to collide with any of the 256
1656        // section IDs that are possible
1657        const_segname,         // Name of this section
1658        eSectionTypeContainer, // This section is a container of other
1659        // sections.
1660        load_cmd.vmaddr, // File VM address == addresses as they are
1661        // found in the object file
1662        load_cmd.vmsize,  // VM size in bytes of this section
1663        load_cmd.fileoff, // Offset to the data for this section in
1664        // the file
1665        load_cmd.filesize, // Size in bytes of this section as found
1666        // in the file
1667        0,               // Segments have no alignment information
1668        load_cmd.flags); // Flags for this section
1669
1670    segment_sp->SetIsEncrypted(segment_is_encrypted);
1671    m_sections_up->AddSection(segment_sp);
1672    segment_sp->SetPermissions(segment_permissions);
1673    if (add_to_unified)
1674      context.UnifiedList.AddSection(segment_sp);
1675  } else if (unified_section_sp) {
1676    // If this is a dSYM and the file addresses in the dSYM differ from the
1677    // file addresses in the ObjectFile, we must use the file base address for
1678    // the Section from the dSYM for the DWARF to resolve correctly.
1679    // This only happens with binaries in the shared cache in practice;
1680    // normally a mismatch like this would give a binary & dSYM that do not
1681    // match UUIDs. When a binary is included in the shared cache, its
1682    // segments are rearranged to optimize the shared cache, so its file
1683    // addresses will differ from what the ObjectFile had originally,
1684    // and what the dSYM has.
1685    if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1686      Log *log = GetLog(LLDBLog::Symbols);
1687      if (log) {
1688        log->Printf(
1689            "Installing dSYM's %s segment file address over ObjectFile's "
1690            "so symbol table/debug info resolves correctly for %s",
1691            const_segname.AsCString(),
1692            module_sp->GetFileSpec().GetFilename().AsCString());
1693      }
1694
1695      // Make sure we've parsed the symbol table from the ObjectFile before
1696      // we go around changing its Sections.
1697      module_sp->GetObjectFile()->GetSymtab();
1698      // eh_frame would present the same problems but we parse that on a per-
1699      // function basis as-needed so it's more difficult to remove its use of
1700      // the Sections.  Realistically, the environments where this code path
1701      // will be taken will not have eh_frame sections.
1702
1703      unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1704
1705      // Notify the module that the section addresses have been changed once
1706      // we're done so any file-address caches can be updated.
1707      context.FileAddressesChanged = true;
1708    }
1709    m_sections_up->AddSection(unified_section_sp);
1710  }
1711
1712  llvm::MachO::section_64 sect64;
1713  ::memset(&sect64, 0, sizeof(sect64));
1714  // Push a section into our mach sections for the section at index zero
1715  // (NO_SECT) if we don't have any mach sections yet...
1716  if (m_mach_sections.empty())
1717    m_mach_sections.push_back(sect64);
1718  uint32_t segment_sect_idx;
1719  const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1720
1721  const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1722  for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1723       ++segment_sect_idx) {
1724    if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1725                     sizeof(sect64.sectname)) == nullptr)
1726      break;
1727    if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1728                     sizeof(sect64.segname)) == nullptr)
1729      break;
1730    sect64.addr = m_data.GetAddress(&offset);
1731    sect64.size = m_data.GetAddress(&offset);
1732
1733    if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1734      break;
1735
1736    if (IsSharedCacheBinary() && !IsInMemory()) {
1737      sect64.offset = sect64.addr - m_text_address;
1738    }
1739
1740    // Keep a list of mach sections around in case we need to get at data that
1741    // isn't stored in the abstracted Sections.
1742    m_mach_sections.push_back(sect64);
1743
1744    if (add_section) {
1745      ConstString section_name(
1746          sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1747      if (!const_segname) {
1748        // We have a segment with no name so we need to conjure up segments
1749        // that correspond to the section's segname if there isn't already such
1750        // a section. If there is such a section, we resize the section so that
1751        // it spans all sections.  We also mark these sections as fake so
1752        // address matches don't hit if they land in the gaps between the child
1753        // sections.
1754        const_segname.SetTrimmedCStringWithLength(sect64.segname,
1755                                                  sizeof(sect64.segname));
1756        segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1757        if (segment_sp.get()) {
1758          Section *segment = segment_sp.get();
1759          // Grow the section size as needed.
1760          const lldb::addr_t sect64_min_addr = sect64.addr;
1761          const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1762          const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1763          const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1764          const lldb::addr_t curr_seg_max_addr =
1765              curr_seg_min_addr + curr_seg_byte_size;
1766          if (sect64_min_addr >= curr_seg_min_addr) {
1767            const lldb::addr_t new_seg_byte_size =
1768                sect64_max_addr - curr_seg_min_addr;
1769            // Only grow the section size if needed
1770            if (new_seg_byte_size > curr_seg_byte_size)
1771              segment->SetByteSize(new_seg_byte_size);
1772          } else {
1773            // We need to change the base address of the segment and adjust the
1774            // child section offsets for all existing children.
1775            const lldb::addr_t slide_amount =
1776                sect64_min_addr - curr_seg_min_addr;
1777            segment->Slide(slide_amount, false);
1778            segment->GetChildren().Slide(-slide_amount, false);
1779            segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1780          }
1781
1782          // Grow the section size as needed.
1783          if (sect64.offset) {
1784            const lldb::addr_t segment_min_file_offset =
1785                segment->GetFileOffset();
1786            const lldb::addr_t segment_max_file_offset =
1787                segment_min_file_offset + segment->GetFileSize();
1788
1789            const lldb::addr_t section_min_file_offset = sect64.offset;
1790            const lldb::addr_t section_max_file_offset =
1791                section_min_file_offset + sect64.size;
1792            const lldb::addr_t new_file_offset =
1793                std::min(section_min_file_offset, segment_min_file_offset);
1794            const lldb::addr_t new_file_size =
1795                std::max(section_max_file_offset, segment_max_file_offset) -
1796                new_file_offset;
1797            segment->SetFileOffset(new_file_offset);
1798            segment->SetFileSize(new_file_size);
1799          }
1800        } else {
1801          // Create a fake section for the section's named segment
1802          segment_sp = std::make_shared<Section>(
1803              segment_sp, // Parent section
1804              module_sp,  // Module to which this section belongs
1805              this,       // Object file to which this section belongs
1806              ++context.NextSegmentIdx
1807                  << 8, // Section ID is the 1 based segment index
1808              // shifted right by 8 bits as not to
1809              // collide with any of the 256 section IDs
1810              // that are possible
1811              const_segname,         // Name of this section
1812              eSectionTypeContainer, // This section is a container of
1813              // other sections.
1814              sect64.addr, // File VM address == addresses as they are
1815              // found in the object file
1816              sect64.size,   // VM size in bytes of this section
1817              sect64.offset, // Offset to the data for this section in
1818              // the file
1819              sect64.offset ? sect64.size : 0, // Size in bytes of
1820              // this section as
1821              // found in the file
1822              sect64.align,
1823              load_cmd.flags); // Flags for this section
1824          segment_sp->SetIsFake(true);
1825          segment_sp->SetPermissions(segment_permissions);
1826          m_sections_up->AddSection(segment_sp);
1827          if (add_to_unified)
1828            context.UnifiedList.AddSection(segment_sp);
1829          segment_sp->SetIsEncrypted(segment_is_encrypted);
1830        }
1831      }
1832      assert(segment_sp.get());
1833
1834      lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1835
1836      SectionSP section_sp(new Section(
1837          segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1838          sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1839          sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1840          sect64.flags));
1841      // Set the section to be encrypted to match the segment
1842
1843      bool section_is_encrypted = false;
1844      if (!segment_is_encrypted && load_cmd.filesize != 0)
1845        section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1846                                   sect64.offset) != nullptr;
1847
1848      section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1849      section_sp->SetPermissions(segment_permissions);
1850      segment_sp->GetChildren().AddSection(section_sp);
1851
1852      if (segment_sp->IsFake()) {
1853        segment_sp.reset();
1854        const_segname.Clear();
1855      }
1856    }
1857  }
1858  if (segment_sp && is_dsym) {
1859    if (first_segment_sectID <= context.NextSectionIdx) {
1860      lldb::user_id_t sect_uid;
1861      for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1862           ++sect_uid) {
1863        SectionSP curr_section_sp(
1864            segment_sp->GetChildren().FindSectionByID(sect_uid));
1865        SectionSP next_section_sp;
1866        if (sect_uid + 1 <= context.NextSectionIdx)
1867          next_section_sp =
1868              segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1869
1870        if (curr_section_sp.get()) {
1871          if (curr_section_sp->GetByteSize() == 0) {
1872            if (next_section_sp.get() != nullptr)
1873              curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1874                                           curr_section_sp->GetFileAddress());
1875            else
1876              curr_section_sp->SetByteSize(load_cmd.vmsize);
1877          }
1878        }
1879      }
1880    }
1881  }
1882}
1883
1884void ObjectFileMachO::ProcessDysymtabCommand(
1885    const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1886  m_dysymtab.cmd = load_cmd.cmd;
1887  m_dysymtab.cmdsize = load_cmd.cmdsize;
1888  m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1889                (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1890}
1891
1892void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1893  if (m_sections_up)
1894    return;
1895
1896  m_sections_up = std::make_unique<SectionList>();
1897
1898  lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1899  // bool dump_sections = false;
1900  ModuleSP module_sp(GetModule());
1901
1902  offset = MachHeaderSizeFromMagic(m_header.magic);
1903
1904  SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1905  llvm::MachO::load_command load_cmd;
1906  for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1907    const lldb::offset_t load_cmd_offset = offset;
1908    if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1909      break;
1910
1911    if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1912      ProcessSegmentCommand(load_cmd, offset, i, context);
1913    else if (load_cmd.cmd == LC_DYSYMTAB)
1914      ProcessDysymtabCommand(load_cmd, offset);
1915
1916    offset = load_cmd_offset + load_cmd.cmdsize;
1917  }
1918
1919  if (context.FileAddressesChanged && module_sp)
1920    module_sp->SectionFileAddressesChanged();
1921}
1922
1923class MachSymtabSectionInfo {
1924public:
1925  MachSymtabSectionInfo(SectionList *section_list)
1926      : m_section_list(section_list), m_section_infos() {
1927    // Get the number of sections down to a depth of 1 to include all segments
1928    // and their sections, but no other sections that may be added for debug
1929    // map or
1930    m_section_infos.resize(section_list->GetNumSections(1));
1931  }
1932
1933  SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1934    if (n_sect == 0)
1935      return SectionSP();
1936    if (n_sect < m_section_infos.size()) {
1937      if (!m_section_infos[n_sect].section_sp) {
1938        SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1939        m_section_infos[n_sect].section_sp = section_sp;
1940        if (section_sp) {
1941          m_section_infos[n_sect].vm_range.SetBaseAddress(
1942              section_sp->GetFileAddress());
1943          m_section_infos[n_sect].vm_range.SetByteSize(
1944              section_sp->GetByteSize());
1945        } else {
1946          std::string filename = "<unknown>";
1947          SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1948          if (first_section_sp)
1949            filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1950
1951          Debugger::ReportError(
1952              llvm::formatv("unable to find section {0} for a symbol in "
1953                            "{1}, corrupt file?",
1954                            n_sect, filename));
1955        }
1956      }
1957      if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1958        // Symbol is in section.
1959        return m_section_infos[n_sect].section_sp;
1960      } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1961                 m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1962                     file_addr) {
1963        // Symbol is in section with zero size, but has the same start address
1964        // as the section. This can happen with linker symbols (symbols that
1965        // start with the letter 'l' or 'L'.
1966        return m_section_infos[n_sect].section_sp;
1967      }
1968    }
1969    return m_section_list->FindSectionContainingFileAddress(file_addr);
1970  }
1971
1972protected:
1973  struct SectionInfo {
1974    SectionInfo() : vm_range(), section_sp() {}
1975
1976    VMRange vm_range;
1977    SectionSP section_sp;
1978  };
1979  SectionList *m_section_list;
1980  std::vector<SectionInfo> m_section_infos;
1981};
1982
1983#define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1984struct TrieEntry {
1985  void Dump() const {
1986    printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1987           static_cast<unsigned long long>(address),
1988           static_cast<unsigned long long>(flags),
1989           static_cast<unsigned long long>(other), name.GetCString());
1990    if (import_name)
1991      printf(" -> \"%s\"\n", import_name.GetCString());
1992    else
1993      printf("\n");
1994  }
1995  ConstString name;
1996  uint64_t address = LLDB_INVALID_ADDRESS;
1997  uint64_t flags =
1998      0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1999         // TRIE_SYMBOL_IS_THUMB
2000  uint64_t other = 0;
2001  ConstString import_name;
2002};
2003
2004struct TrieEntryWithOffset {
2005  lldb::offset_t nodeOffset;
2006  TrieEntry entry;
2007
2008  TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2009
2010  void Dump(uint32_t idx) const {
2011    printf("[%3u] 0x%16.16llx: ", idx,
2012           static_cast<unsigned long long>(nodeOffset));
2013    entry.Dump();
2014  }
2015
2016  bool operator<(const TrieEntryWithOffset &other) const {
2017    return (nodeOffset < other.nodeOffset);
2018  }
2019};
2020
2021static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2022                             const bool is_arm, addr_t text_seg_base_addr,
2023                             std::vector<llvm::StringRef> &nameSlices,
2024                             std::set<lldb::addr_t> &resolver_addresses,
2025                             std::vector<TrieEntryWithOffset> &reexports,
2026                             std::vector<TrieEntryWithOffset> &ext_symbols) {
2027  if (!data.ValidOffset(offset))
2028    return true;
2029
2030  // Terminal node -- end of a branch, possibly add this to
2031  // the symbol table or resolver table.
2032  const uint64_t terminalSize = data.GetULEB128(&offset);
2033  lldb::offset_t children_offset = offset + terminalSize;
2034  if (terminalSize != 0) {
2035    TrieEntryWithOffset e(offset);
2036    e.entry.flags = data.GetULEB128(&offset);
2037    const char *import_name = nullptr;
2038    if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2039      e.entry.address = 0;
2040      e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2041      import_name = data.GetCStr(&offset);
2042    } else {
2043      e.entry.address = data.GetULEB128(&offset);
2044      if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2045        e.entry.address += text_seg_base_addr;
2046      if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2047        e.entry.other = data.GetULEB128(&offset);
2048        uint64_t resolver_addr = e.entry.other;
2049        if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2050          resolver_addr += text_seg_base_addr;
2051        if (is_arm)
2052          resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2053        resolver_addresses.insert(resolver_addr);
2054      } else
2055        e.entry.other = 0;
2056    }
2057    bool add_this_entry = false;
2058    if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2059        import_name && import_name[0]) {
2060      // add symbols that are reexport symbols with a valid import name.
2061      add_this_entry = true;
2062    } else if (e.entry.flags == 0 &&
2063               (import_name == nullptr || import_name[0] == '\0')) {
2064      // add externally visible symbols, in case the nlist record has
2065      // been stripped/omitted.
2066      add_this_entry = true;
2067    }
2068    if (add_this_entry) {
2069      std::string name;
2070      if (!nameSlices.empty()) {
2071        for (auto name_slice : nameSlices)
2072          name.append(name_slice.data(), name_slice.size());
2073      }
2074      if (name.size() > 1) {
2075        // Skip the leading '_'
2076        e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2077      }
2078      if (import_name) {
2079        // Skip the leading '_'
2080        e.entry.import_name.SetCString(import_name + 1);
2081      }
2082      if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2083        reexports.push_back(e);
2084      } else {
2085        if (is_arm && (e.entry.address & 1)) {
2086          e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2087          e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2088        }
2089        ext_symbols.push_back(e);
2090      }
2091    }
2092  }
2093
2094  const uint8_t childrenCount = data.GetU8(&children_offset);
2095  for (uint8_t i = 0; i < childrenCount; ++i) {
2096    const char *cstr = data.GetCStr(&children_offset);
2097    if (cstr)
2098      nameSlices.push_back(llvm::StringRef(cstr));
2099    else
2100      return false; // Corrupt data
2101    lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2102    if (childNodeOffset) {
2103      if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2104                            nameSlices, resolver_addresses, reexports,
2105                            ext_symbols)) {
2106        return false;
2107      }
2108    }
2109    nameSlices.pop_back();
2110  }
2111  return true;
2112}
2113
2114static SymbolType GetSymbolType(const char *&symbol_name,
2115                                bool &demangled_is_synthesized,
2116                                const SectionSP &text_section_sp,
2117                                const SectionSP &data_section_sp,
2118                                const SectionSP &data_dirty_section_sp,
2119                                const SectionSP &data_const_section_sp,
2120                                const SectionSP &symbol_section) {
2121  SymbolType type = eSymbolTypeInvalid;
2122
2123  const char *symbol_sect_name = symbol_section->GetName().AsCString();
2124  if (symbol_section->IsDescendant(text_section_sp.get())) {
2125    if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2126                                S_ATTR_SELF_MODIFYING_CODE |
2127                                S_ATTR_SOME_INSTRUCTIONS))
2128      type = eSymbolTypeData;
2129    else
2130      type = eSymbolTypeCode;
2131  } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2132             symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2133             symbol_section->IsDescendant(data_const_section_sp.get())) {
2134    if (symbol_sect_name &&
2135        ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2136      type = eSymbolTypeRuntime;
2137
2138      if (symbol_name) {
2139        llvm::StringRef symbol_name_ref(symbol_name);
2140        if (symbol_name_ref.startswith("OBJC_")) {
2141          static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2142          static const llvm::StringRef g_objc_v2_prefix_metaclass(
2143              "OBJC_METACLASS_$_");
2144          static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2145          if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2146            symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2147            type = eSymbolTypeObjCClass;
2148            demangled_is_synthesized = true;
2149          } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2150            symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2151            type = eSymbolTypeObjCMetaClass;
2152            demangled_is_synthesized = true;
2153          } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2154            symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2155            type = eSymbolTypeObjCIVar;
2156            demangled_is_synthesized = true;
2157          }
2158        }
2159      }
2160    } else if (symbol_sect_name &&
2161               ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2162                   symbol_sect_name) {
2163      type = eSymbolTypeException;
2164    } else {
2165      type = eSymbolTypeData;
2166    }
2167  } else if (symbol_sect_name &&
2168             ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2169    type = eSymbolTypeTrampoline;
2170  }
2171  return type;
2172}
2173
2174// Read the UUID out of a dyld_shared_cache file on-disk.
2175UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2176                                         const ByteOrder byte_order,
2177                                         const uint32_t addr_byte_size) {
2178  UUID dsc_uuid;
2179  DataBufferSP DscData = MapFileData(
2180      dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2181  if (!DscData)
2182    return dsc_uuid;
2183  DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2184
2185  char version_str[7];
2186  lldb::offset_t offset = 0;
2187  memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2188  version_str[6] = '\0';
2189  if (strcmp(version_str, "dyld_v") == 0) {
2190    offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2191    dsc_uuid =
2192        UUID(dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2193  }
2194  Log *log = GetLog(LLDBLog::Symbols);
2195  if (log && dsc_uuid.IsValid()) {
2196    LLDB_LOGF(log, "Shared cache %s has UUID %s",
2197              dyld_shared_cache.GetPath().c_str(),
2198              dsc_uuid.GetAsString().c_str());
2199  }
2200  return dsc_uuid;
2201}
2202
2203static std::optional<struct nlist_64>
2204ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2205           size_t nlist_byte_size) {
2206  struct nlist_64 nlist;
2207  if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2208    return {};
2209  nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2210  nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2211  nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2212  nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2213  nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2214  return nlist;
2215}
2216
2217enum { DebugSymbols = true, NonDebugSymbols = false };
2218
2219void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2220  ModuleSP module_sp(GetModule());
2221  if (!module_sp)
2222    return;
2223
2224  const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
2225  const char *file_name = file.GetFilename().AsCString("<Unknown>");
2226  LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name);
2227  Progress progress(llvm::formatv("Parsing symbol table for {0}", file_name));
2228
2229  llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2230  llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2231  llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2232  llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2233  llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
2234  // The data element of type bool indicates that this entry is thumb
2235  // code.
2236  typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2237
2238  // Record the address of every function/data that we add to the symtab.
2239  // We add symbols to the table in the order of most information (nlist
2240  // records) to least (function starts), and avoid duplicating symbols
2241  // via this set.
2242  llvm::DenseSet<addr_t> symbols_added;
2243
2244  // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2245  // do not add the tombstone or empty keys to the set.
2246  auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2247    // Don't add the tombstone or empty keys.
2248    if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2249      return;
2250    symbols_added.insert(file_addr);
2251  };
2252  FunctionStarts function_starts;
2253  lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2254  uint32_t i;
2255  FileSpecList dylib_files;
2256  Log *log = GetLog(LLDBLog::Symbols);
2257  llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2258  llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2259  llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2260  UUID image_uuid;
2261
2262  for (i = 0; i < m_header.ncmds; ++i) {
2263    const lldb::offset_t cmd_offset = offset;
2264    // Read in the load command and load command size
2265    llvm::MachO::load_command lc;
2266    if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2267      break;
2268    // Watch for the symbol table load command
2269    switch (lc.cmd) {
2270    case LC_SYMTAB:
2271      symtab_load_command.cmd = lc.cmd;
2272      symtab_load_command.cmdsize = lc.cmdsize;
2273      // Read in the rest of the symtab load command
2274      if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2275          nullptr) // fill in symoff, nsyms, stroff, strsize fields
2276        return;
2277      break;
2278
2279    case LC_DYLD_INFO:
2280    case LC_DYLD_INFO_ONLY:
2281      if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2282        dyld_info.cmd = lc.cmd;
2283        dyld_info.cmdsize = lc.cmdsize;
2284      } else {
2285        memset(&dyld_info, 0, sizeof(dyld_info));
2286      }
2287      break;
2288
2289    case LC_LOAD_DYLIB:
2290    case LC_LOAD_WEAK_DYLIB:
2291    case LC_REEXPORT_DYLIB:
2292    case LC_LOADFVMLIB:
2293    case LC_LOAD_UPWARD_DYLIB: {
2294      uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2295      const char *path = m_data.PeekCStr(name_offset);
2296      if (path) {
2297        FileSpec file_spec(path);
2298        // Strip the path if there is @rpath, @executable, etc so we just use
2299        // the basename
2300        if (path[0] == '@')
2301          file_spec.ClearDirectory();
2302
2303        if (lc.cmd == LC_REEXPORT_DYLIB) {
2304          m_reexported_dylibs.AppendIfUnique(file_spec);
2305        }
2306
2307        dylib_files.Append(file_spec);
2308      }
2309    } break;
2310
2311    case LC_DYLD_EXPORTS_TRIE:
2312      exports_trie_load_command.cmd = lc.cmd;
2313      exports_trie_load_command.cmdsize = lc.cmdsize;
2314      if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2315          nullptr) // fill in offset and size fields
2316        memset(&exports_trie_load_command, 0,
2317               sizeof(exports_trie_load_command));
2318      break;
2319    case LC_FUNCTION_STARTS:
2320      function_starts_load_command.cmd = lc.cmd;
2321      function_starts_load_command.cmdsize = lc.cmdsize;
2322      if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2323          nullptr) // fill in data offset and size fields
2324        memset(&function_starts_load_command, 0,
2325               sizeof(function_starts_load_command));
2326      break;
2327
2328    case LC_UUID: {
2329      const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2330
2331      if (uuid_bytes)
2332        image_uuid = UUID(uuid_bytes, 16);
2333      break;
2334    }
2335
2336    default:
2337      break;
2338    }
2339    offset = cmd_offset + lc.cmdsize;
2340  }
2341
2342  if (!symtab_load_command.cmd)
2343    return;
2344
2345  SectionList *section_list = GetSectionList();
2346  if (section_list == nullptr)
2347    return;
2348
2349  const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2350  const ByteOrder byte_order = m_data.GetByteOrder();
2351  bool bit_width_32 = addr_byte_size == 4;
2352  const size_t nlist_byte_size =
2353      bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2354
2355  DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2356  DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2357  DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2358  DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2359                                           addr_byte_size);
2360  DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2361
2362  const addr_t nlist_data_byte_size =
2363      symtab_load_command.nsyms * nlist_byte_size;
2364  const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2365  addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2366
2367  ProcessSP process_sp(m_process_wp.lock());
2368  Process *process = process_sp.get();
2369
2370  uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2371  bool is_shared_cache_image = IsSharedCacheBinary();
2372  bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2373  SectionSP linkedit_section_sp(
2374      section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2375
2376  if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2377      !is_local_shared_cache_image) {
2378    Target &target = process->GetTarget();
2379
2380    memory_module_load_level = target.GetMemoryModuleLoadLevel();
2381
2382    // Reading mach file from memory in a process or core file...
2383
2384    if (linkedit_section_sp) {
2385      addr_t linkedit_load_addr =
2386          linkedit_section_sp->GetLoadBaseAddress(&target);
2387      if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2388        // We might be trying to access the symbol table before the
2389        // __LINKEDIT's load address has been set in the target. We can't
2390        // fail to read the symbol table, so calculate the right address
2391        // manually
2392        linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2393            m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2394      }
2395
2396      const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2397      const addr_t symoff_addr = linkedit_load_addr +
2398                                 symtab_load_command.symoff -
2399                                 linkedit_file_offset;
2400      strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2401                    linkedit_file_offset;
2402
2403        // Always load dyld - the dynamic linker - from memory if we didn't
2404        // find a binary anywhere else. lldb will not register
2405        // dylib/framework/bundle loads/unloads if we don't have the dyld
2406        // symbols, we force dyld to load from memory despite the user's
2407        // target.memory-module-load-level setting.
2408        if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2409            m_header.filetype == llvm::MachO::MH_DYLINKER) {
2410          DataBufferSP nlist_data_sp(
2411              ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2412          if (nlist_data_sp)
2413            nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2414          if (dysymtab.nindirectsyms != 0) {
2415            const addr_t indirect_syms_addr = linkedit_load_addr +
2416                                              dysymtab.indirectsymoff -
2417                                              linkedit_file_offset;
2418            DataBufferSP indirect_syms_data_sp(ReadMemory(
2419                process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
2420            if (indirect_syms_data_sp)
2421              indirect_symbol_index_data.SetData(
2422                  indirect_syms_data_sp, 0,
2423                  indirect_syms_data_sp->GetByteSize());
2424            // If this binary is outside the shared cache,
2425            // cache the string table.
2426            // Binaries in the shared cache all share a giant string table,
2427            // and we can't share the string tables across multiple
2428            // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2429            // for every binary in the shared cache - it would be a big perf
2430            // problem. For binaries outside the shared cache, it's faster to
2431            // read the entire strtab at once instead of piece-by-piece as we
2432            // process the nlist records.
2433            if (!is_shared_cache_image) {
2434              DataBufferSP strtab_data_sp(
2435                  ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2436              if (strtab_data_sp) {
2437                strtab_data.SetData(strtab_data_sp, 0,
2438                                    strtab_data_sp->GetByteSize());
2439              }
2440            }
2441          }
2442        if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2443          if (function_starts_load_command.cmd) {
2444            const addr_t func_start_addr =
2445                linkedit_load_addr + function_starts_load_command.dataoff -
2446                linkedit_file_offset;
2447            DataBufferSP func_start_data_sp(
2448                ReadMemory(process_sp, func_start_addr,
2449                           function_starts_load_command.datasize));
2450            if (func_start_data_sp)
2451              function_starts_data.SetData(func_start_data_sp, 0,
2452                                           func_start_data_sp->GetByteSize());
2453          }
2454        }
2455      }
2456    }
2457  } else {
2458    if (is_local_shared_cache_image) {
2459      // The load commands in shared cache images are relative to the
2460      // beginning of the shared cache, not the library image. The
2461      // data we get handed when creating the ObjectFileMachO starts
2462      // at the beginning of a specific library and spans to the end
2463      // of the cache to be able to reach the shared LINKEDIT
2464      // segments. We need to convert the load command offsets to be
2465      // relative to the beginning of our specific image.
2466      lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2467      lldb::offset_t linkedit_slide =
2468          linkedit_offset - m_linkedit_original_offset;
2469      symtab_load_command.symoff += linkedit_slide;
2470      symtab_load_command.stroff += linkedit_slide;
2471      dyld_info.export_off += linkedit_slide;
2472      dysymtab.indirectsymoff += linkedit_slide;
2473      function_starts_load_command.dataoff += linkedit_slide;
2474      exports_trie_load_command.dataoff += linkedit_slide;
2475    }
2476
2477    nlist_data.SetData(m_data, symtab_load_command.symoff,
2478                       nlist_data_byte_size);
2479    strtab_data.SetData(m_data, symtab_load_command.stroff,
2480                        strtab_data_byte_size);
2481
2482    // We shouldn't have exports data from both the LC_DYLD_INFO command
2483    // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2484    lldbassert(!((dyld_info.export_size > 0)
2485                 && (exports_trie_load_command.datasize > 0)));
2486    if (dyld_info.export_size > 0) {
2487      dyld_trie_data.SetData(m_data, dyld_info.export_off,
2488                             dyld_info.export_size);
2489    } else if (exports_trie_load_command.datasize > 0) {
2490      dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2491                             exports_trie_load_command.datasize);
2492    }
2493
2494    if (dysymtab.nindirectsyms != 0) {
2495      indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
2496                                         dysymtab.nindirectsyms * 4);
2497    }
2498    if (function_starts_load_command.cmd) {
2499      function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2500                                   function_starts_load_command.datasize);
2501    }
2502  }
2503
2504  const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2505
2506  ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2507  ConstString g_segment_name_DATA = GetSegmentNameDATA();
2508  ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2509  ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2510  ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2511  ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2512  SectionSP text_section_sp(
2513      section_list->FindSectionByName(g_segment_name_TEXT));
2514  SectionSP data_section_sp(
2515      section_list->FindSectionByName(g_segment_name_DATA));
2516  SectionSP data_dirty_section_sp(
2517      section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2518  SectionSP data_const_section_sp(
2519      section_list->FindSectionByName(g_segment_name_DATA_CONST));
2520  SectionSP objc_section_sp(
2521      section_list->FindSectionByName(g_segment_name_OBJC));
2522  SectionSP eh_frame_section_sp;
2523  if (text_section_sp.get())
2524    eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2525        g_section_name_eh_frame);
2526  else
2527    eh_frame_section_sp =
2528        section_list->FindSectionByName(g_section_name_eh_frame);
2529
2530  const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2531  const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2532
2533  // lldb works best if it knows the start address of all functions in a
2534  // module. Linker symbols or debug info are normally the best source of
2535  // information for start addr / size but they may be stripped in a released
2536  // binary. Two additional sources of information exist in Mach-O binaries:
2537  //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2538  //    function's start address in the
2539  //                         binary, relative to the text section.
2540  //    eh_frame           - the eh_frame FDEs have the start addr & size of
2541  //    each function
2542  //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2543  //  all modern binaries.
2544  //  Binaries built to run on older releases may need to use eh_frame
2545  //  information.
2546
2547  if (text_section_sp && function_starts_data.GetByteSize()) {
2548    FunctionStarts::Entry function_start_entry;
2549    function_start_entry.data = false;
2550    lldb::offset_t function_start_offset = 0;
2551    function_start_entry.addr = text_section_sp->GetFileAddress();
2552    uint64_t delta;
2553    while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2554           0) {
2555      // Now append the current entry
2556      function_start_entry.addr += delta;
2557      if (is_arm) {
2558        if (function_start_entry.addr & 1) {
2559          function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2560          function_start_entry.data = true;
2561        } else if (always_thumb) {
2562          function_start_entry.data = true;
2563        }
2564      }
2565      function_starts.Append(function_start_entry);
2566    }
2567  } else {
2568    // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2569    // load command claiming an eh_frame but it doesn't actually have the
2570    // eh_frame content.  And if we have a dSYM, we don't need to do any of
2571    // this fill-in-the-missing-symbols works anyway - the debug info should
2572    // give us all the functions in the module.
2573    if (text_section_sp.get() && eh_frame_section_sp.get() &&
2574        m_type != eTypeDebugInfo) {
2575      DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2576                                  DWARFCallFrameInfo::EH);
2577      DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2578      eh_frame.GetFunctionAddressAndSizeVector(functions);
2579      addr_t text_base_addr = text_section_sp->GetFileAddress();
2580      size_t count = functions.GetSize();
2581      for (size_t i = 0; i < count; ++i) {
2582        const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2583            functions.GetEntryAtIndex(i);
2584        if (func) {
2585          FunctionStarts::Entry function_start_entry;
2586          function_start_entry.addr = func->base - text_base_addr;
2587          if (is_arm) {
2588            if (function_start_entry.addr & 1) {
2589              function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2590              function_start_entry.data = true;
2591            } else if (always_thumb) {
2592              function_start_entry.data = true;
2593            }
2594          }
2595          function_starts.Append(function_start_entry);
2596        }
2597      }
2598    }
2599  }
2600
2601  const size_t function_starts_count = function_starts.GetSize();
2602
2603  // For user process binaries (executables, dylibs, frameworks, bundles), if
2604  // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2605  // going to assume the binary has been stripped.  Don't allow assembly
2606  // language instruction emulation because we don't know proper function
2607  // start boundaries.
2608  //
2609  // For all other types of binaries (kernels, stand-alone bare board
2610  // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2611  // sections - we should not make any assumptions about them based on that.
2612  if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2613    m_allow_assembly_emulation_unwind_plans = false;
2614    Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2615
2616    if (unwind_or_symbol_log)
2617      module_sp->LogMessage(
2618          unwind_or_symbol_log,
2619          "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2620  }
2621
2622  const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2623                                             ? eh_frame_section_sp->GetID()
2624                                             : static_cast<user_id_t>(NO_SECT);
2625
2626  uint32_t N_SO_index = UINT32_MAX;
2627
2628  MachSymtabSectionInfo section_info(section_list);
2629  std::vector<uint32_t> N_FUN_indexes;
2630  std::vector<uint32_t> N_NSYM_indexes;
2631  std::vector<uint32_t> N_INCL_indexes;
2632  std::vector<uint32_t> N_BRAC_indexes;
2633  std::vector<uint32_t> N_COMM_indexes;
2634  typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2635  typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2636  typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2637  ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2638  ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2639  ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2640  // Any symbols that get merged into another will get an entry in this map
2641  // so we know
2642  NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2643  uint32_t nlist_idx = 0;
2644  Symbol *symbol_ptr = nullptr;
2645
2646  uint32_t sym_idx = 0;
2647  Symbol *sym = nullptr;
2648  size_t num_syms = 0;
2649  std::string memory_symbol_name;
2650  uint32_t unmapped_local_symbols_found = 0;
2651
2652  std::vector<TrieEntryWithOffset> reexport_trie_entries;
2653  std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2654  std::set<lldb::addr_t> resolver_addresses;
2655
2656  if (dyld_trie_data.GetByteSize() > 0) {
2657    ConstString text_segment_name("__TEXT");
2658    SectionSP text_segment_sp =
2659        GetSectionList()->FindSectionByName(text_segment_name);
2660    lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2661    if (text_segment_sp)
2662      text_segment_file_addr = text_segment_sp->GetFileAddress();
2663    std::vector<llvm::StringRef> nameSlices;
2664    ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2665                     nameSlices, resolver_addresses, reexport_trie_entries,
2666                     external_sym_trie_entries);
2667  }
2668
2669  typedef std::set<ConstString> IndirectSymbols;
2670  IndirectSymbols indirect_symbol_names;
2671
2672#if TARGET_OS_IPHONE
2673
2674  // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2675  // optimized by moving LOCAL symbols out of the memory mapped portion of
2676  // the DSC. The symbol information has all been retained, but it isn't
2677  // available in the normal nlist data. However, there *are* duplicate
2678  // entries of *some*
2679  // LOCAL symbols in the normal nlist data. To handle this situation
2680  // correctly, we must first attempt
2681  // to parse any DSC unmapped symbol information. If we find any, we set a
2682  // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2683
2684  if (IsSharedCacheBinary()) {
2685    // Before we can start mapping the DSC, we need to make certain the
2686    // target process is actually using the cache we can find.
2687
2688    // Next we need to determine the correct path for the dyld shared cache.
2689
2690    ArchSpec header_arch = GetArchitecture();
2691
2692    UUID dsc_uuid;
2693    UUID process_shared_cache_uuid;
2694    addr_t process_shared_cache_base_addr;
2695
2696    if (process) {
2697      GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2698                                process_shared_cache_uuid);
2699    }
2700
2701    __block bool found_image = false;
2702    __block void *nlist_buffer = nullptr;
2703    __block unsigned nlist_count = 0;
2704    __block char *string_table = nullptr;
2705    __block vm_offset_t vm_nlist_memory = 0;
2706    __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2707    __block vm_offset_t vm_string_memory = 0;
2708    __block mach_msg_type_number_t vm_string_bytes_read = 0;
2709
2710    auto _ = llvm::make_scope_exit(^{
2711      if (vm_nlist_memory)
2712        vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2713      if (vm_string_memory)
2714        vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2715    });
2716
2717    typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2718    typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2719    UndefinedNameToDescMap undefined_name_to_desc;
2720    SymbolIndexToName reexport_shlib_needs_fixup;
2721
2722    dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2723      uuid_t cache_uuid;
2724      dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2725      if (found_image)
2726        return;
2727
2728        if (process_shared_cache_uuid.IsValid() &&
2729          process_shared_cache_uuid != UUID::fromData(&cache_uuid, 16))
2730        return;
2731
2732      dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2733        uuid_t dsc_image_uuid;
2734        if (found_image)
2735          return;
2736
2737        dyld_image_copy_uuid(image, &dsc_image_uuid);
2738        if (image_uuid != UUID::fromData(dsc_image_uuid, 16))
2739          return;
2740
2741        found_image = true;
2742
2743        // Compute the size of the string table. We need to ask dyld for a
2744        // new SPI to avoid this step.
2745        dyld_image_local_nlist_content_4Symbolication(
2746            image, ^(const void *nlistStart, uint64_t nlistCount,
2747                     const char *stringTable) {
2748              if (!nlistStart || !nlistCount)
2749                return;
2750
2751              // The buffers passed here are valid only inside the block.
2752              // Use vm_read to make a cheap copy of them available for our
2753              // processing later.
2754              kern_return_t ret =
2755                  vm_read(mach_task_self(), (vm_address_t)nlistStart,
2756                          nlist_byte_size * nlistCount, &vm_nlist_memory,
2757                          &vm_nlist_bytes_read);
2758              if (ret != KERN_SUCCESS)
2759                return;
2760              assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2761
2762              // We don't know the size of the string table. It's cheaper
2763              // to map the whol VM region than to determine the size by
2764              // parsing all teh nlist entries.
2765              vm_address_t string_address = (vm_address_t)stringTable;
2766              vm_size_t region_size;
2767              mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2768              vm_region_basic_info_data_t info;
2769              memory_object_name_t object;
2770              ret = vm_region_64(mach_task_self(), &string_address,
2771                                 &region_size, VM_REGION_BASIC_INFO_64,
2772                                 (vm_region_info_t)&info, &info_count, &object);
2773              if (ret != KERN_SUCCESS)
2774                return;
2775
2776              ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2777                            region_size -
2778                                ((vm_address_t)stringTable - string_address),
2779                            &vm_string_memory, &vm_string_bytes_read);
2780              if (ret != KERN_SUCCESS)
2781                return;
2782
2783              nlist_buffer = (void *)vm_nlist_memory;
2784              string_table = (char *)vm_string_memory;
2785              nlist_count = nlistCount;
2786            });
2787      });
2788    });
2789    if (nlist_buffer) {
2790      DataExtractor dsc_local_symbols_data(nlist_buffer,
2791                                           nlist_count * nlist_byte_size,
2792                                           byte_order, addr_byte_size);
2793      unmapped_local_symbols_found = nlist_count;
2794
2795                // The normal nlist code cannot correctly size the Symbols
2796                // array, we need to allocate it here.
2797                sym = symtab.Resize(
2798                    symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2799                    unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2800                num_syms = symtab.GetNumSymbols();
2801
2802      lldb::offset_t nlist_data_offset = 0;
2803
2804                for (uint32_t nlist_index = 0;
2805                     nlist_index < nlist_count;
2806                     nlist_index++) {
2807                  /////////////////////////////
2808                  {
2809                    std::optional<struct nlist_64> nlist_maybe =
2810                        ParseNList(dsc_local_symbols_data, nlist_data_offset,
2811                                   nlist_byte_size);
2812                    if (!nlist_maybe)
2813                      break;
2814                    struct nlist_64 nlist = *nlist_maybe;
2815
2816                    SymbolType type = eSymbolTypeInvalid;
2817          const char *symbol_name = string_table + nlist.n_strx;
2818
2819                    if (symbol_name == NULL) {
2820                      // No symbol should be NULL, even the symbols with no
2821                      // string values should have an offset zero which
2822                      // points to an empty C-string
2823                      Debugger::ReportError(llvm::formatv(
2824                          "DSC unmapped local symbol[{0}] has invalid "
2825                          "string table offset {1:x} in {2}, ignoring symbol",
2826                          nlist_index, nlist.n_strx,
2827                          module_sp->GetFileSpec().GetPath());
2828                      continue;
2829                    }
2830                    if (symbol_name[0] == '\0')
2831                      symbol_name = NULL;
2832
2833                    const char *symbol_name_non_abi_mangled = NULL;
2834
2835                    SectionSP symbol_section;
2836                    uint32_t symbol_byte_size = 0;
2837                    bool add_nlist = true;
2838                    bool is_debug = ((nlist.n_type & N_STAB) != 0);
2839                    bool demangled_is_synthesized = false;
2840                    bool is_gsym = false;
2841                    bool set_value = true;
2842
2843                    assert(sym_idx < num_syms);
2844
2845                    sym[sym_idx].SetDebug(is_debug);
2846
2847                    if (is_debug) {
2848                      switch (nlist.n_type) {
2849                      case N_GSYM:
2850                        // global symbol: name,,NO_SECT,type,0
2851                        // Sometimes the N_GSYM value contains the address.
2852
2853                        // FIXME: In the .o files, we have a GSYM and a debug
2854                        // symbol for all the ObjC data.  They
2855                        // have the same address, but we want to ensure that
2856                        // we always find only the real symbol, 'cause we
2857                        // don't currently correctly attribute the
2858                        // GSYM one to the ObjCClass/Ivar/MetaClass
2859                        // symbol type.  This is a temporary hack to make
2860                        // sure the ObjectiveC symbols get treated correctly.
2861                        // To do this right, we should coalesce all the GSYM
2862                        // & global symbols that have the same address.
2863
2864                        is_gsym = true;
2865                        sym[sym_idx].SetExternal(true);
2866
2867                        if (symbol_name && symbol_name[0] == '_' &&
2868                            symbol_name[1] == 'O') {
2869                          llvm::StringRef symbol_name_ref(symbol_name);
2870                          if (symbol_name_ref.startswith(
2871                                  g_objc_v2_prefix_class)) {
2872                            symbol_name_non_abi_mangled = symbol_name + 1;
2873                            symbol_name =
2874                                symbol_name + g_objc_v2_prefix_class.size();
2875                            type = eSymbolTypeObjCClass;
2876                            demangled_is_synthesized = true;
2877
2878                          } else if (symbol_name_ref.startswith(
2879                                         g_objc_v2_prefix_metaclass)) {
2880                            symbol_name_non_abi_mangled = symbol_name + 1;
2881                            symbol_name =
2882                                symbol_name + g_objc_v2_prefix_metaclass.size();
2883                            type = eSymbolTypeObjCMetaClass;
2884                            demangled_is_synthesized = true;
2885                          } else if (symbol_name_ref.startswith(
2886                                         g_objc_v2_prefix_ivar)) {
2887                            symbol_name_non_abi_mangled = symbol_name + 1;
2888                            symbol_name =
2889                                symbol_name + g_objc_v2_prefix_ivar.size();
2890                            type = eSymbolTypeObjCIVar;
2891                            demangled_is_synthesized = true;
2892                          }
2893                        } else {
2894                          if (nlist.n_value != 0)
2895                            symbol_section = section_info.GetSection(
2896                                nlist.n_sect, nlist.n_value);
2897                          type = eSymbolTypeData;
2898                        }
2899                        break;
2900
2901                      case N_FNAME:
2902                        // procedure name (f77 kludge): name,,NO_SECT,0,0
2903                        type = eSymbolTypeCompiler;
2904                        break;
2905
2906                      case N_FUN:
2907                        // procedure: name,,n_sect,linenumber,address
2908                        if (symbol_name) {
2909                          type = eSymbolTypeCode;
2910                          symbol_section = section_info.GetSection(
2911                              nlist.n_sect, nlist.n_value);
2912
2913                          N_FUN_addr_to_sym_idx.insert(
2914                              std::make_pair(nlist.n_value, sym_idx));
2915                          // We use the current number of symbols in the
2916                          // symbol table in lieu of using nlist_idx in case
2917                          // we ever start trimming entries out
2918                          N_FUN_indexes.push_back(sym_idx);
2919                        } else {
2920                          type = eSymbolTypeCompiler;
2921
2922                          if (!N_FUN_indexes.empty()) {
2923                            // Copy the size of the function into the
2924                            // original
2925                            // STAB entry so we don't have
2926                            // to hunt for it later
2927                            symtab.SymbolAtIndex(N_FUN_indexes.back())
2928                                ->SetByteSize(nlist.n_value);
2929                            N_FUN_indexes.pop_back();
2930                            // We don't really need the end function STAB as
2931                            // it contains the size which we already placed
2932                            // with the original symbol, so don't add it if
2933                            // we want a minimal symbol table
2934                            add_nlist = false;
2935                          }
2936                        }
2937                        break;
2938
2939                      case N_STSYM:
2940                        // static symbol: name,,n_sect,type,address
2941                        N_STSYM_addr_to_sym_idx.insert(
2942                            std::make_pair(nlist.n_value, sym_idx));
2943                        symbol_section = section_info.GetSection(nlist.n_sect,
2944                                                                 nlist.n_value);
2945                        if (symbol_name && symbol_name[0]) {
2946                          type = ObjectFile::GetSymbolTypeFromName(
2947                              symbol_name + 1, eSymbolTypeData);
2948                        }
2949                        break;
2950
2951                      case N_LCSYM:
2952                        // .lcomm symbol: name,,n_sect,type,address
2953                        symbol_section = section_info.GetSection(nlist.n_sect,
2954                                                                 nlist.n_value);
2955                        type = eSymbolTypeCommonBlock;
2956                        break;
2957
2958                      case N_BNSYM:
2959                        // We use the current number of symbols in the symbol
2960                        // table in lieu of using nlist_idx in case we ever
2961                        // start trimming entries out Skip these if we want
2962                        // minimal symbol tables
2963                        add_nlist = false;
2964                        break;
2965
2966                      case N_ENSYM:
2967                        // Set the size of the N_BNSYM to the terminating
2968                        // index of this N_ENSYM so that we can always skip
2969                        // the entire symbol if we need to navigate more
2970                        // quickly at the source level when parsing STABS
2971                        // Skip these if we want minimal symbol tables
2972                        add_nlist = false;
2973                        break;
2974
2975                      case N_OPT:
2976                        // emitted with gcc2_compiled and in gcc source
2977                        type = eSymbolTypeCompiler;
2978                        break;
2979
2980                      case N_RSYM:
2981                        // register sym: name,,NO_SECT,type,register
2982                        type = eSymbolTypeVariable;
2983                        break;
2984
2985                      case N_SLINE:
2986                        // src line: 0,,n_sect,linenumber,address
2987                        symbol_section = section_info.GetSection(nlist.n_sect,
2988                                                                 nlist.n_value);
2989                        type = eSymbolTypeLineEntry;
2990                        break;
2991
2992                      case N_SSYM:
2993                        // structure elt: name,,NO_SECT,type,struct_offset
2994                        type = eSymbolTypeVariableType;
2995                        break;
2996
2997                      case N_SO:
2998                        // source file name
2999                        type = eSymbolTypeSourceFile;
3000                        if (symbol_name == NULL) {
3001                          add_nlist = false;
3002                          if (N_SO_index != UINT32_MAX) {
3003                            // Set the size of the N_SO to the terminating
3004                            // index of this N_SO so that we can always skip
3005                            // the entire N_SO if we need to navigate more
3006                            // quickly at the source level when parsing STABS
3007                            symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3008                            symbol_ptr->SetByteSize(sym_idx);
3009                            symbol_ptr->SetSizeIsSibling(true);
3010                          }
3011                          N_NSYM_indexes.clear();
3012                          N_INCL_indexes.clear();
3013                          N_BRAC_indexes.clear();
3014                          N_COMM_indexes.clear();
3015                          N_FUN_indexes.clear();
3016                          N_SO_index = UINT32_MAX;
3017                        } else {
3018                          // We use the current number of symbols in the
3019                          // symbol table in lieu of using nlist_idx in case
3020                          // we ever start trimming entries out
3021                          const bool N_SO_has_full_path = symbol_name[0] == '/';
3022                          if (N_SO_has_full_path) {
3023                            if ((N_SO_index == sym_idx - 1) &&
3024                                ((sym_idx - 1) < num_syms)) {
3025                              // We have two consecutive N_SO entries where
3026                              // the first contains a directory and the
3027                              // second contains a full path.
3028                              sym[sym_idx - 1].GetMangled().SetValue(
3029                                  ConstString(symbol_name), false);
3030                              m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3031                              add_nlist = false;
3032                            } else {
3033                              // This is the first entry in a N_SO that
3034                              // contains a directory or
3035                              // a full path to the source file
3036                              N_SO_index = sym_idx;
3037                            }
3038                          } else if ((N_SO_index == sym_idx - 1) &&
3039                                     ((sym_idx - 1) < num_syms)) {
3040                            // This is usually the second N_SO entry that
3041                            // contains just the filename, so here we combine
3042                            // it with the first one if we are minimizing the
3043                            // symbol table
3044                            const char *so_path = sym[sym_idx - 1]
3045                                                      .GetMangled()
3046                                                      .GetDemangledName()
3047                                                      .AsCString();
3048                            if (so_path && so_path[0]) {
3049                              std::string full_so_path(so_path);
3050                              const size_t double_slash_pos =
3051                                  full_so_path.find("//");
3052                              if (double_slash_pos != std::string::npos) {
3053                                // The linker has been generating bad N_SO
3054                                // entries with doubled up paths
3055                                // in the format "%s%s" where the first
3056                                // string in the DW_AT_comp_dir, and the
3057                                // second is the directory for the source
3058                                // file so you end up with a path that looks
3059                                // like "/tmp/src//tmp/src/"
3060                                FileSpec so_dir(so_path);
3061                                if (!FileSystem::Instance().Exists(so_dir)) {
3062                                  so_dir.SetFile(
3063                                      &full_so_path[double_slash_pos + 1],
3064                                      FileSpec::Style::native);
3065                                  if (FileSystem::Instance().Exists(so_dir)) {
3066                                    // Trim off the incorrect path
3067                                    full_so_path.erase(0, double_slash_pos + 1);
3068                                  }
3069                                }
3070                              }
3071                              if (*full_so_path.rbegin() != '/')
3072                                full_so_path += '/';
3073                              full_so_path += symbol_name;
3074                              sym[sym_idx - 1].GetMangled().SetValue(
3075                                  ConstString(full_so_path.c_str()), false);
3076                              add_nlist = false;
3077                              m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3078                            }
3079                          } else {
3080                            // This could be a relative path to a N_SO
3081                            N_SO_index = sym_idx;
3082                          }
3083                        }
3084                        break;
3085
3086                      case N_OSO:
3087                        // object file name: name,,0,0,st_mtime
3088                        type = eSymbolTypeObjectFile;
3089                        break;
3090
3091                      case N_LSYM:
3092                        // local sym: name,,NO_SECT,type,offset
3093                        type = eSymbolTypeLocal;
3094                        break;
3095
3096                      // INCL scopes
3097                      case N_BINCL:
3098                        // include file beginning: name,,NO_SECT,0,sum We use
3099                        // the current number of symbols in the symbol table
3100                        // in lieu of using nlist_idx in case we ever start
3101                        // trimming entries out
3102                        N_INCL_indexes.push_back(sym_idx);
3103                        type = eSymbolTypeScopeBegin;
3104                        break;
3105
3106                      case N_EINCL:
3107                        // include file end: name,,NO_SECT,0,0
3108                        // Set the size of the N_BINCL to the terminating
3109                        // index of this N_EINCL so that we can always skip
3110                        // the entire symbol if we need to navigate more
3111                        // quickly at the source level when parsing STABS
3112                        if (!N_INCL_indexes.empty()) {
3113                          symbol_ptr =
3114                              symtab.SymbolAtIndex(N_INCL_indexes.back());
3115                          symbol_ptr->SetByteSize(sym_idx + 1);
3116                          symbol_ptr->SetSizeIsSibling(true);
3117                          N_INCL_indexes.pop_back();
3118                        }
3119                        type = eSymbolTypeScopeEnd;
3120                        break;
3121
3122                      case N_SOL:
3123                        // #included file name: name,,n_sect,0,address
3124                        type = eSymbolTypeHeaderFile;
3125
3126                        // We currently don't use the header files on darwin
3127                        add_nlist = false;
3128                        break;
3129
3130                      case N_PARAMS:
3131                        // compiler parameters: name,,NO_SECT,0,0
3132                        type = eSymbolTypeCompiler;
3133                        break;
3134
3135                      case N_VERSION:
3136                        // compiler version: name,,NO_SECT,0,0
3137                        type = eSymbolTypeCompiler;
3138                        break;
3139
3140                      case N_OLEVEL:
3141                        // compiler -O level: name,,NO_SECT,0,0
3142                        type = eSymbolTypeCompiler;
3143                        break;
3144
3145                      case N_PSYM:
3146                        // parameter: name,,NO_SECT,type,offset
3147                        type = eSymbolTypeVariable;
3148                        break;
3149
3150                      case N_ENTRY:
3151                        // alternate entry: name,,n_sect,linenumber,address
3152                        symbol_section = section_info.GetSection(nlist.n_sect,
3153                                                                 nlist.n_value);
3154                        type = eSymbolTypeLineEntry;
3155                        break;
3156
3157                      // Left and Right Braces
3158                      case N_LBRAC:
3159                        // left bracket: 0,,NO_SECT,nesting level,address We
3160                        // use the current number of symbols in the symbol
3161                        // table in lieu of using nlist_idx in case we ever
3162                        // start trimming entries out
3163                        symbol_section = section_info.GetSection(nlist.n_sect,
3164                                                                 nlist.n_value);
3165                        N_BRAC_indexes.push_back(sym_idx);
3166                        type = eSymbolTypeScopeBegin;
3167                        break;
3168
3169                      case N_RBRAC:
3170                        // right bracket: 0,,NO_SECT,nesting level,address
3171                        // Set the size of the N_LBRAC to the terminating
3172                        // index of this N_RBRAC so that we can always skip
3173                        // the entire symbol if we need to navigate more
3174                        // quickly at the source level when parsing STABS
3175                        symbol_section = section_info.GetSection(nlist.n_sect,
3176                                                                 nlist.n_value);
3177                        if (!N_BRAC_indexes.empty()) {
3178                          symbol_ptr =
3179                              symtab.SymbolAtIndex(N_BRAC_indexes.back());
3180                          symbol_ptr->SetByteSize(sym_idx + 1);
3181                          symbol_ptr->SetSizeIsSibling(true);
3182                          N_BRAC_indexes.pop_back();
3183                        }
3184                        type = eSymbolTypeScopeEnd;
3185                        break;
3186
3187                      case N_EXCL:
3188                        // deleted include file: name,,NO_SECT,0,sum
3189                        type = eSymbolTypeHeaderFile;
3190                        break;
3191
3192                      // COMM scopes
3193                      case N_BCOMM:
3194                        // begin common: name,,NO_SECT,0,0
3195                        // We use the current number of symbols in the symbol
3196                        // table in lieu of using nlist_idx in case we ever
3197                        // start trimming entries out
3198                        type = eSymbolTypeScopeBegin;
3199                        N_COMM_indexes.push_back(sym_idx);
3200                        break;
3201
3202                      case N_ECOML:
3203                        // end common (local name): 0,,n_sect,0,address
3204                        symbol_section = section_info.GetSection(nlist.n_sect,
3205                                                                 nlist.n_value);
3206                        // Fall through
3207
3208                      case N_ECOMM:
3209                        // end common: name,,n_sect,0,0
3210                        // Set the size of the N_BCOMM to the terminating
3211                        // index of this N_ECOMM/N_ECOML so that we can
3212                        // always skip the entire symbol if we need to
3213                        // navigate more quickly at the source level when
3214                        // parsing STABS
3215                        if (!N_COMM_indexes.empty()) {
3216                          symbol_ptr =
3217                              symtab.SymbolAtIndex(N_COMM_indexes.back());
3218                          symbol_ptr->SetByteSize(sym_idx + 1);
3219                          symbol_ptr->SetSizeIsSibling(true);
3220                          N_COMM_indexes.pop_back();
3221                        }
3222                        type = eSymbolTypeScopeEnd;
3223                        break;
3224
3225                      case N_LENG:
3226                        // second stab entry with length information
3227                        type = eSymbolTypeAdditional;
3228                        break;
3229
3230                      default:
3231                        break;
3232                      }
3233                    } else {
3234                      // uint8_t n_pext    = N_PEXT & nlist.n_type;
3235                      uint8_t n_type = N_TYPE & nlist.n_type;
3236                      sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3237
3238                      switch (n_type) {
3239                      case N_INDR: {
3240                        const char *reexport_name_cstr =
3241                            strtab_data.PeekCStr(nlist.n_value);
3242                        if (reexport_name_cstr && reexport_name_cstr[0]) {
3243                          type = eSymbolTypeReExported;
3244                          ConstString reexport_name(
3245                              reexport_name_cstr +
3246                              ((reexport_name_cstr[0] == '_') ? 1 : 0));
3247                          sym[sym_idx].SetReExportedSymbolName(reexport_name);
3248                          set_value = false;
3249                          reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3250                          indirect_symbol_names.insert(ConstString(
3251                              symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3252                        } else
3253                          type = eSymbolTypeUndefined;
3254                      } break;
3255
3256                      case N_UNDF:
3257                        if (symbol_name && symbol_name[0]) {
3258                          ConstString undefined_name(
3259                              symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3260                          undefined_name_to_desc[undefined_name] = nlist.n_desc;
3261                        }
3262                      // Fall through
3263                      case N_PBUD:
3264                        type = eSymbolTypeUndefined;
3265                        break;
3266
3267                      case N_ABS:
3268                        type = eSymbolTypeAbsolute;
3269                        break;
3270
3271                      case N_SECT: {
3272                        symbol_section = section_info.GetSection(nlist.n_sect,
3273                                                                 nlist.n_value);
3274
3275                        if (symbol_section == NULL) {
3276                          // TODO: warn about this?
3277                          add_nlist = false;
3278                          break;
3279                        }
3280
3281                        if (TEXT_eh_frame_sectID == nlist.n_sect) {
3282                          type = eSymbolTypeException;
3283                        } else {
3284                          uint32_t section_type =
3285                              symbol_section->Get() & SECTION_TYPE;
3286
3287                          switch (section_type) {
3288                          case S_CSTRING_LITERALS:
3289                            type = eSymbolTypeData;
3290                            break; // section with only literal C strings
3291                          case S_4BYTE_LITERALS:
3292                            type = eSymbolTypeData;
3293                            break; // section with only 4 byte literals
3294                          case S_8BYTE_LITERALS:
3295                            type = eSymbolTypeData;
3296                            break; // section with only 8 byte literals
3297                          case S_LITERAL_POINTERS:
3298                            type = eSymbolTypeTrampoline;
3299                            break; // section with only pointers to literals
3300                          case S_NON_LAZY_SYMBOL_POINTERS:
3301                            type = eSymbolTypeTrampoline;
3302                            break; // section with only non-lazy symbol
3303                                   // pointers
3304                          case S_LAZY_SYMBOL_POINTERS:
3305                            type = eSymbolTypeTrampoline;
3306                            break; // section with only lazy symbol pointers
3307                          case S_SYMBOL_STUBS:
3308                            type = eSymbolTypeTrampoline;
3309                            break; // section with only symbol stubs, byte
3310                                   // size of stub in the reserved2 field
3311                          case S_MOD_INIT_FUNC_POINTERS:
3312                            type = eSymbolTypeCode;
3313                            break; // section with only function pointers for
3314                                   // initialization
3315                          case S_MOD_TERM_FUNC_POINTERS:
3316                            type = eSymbolTypeCode;
3317                            break; // section with only function pointers for
3318                                   // termination
3319                          case S_INTERPOSING:
3320                            type = eSymbolTypeTrampoline;
3321                            break; // section with only pairs of function
3322                                   // pointers for interposing
3323                          case S_16BYTE_LITERALS:
3324                            type = eSymbolTypeData;
3325                            break; // section with only 16 byte literals
3326                          case S_DTRACE_DOF:
3327                            type = eSymbolTypeInstrumentation;
3328                            break;
3329                          case S_LAZY_DYLIB_SYMBOL_POINTERS:
3330                            type = eSymbolTypeTrampoline;
3331                            break;
3332                          default:
3333                            switch (symbol_section->GetType()) {
3334                            case lldb::eSectionTypeCode:
3335                              type = eSymbolTypeCode;
3336                              break;
3337                            case eSectionTypeData:
3338                            case eSectionTypeDataCString: // Inlined C string
3339                                                          // data
3340                            case eSectionTypeDataCStringPointers: // Pointers
3341                                                                  // to C
3342                                                                  // string
3343                                                                  // data
3344                            case eSectionTypeDataSymbolAddress:   // Address of
3345                                                                  // a symbol in
3346                                                                  // the symbol
3347                                                                  // table
3348                            case eSectionTypeData4:
3349                            case eSectionTypeData8:
3350                            case eSectionTypeData16:
3351                              type = eSymbolTypeData;
3352                              break;
3353                            default:
3354                              break;
3355                            }
3356                            break;
3357                          }
3358
3359                          if (type == eSymbolTypeInvalid) {
3360                            const char *symbol_sect_name =
3361                                symbol_section->GetName().AsCString();
3362                            if (symbol_section->IsDescendant(
3363                                    text_section_sp.get())) {
3364                              if (symbol_section->IsClear(
3365                                      S_ATTR_PURE_INSTRUCTIONS |
3366                                      S_ATTR_SELF_MODIFYING_CODE |
3367                                      S_ATTR_SOME_INSTRUCTIONS))
3368                                type = eSymbolTypeData;
3369                              else
3370                                type = eSymbolTypeCode;
3371                            } else if (symbol_section->IsDescendant(
3372                                           data_section_sp.get()) ||
3373                                       symbol_section->IsDescendant(
3374                                           data_dirty_section_sp.get()) ||
3375                                       symbol_section->IsDescendant(
3376                                           data_const_section_sp.get())) {
3377                              if (symbol_sect_name &&
3378                                  ::strstr(symbol_sect_name, "__objc") ==
3379                                      symbol_sect_name) {
3380                                type = eSymbolTypeRuntime;
3381
3382                                if (symbol_name) {
3383                                  llvm::StringRef symbol_name_ref(symbol_name);
3384                                  if (symbol_name_ref.startswith("_OBJC_")) {
3385                                    llvm::StringRef
3386                                        g_objc_v2_prefix_class(
3387                                            "_OBJC_CLASS_$_");
3388                                    llvm::StringRef
3389                                        g_objc_v2_prefix_metaclass(
3390                                            "_OBJC_METACLASS_$_");
3391                                    llvm::StringRef
3392                                        g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3393                                    if (symbol_name_ref.startswith(
3394                                            g_objc_v2_prefix_class)) {
3395                                      symbol_name_non_abi_mangled =
3396                                          symbol_name + 1;
3397                                      symbol_name =
3398                                          symbol_name +
3399                                          g_objc_v2_prefix_class.size();
3400                                      type = eSymbolTypeObjCClass;
3401                                      demangled_is_synthesized = true;
3402                                    } else if (
3403                                        symbol_name_ref.startswith(
3404                                            g_objc_v2_prefix_metaclass)) {
3405                                      symbol_name_non_abi_mangled =
3406                                          symbol_name + 1;
3407                                      symbol_name =
3408                                          symbol_name +
3409                                          g_objc_v2_prefix_metaclass.size();
3410                                      type = eSymbolTypeObjCMetaClass;
3411                                      demangled_is_synthesized = true;
3412                                    } else if (symbol_name_ref.startswith(
3413                                                   g_objc_v2_prefix_ivar)) {
3414                                      symbol_name_non_abi_mangled =
3415                                          symbol_name + 1;
3416                                      symbol_name =
3417                                          symbol_name +
3418                                          g_objc_v2_prefix_ivar.size();
3419                                      type = eSymbolTypeObjCIVar;
3420                                      demangled_is_synthesized = true;
3421                                    }
3422                                  }
3423                                }
3424                              } else if (symbol_sect_name &&
3425                                         ::strstr(symbol_sect_name,
3426                                                  "__gcc_except_tab") ==
3427                                             symbol_sect_name) {
3428                                type = eSymbolTypeException;
3429                              } else {
3430                                type = eSymbolTypeData;
3431                              }
3432                            } else if (symbol_sect_name &&
3433                                       ::strstr(symbol_sect_name, "__IMPORT") ==
3434                                           symbol_sect_name) {
3435                              type = eSymbolTypeTrampoline;
3436                            } else if (symbol_section->IsDescendant(
3437                                           objc_section_sp.get())) {
3438                              type = eSymbolTypeRuntime;
3439                              if (symbol_name && symbol_name[0] == '.') {
3440                                llvm::StringRef symbol_name_ref(symbol_name);
3441                                llvm::StringRef
3442                                    g_objc_v1_prefix_class(".objc_class_name_");
3443                                if (symbol_name_ref.startswith(
3444                                        g_objc_v1_prefix_class)) {
3445                                  symbol_name_non_abi_mangled = symbol_name;
3446                                  symbol_name = symbol_name +
3447                                                g_objc_v1_prefix_class.size();
3448                                  type = eSymbolTypeObjCClass;
3449                                  demangled_is_synthesized = true;
3450                                }
3451                              }
3452                            }
3453                          }
3454                        }
3455                      } break;
3456                      }
3457                    }
3458
3459                    if (add_nlist) {
3460                      uint64_t symbol_value = nlist.n_value;
3461                      if (symbol_name_non_abi_mangled) {
3462                        sym[sym_idx].GetMangled().SetMangledName(
3463                            ConstString(symbol_name_non_abi_mangled));
3464                        sym[sym_idx].GetMangled().SetDemangledName(
3465                            ConstString(symbol_name));
3466                      } else {
3467                        bool symbol_name_is_mangled = false;
3468
3469                        if (symbol_name && symbol_name[0] == '_') {
3470                          symbol_name_is_mangled = symbol_name[1] == '_';
3471                          symbol_name++; // Skip the leading underscore
3472                        }
3473
3474                        if (symbol_name) {
3475                          ConstString const_symbol_name(symbol_name);
3476                          sym[sym_idx].GetMangled().SetValue(
3477                              const_symbol_name, symbol_name_is_mangled);
3478                          if (is_gsym && is_debug) {
3479                            const char *gsym_name =
3480                                sym[sym_idx]
3481                                    .GetMangled()
3482                                    .GetName(Mangled::ePreferMangled)
3483                                    .GetCString();
3484                            if (gsym_name)
3485                              N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3486                          }
3487                        }
3488                      }
3489                      if (symbol_section) {
3490                        const addr_t section_file_addr =
3491                            symbol_section->GetFileAddress();
3492                        if (symbol_byte_size == 0 &&
3493                            function_starts_count > 0) {
3494                          addr_t symbol_lookup_file_addr = nlist.n_value;
3495                          // Do an exact address match for non-ARM addresses,
3496                          // else get the closest since the symbol might be a
3497                          // thumb symbol which has an address with bit zero
3498                          // set
3499                          FunctionStarts::Entry *func_start_entry =
3500                              function_starts.FindEntry(symbol_lookup_file_addr,
3501                                                        !is_arm);
3502                          if (is_arm && func_start_entry) {
3503                            // Verify that the function start address is the
3504                            // symbol address (ARM) or the symbol address + 1
3505                            // (thumb)
3506                            if (func_start_entry->addr !=
3507                                    symbol_lookup_file_addr &&
3508                                func_start_entry->addr !=
3509                                    (symbol_lookup_file_addr + 1)) {
3510                              // Not the right entry, NULL it out...
3511                              func_start_entry = NULL;
3512                            }
3513                          }
3514                          if (func_start_entry) {
3515                            func_start_entry->data = true;
3516
3517                            addr_t symbol_file_addr = func_start_entry->addr;
3518                            uint32_t symbol_flags = 0;
3519                            if (is_arm) {
3520                              if (symbol_file_addr & 1)
3521                                symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3522                              symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3523                            }
3524
3525                            const FunctionStarts::Entry *next_func_start_entry =
3526                                function_starts.FindNextEntry(func_start_entry);
3527                            const addr_t section_end_file_addr =
3528                                section_file_addr +
3529                                symbol_section->GetByteSize();
3530                            if (next_func_start_entry) {
3531                              addr_t next_symbol_file_addr =
3532                                  next_func_start_entry->addr;
3533                              // Be sure the clear the Thumb address bit when
3534                              // we calculate the size from the current and
3535                              // next address
3536                              if (is_arm)
3537                                next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3538                              symbol_byte_size = std::min<lldb::addr_t>(
3539                                  next_symbol_file_addr - symbol_file_addr,
3540                                  section_end_file_addr - symbol_file_addr);
3541                            } else {
3542                              symbol_byte_size =
3543                                  section_end_file_addr - symbol_file_addr;
3544                            }
3545                          }
3546                        }
3547                        symbol_value -= section_file_addr;
3548                      }
3549
3550                      if (is_debug == false) {
3551                        if (type == eSymbolTypeCode) {
3552                          // See if we can find a N_FUN entry for any code
3553                          // symbols. If we do find a match, and the name
3554                          // matches, then we can merge the two into just the
3555                          // function symbol to avoid duplicate entries in
3556                          // the symbol table
3557                          auto range =
3558                              N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3559                          if (range.first != range.second) {
3560                            bool found_it = false;
3561                            for (auto pos = range.first; pos != range.second;
3562                                 ++pos) {
3563                              if (sym[sym_idx].GetMangled().GetName(
3564                                      Mangled::ePreferMangled) ==
3565                                  sym[pos->second].GetMangled().GetName(
3566                                      Mangled::ePreferMangled)) {
3567                                m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3568                                // We just need the flags from the linker
3569                                // symbol, so put these flags
3570                                // into the N_FUN flags to avoid duplicate
3571                                // symbols in the symbol table
3572                                sym[pos->second].SetExternal(
3573                                    sym[sym_idx].IsExternal());
3574                                sym[pos->second].SetFlags(nlist.n_type << 16 |
3575                                                          nlist.n_desc);
3576                                if (resolver_addresses.find(nlist.n_value) !=
3577                                    resolver_addresses.end())
3578                                  sym[pos->second].SetType(eSymbolTypeResolver);
3579                                sym[sym_idx].Clear();
3580                                found_it = true;
3581                                break;
3582                              }
3583                            }
3584                            if (found_it)
3585                              continue;
3586                          } else {
3587                            if (resolver_addresses.find(nlist.n_value) !=
3588                                resolver_addresses.end())
3589                              type = eSymbolTypeResolver;
3590                          }
3591                        } else if (type == eSymbolTypeData ||
3592                                   type == eSymbolTypeObjCClass ||
3593                                   type == eSymbolTypeObjCMetaClass ||
3594                                   type == eSymbolTypeObjCIVar) {
3595                          // See if we can find a N_STSYM entry for any data
3596                          // symbols. If we do find a match, and the name
3597                          // matches, then we can merge the two into just the
3598                          // Static symbol to avoid duplicate entries in the
3599                          // symbol table
3600                          auto range = N_STSYM_addr_to_sym_idx.equal_range(
3601                              nlist.n_value);
3602                          if (range.first != range.second) {
3603                            bool found_it = false;
3604                            for (auto pos = range.first; pos != range.second;
3605                                 ++pos) {
3606                              if (sym[sym_idx].GetMangled().GetName(
3607                                      Mangled::ePreferMangled) ==
3608                                  sym[pos->second].GetMangled().GetName(
3609                                      Mangled::ePreferMangled)) {
3610                                m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3611                                // We just need the flags from the linker
3612                                // symbol, so put these flags
3613                                // into the N_STSYM flags to avoid duplicate
3614                                // symbols in the symbol table
3615                                sym[pos->second].SetExternal(
3616                                    sym[sym_idx].IsExternal());
3617                                sym[pos->second].SetFlags(nlist.n_type << 16 |
3618                                                          nlist.n_desc);
3619                                sym[sym_idx].Clear();
3620                                found_it = true;
3621                                break;
3622                              }
3623                            }
3624                            if (found_it)
3625                              continue;
3626                          } else {
3627                            const char *gsym_name =
3628                                sym[sym_idx]
3629                                    .GetMangled()
3630                                    .GetName(Mangled::ePreferMangled)
3631                                    .GetCString();
3632                            if (gsym_name) {
3633                              // Combine N_GSYM stab entries with the non
3634                              // stab symbol
3635                              ConstNameToSymbolIndexMap::const_iterator pos =
3636                                  N_GSYM_name_to_sym_idx.find(gsym_name);
3637                              if (pos != N_GSYM_name_to_sym_idx.end()) {
3638                                const uint32_t GSYM_sym_idx = pos->second;
3639                                m_nlist_idx_to_sym_idx[nlist_idx] =
3640                                    GSYM_sym_idx;
3641                                // Copy the address, because often the N_GSYM
3642                                // address has an invalid address of zero
3643                                // when the global is a common symbol
3644                                sym[GSYM_sym_idx].GetAddressRef().SetSection(
3645                                    symbol_section);
3646                                sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3647                                    symbol_value);
3648                                add_symbol_addr(sym[GSYM_sym_idx]
3649                                                    .GetAddress()
3650                                                    .GetFileAddress());
3651                                // We just need the flags from the linker
3652                                // symbol, so put these flags
3653                                // into the N_GSYM flags to avoid duplicate
3654                                // symbols in the symbol table
3655                                sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3656                                                           nlist.n_desc);
3657                                sym[sym_idx].Clear();
3658                                continue;
3659                              }
3660                            }
3661                          }
3662                        }
3663                      }
3664
3665                      sym[sym_idx].SetID(nlist_idx);
3666                      sym[sym_idx].SetType(type);
3667                      if (set_value) {
3668                        sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3669                        sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3670                        add_symbol_addr(
3671                            sym[sym_idx].GetAddress().GetFileAddress());
3672                      }
3673                      sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3674
3675                      if (symbol_byte_size > 0)
3676                        sym[sym_idx].SetByteSize(symbol_byte_size);
3677
3678                      if (demangled_is_synthesized)
3679                        sym[sym_idx].SetDemangledNameIsSynthesized(true);
3680                      ++sym_idx;
3681                    } else {
3682                      sym[sym_idx].Clear();
3683                    }
3684                  }
3685                  /////////////////////////////
3686                }
3687            }
3688
3689            for (const auto &pos : reexport_shlib_needs_fixup) {
3690              const auto undef_pos = undefined_name_to_desc.find(pos.second);
3691              if (undef_pos != undefined_name_to_desc.end()) {
3692                const uint8_t dylib_ordinal =
3693                    llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3694                if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3695                  sym[pos.first].SetReExportedSymbolSharedLibrary(
3696                      dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3697              }
3698            }
3699          }
3700
3701#endif
3702  lldb::offset_t nlist_data_offset = 0;
3703
3704  if (nlist_data.GetByteSize() > 0) {
3705
3706    // If the sym array was not created while parsing the DSC unmapped
3707    // symbols, create it now.
3708    if (sym == nullptr) {
3709      sym =
3710          symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3711      num_syms = symtab.GetNumSymbols();
3712    }
3713
3714    if (unmapped_local_symbols_found) {
3715      assert(m_dysymtab.ilocalsym == 0);
3716      nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3717      nlist_idx = m_dysymtab.nlocalsym;
3718    } else {
3719      nlist_idx = 0;
3720    }
3721
3722    typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3723    typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3724    UndefinedNameToDescMap undefined_name_to_desc;
3725    SymbolIndexToName reexport_shlib_needs_fixup;
3726
3727    // Symtab parsing is a huge mess. Everything is entangled and the code
3728    // requires access to a ridiculous amount of variables. LLDB depends
3729    // heavily on the proper merging of symbols and to get that right we need
3730    // to make sure we have parsed all the debug symbols first. Therefore we
3731    // invoke the lambda twice, once to parse only the debug symbols and then
3732    // once more to parse the remaining symbols.
3733    auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3734                                 bool debug_only) {
3735      const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3736      if (is_debug != debug_only)
3737        return true;
3738
3739      const char *symbol_name_non_abi_mangled = nullptr;
3740      const char *symbol_name = nullptr;
3741
3742      if (have_strtab_data) {
3743        symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3744
3745        if (symbol_name == nullptr) {
3746          // No symbol should be NULL, even the symbols with no string values
3747          // should have an offset zero which points to an empty C-string
3748          Debugger::ReportError(llvm::formatv(
3749              "symbol[{0}] has invalid string table offset {1:x} in {2}, "
3750              "ignoring symbol",
3751              nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath()));
3752          return true;
3753        }
3754        if (symbol_name[0] == '\0')
3755          symbol_name = nullptr;
3756      } else {
3757        const addr_t str_addr = strtab_addr + nlist.n_strx;
3758        Status str_error;
3759        if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3760                                           str_error))
3761          symbol_name = memory_symbol_name.c_str();
3762      }
3763
3764      SymbolType type = eSymbolTypeInvalid;
3765      SectionSP symbol_section;
3766      lldb::addr_t symbol_byte_size = 0;
3767      bool add_nlist = true;
3768      bool is_gsym = false;
3769      bool demangled_is_synthesized = false;
3770      bool set_value = true;
3771
3772      assert(sym_idx < num_syms);
3773      sym[sym_idx].SetDebug(is_debug);
3774
3775      if (is_debug) {
3776        switch (nlist.n_type) {
3777        case N_GSYM:
3778          // global symbol: name,,NO_SECT,type,0
3779          // Sometimes the N_GSYM value contains the address.
3780
3781          // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3782          // the ObjC data.  They
3783          // have the same address, but we want to ensure that we always find
3784          // only the real symbol, 'cause we don't currently correctly
3785          // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3786          // type.  This is a temporary hack to make sure the ObjectiveC
3787          // symbols get treated correctly.  To do this right, we should
3788          // coalesce all the GSYM & global symbols that have the same
3789          // address.
3790          is_gsym = true;
3791          sym[sym_idx].SetExternal(true);
3792
3793          if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3794            llvm::StringRef symbol_name_ref(symbol_name);
3795            if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3796              symbol_name_non_abi_mangled = symbol_name + 1;
3797              symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3798              type = eSymbolTypeObjCClass;
3799              demangled_is_synthesized = true;
3800
3801            } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3802              symbol_name_non_abi_mangled = symbol_name + 1;
3803              symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3804              type = eSymbolTypeObjCMetaClass;
3805              demangled_is_synthesized = true;
3806            } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3807              symbol_name_non_abi_mangled = symbol_name + 1;
3808              symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3809              type = eSymbolTypeObjCIVar;
3810              demangled_is_synthesized = true;
3811            }
3812          } else {
3813            if (nlist.n_value != 0)
3814              symbol_section =
3815                  section_info.GetSection(nlist.n_sect, nlist.n_value);
3816            type = eSymbolTypeData;
3817          }
3818          break;
3819
3820        case N_FNAME:
3821          // procedure name (f77 kludge): name,,NO_SECT,0,0
3822          type = eSymbolTypeCompiler;
3823          break;
3824
3825        case N_FUN:
3826          // procedure: name,,n_sect,linenumber,address
3827          if (symbol_name) {
3828            type = eSymbolTypeCode;
3829            symbol_section =
3830                section_info.GetSection(nlist.n_sect, nlist.n_value);
3831
3832            N_FUN_addr_to_sym_idx.insert(
3833                std::make_pair(nlist.n_value, sym_idx));
3834            // We use the current number of symbols in the symbol table in
3835            // lieu of using nlist_idx in case we ever start trimming entries
3836            // out
3837            N_FUN_indexes.push_back(sym_idx);
3838          } else {
3839            type = eSymbolTypeCompiler;
3840
3841            if (!N_FUN_indexes.empty()) {
3842              // Copy the size of the function into the original STAB entry
3843              // so we don't have to hunt for it later
3844              symtab.SymbolAtIndex(N_FUN_indexes.back())
3845                  ->SetByteSize(nlist.n_value);
3846              N_FUN_indexes.pop_back();
3847              // We don't really need the end function STAB as it contains
3848              // the size which we already placed with the original symbol,
3849              // so don't add it if we want a minimal symbol table
3850              add_nlist = false;
3851            }
3852          }
3853          break;
3854
3855        case N_STSYM:
3856          // static symbol: name,,n_sect,type,address
3857          N_STSYM_addr_to_sym_idx.insert(
3858              std::make_pair(nlist.n_value, sym_idx));
3859          symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3860          if (symbol_name && symbol_name[0]) {
3861            type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3862                                                     eSymbolTypeData);
3863          }
3864          break;
3865
3866        case N_LCSYM:
3867          // .lcomm symbol: name,,n_sect,type,address
3868          symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3869          type = eSymbolTypeCommonBlock;
3870          break;
3871
3872        case N_BNSYM:
3873          // We use the current number of symbols in the symbol table in lieu
3874          // of using nlist_idx in case we ever start trimming entries out
3875          // Skip these if we want minimal symbol tables
3876          add_nlist = false;
3877          break;
3878
3879        case N_ENSYM:
3880          // Set the size of the N_BNSYM to the terminating index of this
3881          // N_ENSYM so that we can always skip the entire symbol if we need
3882          // to navigate more quickly at the source level when parsing STABS
3883          // Skip these if we want minimal symbol tables
3884          add_nlist = false;
3885          break;
3886
3887        case N_OPT:
3888          // emitted with gcc2_compiled and in gcc source
3889          type = eSymbolTypeCompiler;
3890          break;
3891
3892        case N_RSYM:
3893          // register sym: name,,NO_SECT,type,register
3894          type = eSymbolTypeVariable;
3895          break;
3896
3897        case N_SLINE:
3898          // src line: 0,,n_sect,linenumber,address
3899          symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3900          type = eSymbolTypeLineEntry;
3901          break;
3902
3903        case N_SSYM:
3904          // structure elt: name,,NO_SECT,type,struct_offset
3905          type = eSymbolTypeVariableType;
3906          break;
3907
3908        case N_SO:
3909          // source file name
3910          type = eSymbolTypeSourceFile;
3911          if (symbol_name == nullptr) {
3912            add_nlist = false;
3913            if (N_SO_index != UINT32_MAX) {
3914              // Set the size of the N_SO to the terminating index of this
3915              // N_SO so that we can always skip the entire N_SO if we need
3916              // to navigate more quickly at the source level when parsing
3917              // STABS
3918              symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3919              symbol_ptr->SetByteSize(sym_idx);
3920              symbol_ptr->SetSizeIsSibling(true);
3921            }
3922            N_NSYM_indexes.clear();
3923            N_INCL_indexes.clear();
3924            N_BRAC_indexes.clear();
3925            N_COMM_indexes.clear();
3926            N_FUN_indexes.clear();
3927            N_SO_index = UINT32_MAX;
3928          } else {
3929            // We use the current number of symbols in the symbol table in
3930            // lieu of using nlist_idx in case we ever start trimming entries
3931            // out
3932            const bool N_SO_has_full_path = symbol_name[0] == '/';
3933            if (N_SO_has_full_path) {
3934              if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3935                // We have two consecutive N_SO entries where the first
3936                // contains a directory and the second contains a full path.
3937                sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3938                                                       false);
3939                m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3940                add_nlist = false;
3941              } else {
3942                // This is the first entry in a N_SO that contains a
3943                // directory or a full path to the source file
3944                N_SO_index = sym_idx;
3945              }
3946            } else if ((N_SO_index == sym_idx - 1) &&
3947                       ((sym_idx - 1) < num_syms)) {
3948              // This is usually the second N_SO entry that contains just the
3949              // filename, so here we combine it with the first one if we are
3950              // minimizing the symbol table
3951              const char *so_path =
3952                  sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3953              if (so_path && so_path[0]) {
3954                std::string full_so_path(so_path);
3955                const size_t double_slash_pos = full_so_path.find("//");
3956                if (double_slash_pos != std::string::npos) {
3957                  // The linker has been generating bad N_SO entries with
3958                  // doubled up paths in the format "%s%s" where the first
3959                  // string in the DW_AT_comp_dir, and the second is the
3960                  // directory for the source file so you end up with a path
3961                  // that looks like "/tmp/src//tmp/src/"
3962                  FileSpec so_dir(so_path);
3963                  if (!FileSystem::Instance().Exists(so_dir)) {
3964                    so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3965                                   FileSpec::Style::native);
3966                    if (FileSystem::Instance().Exists(so_dir)) {
3967                      // Trim off the incorrect path
3968                      full_so_path.erase(0, double_slash_pos + 1);
3969                    }
3970                  }
3971                }
3972                if (*full_so_path.rbegin() != '/')
3973                  full_so_path += '/';
3974                full_so_path += symbol_name;
3975                sym[sym_idx - 1].GetMangled().SetValue(
3976                    ConstString(full_so_path.c_str()), false);
3977                add_nlist = false;
3978                m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3979              }
3980            } else {
3981              // This could be a relative path to a N_SO
3982              N_SO_index = sym_idx;
3983            }
3984          }
3985          break;
3986
3987        case N_OSO:
3988          // object file name: name,,0,0,st_mtime
3989          type = eSymbolTypeObjectFile;
3990          break;
3991
3992        case N_LSYM:
3993          // local sym: name,,NO_SECT,type,offset
3994          type = eSymbolTypeLocal;
3995          break;
3996
3997        // INCL scopes
3998        case N_BINCL:
3999          // include file beginning: name,,NO_SECT,0,sum We use the current
4000          // number of symbols in the symbol table in lieu of using nlist_idx
4001          // in case we ever start trimming entries out
4002          N_INCL_indexes.push_back(sym_idx);
4003          type = eSymbolTypeScopeBegin;
4004          break;
4005
4006        case N_EINCL:
4007          // include file end: name,,NO_SECT,0,0
4008          // Set the size of the N_BINCL to the terminating index of this
4009          // N_EINCL so that we can always skip the entire symbol if we need
4010          // to navigate more quickly at the source level when parsing STABS
4011          if (!N_INCL_indexes.empty()) {
4012            symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
4013            symbol_ptr->SetByteSize(sym_idx + 1);
4014            symbol_ptr->SetSizeIsSibling(true);
4015            N_INCL_indexes.pop_back();
4016          }
4017          type = eSymbolTypeScopeEnd;
4018          break;
4019
4020        case N_SOL:
4021          // #included file name: name,,n_sect,0,address
4022          type = eSymbolTypeHeaderFile;
4023
4024          // We currently don't use the header files on darwin
4025          add_nlist = false;
4026          break;
4027
4028        case N_PARAMS:
4029          // compiler parameters: name,,NO_SECT,0,0
4030          type = eSymbolTypeCompiler;
4031          break;
4032
4033        case N_VERSION:
4034          // compiler version: name,,NO_SECT,0,0
4035          type = eSymbolTypeCompiler;
4036          break;
4037
4038        case N_OLEVEL:
4039          // compiler -O level: name,,NO_SECT,0,0
4040          type = eSymbolTypeCompiler;
4041          break;
4042
4043        case N_PSYM:
4044          // parameter: name,,NO_SECT,type,offset
4045          type = eSymbolTypeVariable;
4046          break;
4047
4048        case N_ENTRY:
4049          // alternate entry: name,,n_sect,linenumber,address
4050          symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4051          type = eSymbolTypeLineEntry;
4052          break;
4053
4054        // Left and Right Braces
4055        case N_LBRAC:
4056          // left bracket: 0,,NO_SECT,nesting level,address We use the
4057          // current number of symbols in the symbol table in lieu of using
4058          // nlist_idx in case we ever start trimming entries out
4059          symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4060          N_BRAC_indexes.push_back(sym_idx);
4061          type = eSymbolTypeScopeBegin;
4062          break;
4063
4064        case N_RBRAC:
4065          // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4066          // the N_LBRAC to the terminating index of this N_RBRAC so that we
4067          // can always skip the entire symbol if we need to navigate more
4068          // quickly at the source level when parsing STABS
4069          symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4070          if (!N_BRAC_indexes.empty()) {
4071            symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4072            symbol_ptr->SetByteSize(sym_idx + 1);
4073            symbol_ptr->SetSizeIsSibling(true);
4074            N_BRAC_indexes.pop_back();
4075          }
4076          type = eSymbolTypeScopeEnd;
4077          break;
4078
4079        case N_EXCL:
4080          // deleted include file: name,,NO_SECT,0,sum
4081          type = eSymbolTypeHeaderFile;
4082          break;
4083
4084        // COMM scopes
4085        case N_BCOMM:
4086          // begin common: name,,NO_SECT,0,0
4087          // We use the current number of symbols in the symbol table in lieu
4088          // of using nlist_idx in case we ever start trimming entries out
4089          type = eSymbolTypeScopeBegin;
4090          N_COMM_indexes.push_back(sym_idx);
4091          break;
4092
4093        case N_ECOML:
4094          // end common (local name): 0,,n_sect,0,address
4095          symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4096          [[fallthrough]];
4097
4098        case N_ECOMM:
4099          // end common: name,,n_sect,0,0
4100          // Set the size of the N_BCOMM to the terminating index of this
4101          // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4102          // we need to navigate more quickly at the source level when
4103          // parsing STABS
4104          if (!N_COMM_indexes.empty()) {
4105            symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4106            symbol_ptr->SetByteSize(sym_idx + 1);
4107            symbol_ptr->SetSizeIsSibling(true);
4108            N_COMM_indexes.pop_back();
4109          }
4110          type = eSymbolTypeScopeEnd;
4111          break;
4112
4113        case N_LENG:
4114          // second stab entry with length information
4115          type = eSymbolTypeAdditional;
4116          break;
4117
4118        default:
4119          break;
4120        }
4121      } else {
4122        uint8_t n_type = N_TYPE & nlist.n_type;
4123        sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4124
4125        switch (n_type) {
4126        case N_INDR: {
4127          const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4128          if (reexport_name_cstr && reexport_name_cstr[0] && symbol_name) {
4129            type = eSymbolTypeReExported;
4130            ConstString reexport_name(reexport_name_cstr +
4131                                      ((reexport_name_cstr[0] == '_') ? 1 : 0));
4132            sym[sym_idx].SetReExportedSymbolName(reexport_name);
4133            set_value = false;
4134            reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4135            indirect_symbol_names.insert(
4136                ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4137          } else
4138            type = eSymbolTypeUndefined;
4139        } break;
4140
4141        case N_UNDF:
4142          if (symbol_name && symbol_name[0]) {
4143            ConstString undefined_name(symbol_name +
4144                                       ((symbol_name[0] == '_') ? 1 : 0));
4145            undefined_name_to_desc[undefined_name] = nlist.n_desc;
4146          }
4147          [[fallthrough]];
4148
4149        case N_PBUD:
4150          type = eSymbolTypeUndefined;
4151          break;
4152
4153        case N_ABS:
4154          type = eSymbolTypeAbsolute;
4155          break;
4156
4157        case N_SECT: {
4158          symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4159
4160          if (!symbol_section) {
4161            // TODO: warn about this?
4162            add_nlist = false;
4163            break;
4164          }
4165
4166          if (TEXT_eh_frame_sectID == nlist.n_sect) {
4167            type = eSymbolTypeException;
4168          } else {
4169            uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4170
4171            switch (section_type) {
4172            case S_CSTRING_LITERALS:
4173              type = eSymbolTypeData;
4174              break; // section with only literal C strings
4175            case S_4BYTE_LITERALS:
4176              type = eSymbolTypeData;
4177              break; // section with only 4 byte literals
4178            case S_8BYTE_LITERALS:
4179              type = eSymbolTypeData;
4180              break; // section with only 8 byte literals
4181            case S_LITERAL_POINTERS:
4182              type = eSymbolTypeTrampoline;
4183              break; // section with only pointers to literals
4184            case S_NON_LAZY_SYMBOL_POINTERS:
4185              type = eSymbolTypeTrampoline;
4186              break; // section with only non-lazy symbol pointers
4187            case S_LAZY_SYMBOL_POINTERS:
4188              type = eSymbolTypeTrampoline;
4189              break; // section with only lazy symbol pointers
4190            case S_SYMBOL_STUBS:
4191              type = eSymbolTypeTrampoline;
4192              break; // section with only symbol stubs, byte size of stub in
4193                     // the reserved2 field
4194            case S_MOD_INIT_FUNC_POINTERS:
4195              type = eSymbolTypeCode;
4196              break; // section with only function pointers for initialization
4197            case S_MOD_TERM_FUNC_POINTERS:
4198              type = eSymbolTypeCode;
4199              break; // section with only function pointers for termination
4200            case S_INTERPOSING:
4201              type = eSymbolTypeTrampoline;
4202              break; // section with only pairs of function pointers for
4203                     // interposing
4204            case S_16BYTE_LITERALS:
4205              type = eSymbolTypeData;
4206              break; // section with only 16 byte literals
4207            case S_DTRACE_DOF:
4208              type = eSymbolTypeInstrumentation;
4209              break;
4210            case S_LAZY_DYLIB_SYMBOL_POINTERS:
4211              type = eSymbolTypeTrampoline;
4212              break;
4213            default:
4214              switch (symbol_section->GetType()) {
4215              case lldb::eSectionTypeCode:
4216                type = eSymbolTypeCode;
4217                break;
4218              case eSectionTypeData:
4219              case eSectionTypeDataCString:         // Inlined C string data
4220              case eSectionTypeDataCStringPointers: // Pointers to C string
4221                                                    // data
4222              case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4223                                                    // the symbol table
4224              case eSectionTypeData4:
4225              case eSectionTypeData8:
4226              case eSectionTypeData16:
4227                type = eSymbolTypeData;
4228                break;
4229              default:
4230                break;
4231              }
4232              break;
4233            }
4234
4235            if (type == eSymbolTypeInvalid) {
4236              const char *symbol_sect_name =
4237                  symbol_section->GetName().AsCString();
4238              if (symbol_section->IsDescendant(text_section_sp.get())) {
4239                if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4240                                            S_ATTR_SELF_MODIFYING_CODE |
4241                                            S_ATTR_SOME_INSTRUCTIONS))
4242                  type = eSymbolTypeData;
4243                else
4244                  type = eSymbolTypeCode;
4245              } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4246                         symbol_section->IsDescendant(
4247                             data_dirty_section_sp.get()) ||
4248                         symbol_section->IsDescendant(
4249                             data_const_section_sp.get())) {
4250                if (symbol_sect_name &&
4251                    ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4252                  type = eSymbolTypeRuntime;
4253
4254                  if (symbol_name) {
4255                    llvm::StringRef symbol_name_ref(symbol_name);
4256                    if (symbol_name_ref.startswith("_OBJC_")) {
4257                      llvm::StringRef g_objc_v2_prefix_class(
4258                          "_OBJC_CLASS_$_");
4259                      llvm::StringRef g_objc_v2_prefix_metaclass(
4260                          "_OBJC_METACLASS_$_");
4261                      llvm::StringRef g_objc_v2_prefix_ivar(
4262                          "_OBJC_IVAR_$_");
4263                      if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4264                        symbol_name_non_abi_mangled = symbol_name + 1;
4265                        symbol_name =
4266                            symbol_name + g_objc_v2_prefix_class.size();
4267                        type = eSymbolTypeObjCClass;
4268                        demangled_is_synthesized = true;
4269                      } else if (symbol_name_ref.startswith(
4270                                     g_objc_v2_prefix_metaclass)) {
4271                        symbol_name_non_abi_mangled = symbol_name + 1;
4272                        symbol_name =
4273                            symbol_name + g_objc_v2_prefix_metaclass.size();
4274                        type = eSymbolTypeObjCMetaClass;
4275                        demangled_is_synthesized = true;
4276                      } else if (symbol_name_ref.startswith(
4277                                     g_objc_v2_prefix_ivar)) {
4278                        symbol_name_non_abi_mangled = symbol_name + 1;
4279                        symbol_name =
4280                            symbol_name + g_objc_v2_prefix_ivar.size();
4281                        type = eSymbolTypeObjCIVar;
4282                        demangled_is_synthesized = true;
4283                      }
4284                    }
4285                  }
4286                } else if (symbol_sect_name &&
4287                           ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4288                               symbol_sect_name) {
4289                  type = eSymbolTypeException;
4290                } else {
4291                  type = eSymbolTypeData;
4292                }
4293              } else if (symbol_sect_name &&
4294                         ::strstr(symbol_sect_name, "__IMPORT") ==
4295                             symbol_sect_name) {
4296                type = eSymbolTypeTrampoline;
4297              } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4298                type = eSymbolTypeRuntime;
4299                if (symbol_name && symbol_name[0] == '.') {
4300                  llvm::StringRef symbol_name_ref(symbol_name);
4301                  llvm::StringRef g_objc_v1_prefix_class(
4302                      ".objc_class_name_");
4303                  if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4304                    symbol_name_non_abi_mangled = symbol_name;
4305                    symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4306                    type = eSymbolTypeObjCClass;
4307                    demangled_is_synthesized = true;
4308                  }
4309                }
4310              }
4311            }
4312          }
4313        } break;
4314        }
4315      }
4316
4317      if (!add_nlist) {
4318        sym[sym_idx].Clear();
4319        return true;
4320      }
4321
4322      uint64_t symbol_value = nlist.n_value;
4323
4324      if (symbol_name_non_abi_mangled) {
4325        sym[sym_idx].GetMangled().SetMangledName(
4326            ConstString(symbol_name_non_abi_mangled));
4327        sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4328      } else {
4329        bool symbol_name_is_mangled = false;
4330
4331        if (symbol_name && symbol_name[0] == '_') {
4332          symbol_name_is_mangled = symbol_name[1] == '_';
4333          symbol_name++; // Skip the leading underscore
4334        }
4335
4336        if (symbol_name) {
4337          ConstString const_symbol_name(symbol_name);
4338          sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4339                                             symbol_name_is_mangled);
4340        }
4341      }
4342
4343      if (is_gsym) {
4344        const char *gsym_name = sym[sym_idx]
4345                                    .GetMangled()
4346                                    .GetName(Mangled::ePreferMangled)
4347                                    .GetCString();
4348        if (gsym_name)
4349          N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4350      }
4351
4352      if (symbol_section) {
4353        const addr_t section_file_addr = symbol_section->GetFileAddress();
4354        if (symbol_byte_size == 0 && function_starts_count > 0) {
4355          addr_t symbol_lookup_file_addr = nlist.n_value;
4356          // Do an exact address match for non-ARM addresses, else get the
4357          // closest since the symbol might be a thumb symbol which has an
4358          // address with bit zero set.
4359          FunctionStarts::Entry *func_start_entry =
4360              function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4361          if (is_arm && func_start_entry) {
4362            // Verify that the function start address is the symbol address
4363            // (ARM) or the symbol address + 1 (thumb).
4364            if (func_start_entry->addr != symbol_lookup_file_addr &&
4365                func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4366              // Not the right entry, NULL it out...
4367              func_start_entry = nullptr;
4368            }
4369          }
4370          if (func_start_entry) {
4371            func_start_entry->data = true;
4372
4373            addr_t symbol_file_addr = func_start_entry->addr;
4374            if (is_arm)
4375              symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4376
4377            const FunctionStarts::Entry *next_func_start_entry =
4378                function_starts.FindNextEntry(func_start_entry);
4379            const addr_t section_end_file_addr =
4380                section_file_addr + symbol_section->GetByteSize();
4381            if (next_func_start_entry) {
4382              addr_t next_symbol_file_addr = next_func_start_entry->addr;
4383              // Be sure the clear the Thumb address bit when we calculate the
4384              // size from the current and next address
4385              if (is_arm)
4386                next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4387              symbol_byte_size = std::min<lldb::addr_t>(
4388                  next_symbol_file_addr - symbol_file_addr,
4389                  section_end_file_addr - symbol_file_addr);
4390            } else {
4391              symbol_byte_size = section_end_file_addr - symbol_file_addr;
4392            }
4393          }
4394        }
4395        symbol_value -= section_file_addr;
4396      }
4397
4398      if (!is_debug) {
4399        if (type == eSymbolTypeCode) {
4400          // See if we can find a N_FUN entry for any code symbols. If we do
4401          // find a match, and the name matches, then we can merge the two into
4402          // just the function symbol to avoid duplicate entries in the symbol
4403          // table.
4404          std::pair<ValueToSymbolIndexMap::const_iterator,
4405                    ValueToSymbolIndexMap::const_iterator>
4406              range;
4407          range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4408          if (range.first != range.second) {
4409            for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4410                 pos != range.second; ++pos) {
4411              if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4412                  sym[pos->second].GetMangled().GetName(
4413                      Mangled::ePreferMangled)) {
4414                m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4415                // We just need the flags from the linker symbol, so put these
4416                // flags into the N_FUN flags to avoid duplicate symbols in the
4417                // symbol table.
4418                sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4419                sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4420                if (resolver_addresses.find(nlist.n_value) !=
4421                    resolver_addresses.end())
4422                  sym[pos->second].SetType(eSymbolTypeResolver);
4423                sym[sym_idx].Clear();
4424                return true;
4425              }
4426            }
4427          } else {
4428            if (resolver_addresses.find(nlist.n_value) !=
4429                resolver_addresses.end())
4430              type = eSymbolTypeResolver;
4431          }
4432        } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4433                   type == eSymbolTypeObjCMetaClass ||
4434                   type == eSymbolTypeObjCIVar) {
4435          // See if we can find a N_STSYM entry for any data symbols. If we do
4436          // find a match, and the name matches, then we can merge the two into
4437          // just the Static symbol to avoid duplicate entries in the symbol
4438          // table.
4439          std::pair<ValueToSymbolIndexMap::const_iterator,
4440                    ValueToSymbolIndexMap::const_iterator>
4441              range;
4442          range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4443          if (range.first != range.second) {
4444            for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4445                 pos != range.second; ++pos) {
4446              if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4447                  sym[pos->second].GetMangled().GetName(
4448                      Mangled::ePreferMangled)) {
4449                m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4450                // We just need the flags from the linker symbol, so put these
4451                // flags into the N_STSYM flags to avoid duplicate symbols in
4452                // the symbol table.
4453                sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4454                sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4455                sym[sym_idx].Clear();
4456                return true;
4457              }
4458            }
4459          } else {
4460            // Combine N_GSYM stab entries with the non stab symbol.
4461            const char *gsym_name = sym[sym_idx]
4462                                        .GetMangled()
4463                                        .GetName(Mangled::ePreferMangled)
4464                                        .GetCString();
4465            if (gsym_name) {
4466              ConstNameToSymbolIndexMap::const_iterator pos =
4467                  N_GSYM_name_to_sym_idx.find(gsym_name);
4468              if (pos != N_GSYM_name_to_sym_idx.end()) {
4469                const uint32_t GSYM_sym_idx = pos->second;
4470                m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4471                // Copy the address, because often the N_GSYM address has an
4472                // invalid address of zero when the global is a common symbol.
4473                sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4474                sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4475                add_symbol_addr(
4476                    sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4477                // We just need the flags from the linker symbol, so put these
4478                // flags into the N_GSYM flags to avoid duplicate symbols in
4479                // the symbol table.
4480                sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4481                sym[sym_idx].Clear();
4482                return true;
4483              }
4484            }
4485          }
4486        }
4487      }
4488
4489      sym[sym_idx].SetID(nlist_idx);
4490      sym[sym_idx].SetType(type);
4491      if (set_value) {
4492        sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4493        sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4494        if (symbol_section)
4495          add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4496      }
4497      sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4498      if (nlist.n_desc & N_WEAK_REF)
4499        sym[sym_idx].SetIsWeak(true);
4500
4501      if (symbol_byte_size > 0)
4502        sym[sym_idx].SetByteSize(symbol_byte_size);
4503
4504      if (demangled_is_synthesized)
4505        sym[sym_idx].SetDemangledNameIsSynthesized(true);
4506
4507      ++sym_idx;
4508      return true;
4509    };
4510
4511    // First parse all the nlists but don't process them yet. See the next
4512    // comment for an explanation why.
4513    std::vector<struct nlist_64> nlists;
4514    nlists.reserve(symtab_load_command.nsyms);
4515    for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4516      if (auto nlist =
4517              ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4518        nlists.push_back(*nlist);
4519      else
4520        break;
4521    }
4522
4523    // Now parse all the debug symbols. This is needed to merge non-debug
4524    // symbols in the next step. Non-debug symbols are always coalesced into
4525    // the debug symbol. Doing this in one step would mean that some symbols
4526    // won't be merged.
4527    nlist_idx = 0;
4528    for (auto &nlist : nlists) {
4529      if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4530        break;
4531    }
4532
4533    // Finally parse all the non debug symbols.
4534    nlist_idx = 0;
4535    for (auto &nlist : nlists) {
4536      if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4537        break;
4538    }
4539
4540    for (const auto &pos : reexport_shlib_needs_fixup) {
4541      const auto undef_pos = undefined_name_to_desc.find(pos.second);
4542      if (undef_pos != undefined_name_to_desc.end()) {
4543        const uint8_t dylib_ordinal =
4544            llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4545        if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4546          sym[pos.first].SetReExportedSymbolSharedLibrary(
4547              dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4548      }
4549    }
4550  }
4551
4552  // Count how many trie symbols we'll add to the symbol table
4553  int trie_symbol_table_augment_count = 0;
4554  for (auto &e : external_sym_trie_entries) {
4555    if (symbols_added.find(e.entry.address) == symbols_added.end())
4556      trie_symbol_table_augment_count++;
4557  }
4558
4559  if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4560    num_syms = sym_idx + trie_symbol_table_augment_count;
4561    sym = symtab.Resize(num_syms);
4562  }
4563  uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4564
4565  // Add symbols from the trie to the symbol table.
4566  for (auto &e : external_sym_trie_entries) {
4567    if (symbols_added.contains(e.entry.address))
4568      continue;
4569
4570    // Find the section that this trie address is in, use that to annotate
4571    // symbol type as we add the trie address and name to the symbol table.
4572    Address symbol_addr;
4573    if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4574      SectionSP symbol_section(symbol_addr.GetSection());
4575      const char *symbol_name = e.entry.name.GetCString();
4576      bool demangled_is_synthesized = false;
4577      SymbolType type =
4578          GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4579                        data_section_sp, data_dirty_section_sp,
4580                        data_const_section_sp, symbol_section);
4581
4582      sym[sym_idx].SetType(type);
4583      if (symbol_section) {
4584        sym[sym_idx].SetID(synthetic_sym_id++);
4585        sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4586        if (demangled_is_synthesized)
4587          sym[sym_idx].SetDemangledNameIsSynthesized(true);
4588        sym[sym_idx].SetIsSynthetic(true);
4589        sym[sym_idx].SetExternal(true);
4590        sym[sym_idx].GetAddressRef() = symbol_addr;
4591        add_symbol_addr(symbol_addr.GetFileAddress());
4592        if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4593          sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4594        ++sym_idx;
4595      }
4596    }
4597  }
4598
4599  if (function_starts_count > 0) {
4600    uint32_t num_synthetic_function_symbols = 0;
4601    for (i = 0; i < function_starts_count; ++i) {
4602      if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4603          symbols_added.end())
4604        ++num_synthetic_function_symbols;
4605    }
4606
4607    if (num_synthetic_function_symbols > 0) {
4608      if (num_syms < sym_idx + num_synthetic_function_symbols) {
4609        num_syms = sym_idx + num_synthetic_function_symbols;
4610        sym = symtab.Resize(num_syms);
4611      }
4612      for (i = 0; i < function_starts_count; ++i) {
4613        const FunctionStarts::Entry *func_start_entry =
4614            function_starts.GetEntryAtIndex(i);
4615        if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4616          addr_t symbol_file_addr = func_start_entry->addr;
4617          uint32_t symbol_flags = 0;
4618          if (func_start_entry->data)
4619            symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4620          Address symbol_addr;
4621          if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4622            SectionSP symbol_section(symbol_addr.GetSection());
4623            uint32_t symbol_byte_size = 0;
4624            if (symbol_section) {
4625              const addr_t section_file_addr = symbol_section->GetFileAddress();
4626              const FunctionStarts::Entry *next_func_start_entry =
4627                  function_starts.FindNextEntry(func_start_entry);
4628              const addr_t section_end_file_addr =
4629                  section_file_addr + symbol_section->GetByteSize();
4630              if (next_func_start_entry) {
4631                addr_t next_symbol_file_addr = next_func_start_entry->addr;
4632                if (is_arm)
4633                  next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4634                symbol_byte_size = std::min<lldb::addr_t>(
4635                    next_symbol_file_addr - symbol_file_addr,
4636                    section_end_file_addr - symbol_file_addr);
4637              } else {
4638                symbol_byte_size = section_end_file_addr - symbol_file_addr;
4639              }
4640              sym[sym_idx].SetID(synthetic_sym_id++);
4641              // Don't set the name for any synthetic symbols, the Symbol
4642              // object will generate one if needed when the name is accessed
4643              // via accessors.
4644              sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4645              sym[sym_idx].SetType(eSymbolTypeCode);
4646              sym[sym_idx].SetIsSynthetic(true);
4647              sym[sym_idx].GetAddressRef() = symbol_addr;
4648              add_symbol_addr(symbol_addr.GetFileAddress());
4649              if (symbol_flags)
4650                sym[sym_idx].SetFlags(symbol_flags);
4651              if (symbol_byte_size)
4652                sym[sym_idx].SetByteSize(symbol_byte_size);
4653              ++sym_idx;
4654            }
4655          }
4656        }
4657      }
4658    }
4659  }
4660
4661  // Trim our symbols down to just what we ended up with after removing any
4662  // symbols.
4663  if (sym_idx < num_syms) {
4664    num_syms = sym_idx;
4665    sym = symtab.Resize(num_syms);
4666  }
4667
4668  // Now synthesize indirect symbols
4669  if (m_dysymtab.nindirectsyms != 0) {
4670    if (indirect_symbol_index_data.GetByteSize()) {
4671      NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4672          m_nlist_idx_to_sym_idx.end();
4673
4674      for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4675           ++sect_idx) {
4676        if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4677            S_SYMBOL_STUBS) {
4678          uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4679          if (symbol_stub_byte_size == 0)
4680            continue;
4681
4682          const uint32_t num_symbol_stubs =
4683              m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4684
4685          if (num_symbol_stubs == 0)
4686            continue;
4687
4688          const uint32_t symbol_stub_index_offset =
4689              m_mach_sections[sect_idx].reserved1;
4690          for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4691            const uint32_t symbol_stub_index =
4692                symbol_stub_index_offset + stub_idx;
4693            const lldb::addr_t symbol_stub_addr =
4694                m_mach_sections[sect_idx].addr +
4695                (stub_idx * symbol_stub_byte_size);
4696            lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4697            if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4698                    symbol_stub_offset, 4)) {
4699              const uint32_t stub_sym_id =
4700                  indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4701              if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4702                continue;
4703
4704              NListIndexToSymbolIndexMap::const_iterator index_pos =
4705                  m_nlist_idx_to_sym_idx.find(stub_sym_id);
4706              Symbol *stub_symbol = nullptr;
4707              if (index_pos != end_index_pos) {
4708                // We have a remapping from the original nlist index to a
4709                // current symbol index, so just look this up by index
4710                stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4711              } else {
4712                // We need to lookup a symbol using the original nlist symbol
4713                // index since this index is coming from the S_SYMBOL_STUBS
4714                stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4715              }
4716
4717              if (stub_symbol) {
4718                Address so_addr(symbol_stub_addr, section_list);
4719
4720                if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4721                  // Change the external symbol into a trampoline that makes
4722                  // sense These symbols were N_UNDF N_EXT, and are useless
4723                  // to us, so we can re-use them so we don't have to make up
4724                  // a synthetic symbol for no good reason.
4725                  if (resolver_addresses.find(symbol_stub_addr) ==
4726                      resolver_addresses.end())
4727                    stub_symbol->SetType(eSymbolTypeTrampoline);
4728                  else
4729                    stub_symbol->SetType(eSymbolTypeResolver);
4730                  stub_symbol->SetExternal(false);
4731                  stub_symbol->GetAddressRef() = so_addr;
4732                  stub_symbol->SetByteSize(symbol_stub_byte_size);
4733                } else {
4734                  // Make a synthetic symbol to describe the trampoline stub
4735                  Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4736                  if (sym_idx >= num_syms) {
4737                    sym = symtab.Resize(++num_syms);
4738                    stub_symbol = nullptr; // this pointer no longer valid
4739                  }
4740                  sym[sym_idx].SetID(synthetic_sym_id++);
4741                  sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4742                  if (resolver_addresses.find(symbol_stub_addr) ==
4743                      resolver_addresses.end())
4744                    sym[sym_idx].SetType(eSymbolTypeTrampoline);
4745                  else
4746                    sym[sym_idx].SetType(eSymbolTypeResolver);
4747                  sym[sym_idx].SetIsSynthetic(true);
4748                  sym[sym_idx].GetAddressRef() = so_addr;
4749                  add_symbol_addr(so_addr.GetFileAddress());
4750                  sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4751                  ++sym_idx;
4752                }
4753              } else {
4754                if (log)
4755                  log->Warning("symbol stub referencing symbol table symbol "
4756                               "%u that isn't in our minimal symbol table, "
4757                               "fix this!!!",
4758                               stub_sym_id);
4759              }
4760            }
4761          }
4762        }
4763      }
4764    }
4765  }
4766
4767  if (!reexport_trie_entries.empty()) {
4768    for (const auto &e : reexport_trie_entries) {
4769      if (e.entry.import_name) {
4770        // Only add indirect symbols from the Trie entries if we didn't have
4771        // a N_INDR nlist entry for this already
4772        if (indirect_symbol_names.find(e.entry.name) ==
4773            indirect_symbol_names.end()) {
4774          // Make a synthetic symbol to describe re-exported symbol.
4775          if (sym_idx >= num_syms)
4776            sym = symtab.Resize(++num_syms);
4777          sym[sym_idx].SetID(synthetic_sym_id++);
4778          sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4779          sym[sym_idx].SetType(eSymbolTypeReExported);
4780          sym[sym_idx].SetIsSynthetic(true);
4781          sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4782          if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4783            sym[sym_idx].SetReExportedSymbolSharedLibrary(
4784                dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4785          }
4786          ++sym_idx;
4787        }
4788      }
4789    }
4790  }
4791}
4792
4793void ObjectFileMachO::Dump(Stream *s) {
4794  ModuleSP module_sp(GetModule());
4795  if (module_sp) {
4796    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4797    s->Printf("%p: ", static_cast<void *>(this));
4798    s->Indent();
4799    if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4800      s->PutCString("ObjectFileMachO64");
4801    else
4802      s->PutCString("ObjectFileMachO32");
4803
4804    *s << ", file = '" << m_file;
4805    ModuleSpecList all_specs;
4806    ModuleSpec base_spec;
4807    GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4808                    base_spec, all_specs);
4809    for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4810      *s << "', triple";
4811      if (e)
4812        s->Printf("[%d]", i);
4813      *s << " = ";
4814      *s << all_specs.GetModuleSpecRefAtIndex(i)
4815                .GetArchitecture()
4816                .GetTriple()
4817                .getTriple();
4818    }
4819    *s << "\n";
4820    SectionList *sections = GetSectionList();
4821    if (sections)
4822      sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4823                     UINT32_MAX);
4824
4825    if (m_symtab_up)
4826      m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4827  }
4828}
4829
4830UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4831                              const lldb_private::DataExtractor &data,
4832                              lldb::offset_t lc_offset) {
4833  uint32_t i;
4834  llvm::MachO::uuid_command load_cmd;
4835
4836  lldb::offset_t offset = lc_offset;
4837  for (i = 0; i < header.ncmds; ++i) {
4838    const lldb::offset_t cmd_offset = offset;
4839    if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4840      break;
4841
4842    if (load_cmd.cmd == LC_UUID) {
4843      const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4844
4845      if (uuid_bytes) {
4846        // OpenCL on Mac OS X uses the same UUID for each of its object files.
4847        // We pretend these object files have no UUID to prevent crashing.
4848
4849        const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4850                                       0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4851                                       0xbb, 0x14, 0xf0, 0x0d};
4852
4853        if (!memcmp(uuid_bytes, opencl_uuid, 16))
4854          return UUID();
4855
4856        return UUID(uuid_bytes, 16);
4857      }
4858      return UUID();
4859    }
4860    offset = cmd_offset + load_cmd.cmdsize;
4861  }
4862  return UUID();
4863}
4864
4865static llvm::StringRef GetOSName(uint32_t cmd) {
4866  switch (cmd) {
4867  case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4868    return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4869  case llvm::MachO::LC_VERSION_MIN_MACOSX:
4870    return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4871  case llvm::MachO::LC_VERSION_MIN_TVOS:
4872    return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4873  case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4874    return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4875  default:
4876    llvm_unreachable("unexpected LC_VERSION load command");
4877  }
4878}
4879
4880namespace {
4881struct OSEnv {
4882  llvm::StringRef os_type;
4883  llvm::StringRef environment;
4884  OSEnv(uint32_t cmd) {
4885    switch (cmd) {
4886    case llvm::MachO::PLATFORM_MACOS:
4887      os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4888      return;
4889    case llvm::MachO::PLATFORM_IOS:
4890      os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4891      return;
4892    case llvm::MachO::PLATFORM_TVOS:
4893      os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4894      return;
4895    case llvm::MachO::PLATFORM_WATCHOS:
4896      os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4897      return;
4898    // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
4899    // NEED_BRIDGEOS_TRIPLE
4900    // case llvm::MachO::PLATFORM_BRIDGEOS:
4901    //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4902    //   return;
4903    // case llvm::MachO::PLATFORM_DRIVERKIT:
4904    //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4905    //   return;
4906    case llvm::MachO::PLATFORM_MACCATALYST:
4907      os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4908      environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4909      return;
4910    case llvm::MachO::PLATFORM_IOSSIMULATOR:
4911      os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4912      environment =
4913          llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4914      return;
4915    case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4916      os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4917      environment =
4918          llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4919      return;
4920    case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4921      os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4922      environment =
4923          llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4924      return;
4925    default: {
4926      Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4927      LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4928    }
4929    }
4930  }
4931};
4932
4933struct MinOS {
4934  uint32_t major_version, minor_version, patch_version;
4935  MinOS(uint32_t version)
4936      : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4937        patch_version(version & 0xffu) {}
4938};
4939} // namespace
4940
4941void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4942                                      const lldb_private::DataExtractor &data,
4943                                      lldb::offset_t lc_offset,
4944                                      ModuleSpec &base_spec,
4945                                      lldb_private::ModuleSpecList &all_specs) {
4946  auto &base_arch = base_spec.GetArchitecture();
4947  base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4948  if (!base_arch.IsValid())
4949    return;
4950
4951  bool found_any = false;
4952  auto add_triple = [&](const llvm::Triple &triple) {
4953    auto spec = base_spec;
4954    spec.GetArchitecture().GetTriple() = triple;
4955    if (spec.GetArchitecture().IsValid()) {
4956      spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4957      all_specs.Append(spec);
4958      found_any = true;
4959    }
4960  };
4961
4962  // Set OS to an unspecified unknown or a "*" so it can match any OS
4963  llvm::Triple base_triple = base_arch.GetTriple();
4964  base_triple.setOS(llvm::Triple::UnknownOS);
4965  base_triple.setOSName(llvm::StringRef());
4966
4967  if (header.filetype == MH_PRELOAD) {
4968    if (header.cputype == CPU_TYPE_ARM) {
4969      // If this is a 32-bit arm binary, and it's a standalone binary, force
4970      // the Vendor to Apple so we don't accidentally pick up the generic
4971      // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4972      // frame pointer register; most other armv7 ABIs use a combination of
4973      // r7 and r11.
4974      base_triple.setVendor(llvm::Triple::Apple);
4975    } else {
4976      // Set vendor to an unspecified unknown or a "*" so it can match any
4977      // vendor This is required for correct behavior of EFI debugging on
4978      // x86_64
4979      base_triple.setVendor(llvm::Triple::UnknownVendor);
4980      base_triple.setVendorName(llvm::StringRef());
4981    }
4982    return add_triple(base_triple);
4983  }
4984
4985  llvm::MachO::load_command load_cmd;
4986
4987  // See if there is an LC_VERSION_MIN_* load command that can give
4988  // us the OS type.
4989  lldb::offset_t offset = lc_offset;
4990  for (uint32_t i = 0; i < header.ncmds; ++i) {
4991    const lldb::offset_t cmd_offset = offset;
4992    if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4993      break;
4994
4995    llvm::MachO::version_min_command version_min;
4996    switch (load_cmd.cmd) {
4997    case llvm::MachO::LC_VERSION_MIN_MACOSX:
4998    case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4999    case llvm::MachO::LC_VERSION_MIN_TVOS:
5000    case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5001      if (load_cmd.cmdsize != sizeof(version_min))
5002        break;
5003      if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5004                            data.GetByteOrder(), &version_min) == 0)
5005        break;
5006      MinOS min_os(version_min.version);
5007      llvm::SmallString<32> os_name;
5008      llvm::raw_svector_ostream os(os_name);
5009      os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5010         << min_os.minor_version << '.' << min_os.patch_version;
5011
5012      auto triple = base_triple;
5013      triple.setOSName(os.str());
5014
5015      // Disambiguate legacy simulator platforms.
5016      if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5017          (base_triple.getArch() == llvm::Triple::x86_64 ||
5018           base_triple.getArch() == llvm::Triple::x86)) {
5019        // The combination of legacy LC_VERSION_MIN load command and
5020        // x86 architecture always indicates a simulator environment.
5021        // The combination of LC_VERSION_MIN and arm architecture only
5022        // appears for native binaries. Back-deploying simulator
5023        // binaries on Apple Silicon Macs use the modern unambigous
5024        // LC_BUILD_VERSION load commands; no special handling required.
5025        triple.setEnvironment(llvm::Triple::Simulator);
5026      }
5027      add_triple(triple);
5028      break;
5029    }
5030    default:
5031      break;
5032    }
5033
5034    offset = cmd_offset + load_cmd.cmdsize;
5035  }
5036
5037  // See if there are LC_BUILD_VERSION load commands that can give
5038  // us the OS type.
5039  offset = lc_offset;
5040  for (uint32_t i = 0; i < header.ncmds; ++i) {
5041    const lldb::offset_t cmd_offset = offset;
5042    if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5043      break;
5044
5045    do {
5046      if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5047        llvm::MachO::build_version_command build_version;
5048        if (load_cmd.cmdsize < sizeof(build_version)) {
5049          // Malformed load command.
5050          break;
5051        }
5052        if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5053                              data.GetByteOrder(), &build_version) == 0)
5054          break;
5055        MinOS min_os(build_version.minos);
5056        OSEnv os_env(build_version.platform);
5057        llvm::SmallString<16> os_name;
5058        llvm::raw_svector_ostream os(os_name);
5059        os << os_env.os_type << min_os.major_version << '.'
5060           << min_os.minor_version << '.' << min_os.patch_version;
5061        auto triple = base_triple;
5062        triple.setOSName(os.str());
5063        os_name.clear();
5064        if (!os_env.environment.empty())
5065          triple.setEnvironmentName(os_env.environment);
5066        add_triple(triple);
5067      }
5068    } while (false);
5069    offset = cmd_offset + load_cmd.cmdsize;
5070  }
5071
5072  if (!found_any) {
5073    add_triple(base_triple);
5074  }
5075}
5076
5077ArchSpec ObjectFileMachO::GetArchitecture(
5078    ModuleSP module_sp, const llvm::MachO::mach_header &header,
5079    const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5080  ModuleSpecList all_specs;
5081  ModuleSpec base_spec;
5082  GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5083                  base_spec, all_specs);
5084
5085  // If the object file offers multiple alternative load commands,
5086  // pick the one that matches the module.
5087  if (module_sp) {
5088    const ArchSpec &module_arch = module_sp->GetArchitecture();
5089    for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5090      ArchSpec mach_arch =
5091          all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5092      if (module_arch.IsCompatibleMatch(mach_arch))
5093        return mach_arch;
5094    }
5095  }
5096
5097  // Return the first arch we found.
5098  if (all_specs.GetSize() == 0)
5099    return {};
5100  return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5101}
5102
5103UUID ObjectFileMachO::GetUUID() {
5104  ModuleSP module_sp(GetModule());
5105  if (module_sp) {
5106    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5107    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5108    return GetUUID(m_header, m_data, offset);
5109  }
5110  return UUID();
5111}
5112
5113uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5114  uint32_t count = 0;
5115  ModuleSP module_sp(GetModule());
5116  if (module_sp) {
5117    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5118    llvm::MachO::load_command load_cmd;
5119    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5120    std::vector<std::string> rpath_paths;
5121    std::vector<std::string> rpath_relative_paths;
5122    std::vector<std::string> at_exec_relative_paths;
5123    uint32_t i;
5124    for (i = 0; i < m_header.ncmds; ++i) {
5125      const uint32_t cmd_offset = offset;
5126      if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5127        break;
5128
5129      switch (load_cmd.cmd) {
5130      case LC_RPATH:
5131      case LC_LOAD_DYLIB:
5132      case LC_LOAD_WEAK_DYLIB:
5133      case LC_REEXPORT_DYLIB:
5134      case LC_LOAD_DYLINKER:
5135      case LC_LOADFVMLIB:
5136      case LC_LOAD_UPWARD_DYLIB: {
5137        uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5138        const char *path = m_data.PeekCStr(name_offset);
5139        if (path) {
5140          if (load_cmd.cmd == LC_RPATH)
5141            rpath_paths.push_back(path);
5142          else {
5143            if (path[0] == '@') {
5144              if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5145                rpath_relative_paths.push_back(path + strlen("@rpath"));
5146              else if (strncmp(path, "@executable_path",
5147                               strlen("@executable_path")) == 0)
5148                at_exec_relative_paths.push_back(path +
5149                                                 strlen("@executable_path"));
5150            } else {
5151              FileSpec file_spec(path);
5152              if (files.AppendIfUnique(file_spec))
5153                count++;
5154            }
5155          }
5156        }
5157      } break;
5158
5159      default:
5160        break;
5161      }
5162      offset = cmd_offset + load_cmd.cmdsize;
5163    }
5164
5165    FileSpec this_file_spec(m_file);
5166    FileSystem::Instance().Resolve(this_file_spec);
5167
5168    if (!rpath_paths.empty()) {
5169      // Fixup all LC_RPATH values to be absolute paths
5170      std::string loader_path("@loader_path");
5171      std::string executable_path("@executable_path");
5172      for (auto &rpath : rpath_paths) {
5173        if (llvm::StringRef(rpath).startswith(loader_path)) {
5174          rpath.erase(0, loader_path.size());
5175          rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5176        } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5177          rpath.erase(0, executable_path.size());
5178          rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5179        }
5180      }
5181
5182      for (const auto &rpath_relative_path : rpath_relative_paths) {
5183        for (const auto &rpath : rpath_paths) {
5184          std::string path = rpath;
5185          path += rpath_relative_path;
5186          // It is OK to resolve this path because we must find a file on disk
5187          // for us to accept it anyway if it is rpath relative.
5188          FileSpec file_spec(path);
5189          FileSystem::Instance().Resolve(file_spec);
5190          if (FileSystem::Instance().Exists(file_spec) &&
5191              files.AppendIfUnique(file_spec)) {
5192            count++;
5193            break;
5194          }
5195        }
5196      }
5197    }
5198
5199    // We may have @executable_paths but no RPATHS.  Figure those out here.
5200    // Only do this if this object file is the executable.  We have no way to
5201    // get back to the actual executable otherwise, so we won't get the right
5202    // path.
5203    if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5204      FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5205      for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5206        FileSpec file_spec =
5207            exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5208        if (FileSystem::Instance().Exists(file_spec) &&
5209            files.AppendIfUnique(file_spec))
5210          count++;
5211      }
5212    }
5213  }
5214  return count;
5215}
5216
5217lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5218  // If the object file is not an executable it can't hold the entry point.
5219  // m_entry_point_address is initialized to an invalid address, so we can just
5220  // return that. If m_entry_point_address is valid it means we've found it
5221  // already, so return the cached value.
5222
5223  if ((!IsExecutable() && !IsDynamicLoader()) ||
5224      m_entry_point_address.IsValid()) {
5225    return m_entry_point_address;
5226  }
5227
5228  // Otherwise, look for the UnixThread or Thread command.  The data for the
5229  // Thread command is given in /usr/include/mach-o.h, but it is basically:
5230  //
5231  //  uint32_t flavor  - this is the flavor argument you would pass to
5232  //  thread_get_state
5233  //  uint32_t count   - this is the count of longs in the thread state data
5234  //  struct XXX_thread_state state - this is the structure from
5235  //  <machine/thread_status.h> corresponding to the flavor.
5236  //  <repeat this trio>
5237  //
5238  // So we just keep reading the various register flavors till we find the GPR
5239  // one, then read the PC out of there.
5240  // FIXME: We will need to have a "RegisterContext data provider" class at some
5241  // point that can get all the registers
5242  // out of data in this form & attach them to a given thread.  That should
5243  // underlie the MacOS X User process plugin, and we'll also need it for the
5244  // MacOS X Core File process plugin.  When we have that we can also use it
5245  // here.
5246  //
5247  // For now we hard-code the offsets and flavors we need:
5248  //
5249  //
5250
5251  ModuleSP module_sp(GetModule());
5252  if (module_sp) {
5253    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5254    llvm::MachO::load_command load_cmd;
5255    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5256    uint32_t i;
5257    lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5258    bool done = false;
5259
5260    for (i = 0; i < m_header.ncmds; ++i) {
5261      const lldb::offset_t cmd_offset = offset;
5262      if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5263        break;
5264
5265      switch (load_cmd.cmd) {
5266      case LC_UNIXTHREAD:
5267      case LC_THREAD: {
5268        while (offset < cmd_offset + load_cmd.cmdsize) {
5269          uint32_t flavor = m_data.GetU32(&offset);
5270          uint32_t count = m_data.GetU32(&offset);
5271          if (count == 0) {
5272            // We've gotten off somehow, log and exit;
5273            return m_entry_point_address;
5274          }
5275
5276          switch (m_header.cputype) {
5277          case llvm::MachO::CPU_TYPE_ARM:
5278            if (flavor == 1 ||
5279                flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5280                             // from mach/arm/thread_status.h
5281            {
5282              offset += 60; // This is the offset of pc in the GPR thread state
5283                            // data structure.
5284              start_address = m_data.GetU32(&offset);
5285              done = true;
5286            }
5287            break;
5288          case llvm::MachO::CPU_TYPE_ARM64:
5289          case llvm::MachO::CPU_TYPE_ARM64_32:
5290            if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5291            {
5292              offset += 256; // This is the offset of pc in the GPR thread state
5293                             // data structure.
5294              start_address = m_data.GetU64(&offset);
5295              done = true;
5296            }
5297            break;
5298          case llvm::MachO::CPU_TYPE_I386:
5299            if (flavor ==
5300                1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5301            {
5302              offset += 40; // This is the offset of eip in the GPR thread state
5303                            // data structure.
5304              start_address = m_data.GetU32(&offset);
5305              done = true;
5306            }
5307            break;
5308          case llvm::MachO::CPU_TYPE_X86_64:
5309            if (flavor ==
5310                4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5311            {
5312              offset += 16 * 8; // This is the offset of rip in the GPR thread
5313                                // state data structure.
5314              start_address = m_data.GetU64(&offset);
5315              done = true;
5316            }
5317            break;
5318          default:
5319            return m_entry_point_address;
5320          }
5321          // Haven't found the GPR flavor yet, skip over the data for this
5322          // flavor:
5323          if (done)
5324            break;
5325          offset += count * 4;
5326        }
5327      } break;
5328      case LC_MAIN: {
5329        ConstString text_segment_name("__TEXT");
5330        uint64_t entryoffset = m_data.GetU64(&offset);
5331        SectionSP text_segment_sp =
5332            GetSectionList()->FindSectionByName(text_segment_name);
5333        if (text_segment_sp) {
5334          done = true;
5335          start_address = text_segment_sp->GetFileAddress() + entryoffset;
5336        }
5337      } break;
5338
5339      default:
5340        break;
5341      }
5342      if (done)
5343        break;
5344
5345      // Go to the next load command:
5346      offset = cmd_offset + load_cmd.cmdsize;
5347    }
5348
5349    if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5350      if (GetSymtab()) {
5351        Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5352            ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5353            Symtab::eDebugAny, Symtab::eVisibilityAny);
5354        if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5355          start_address = dyld_start_sym->GetAddress().GetFileAddress();
5356        }
5357      }
5358    }
5359
5360    if (start_address != LLDB_INVALID_ADDRESS) {
5361      // We got the start address from the load commands, so now resolve that
5362      // address in the sections of this ObjectFile:
5363      if (!m_entry_point_address.ResolveAddressUsingFileSections(
5364              start_address, GetSectionList())) {
5365        m_entry_point_address.Clear();
5366      }
5367    } else {
5368      // We couldn't read the UnixThread load command - maybe it wasn't there.
5369      // As a fallback look for the "start" symbol in the main executable.
5370
5371      ModuleSP module_sp(GetModule());
5372
5373      if (module_sp) {
5374        SymbolContextList contexts;
5375        SymbolContext context;
5376        module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5377                                              eSymbolTypeCode, contexts);
5378        if (contexts.GetSize()) {
5379          if (contexts.GetContextAtIndex(0, context))
5380            m_entry_point_address = context.symbol->GetAddress();
5381        }
5382      }
5383    }
5384  }
5385
5386  return m_entry_point_address;
5387}
5388
5389lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5390  lldb_private::Address header_addr;
5391  SectionList *section_list = GetSectionList();
5392  if (section_list) {
5393    SectionSP text_segment_sp(
5394        section_list->FindSectionByName(GetSegmentNameTEXT()));
5395    if (text_segment_sp) {
5396      header_addr.SetSection(text_segment_sp);
5397      header_addr.SetOffset(0);
5398    }
5399  }
5400  return header_addr;
5401}
5402
5403uint32_t ObjectFileMachO::GetNumThreadContexts() {
5404  ModuleSP module_sp(GetModule());
5405  if (module_sp) {
5406    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5407    if (!m_thread_context_offsets_valid) {
5408      m_thread_context_offsets_valid = true;
5409      lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5410      FileRangeArray::Entry file_range;
5411      llvm::MachO::thread_command thread_cmd;
5412      for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5413        const uint32_t cmd_offset = offset;
5414        if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5415          break;
5416
5417        if (thread_cmd.cmd == LC_THREAD) {
5418          file_range.SetRangeBase(offset);
5419          file_range.SetByteSize(thread_cmd.cmdsize - 8);
5420          m_thread_context_offsets.Append(file_range);
5421        }
5422        offset = cmd_offset + thread_cmd.cmdsize;
5423      }
5424    }
5425  }
5426  return m_thread_context_offsets.GetSize();
5427}
5428
5429std::string ObjectFileMachO::GetIdentifierString() {
5430  std::string result;
5431  ModuleSP module_sp(GetModule());
5432  if (module_sp) {
5433    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5434
5435    // First, look over the load commands for an LC_NOTE load command with
5436    // data_owner string "kern ver str" & use that if found.
5437    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5438    for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5439      const uint32_t cmd_offset = offset;
5440      llvm::MachO::load_command lc = {};
5441      if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5442        break;
5443      if (lc.cmd == LC_NOTE) {
5444        char data_owner[17];
5445        m_data.CopyData(offset, 16, data_owner);
5446        data_owner[16] = '\0';
5447        offset += 16;
5448        uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5449        uint64_t size = m_data.GetU64_unchecked(&offset);
5450
5451        // "kern ver str" has a uint32_t version and then a nul terminated
5452        // c-string.
5453        if (strcmp("kern ver str", data_owner) == 0) {
5454          offset = fileoff;
5455          uint32_t version;
5456          if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5457            if (version == 1) {
5458              uint32_t strsize = size - sizeof(uint32_t);
5459              char *buf = (char *)malloc(strsize);
5460              if (buf) {
5461                m_data.CopyData(offset, strsize, buf);
5462                buf[strsize - 1] = '\0';
5463                result = buf;
5464                if (buf)
5465                  free(buf);
5466                return result;
5467              }
5468            }
5469          }
5470        }
5471      }
5472      offset = cmd_offset + lc.cmdsize;
5473    }
5474
5475    // Second, make a pass over the load commands looking for an obsolete
5476    // LC_IDENT load command.
5477    offset = MachHeaderSizeFromMagic(m_header.magic);
5478    for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5479      const uint32_t cmd_offset = offset;
5480      llvm::MachO::ident_command ident_command;
5481      if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5482        break;
5483      if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5484        char *buf = (char *)malloc(ident_command.cmdsize);
5485        if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5486                                              buf) == ident_command.cmdsize) {
5487          buf[ident_command.cmdsize - 1] = '\0';
5488          result = buf;
5489        }
5490        if (buf)
5491          free(buf);
5492      }
5493      offset = cmd_offset + ident_command.cmdsize;
5494    }
5495  }
5496  return result;
5497}
5498
5499addr_t ObjectFileMachO::GetAddressMask() {
5500  addr_t mask = 0;
5501  ModuleSP module_sp(GetModule());
5502  if (module_sp) {
5503    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5504    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5505    for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5506      const uint32_t cmd_offset = offset;
5507      llvm::MachO::load_command lc = {};
5508      if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5509        break;
5510      if (lc.cmd == LC_NOTE) {
5511        char data_owner[17];
5512        m_data.CopyData(offset, 16, data_owner);
5513        data_owner[16] = '\0';
5514        offset += 16;
5515        uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5516
5517        // "addrable bits" has a uint32_t version and a uint32_t
5518        // number of bits used in addressing.
5519        if (strcmp("addrable bits", data_owner) == 0) {
5520          offset = fileoff;
5521          uint32_t version;
5522          if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5523            if (version == 3) {
5524              uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5525              if (num_addr_bits != 0) {
5526                mask = ~((1ULL << num_addr_bits) - 1);
5527              }
5528              break;
5529            }
5530          }
5531        }
5532      }
5533      offset = cmd_offset + lc.cmdsize;
5534    }
5535  }
5536  return mask;
5537}
5538
5539bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5540                                                bool &value_is_offset,
5541                                                UUID &uuid,
5542                                                ObjectFile::BinaryType &type) {
5543  value = LLDB_INVALID_ADDRESS;
5544  value_is_offset = false;
5545  uuid.Clear();
5546  uint32_t log2_pagesize = 0; // not currently passed up to caller
5547  uint32_t platform = 0;      // not currently passed up to caller
5548  ModuleSP module_sp(GetModule());
5549  if (module_sp) {
5550    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5551    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5552    for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5553      const uint32_t cmd_offset = offset;
5554      llvm::MachO::load_command lc = {};
5555      if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5556        break;
5557      if (lc.cmd == LC_NOTE) {
5558        char data_owner[17];
5559        memset(data_owner, 0, sizeof(data_owner));
5560        m_data.CopyData(offset, 16, data_owner);
5561        offset += 16;
5562        uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5563        uint64_t size = m_data.GetU64_unchecked(&offset);
5564
5565        // struct main_bin_spec
5566        // {
5567        //     uint32_t version;       // currently 2
5568        //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5569        //                             // 2 == user process,
5570        //                             // 3 == standalone binary
5571        //     uint64_t address;       // UINT64_MAX if address not specified
5572        //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5573        //                             // 0 if no slide needs to be applied to
5574        //                             // file address
5575        //     uuid_t   uuid;          // all zero's if uuid not specified
5576        //     uint32_t log2_pagesize; // process page size in log base 2,
5577        //                             // e.g. 4k pages are 12.
5578        //                             // 0 for unspecified
5579        //     uint32_t platform;      // The Mach-O platform for this corefile.
5580        //                             // 0 for unspecified.
5581        //                             // The values are defined in
5582        //                             // <mach-o/loader.h>, PLATFORM_*.
5583        // } __attribute((packed));
5584
5585        // "main bin spec" (main binary specification) data payload is
5586        // formatted:
5587        //    uint32_t version       [currently 1]
5588        //    uint32_t type          [0 == unspecified, 1 == kernel,
5589        //                            2 == user process, 3 == firmware ]
5590        //    uint64_t address       [ UINT64_MAX if address not specified ]
5591        //    uuid_t   uuid          [ all zero's if uuid not specified ]
5592        //    uint32_t log2_pagesize [ process page size in log base
5593        //                             2, e.g. 4k pages are 12.
5594        //                             0 for unspecified ]
5595        //    uint32_t unused        [ for alignment ]
5596
5597        if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5598          offset = fileoff;
5599          uint32_t version;
5600          if (m_data.GetU32(&offset, &version, 1) != nullptr && version <= 2) {
5601            uint32_t binspec_type = 0;
5602            uuid_t raw_uuid;
5603            memset(raw_uuid, 0, sizeof(uuid_t));
5604
5605            if (!m_data.GetU32(&offset, &binspec_type, 1))
5606              return false;
5607            if (!m_data.GetU64(&offset, &value, 1))
5608              return false;
5609            uint64_t slide = LLDB_INVALID_ADDRESS;
5610            if (version > 1 && !m_data.GetU64(&offset, &slide, 1))
5611              return false;
5612            if (value == LLDB_INVALID_ADDRESS &&
5613                slide != LLDB_INVALID_ADDRESS) {
5614              value = slide;
5615              value_is_offset = true;
5616            }
5617
5618            if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5619              uuid = UUID(raw_uuid, sizeof(uuid_t));
5620              // convert the "main bin spec" type into our
5621              // ObjectFile::BinaryType enum
5622              switch (binspec_type) {
5623              case 0:
5624                type = eBinaryTypeUnknown;
5625                break;
5626              case 1:
5627                type = eBinaryTypeKernel;
5628                break;
5629              case 2:
5630                type = eBinaryTypeUser;
5631                break;
5632              case 3:
5633                type = eBinaryTypeStandalone;
5634                break;
5635              }
5636              if (!m_data.GetU32(&offset, &log2_pagesize, 1))
5637                return false;
5638              if (version > 1 && !m_data.GetU32(&offset, &platform, 1))
5639                return false;
5640              return true;
5641            }
5642          }
5643        }
5644      }
5645      offset = cmd_offset + lc.cmdsize;
5646    }
5647  }
5648  return false;
5649}
5650
5651lldb::RegisterContextSP
5652ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5653                                         lldb_private::Thread &thread) {
5654  lldb::RegisterContextSP reg_ctx_sp;
5655
5656  ModuleSP module_sp(GetModule());
5657  if (module_sp) {
5658    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5659    if (!m_thread_context_offsets_valid)
5660      GetNumThreadContexts();
5661
5662    const FileRangeArray::Entry *thread_context_file_range =
5663        m_thread_context_offsets.GetEntryAtIndex(idx);
5664    if (thread_context_file_range) {
5665
5666      DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5667                         thread_context_file_range->GetByteSize());
5668
5669      switch (m_header.cputype) {
5670      case llvm::MachO::CPU_TYPE_ARM64:
5671      case llvm::MachO::CPU_TYPE_ARM64_32:
5672        reg_ctx_sp =
5673            std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5674        break;
5675
5676      case llvm::MachO::CPU_TYPE_ARM:
5677        reg_ctx_sp =
5678            std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5679        break;
5680
5681      case llvm::MachO::CPU_TYPE_I386:
5682        reg_ctx_sp =
5683            std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5684        break;
5685
5686      case llvm::MachO::CPU_TYPE_X86_64:
5687        reg_ctx_sp =
5688            std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5689        break;
5690      }
5691    }
5692  }
5693  return reg_ctx_sp;
5694}
5695
5696ObjectFile::Type ObjectFileMachO::CalculateType() {
5697  switch (m_header.filetype) {
5698  case MH_OBJECT: // 0x1u
5699    if (GetAddressByteSize() == 4) {
5700      // 32 bit kexts are just object files, but they do have a valid
5701      // UUID load command.
5702      if (GetUUID()) {
5703        // this checking for the UUID load command is not enough we could
5704        // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5705        // this is required of kexts
5706        if (m_strata == eStrataInvalid)
5707          m_strata = eStrataKernel;
5708        return eTypeSharedLibrary;
5709      }
5710    }
5711    return eTypeObjectFile;
5712
5713  case MH_EXECUTE:
5714    return eTypeExecutable; // 0x2u
5715  case MH_FVMLIB:
5716    return eTypeSharedLibrary; // 0x3u
5717  case MH_CORE:
5718    return eTypeCoreFile; // 0x4u
5719  case MH_PRELOAD:
5720    return eTypeSharedLibrary; // 0x5u
5721  case MH_DYLIB:
5722    return eTypeSharedLibrary; // 0x6u
5723  case MH_DYLINKER:
5724    return eTypeDynamicLinker; // 0x7u
5725  case MH_BUNDLE:
5726    return eTypeSharedLibrary; // 0x8u
5727  case MH_DYLIB_STUB:
5728    return eTypeStubLibrary; // 0x9u
5729  case MH_DSYM:
5730    return eTypeDebugInfo; // 0xAu
5731  case MH_KEXT_BUNDLE:
5732    return eTypeSharedLibrary; // 0xBu
5733  default:
5734    break;
5735  }
5736  return eTypeUnknown;
5737}
5738
5739ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5740  switch (m_header.filetype) {
5741  case MH_OBJECT: // 0x1u
5742  {
5743    // 32 bit kexts are just object files, but they do have a valid
5744    // UUID load command.
5745    if (GetUUID()) {
5746      // this checking for the UUID load command is not enough we could
5747      // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5748      // this is required of kexts
5749      if (m_type == eTypeInvalid)
5750        m_type = eTypeSharedLibrary;
5751
5752      return eStrataKernel;
5753    }
5754  }
5755    return eStrataUnknown;
5756
5757  case MH_EXECUTE: // 0x2u
5758    // Check for the MH_DYLDLINK bit in the flags
5759    if (m_header.flags & MH_DYLDLINK) {
5760      return eStrataUser;
5761    } else {
5762      SectionList *section_list = GetSectionList();
5763      if (section_list) {
5764        static ConstString g_kld_section_name("__KLD");
5765        if (section_list->FindSectionByName(g_kld_section_name))
5766          return eStrataKernel;
5767      }
5768    }
5769    return eStrataRawImage;
5770
5771  case MH_FVMLIB:
5772    return eStrataUser; // 0x3u
5773  case MH_CORE:
5774    return eStrataUnknown; // 0x4u
5775  case MH_PRELOAD:
5776    return eStrataRawImage; // 0x5u
5777  case MH_DYLIB:
5778    return eStrataUser; // 0x6u
5779  case MH_DYLINKER:
5780    return eStrataUser; // 0x7u
5781  case MH_BUNDLE:
5782    return eStrataUser; // 0x8u
5783  case MH_DYLIB_STUB:
5784    return eStrataUser; // 0x9u
5785  case MH_DSYM:
5786    return eStrataUnknown; // 0xAu
5787  case MH_KEXT_BUNDLE:
5788    return eStrataKernel; // 0xBu
5789  default:
5790    break;
5791  }
5792  return eStrataUnknown;
5793}
5794
5795llvm::VersionTuple ObjectFileMachO::GetVersion() {
5796  ModuleSP module_sp(GetModule());
5797  if (module_sp) {
5798    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5799    llvm::MachO::dylib_command load_cmd;
5800    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5801    uint32_t version_cmd = 0;
5802    uint64_t version = 0;
5803    uint32_t i;
5804    for (i = 0; i < m_header.ncmds; ++i) {
5805      const lldb::offset_t cmd_offset = offset;
5806      if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5807        break;
5808
5809      if (load_cmd.cmd == LC_ID_DYLIB) {
5810        if (version_cmd == 0) {
5811          version_cmd = load_cmd.cmd;
5812          if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5813            break;
5814          version = load_cmd.dylib.current_version;
5815        }
5816        break; // Break for now unless there is another more complete version
5817               // number load command in the future.
5818      }
5819      offset = cmd_offset + load_cmd.cmdsize;
5820    }
5821
5822    if (version_cmd == LC_ID_DYLIB) {
5823      unsigned major = (version & 0xFFFF0000ull) >> 16;
5824      unsigned minor = (version & 0x0000FF00ull) >> 8;
5825      unsigned subminor = (version & 0x000000FFull);
5826      return llvm::VersionTuple(major, minor, subminor);
5827    }
5828  }
5829  return llvm::VersionTuple();
5830}
5831
5832ArchSpec ObjectFileMachO::GetArchitecture() {
5833  ModuleSP module_sp(GetModule());
5834  ArchSpec arch;
5835  if (module_sp) {
5836    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5837
5838    return GetArchitecture(module_sp, m_header, m_data,
5839                           MachHeaderSizeFromMagic(m_header.magic));
5840  }
5841  return arch;
5842}
5843
5844void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5845                                                addr_t &base_addr, UUID &uuid) {
5846  uuid.Clear();
5847  base_addr = LLDB_INVALID_ADDRESS;
5848  if (process && process->GetDynamicLoader()) {
5849    DynamicLoader *dl = process->GetDynamicLoader();
5850    LazyBool using_shared_cache;
5851    LazyBool private_shared_cache;
5852    dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5853                                  private_shared_cache);
5854  }
5855  Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5856  LLDB_LOGF(
5857      log,
5858      "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5859      uuid.GetAsString().c_str(), base_addr);
5860}
5861
5862// From dyld SPI header dyld_process_info.h
5863typedef void *dyld_process_info;
5864struct lldb_copy__dyld_process_cache_info {
5865  uuid_t cacheUUID;          // UUID of cache used by process
5866  uint64_t cacheBaseAddress; // load address of dyld shared cache
5867  bool noCache;              // process is running without a dyld cache
5868  bool privateCache; // process is using a private copy of its dyld cache
5869};
5870
5871// #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5872// llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5873// errors. So we need to use the actual underlying types of task_t and
5874// kern_return_t below.
5875extern "C" unsigned int /*task_t*/ mach_task_self();
5876
5877void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5878  uuid.Clear();
5879  base_addr = LLDB_INVALID_ADDRESS;
5880
5881#if defined(__APPLE__)
5882  uint8_t *(*dyld_get_all_image_infos)(void);
5883  dyld_get_all_image_infos =
5884      (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5885  if (dyld_get_all_image_infos) {
5886    uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5887    if (dyld_all_image_infos_address) {
5888      uint32_t *version = (uint32_t *)
5889          dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5890      if (*version >= 13) {
5891        uuid_t *sharedCacheUUID_address = 0;
5892        int wordsize = sizeof(uint8_t *);
5893        if (wordsize == 8) {
5894          sharedCacheUUID_address =
5895              (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5896                         160); // sharedCacheUUID <mach-o/dyld_images.h>
5897          if (*version >= 15)
5898            base_addr =
5899                *(uint64_t
5900                      *)((uint8_t *)dyld_all_image_infos_address +
5901                         176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5902        } else {
5903          sharedCacheUUID_address =
5904              (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5905                         84); // sharedCacheUUID <mach-o/dyld_images.h>
5906          if (*version >= 15) {
5907            base_addr = 0;
5908            base_addr =
5909                *(uint32_t
5910                      *)((uint8_t *)dyld_all_image_infos_address +
5911                         100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5912          }
5913        }
5914        uuid = UUID(sharedCacheUUID_address, sizeof(uuid_t));
5915      }
5916    }
5917  } else {
5918    // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5919    dyld_process_info (*dyld_process_info_create)(
5920        unsigned int /* task_t */ task, uint64_t timestamp,
5921        unsigned int /*kern_return_t*/ *kernelError);
5922    void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5923    void (*dyld_process_info_release)(dyld_process_info info);
5924
5925    dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5926                                          unsigned int /*kern_return_t*/ *))
5927        dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5928    dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5929        RTLD_DEFAULT, "_dyld_process_info_get_cache");
5930    dyld_process_info_release =
5931        (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5932
5933    if (dyld_process_info_create && dyld_process_info_get_cache) {
5934      unsigned int /*kern_return_t */ kern_ret;
5935      dyld_process_info process_info =
5936          dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5937      if (process_info) {
5938        struct lldb_copy__dyld_process_cache_info sc_info;
5939        memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5940        dyld_process_info_get_cache(process_info, &sc_info);
5941        if (sc_info.cacheBaseAddress != 0) {
5942          base_addr = sc_info.cacheBaseAddress;
5943          uuid = UUID(sc_info.cacheUUID, sizeof(uuid_t));
5944        }
5945        dyld_process_info_release(process_info);
5946      }
5947    }
5948  }
5949  Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5950  if (log && uuid.IsValid())
5951    LLDB_LOGF(log,
5952              "lldb's in-memory shared cache has a UUID of %s base address of "
5953              "0x%" PRIx64,
5954              uuid.GetAsString().c_str(), base_addr);
5955#endif
5956}
5957
5958llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5959  if (!m_min_os_version) {
5960    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5961    for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5962      const lldb::offset_t load_cmd_offset = offset;
5963
5964      llvm::MachO::version_min_command lc = {};
5965      if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5966        break;
5967      if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5968          lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5969          lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5970          lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5971        if (m_data.GetU32(&offset, &lc.version,
5972                          (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5973          const uint32_t xxxx = lc.version >> 16;
5974          const uint32_t yy = (lc.version >> 8) & 0xffu;
5975          const uint32_t zz = lc.version & 0xffu;
5976          if (xxxx) {
5977            m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5978            break;
5979          }
5980        }
5981      } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5982        // struct build_version_command {
5983        //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5984        //     uint32_t    cmdsize;        /* sizeof(struct
5985        //     build_version_command) plus */
5986        //                                 /* ntools * sizeof(struct
5987        //                                 build_tool_version) */
5988        //     uint32_t    platform;       /* platform */
5989        //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5990        //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5991        //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5992        //     tool entries following this */
5993        // };
5994
5995        offset += 4; // skip platform
5996        uint32_t minos = m_data.GetU32(&offset);
5997
5998        const uint32_t xxxx = minos >> 16;
5999        const uint32_t yy = (minos >> 8) & 0xffu;
6000        const uint32_t zz = minos & 0xffu;
6001        if (xxxx) {
6002          m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
6003          break;
6004        }
6005      }
6006
6007      offset = load_cmd_offset + lc.cmdsize;
6008    }
6009
6010    if (!m_min_os_version) {
6011      // Set version to an empty value so we don't keep trying to
6012      m_min_os_version = llvm::VersionTuple();
6013    }
6014  }
6015
6016  return *m_min_os_version;
6017}
6018
6019llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6020  if (!m_sdk_versions) {
6021    lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6022    for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6023      const lldb::offset_t load_cmd_offset = offset;
6024
6025      llvm::MachO::version_min_command lc = {};
6026      if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6027        break;
6028      if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6029          lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6030          lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6031          lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6032        if (m_data.GetU32(&offset, &lc.version,
6033                          (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6034          const uint32_t xxxx = lc.sdk >> 16;
6035          const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6036          const uint32_t zz = lc.sdk & 0xffu;
6037          if (xxxx) {
6038            m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6039            break;
6040          } else {
6041            GetModule()->ReportWarning("minimum OS version load command with "
6042                                       "invalid (0) version found.");
6043          }
6044        }
6045      }
6046      offset = load_cmd_offset + lc.cmdsize;
6047    }
6048
6049    if (!m_sdk_versions) {
6050      offset = MachHeaderSizeFromMagic(m_header.magic);
6051      for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6052        const lldb::offset_t load_cmd_offset = offset;
6053
6054        llvm::MachO::version_min_command lc = {};
6055        if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6056          break;
6057        if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6058          // struct build_version_command {
6059          //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6060          //     uint32_t    cmdsize;        /* sizeof(struct
6061          //     build_version_command) plus */
6062          //                                 /* ntools * sizeof(struct
6063          //                                 build_tool_version) */
6064          //     uint32_t    platform;       /* platform */
6065          //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6066          //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6067          //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6068          //     of tool entries following this */
6069          // };
6070
6071          offset += 4; // skip platform
6072          uint32_t minos = m_data.GetU32(&offset);
6073
6074          const uint32_t xxxx = minos >> 16;
6075          const uint32_t yy = (minos >> 8) & 0xffu;
6076          const uint32_t zz = minos & 0xffu;
6077          if (xxxx) {
6078            m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6079            break;
6080          }
6081        }
6082        offset = load_cmd_offset + lc.cmdsize;
6083      }
6084    }
6085
6086    if (!m_sdk_versions)
6087      m_sdk_versions = llvm::VersionTuple();
6088  }
6089
6090  return *m_sdk_versions;
6091}
6092
6093bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6094  return m_header.filetype == llvm::MachO::MH_DYLINKER;
6095}
6096
6097bool ObjectFileMachO::CanTrustAddressRanges() {
6098  // Dsymutil guarantees that the .debug_aranges accelerator is complete and can
6099  // be trusted by LLDB.
6100  return m_header.filetype == llvm::MachO::MH_DSYM;
6101}
6102
6103bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6104  return m_allow_assembly_emulation_unwind_plans;
6105}
6106
6107Section *ObjectFileMachO::GetMachHeaderSection() {
6108  // Find the first address of the mach header which is the first non-zero file
6109  // sized section whose file offset is zero. This is the base file address of
6110  // the mach-o file which can be subtracted from the vmaddr of the other
6111  // segments found in memory and added to the load address
6112  ModuleSP module_sp = GetModule();
6113  if (!module_sp)
6114    return nullptr;
6115  SectionList *section_list = GetSectionList();
6116  if (!section_list)
6117    return nullptr;
6118  const size_t num_sections = section_list->GetSize();
6119  for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6120    Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6121    if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6122      return section;
6123  }
6124
6125  // We may have a binary in the shared cache that has a non-zero
6126  // file address for its first segment, traditionally the __TEXT segment.
6127  // Search for it by name and return it as our next best guess.
6128  SectionSP text_segment_sp =
6129      GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
6130  if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6131    return text_segment_sp.get();
6132
6133  return nullptr;
6134}
6135
6136bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6137  if (!section)
6138    return false;
6139  const bool is_dsym = (m_header.filetype == MH_DSYM);
6140  if (section->GetFileSize() == 0 && !is_dsym)
6141    return false;
6142  if (section->IsThreadSpecific())
6143    return false;
6144  if (GetModule().get() != section->GetModule().get())
6145    return false;
6146  // Be careful with __LINKEDIT and __DWARF segments
6147  if (section->GetName() == GetSegmentNameLINKEDIT() ||
6148      section->GetName() == GetSegmentNameDWARF()) {
6149    // Only map __LINKEDIT and __DWARF if we have an in memory image and
6150    // this isn't a kernel binary like a kext or mach_kernel.
6151    const bool is_memory_image = (bool)m_process_wp.lock();
6152    const Strata strata = GetStrata();
6153    if (is_memory_image == false || strata == eStrataKernel)
6154      return false;
6155  }
6156  return true;
6157}
6158
6159lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6160    lldb::addr_t header_load_address, const Section *header_section,
6161    const Section *section) {
6162  ModuleSP module_sp = GetModule();
6163  if (module_sp && header_section && section &&
6164      header_load_address != LLDB_INVALID_ADDRESS) {
6165    lldb::addr_t file_addr = header_section->GetFileAddress();
6166    if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6167      return section->GetFileAddress() - file_addr + header_load_address;
6168  }
6169  return LLDB_INVALID_ADDRESS;
6170}
6171
6172bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6173                                     bool value_is_offset) {
6174  ModuleSP module_sp = GetModule();
6175  if (!module_sp)
6176    return false;
6177
6178  SectionList *section_list = GetSectionList();
6179  if (!section_list)
6180    return false;
6181
6182  size_t num_loaded_sections = 0;
6183  const size_t num_sections = section_list->GetSize();
6184
6185  if (value_is_offset) {
6186    // "value" is an offset to apply to each top level segment
6187    for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6188      // Iterate through the object file sections to find all of the
6189      // sections that size on disk (to avoid __PAGEZERO) and load them
6190      SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6191      if (SectionIsLoadable(section_sp.get()))
6192        if (target.GetSectionLoadList().SetSectionLoadAddress(
6193                section_sp, section_sp->GetFileAddress() + value))
6194          ++num_loaded_sections;
6195    }
6196  } else {
6197    // "value" is the new base address of the mach_header, adjust each
6198    // section accordingly
6199
6200    Section *mach_header_section = GetMachHeaderSection();
6201    if (mach_header_section) {
6202      for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6203        SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6204
6205        lldb::addr_t section_load_addr =
6206            CalculateSectionLoadAddressForMemoryImage(
6207                value, mach_header_section, section_sp.get());
6208        if (section_load_addr != LLDB_INVALID_ADDRESS) {
6209          if (target.GetSectionLoadList().SetSectionLoadAddress(
6210                  section_sp, section_load_addr))
6211            ++num_loaded_sections;
6212        }
6213      }
6214    }
6215  }
6216  return num_loaded_sections > 0;
6217}
6218
6219struct all_image_infos_header {
6220  uint32_t version;         // currently 1
6221  uint32_t imgcount;        // number of binary images
6222  uint64_t entries_fileoff; // file offset in the corefile of where the array of
6223                            // struct entry's begin.
6224  uint32_t entries_size;    // size of 'struct entry'.
6225  uint32_t unused;
6226};
6227
6228struct image_entry {
6229  uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6230                             // UINT64_MAX if unavailable.
6231  uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6232                             // uuid is unknown.
6233  uint64_t load_address;     // UINT64_MAX if unknown.
6234  uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6235  uint32_t segment_count;    // The number of segments for this binary.
6236  uint32_t unused;
6237
6238  image_entry() {
6239    filepath_offset = UINT64_MAX;
6240    memset(&uuid, 0, sizeof(uuid_t));
6241    segment_count = 0;
6242    load_address = UINT64_MAX;
6243    seg_addrs_offset = UINT64_MAX;
6244    unused = 0;
6245  }
6246  image_entry(const image_entry &rhs) {
6247    filepath_offset = rhs.filepath_offset;
6248    memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6249    segment_count = rhs.segment_count;
6250    seg_addrs_offset = rhs.seg_addrs_offset;
6251    load_address = rhs.load_address;
6252    unused = rhs.unused;
6253  }
6254};
6255
6256struct segment_vmaddr {
6257  char segname[16];
6258  uint64_t vmaddr;
6259  uint64_t unused;
6260
6261  segment_vmaddr() {
6262    memset(&segname, 0, 16);
6263    vmaddr = UINT64_MAX;
6264    unused = 0;
6265  }
6266  segment_vmaddr(const segment_vmaddr &rhs) {
6267    memcpy(&segname, &rhs.segname, 16);
6268    vmaddr = rhs.vmaddr;
6269    unused = rhs.unused;
6270  }
6271};
6272
6273// Write the payload for the "all image infos" LC_NOTE into
6274// the supplied all_image_infos_payload, assuming that this
6275// will be written into the corefile starting at
6276// initial_file_offset.
6277//
6278// The placement of this payload is a little tricky.  We're
6279// laying this out as
6280//
6281// 1. header (struct all_image_info_header)
6282// 2. Array of fixed-size (struct image_entry)'s, one
6283//    per binary image present in the process.
6284// 3. Arrays of (struct segment_vmaddr)'s, a varying number
6285//    for each binary image.
6286// 4. Variable length c-strings of binary image filepaths,
6287//    one per binary.
6288//
6289// To compute where everything will be laid out in the
6290// payload, we need to iterate over the images and calculate
6291// how many segment_vmaddr structures each image will need,
6292// and how long each image's filepath c-string is. There
6293// are some multiple passes over the image list while calculating
6294// everything.
6295
6296static offset_t CreateAllImageInfosPayload(
6297    const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6298    StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6299  Target &target = process_sp->GetTarget();
6300  ModuleList modules = target.GetImages();
6301
6302  // stack-only corefiles have no reason to include binaries that
6303  // are not executing; we're trying to make the smallest corefile
6304  // we can, so leave the rest out.
6305  if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6306    modules.Clear();
6307
6308  std::set<std::string> executing_uuids;
6309  ThreadList &thread_list(process_sp->GetThreadList());
6310  for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6311    ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6312    uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6313    for (uint32_t j = 0; j < stack_frame_count; j++) {
6314      StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6315      Address pc = stack_frame_sp->GetFrameCodeAddress();
6316      ModuleSP module_sp = pc.GetModule();
6317      if (module_sp) {
6318        UUID uuid = module_sp->GetUUID();
6319        if (uuid.IsValid()) {
6320          executing_uuids.insert(uuid.GetAsString());
6321          modules.AppendIfNeeded(module_sp);
6322        }
6323      }
6324    }
6325  }
6326  size_t modules_count = modules.GetSize();
6327
6328  struct all_image_infos_header infos;
6329  infos.version = 1;
6330  infos.imgcount = modules_count;
6331  infos.entries_size = sizeof(image_entry);
6332  infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6333  infos.unused = 0;
6334
6335  all_image_infos_payload.PutHex32(infos.version);
6336  all_image_infos_payload.PutHex32(infos.imgcount);
6337  all_image_infos_payload.PutHex64(infos.entries_fileoff);
6338  all_image_infos_payload.PutHex32(infos.entries_size);
6339  all_image_infos_payload.PutHex32(infos.unused);
6340
6341  // First create the structures for all of the segment name+vmaddr vectors
6342  // for each module, so we will know the size of them as we add the
6343  // module entries.
6344  std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6345  for (size_t i = 0; i < modules_count; i++) {
6346    ModuleSP module = modules.GetModuleAtIndex(i);
6347
6348    SectionList *sections = module->GetSectionList();
6349    size_t sections_count = sections->GetSize();
6350    std::vector<segment_vmaddr> segment_vmaddrs;
6351    for (size_t j = 0; j < sections_count; j++) {
6352      SectionSP section = sections->GetSectionAtIndex(j);
6353      if (!section->GetParent().get()) {
6354        addr_t vmaddr = section->GetLoadBaseAddress(&target);
6355        if (vmaddr == LLDB_INVALID_ADDRESS)
6356          continue;
6357        ConstString name = section->GetName();
6358        segment_vmaddr seg_vmaddr;
6359        // This is the uncommon case where strncpy is exactly
6360        // the right one, doesn't need to be nul terminated.
6361        // The segment name in a Mach-O LC_SEGMENT/LC_SEGMENT_64 is char[16] and
6362        // is not guaranteed to be nul-terminated if all 16 characters are
6363        // used.
6364        // coverity[buffer_size_warning]
6365        strncpy(seg_vmaddr.segname, name.AsCString(),
6366                sizeof(seg_vmaddr.segname));
6367        seg_vmaddr.vmaddr = vmaddr;
6368        seg_vmaddr.unused = 0;
6369        segment_vmaddrs.push_back(seg_vmaddr);
6370      }
6371    }
6372    modules_segment_vmaddrs.push_back(segment_vmaddrs);
6373  }
6374
6375  offset_t size_of_vmaddr_structs = 0;
6376  for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6377    size_of_vmaddr_structs +=
6378        modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6379  }
6380
6381  offset_t size_of_filepath_cstrings = 0;
6382  for (size_t i = 0; i < modules_count; i++) {
6383    ModuleSP module_sp = modules.GetModuleAtIndex(i);
6384    size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6385  }
6386
6387  // Calculate the file offsets of our "all image infos" payload in the
6388  // corefile. initial_file_offset the original value passed in to this method.
6389
6390  offset_t start_of_entries =
6391      initial_file_offset + sizeof(all_image_infos_header);
6392  offset_t start_of_seg_vmaddrs =
6393      start_of_entries + sizeof(image_entry) * modules_count;
6394  offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6395
6396  offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6397
6398  // Now write the one-per-module 'struct image_entry' into the
6399  // StringStream; keep track of where the struct segment_vmaddr
6400  // entries for each module will end up in the corefile.
6401
6402  offset_t current_string_offset = start_of_filenames;
6403  offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6404  std::vector<struct image_entry> image_entries;
6405  for (size_t i = 0; i < modules_count; i++) {
6406    ModuleSP module_sp = modules.GetModuleAtIndex(i);
6407
6408    struct image_entry ent;
6409    memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6410    if (modules_segment_vmaddrs[i].size() > 0) {
6411      ent.segment_count = modules_segment_vmaddrs[i].size();
6412      ent.seg_addrs_offset = current_segaddrs_offset;
6413    }
6414    ent.filepath_offset = current_string_offset;
6415    ObjectFile *objfile = module_sp->GetObjectFile();
6416    if (objfile) {
6417      Address base_addr(objfile->GetBaseAddress());
6418      if (base_addr.IsValid()) {
6419        ent.load_address = base_addr.GetLoadAddress(&target);
6420      }
6421    }
6422
6423    all_image_infos_payload.PutHex64(ent.filepath_offset);
6424    all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6425    all_image_infos_payload.PutHex64(ent.load_address);
6426    all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6427    all_image_infos_payload.PutHex32(ent.segment_count);
6428
6429    if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6430        executing_uuids.end())
6431      all_image_infos_payload.PutHex32(1);
6432    else
6433      all_image_infos_payload.PutHex32(0);
6434
6435    current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6436    current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6437  }
6438
6439  // Now write the struct segment_vmaddr entries into the StringStream.
6440
6441  for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6442    if (modules_segment_vmaddrs[i].size() == 0)
6443      continue;
6444    for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6445      all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6446      all_image_infos_payload.PutHex64(segvm.vmaddr);
6447      all_image_infos_payload.PutHex64(segvm.unused);
6448    }
6449  }
6450
6451  for (size_t i = 0; i < modules_count; i++) {
6452    ModuleSP module_sp = modules.GetModuleAtIndex(i);
6453    std::string filepath = module_sp->GetFileSpec().GetPath();
6454    all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6455  }
6456
6457  return final_file_offset;
6458}
6459
6460// Temp struct used to combine contiguous memory regions with
6461// identical permissions.
6462struct page_object {
6463  addr_t addr;
6464  addr_t size;
6465  uint32_t prot;
6466};
6467
6468bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6469                               const FileSpec &outfile,
6470                               lldb::SaveCoreStyle &core_style, Status &error) {
6471  if (!process_sp)
6472    return false;
6473
6474  // Default on macOS is to create a dirty-memory-only corefile.
6475  if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6476    core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6477  }
6478
6479  Target &target = process_sp->GetTarget();
6480  const ArchSpec target_arch = target.GetArchitecture();
6481  const llvm::Triple &target_triple = target_arch.GetTriple();
6482  if (target_triple.getVendor() == llvm::Triple::Apple &&
6483      (target_triple.getOS() == llvm::Triple::MacOSX ||
6484       target_triple.getOS() == llvm::Triple::IOS ||
6485       target_triple.getOS() == llvm::Triple::WatchOS ||
6486       target_triple.getOS() == llvm::Triple::TvOS)) {
6487    // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6488    // {
6489    bool make_core = false;
6490    switch (target_arch.GetMachine()) {
6491    case llvm::Triple::aarch64:
6492    case llvm::Triple::aarch64_32:
6493    case llvm::Triple::arm:
6494    case llvm::Triple::thumb:
6495    case llvm::Triple::x86:
6496    case llvm::Triple::x86_64:
6497      make_core = true;
6498      break;
6499    default:
6500      error.SetErrorStringWithFormat("unsupported core architecture: %s",
6501                                     target_triple.str().c_str());
6502      break;
6503    }
6504
6505    if (make_core) {
6506      std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6507      //                uint32_t range_info_idx = 0;
6508      MemoryRegionInfo range_info;
6509      Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6510      const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6511      const ByteOrder byte_order = target_arch.GetByteOrder();
6512      std::vector<page_object> pages_to_copy;
6513
6514      if (range_error.Success()) {
6515        while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6516          // Calculate correct protections
6517          uint32_t prot = 0;
6518          if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6519            prot |= VM_PROT_READ;
6520          if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6521            prot |= VM_PROT_WRITE;
6522          if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6523            prot |= VM_PROT_EXECUTE;
6524
6525          const addr_t addr = range_info.GetRange().GetRangeBase();
6526          const addr_t size = range_info.GetRange().GetByteSize();
6527
6528          if (size == 0)
6529            break;
6530
6531          bool include_this_region = true;
6532          bool dirty_pages_only = false;
6533          if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6534            dirty_pages_only = true;
6535            if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6536              include_this_region = false;
6537            }
6538          }
6539          if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6540            dirty_pages_only = true;
6541          }
6542
6543          if (prot != 0 && include_this_region) {
6544            addr_t pagesize = range_info.GetPageSize();
6545            const std::optional<std::vector<addr_t>> &dirty_page_list =
6546                range_info.GetDirtyPageList();
6547            if (dirty_pages_only && dirty_page_list) {
6548              for (addr_t dirtypage : *dirty_page_list) {
6549                page_object obj;
6550                obj.addr = dirtypage;
6551                obj.size = pagesize;
6552                obj.prot = prot;
6553                pages_to_copy.push_back(obj);
6554              }
6555            } else {
6556              page_object obj;
6557              obj.addr = addr;
6558              obj.size = size;
6559              obj.prot = prot;
6560              pages_to_copy.push_back(obj);
6561            }
6562          }
6563
6564          range_error = process_sp->GetMemoryRegionInfo(
6565              range_info.GetRange().GetRangeEnd(), range_info);
6566          if (range_error.Fail())
6567            break;
6568        }
6569
6570        // Combine contiguous entries that have the same
6571        // protections so we don't have an excess of
6572        // load commands.
6573        std::vector<page_object> combined_page_objects;
6574        page_object last_obj;
6575        last_obj.addr = LLDB_INVALID_ADDRESS;
6576        last_obj.size = 0;
6577        for (page_object obj : pages_to_copy) {
6578          if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6579            last_obj = obj;
6580            continue;
6581          }
6582          if (last_obj.addr + last_obj.size == obj.addr &&
6583              last_obj.prot == obj.prot) {
6584            last_obj.size += obj.size;
6585            continue;
6586          }
6587          combined_page_objects.push_back(last_obj);
6588          last_obj = obj;
6589        }
6590        // Add the last entry we were looking to combine
6591        // on to the array.
6592        if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6593          combined_page_objects.push_back(last_obj);
6594
6595        for (page_object obj : combined_page_objects) {
6596          uint32_t cmd_type = LC_SEGMENT_64;
6597          uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6598          if (addr_byte_size == 4) {
6599            cmd_type = LC_SEGMENT;
6600            segment_size = sizeof(llvm::MachO::segment_command);
6601          }
6602          llvm::MachO::segment_command_64 segment = {
6603              cmd_type,     // uint32_t cmd;
6604              segment_size, // uint32_t cmdsize;
6605              {0},          // char segname[16];
6606              obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6607                            // Mach-O
6608              obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6609                            // Mach-O
6610              0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6611              obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6612                            // Mach-O
6613              obj.prot,     // uint32_t maxprot;
6614              obj.prot,     // uint32_t initprot;
6615              0,            // uint32_t nsects;
6616              0};           // uint32_t flags;
6617          segment_load_commands.push_back(segment);
6618        }
6619
6620        StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6621
6622        llvm::MachO::mach_header_64 mach_header;
6623        if (addr_byte_size == 8) {
6624          mach_header.magic = MH_MAGIC_64;
6625        } else {
6626          mach_header.magic = MH_MAGIC;
6627        }
6628        mach_header.cputype = target_arch.GetMachOCPUType();
6629        mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6630        mach_header.filetype = MH_CORE;
6631        mach_header.ncmds = segment_load_commands.size();
6632        mach_header.flags = 0;
6633        mach_header.reserved = 0;
6634        ThreadList &thread_list = process_sp->GetThreadList();
6635        const uint32_t num_threads = thread_list.GetSize();
6636
6637        // Make an array of LC_THREAD data items. Each one contains the
6638        // contents of the LC_THREAD load command. The data doesn't contain
6639        // the load command + load command size, we will add the load command
6640        // and load command size as we emit the data.
6641        std::vector<StreamString> LC_THREAD_datas(num_threads);
6642        for (auto &LC_THREAD_data : LC_THREAD_datas) {
6643          LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6644          LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6645          LC_THREAD_data.SetByteOrder(byte_order);
6646        }
6647        for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6648          ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6649          if (thread_sp) {
6650            switch (mach_header.cputype) {
6651            case llvm::MachO::CPU_TYPE_ARM64:
6652            case llvm::MachO::CPU_TYPE_ARM64_32:
6653              RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6654                  thread_sp.get(), LC_THREAD_datas[thread_idx]);
6655              break;
6656
6657            case llvm::MachO::CPU_TYPE_ARM:
6658              RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6659                  thread_sp.get(), LC_THREAD_datas[thread_idx]);
6660              break;
6661
6662            case llvm::MachO::CPU_TYPE_I386:
6663              RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6664                  thread_sp.get(), LC_THREAD_datas[thread_idx]);
6665              break;
6666
6667            case llvm::MachO::CPU_TYPE_X86_64:
6668              RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6669                  thread_sp.get(), LC_THREAD_datas[thread_idx]);
6670              break;
6671            }
6672          }
6673        }
6674
6675        // The size of the load command is the size of the segments...
6676        if (addr_byte_size == 8) {
6677          mach_header.sizeofcmds = segment_load_commands.size() *
6678                                   sizeof(llvm::MachO::segment_command_64);
6679        } else {
6680          mach_header.sizeofcmds = segment_load_commands.size() *
6681                                   sizeof(llvm::MachO::segment_command);
6682        }
6683
6684        // and the size of all LC_THREAD load command
6685        for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6686          ++mach_header.ncmds;
6687          mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6688        }
6689
6690        // Bits will be set to indicate which bits are NOT used in
6691        // addressing in this process or 0 for unknown.
6692        uint64_t address_mask = process_sp->GetCodeAddressMask();
6693        if (address_mask != 0) {
6694          // LC_NOTE "addrable bits"
6695          mach_header.ncmds++;
6696          mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6697        }
6698
6699        // LC_NOTE "all image infos"
6700        mach_header.ncmds++;
6701        mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6702
6703        // Write the mach header
6704        buffer.PutHex32(mach_header.magic);
6705        buffer.PutHex32(mach_header.cputype);
6706        buffer.PutHex32(mach_header.cpusubtype);
6707        buffer.PutHex32(mach_header.filetype);
6708        buffer.PutHex32(mach_header.ncmds);
6709        buffer.PutHex32(mach_header.sizeofcmds);
6710        buffer.PutHex32(mach_header.flags);
6711        if (addr_byte_size == 8) {
6712          buffer.PutHex32(mach_header.reserved);
6713        }
6714
6715        // Skip the mach header and all load commands and align to the next
6716        // 0x1000 byte boundary
6717        addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6718
6719        file_offset = llvm::alignTo(file_offset, 16);
6720        std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6721
6722        // Add "addrable bits" LC_NOTE when an address mask is available
6723        if (address_mask != 0) {
6724          std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6725              new LCNoteEntry(addr_byte_size, byte_order));
6726          addrable_bits_lcnote_up->name = "addrable bits";
6727          addrable_bits_lcnote_up->payload_file_offset = file_offset;
6728          int bits = std::bitset<64>(~address_mask).count();
6729          addrable_bits_lcnote_up->payload.PutHex32(3); // version
6730          addrable_bits_lcnote_up->payload.PutHex32(
6731              bits); // # of bits used for addressing
6732          addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6733
6734          file_offset += addrable_bits_lcnote_up->payload.GetSize();
6735
6736          lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6737        }
6738
6739        // Add "all image infos" LC_NOTE
6740        std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6741            new LCNoteEntry(addr_byte_size, byte_order));
6742        all_image_infos_lcnote_up->name = "all image infos";
6743        all_image_infos_lcnote_up->payload_file_offset = file_offset;
6744        file_offset = CreateAllImageInfosPayload(
6745            process_sp, file_offset, all_image_infos_lcnote_up->payload,
6746            core_style);
6747        lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6748
6749        // Add LC_NOTE load commands
6750        for (auto &lcnote : lc_notes) {
6751          // Add the LC_NOTE load command to the file.
6752          buffer.PutHex32(LC_NOTE);
6753          buffer.PutHex32(sizeof(llvm::MachO::note_command));
6754          char namebuf[16];
6755          memset(namebuf, 0, sizeof(namebuf));
6756          // This is the uncommon case where strncpy is exactly
6757          // the right one, doesn't need to be nul terminated.
6758          // LC_NOTE name field is char[16] and is not guaranteed to be
6759          // nul-terminated.
6760          // coverity[buffer_size_warning]
6761          strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6762          buffer.PutRawBytes(namebuf, sizeof(namebuf));
6763          buffer.PutHex64(lcnote->payload_file_offset);
6764          buffer.PutHex64(lcnote->payload.GetSize());
6765        }
6766
6767        // Align to 4096-byte page boundary for the LC_SEGMENTs.
6768        file_offset = llvm::alignTo(file_offset, 4096);
6769
6770        for (auto &segment : segment_load_commands) {
6771          segment.fileoff = file_offset;
6772          file_offset += segment.filesize;
6773        }
6774
6775        // Write out all of the LC_THREAD load commands
6776        for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6777          const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6778          buffer.PutHex32(LC_THREAD);
6779          buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6780          buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6781        }
6782
6783        // Write out all of the segment load commands
6784        for (const auto &segment : segment_load_commands) {
6785          buffer.PutHex32(segment.cmd);
6786          buffer.PutHex32(segment.cmdsize);
6787          buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6788          if (addr_byte_size == 8) {
6789            buffer.PutHex64(segment.vmaddr);
6790            buffer.PutHex64(segment.vmsize);
6791            buffer.PutHex64(segment.fileoff);
6792            buffer.PutHex64(segment.filesize);
6793          } else {
6794            buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6795            buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6796            buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6797            buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6798          }
6799          buffer.PutHex32(segment.maxprot);
6800          buffer.PutHex32(segment.initprot);
6801          buffer.PutHex32(segment.nsects);
6802          buffer.PutHex32(segment.flags);
6803        }
6804
6805        std::string core_file_path(outfile.GetPath());
6806        auto core_file = FileSystem::Instance().Open(
6807            outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6808                         File::eOpenOptionCanCreate);
6809        if (!core_file) {
6810          error = core_file.takeError();
6811        } else {
6812          // Read 1 page at a time
6813          uint8_t bytes[0x1000];
6814          // Write the mach header and load commands out to the core file
6815          size_t bytes_written = buffer.GetString().size();
6816          error =
6817              core_file.get()->Write(buffer.GetString().data(), bytes_written);
6818          if (error.Success()) {
6819
6820            for (auto &lcnote : lc_notes) {
6821              if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6822                  -1) {
6823                error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6824                                               "to write '%s' LC_NOTE payload",
6825                                               lcnote->name.c_str());
6826                return false;
6827              }
6828              bytes_written = lcnote->payload.GetSize();
6829              error = core_file.get()->Write(lcnote->payload.GetData(),
6830                                             bytes_written);
6831              if (!error.Success())
6832                return false;
6833            }
6834
6835            // Now write the file data for all memory segments in the process
6836            for (const auto &segment : segment_load_commands) {
6837              if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6838                error.SetErrorStringWithFormat(
6839                    "unable to seek to offset 0x%" PRIx64 " in '%s'",
6840                    segment.fileoff, core_file_path.c_str());
6841                break;
6842              }
6843
6844              target.GetDebugger().GetAsyncOutputStream()->Printf(
6845                  "Saving %" PRId64
6846                  " bytes of data for memory region at 0x%" PRIx64 "\n",
6847                  segment.vmsize, segment.vmaddr);
6848              addr_t bytes_left = segment.vmsize;
6849              addr_t addr = segment.vmaddr;
6850              Status memory_read_error;
6851              while (bytes_left > 0 && error.Success()) {
6852                const size_t bytes_to_read =
6853                    bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6854
6855                // In a savecore setting, we don't really care about caching,
6856                // as the data is dumped and very likely never read again,
6857                // so we call ReadMemoryFromInferior to bypass it.
6858                const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6859                    addr, bytes, bytes_to_read, memory_read_error);
6860
6861                if (bytes_read == bytes_to_read) {
6862                  size_t bytes_written = bytes_read;
6863                  error = core_file.get()->Write(bytes, bytes_written);
6864                  bytes_left -= bytes_read;
6865                  addr += bytes_read;
6866                } else {
6867                  // Some pages within regions are not readable, those should
6868                  // be zero filled
6869                  memset(bytes, 0, bytes_to_read);
6870                  size_t bytes_written = bytes_to_read;
6871                  error = core_file.get()->Write(bytes, bytes_written);
6872                  bytes_left -= bytes_to_read;
6873                  addr += bytes_to_read;
6874                }
6875              }
6876            }
6877          }
6878        }
6879      } else {
6880        error.SetErrorString(
6881            "process doesn't support getting memory region info");
6882      }
6883    }
6884    return true; // This is the right plug to handle saving core files for
6885                 // this process
6886  }
6887  return false;
6888}
6889
6890ObjectFileMachO::MachOCorefileAllImageInfos
6891ObjectFileMachO::GetCorefileAllImageInfos() {
6892  MachOCorefileAllImageInfos image_infos;
6893
6894  // Look for an "all image infos" LC_NOTE.
6895  lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6896  for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6897    const uint32_t cmd_offset = offset;
6898    llvm::MachO::load_command lc = {};
6899    if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6900      break;
6901    if (lc.cmd == LC_NOTE) {
6902      char data_owner[17];
6903      m_data.CopyData(offset, 16, data_owner);
6904      data_owner[16] = '\0';
6905      offset += 16;
6906      uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6907      offset += 4; /* size unused */
6908
6909      if (strcmp("all image infos", data_owner) == 0) {
6910        offset = fileoff;
6911        // Read the struct all_image_infos_header.
6912        uint32_t version = m_data.GetU32(&offset);
6913        if (version != 1) {
6914          return image_infos;
6915        }
6916        uint32_t imgcount = m_data.GetU32(&offset);
6917        uint64_t entries_fileoff = m_data.GetU64(&offset);
6918        // 'entries_size' is not used, nor is the 'unused' entry.
6919        //  offset += 4; // uint32_t entries_size;
6920        //  offset += 4; // uint32_t unused;
6921
6922        offset = entries_fileoff;
6923        for (uint32_t i = 0; i < imgcount; i++) {
6924          // Read the struct image_entry.
6925          offset_t filepath_offset = m_data.GetU64(&offset);
6926          uuid_t uuid;
6927          memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6928                 sizeof(uuid_t));
6929          uint64_t load_address = m_data.GetU64(&offset);
6930          offset_t seg_addrs_offset = m_data.GetU64(&offset);
6931          uint32_t segment_count = m_data.GetU32(&offset);
6932          uint32_t currently_executing = m_data.GetU32(&offset);
6933
6934          MachOCorefileImageEntry image_entry;
6935          image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6936          image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6937          image_entry.load_address = load_address;
6938          image_entry.currently_executing = currently_executing;
6939
6940          offset_t seg_vmaddrs_offset = seg_addrs_offset;
6941          for (uint32_t j = 0; j < segment_count; j++) {
6942            char segname[17];
6943            m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6944            segname[16] = '\0';
6945            seg_vmaddrs_offset += 16;
6946            uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6947            seg_vmaddrs_offset += 8; /* unused */
6948
6949            std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
6950                                                    vmaddr};
6951            image_entry.segment_load_addresses.push_back(new_seg);
6952          }
6953          image_infos.all_image_infos.push_back(image_entry);
6954        }
6955      } else if (strcmp("load binary", data_owner) == 0) {
6956        uint32_t version = m_data.GetU32(&fileoff);
6957        if (version == 1) {
6958          uuid_t uuid;
6959          memcpy(&uuid, m_data.GetData(&fileoff, sizeof(uuid_t)),
6960                 sizeof(uuid_t));
6961          uint64_t load_address = m_data.GetU64(&fileoff);
6962          uint64_t slide = m_data.GetU64(&fileoff);
6963          std::string filename = m_data.GetCStr(&fileoff);
6964
6965          MachOCorefileImageEntry image_entry;
6966          image_entry.filename = filename;
6967          image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6968          image_entry.load_address = load_address;
6969          image_entry.slide = slide;
6970          image_entry.currently_executing = true;
6971          image_infos.all_image_infos.push_back(image_entry);
6972        }
6973      }
6974    }
6975    offset = cmd_offset + lc.cmdsize;
6976  }
6977
6978  return image_infos;
6979}
6980
6981bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6982  MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6983  Log *log = GetLog(LLDBLog::DynamicLoader);
6984  Status error;
6985
6986  bool found_platform_binary = false;
6987  ModuleList added_modules;
6988  for (MachOCorefileImageEntry &image : image_infos.all_image_infos) {
6989    ModuleSP module_sp, local_filesystem_module_sp;
6990
6991    // If this is a platform binary, it has been loaded (or registered with
6992    // the DynamicLoader to be loaded), we don't need to do any further
6993    // processing.  We're not going to call ModulesDidLoad on this in this
6994    // method, so notify==true.
6995    if (process.GetTarget()
6996            .GetDebugger()
6997            .GetPlatformList()
6998            .LoadPlatformBinaryAndSetup(&process, image.load_address,
6999                                        true /* notify */)) {
7000      LLDB_LOGF(log,
7001                "ObjectFileMachO::%s binary at 0x%" PRIx64
7002                " is a platform binary, has been handled by a Platform plugin.",
7003                __FUNCTION__, image.load_address);
7004      continue;
7005    }
7006
7007    // If this binary is currently executing, we want to force a
7008    // possibly expensive search for the binary and its dSYM.
7009    if (image.currently_executing && image.uuid.IsValid()) {
7010      ModuleSpec module_spec;
7011      module_spec.GetUUID() = image.uuid;
7012      Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
7013      if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
7014        module_sp = process.GetTarget().GetOrCreateModule(module_spec, false);
7015        process.GetTarget().GetImages().AppendIfNeeded(module_sp,
7016                                                       false /* notify */);
7017      }
7018    }
7019
7020    // We have an address, that's the best way to discover the binary.
7021    if (!module_sp && image.load_address != LLDB_INVALID_ADDRESS) {
7022      module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
7023          &process, image.filename, image.uuid, image.load_address,
7024          false /* value_is_offset */, image.currently_executing,
7025          false /* notify */);
7026    }
7027
7028    // If we have a slide, we need to find the original binary
7029    // by UUID, then we can apply the slide value.
7030    if (!module_sp && image.uuid.IsValid() &&
7031        image.slide != LLDB_INVALID_ADDRESS) {
7032      module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
7033          &process, image.filename, image.uuid, image.slide,
7034          true /* value_is_offset */, image.currently_executing,
7035          false /* notify */);
7036    }
7037
7038    // Try to find the binary by UUID or filename on the local
7039    // filesystem or in lldb's global module cache.
7040    if (!module_sp) {
7041      Status error;
7042      ModuleSpec module_spec;
7043      if (image.uuid.IsValid())
7044        module_spec.GetUUID() = image.uuid;
7045      if (!image.filename.empty())
7046        module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
7047      module_sp =
7048          process.GetTarget().GetOrCreateModule(module_spec, false, &error);
7049      process.GetTarget().GetImages().AppendIfNeeded(module_sp,
7050                                                     false /* notify */);
7051    }
7052
7053    // We have a ModuleSP to load in the Target.  Load it at the
7054    // correct address/slide and notify/load scripting resources.
7055    if (module_sp) {
7056      added_modules.Append(module_sp, false /* notify */);
7057
7058      // We have a list of segment load address
7059      if (image.segment_load_addresses.size() > 0) {
7060        if (log) {
7061          std::string uuidstr = image.uuid.GetAsString();
7062          log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7063                      "UUID %s with section load addresses",
7064                      image.filename.c_str(), uuidstr.c_str());
7065        }
7066        for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7067          SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7068          if (sectlist) {
7069            SectionSP sect_sp =
7070                sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7071            if (sect_sp) {
7072              process.GetTarget().SetSectionLoadAddress(
7073                  sect_sp, std::get<1>(name_vmaddr_tuple));
7074            }
7075          }
7076        }
7077      } else if (image.load_address != LLDB_INVALID_ADDRESS) {
7078        if (log) {
7079          std::string uuidstr = image.uuid.GetAsString();
7080          log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7081                      "UUID %s with load address 0x%" PRIx64,
7082                      image.filename.c_str(), uuidstr.c_str(),
7083                      image.load_address);
7084        }
7085        const bool address_is_slide = false;
7086        bool changed = false;
7087        module_sp->SetLoadAddress(process.GetTarget(), image.load_address,
7088                                  address_is_slide, changed);
7089      } else if (image.slide != 0) {
7090        if (log) {
7091          std::string uuidstr = image.uuid.GetAsString();
7092          log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7093                      "UUID %s with slide amount 0x%" PRIx64,
7094                      image.filename.c_str(), uuidstr.c_str(), image.slide);
7095        }
7096        const bool address_is_slide = true;
7097        bool changed = false;
7098        module_sp->SetLoadAddress(process.GetTarget(), image.slide,
7099                                  address_is_slide, changed);
7100      } else {
7101        if (log) {
7102          std::string uuidstr = image.uuid.GetAsString();
7103          log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7104                      "UUID %s at its file address, no slide applied",
7105                      image.filename.c_str(), uuidstr.c_str());
7106        }
7107        const bool address_is_slide = true;
7108        bool changed = false;
7109        module_sp->SetLoadAddress(process.GetTarget(), 0, address_is_slide,
7110                                  changed);
7111      }
7112    }
7113  }
7114  if (added_modules.GetSize() > 0) {
7115    process.GetTarget().ModulesDidLoad(added_modules);
7116    process.Flush();
7117    return true;
7118  }
7119  // Return true if the only binary we found was the platform binary,
7120  // and it was loaded outside the scope of this method.
7121  if (found_platform_binary)
7122    return true;
7123
7124  // No binaries.
7125  return false;
7126}
7127