1//===-- DWARFExpression.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "lldb/Expression/DWARFExpression.h"
10
11#include <cinttypes>
12
13#include <optional>
14#include <vector>
15
16#include "lldb/Core/Module.h"
17#include "lldb/Core/Value.h"
18#include "lldb/Core/dwarf.h"
19#include "lldb/Utility/DataEncoder.h"
20#include "lldb/Utility/LLDBLog.h"
21#include "lldb/Utility/Log.h"
22#include "lldb/Utility/RegisterValue.h"
23#include "lldb/Utility/Scalar.h"
24#include "lldb/Utility/StreamString.h"
25#include "lldb/Utility/VMRange.h"
26
27#include "lldb/Host/Host.h"
28#include "lldb/Utility/Endian.h"
29
30#include "lldb/Symbol/Function.h"
31
32#include "lldb/Target/ABI.h"
33#include "lldb/Target/ExecutionContext.h"
34#include "lldb/Target/Process.h"
35#include "lldb/Target/RegisterContext.h"
36#include "lldb/Target/StackFrame.h"
37#include "lldb/Target/StackID.h"
38#include "lldb/Target/Target.h"
39#include "lldb/Target/Thread.h"
40#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
41#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
42
43#include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
44
45using namespace lldb;
46using namespace lldb_private;
47using namespace lldb_private::dwarf;
48
49// DWARFExpression constructor
50DWARFExpression::DWARFExpression() : m_data() {}
51
52DWARFExpression::DWARFExpression(const DataExtractor &data) : m_data(data) {}
53
54// Destructor
55DWARFExpression::~DWARFExpression() = default;
56
57bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
58
59void DWARFExpression::UpdateValue(uint64_t const_value,
60                                  lldb::offset_t const_value_byte_size,
61                                  uint8_t addr_byte_size) {
62  if (!const_value_byte_size)
63    return;
64
65  m_data.SetData(
66      DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
67  m_data.SetByteOrder(endian::InlHostByteOrder());
68  m_data.SetAddressByteSize(addr_byte_size);
69}
70
71void DWARFExpression::DumpLocation(Stream *s, lldb::DescriptionLevel level,
72                                   ABI *abi) const {
73  auto *MCRegInfo = abi ? &abi->GetMCRegisterInfo() : nullptr;
74  auto GetRegName = [&MCRegInfo](uint64_t DwarfRegNum,
75                                 bool IsEH) -> llvm::StringRef {
76    if (!MCRegInfo)
77      return {};
78    if (std::optional<unsigned> LLVMRegNum =
79            MCRegInfo->getLLVMRegNum(DwarfRegNum, IsEH))
80      if (const char *RegName = MCRegInfo->getName(*LLVMRegNum))
81        return llvm::StringRef(RegName);
82    return {};
83  };
84  llvm::DIDumpOptions DumpOpts;
85  DumpOpts.GetNameForDWARFReg = GetRegName;
86  llvm::DWARFExpression(m_data.GetAsLLVM(), m_data.GetAddressByteSize())
87      .print(s->AsRawOstream(), DumpOpts, nullptr);
88}
89
90RegisterKind DWARFExpression::GetRegisterKind() const { return m_reg_kind; }
91
92void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
93  m_reg_kind = reg_kind;
94}
95
96
97static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
98                                      lldb::RegisterKind reg_kind,
99                                      uint32_t reg_num, Status *error_ptr,
100                                      Value &value) {
101  if (reg_ctx == nullptr) {
102    if (error_ptr)
103      error_ptr->SetErrorString("No register context in frame.\n");
104  } else {
105    uint32_t native_reg =
106        reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
107    if (native_reg == LLDB_INVALID_REGNUM) {
108      if (error_ptr)
109        error_ptr->SetErrorStringWithFormat("Unable to convert register "
110                                            "kind=%u reg_num=%u to a native "
111                                            "register number.\n",
112                                            reg_kind, reg_num);
113    } else {
114      const RegisterInfo *reg_info =
115          reg_ctx->GetRegisterInfoAtIndex(native_reg);
116      RegisterValue reg_value;
117      if (reg_ctx->ReadRegister(reg_info, reg_value)) {
118        if (reg_value.GetScalarValue(value.GetScalar())) {
119          value.SetValueType(Value::ValueType::Scalar);
120          value.SetContext(Value::ContextType::RegisterInfo,
121                           const_cast<RegisterInfo *>(reg_info));
122          if (error_ptr)
123            error_ptr->Clear();
124          return true;
125        } else {
126          // If we get this error, then we need to implement a value buffer in
127          // the dwarf expression evaluation function...
128          if (error_ptr)
129            error_ptr->SetErrorStringWithFormat(
130                "register %s can't be converted to a scalar value",
131                reg_info->name);
132        }
133      } else {
134        if (error_ptr)
135          error_ptr->SetErrorStringWithFormat("register %s is not available",
136                                              reg_info->name);
137      }
138    }
139  }
140  return false;
141}
142
143/// Return the length in bytes of the set of operands for \p op. No guarantees
144/// are made on the state of \p data after this call.
145static offset_t GetOpcodeDataSize(const DataExtractor &data,
146                                  const lldb::offset_t data_offset,
147                                  const uint8_t op, const DWARFUnit *dwarf_cu) {
148  lldb::offset_t offset = data_offset;
149  switch (op) {
150  case DW_OP_addr:
151  case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
152    return data.GetAddressByteSize();
153
154  // Opcodes with no arguments
155  case DW_OP_deref:                // 0x06
156  case DW_OP_dup:                  // 0x12
157  case DW_OP_drop:                 // 0x13
158  case DW_OP_over:                 // 0x14
159  case DW_OP_swap:                 // 0x16
160  case DW_OP_rot:                  // 0x17
161  case DW_OP_xderef:               // 0x18
162  case DW_OP_abs:                  // 0x19
163  case DW_OP_and:                  // 0x1a
164  case DW_OP_div:                  // 0x1b
165  case DW_OP_minus:                // 0x1c
166  case DW_OP_mod:                  // 0x1d
167  case DW_OP_mul:                  // 0x1e
168  case DW_OP_neg:                  // 0x1f
169  case DW_OP_not:                  // 0x20
170  case DW_OP_or:                   // 0x21
171  case DW_OP_plus:                 // 0x22
172  case DW_OP_shl:                  // 0x24
173  case DW_OP_shr:                  // 0x25
174  case DW_OP_shra:                 // 0x26
175  case DW_OP_xor:                  // 0x27
176  case DW_OP_eq:                   // 0x29
177  case DW_OP_ge:                   // 0x2a
178  case DW_OP_gt:                   // 0x2b
179  case DW_OP_le:                   // 0x2c
180  case DW_OP_lt:                   // 0x2d
181  case DW_OP_ne:                   // 0x2e
182  case DW_OP_lit0:                 // 0x30
183  case DW_OP_lit1:                 // 0x31
184  case DW_OP_lit2:                 // 0x32
185  case DW_OP_lit3:                 // 0x33
186  case DW_OP_lit4:                 // 0x34
187  case DW_OP_lit5:                 // 0x35
188  case DW_OP_lit6:                 // 0x36
189  case DW_OP_lit7:                 // 0x37
190  case DW_OP_lit8:                 // 0x38
191  case DW_OP_lit9:                 // 0x39
192  case DW_OP_lit10:                // 0x3A
193  case DW_OP_lit11:                // 0x3B
194  case DW_OP_lit12:                // 0x3C
195  case DW_OP_lit13:                // 0x3D
196  case DW_OP_lit14:                // 0x3E
197  case DW_OP_lit15:                // 0x3F
198  case DW_OP_lit16:                // 0x40
199  case DW_OP_lit17:                // 0x41
200  case DW_OP_lit18:                // 0x42
201  case DW_OP_lit19:                // 0x43
202  case DW_OP_lit20:                // 0x44
203  case DW_OP_lit21:                // 0x45
204  case DW_OP_lit22:                // 0x46
205  case DW_OP_lit23:                // 0x47
206  case DW_OP_lit24:                // 0x48
207  case DW_OP_lit25:                // 0x49
208  case DW_OP_lit26:                // 0x4A
209  case DW_OP_lit27:                // 0x4B
210  case DW_OP_lit28:                // 0x4C
211  case DW_OP_lit29:                // 0x4D
212  case DW_OP_lit30:                // 0x4E
213  case DW_OP_lit31:                // 0x4f
214  case DW_OP_reg0:                 // 0x50
215  case DW_OP_reg1:                 // 0x51
216  case DW_OP_reg2:                 // 0x52
217  case DW_OP_reg3:                 // 0x53
218  case DW_OP_reg4:                 // 0x54
219  case DW_OP_reg5:                 // 0x55
220  case DW_OP_reg6:                 // 0x56
221  case DW_OP_reg7:                 // 0x57
222  case DW_OP_reg8:                 // 0x58
223  case DW_OP_reg9:                 // 0x59
224  case DW_OP_reg10:                // 0x5A
225  case DW_OP_reg11:                // 0x5B
226  case DW_OP_reg12:                // 0x5C
227  case DW_OP_reg13:                // 0x5D
228  case DW_OP_reg14:                // 0x5E
229  case DW_OP_reg15:                // 0x5F
230  case DW_OP_reg16:                // 0x60
231  case DW_OP_reg17:                // 0x61
232  case DW_OP_reg18:                // 0x62
233  case DW_OP_reg19:                // 0x63
234  case DW_OP_reg20:                // 0x64
235  case DW_OP_reg21:                // 0x65
236  case DW_OP_reg22:                // 0x66
237  case DW_OP_reg23:                // 0x67
238  case DW_OP_reg24:                // 0x68
239  case DW_OP_reg25:                // 0x69
240  case DW_OP_reg26:                // 0x6A
241  case DW_OP_reg27:                // 0x6B
242  case DW_OP_reg28:                // 0x6C
243  case DW_OP_reg29:                // 0x6D
244  case DW_OP_reg30:                // 0x6E
245  case DW_OP_reg31:                // 0x6F
246  case DW_OP_nop:                  // 0x96
247  case DW_OP_push_object_address:  // 0x97 DWARF3
248  case DW_OP_form_tls_address:     // 0x9b DWARF3
249  case DW_OP_call_frame_cfa:       // 0x9c DWARF3
250  case DW_OP_stack_value:          // 0x9f DWARF4
251  case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
252    return 0;
253
254  // Opcodes with a single 1 byte arguments
255  case DW_OP_const1u:     // 0x08 1 1-byte constant
256  case DW_OP_const1s:     // 0x09 1 1-byte constant
257  case DW_OP_pick:        // 0x15 1 1-byte stack index
258  case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
259  case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
260    return 1;
261
262  // Opcodes with a single 2 byte arguments
263  case DW_OP_const2u: // 0x0a 1 2-byte constant
264  case DW_OP_const2s: // 0x0b 1 2-byte constant
265  case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
266  case DW_OP_bra:     // 0x28 1 signed 2-byte constant
267  case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
268    return 2;
269
270  // Opcodes with a single 4 byte arguments
271  case DW_OP_const4u: // 0x0c 1 4-byte constant
272  case DW_OP_const4s: // 0x0d 1 4-byte constant
273  case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
274    return 4;
275
276  // Opcodes with a single 8 byte arguments
277  case DW_OP_const8u: // 0x0e 1 8-byte constant
278  case DW_OP_const8s: // 0x0f 1 8-byte constant
279    return 8;
280
281  // All opcodes that have a single ULEB (signed or unsigned) argument
282  case DW_OP_addrx:           // 0xa1 1 ULEB128 index
283  case DW_OP_constu:          // 0x10 1 ULEB128 constant
284  case DW_OP_consts:          // 0x11 1 SLEB128 constant
285  case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
286  case DW_OP_breg0:           // 0x70 1 ULEB128 register
287  case DW_OP_breg1:           // 0x71 1 ULEB128 register
288  case DW_OP_breg2:           // 0x72 1 ULEB128 register
289  case DW_OP_breg3:           // 0x73 1 ULEB128 register
290  case DW_OP_breg4:           // 0x74 1 ULEB128 register
291  case DW_OP_breg5:           // 0x75 1 ULEB128 register
292  case DW_OP_breg6:           // 0x76 1 ULEB128 register
293  case DW_OP_breg7:           // 0x77 1 ULEB128 register
294  case DW_OP_breg8:           // 0x78 1 ULEB128 register
295  case DW_OP_breg9:           // 0x79 1 ULEB128 register
296  case DW_OP_breg10:          // 0x7a 1 ULEB128 register
297  case DW_OP_breg11:          // 0x7b 1 ULEB128 register
298  case DW_OP_breg12:          // 0x7c 1 ULEB128 register
299  case DW_OP_breg13:          // 0x7d 1 ULEB128 register
300  case DW_OP_breg14:          // 0x7e 1 ULEB128 register
301  case DW_OP_breg15:          // 0x7f 1 ULEB128 register
302  case DW_OP_breg16:          // 0x80 1 ULEB128 register
303  case DW_OP_breg17:          // 0x81 1 ULEB128 register
304  case DW_OP_breg18:          // 0x82 1 ULEB128 register
305  case DW_OP_breg19:          // 0x83 1 ULEB128 register
306  case DW_OP_breg20:          // 0x84 1 ULEB128 register
307  case DW_OP_breg21:          // 0x85 1 ULEB128 register
308  case DW_OP_breg22:          // 0x86 1 ULEB128 register
309  case DW_OP_breg23:          // 0x87 1 ULEB128 register
310  case DW_OP_breg24:          // 0x88 1 ULEB128 register
311  case DW_OP_breg25:          // 0x89 1 ULEB128 register
312  case DW_OP_breg26:          // 0x8a 1 ULEB128 register
313  case DW_OP_breg27:          // 0x8b 1 ULEB128 register
314  case DW_OP_breg28:          // 0x8c 1 ULEB128 register
315  case DW_OP_breg29:          // 0x8d 1 ULEB128 register
316  case DW_OP_breg30:          // 0x8e 1 ULEB128 register
317  case DW_OP_breg31:          // 0x8f 1 ULEB128 register
318  case DW_OP_regx:            // 0x90 1 ULEB128 register
319  case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
320  case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
321  case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
322  case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
323    data.Skip_LEB128(&offset);
324    return offset - data_offset;
325
326  // All opcodes that have a 2 ULEB (signed or unsigned) arguments
327  case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
328  case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
329    data.Skip_LEB128(&offset);
330    data.Skip_LEB128(&offset);
331    return offset - data_offset;
332
333  case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
334                             // (DWARF4)
335  {
336    uint64_t block_len = data.Skip_LEB128(&offset);
337    offset += block_len;
338    return offset - data_offset;
339  }
340
341  case DW_OP_GNU_entry_value:
342  case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
343  {
344    uint64_t subexpr_len = data.GetULEB128(&offset);
345    return (offset - data_offset) + subexpr_len;
346  }
347
348  default:
349    if (!dwarf_cu) {
350      return LLDB_INVALID_OFFSET;
351    }
352    return dwarf_cu->GetSymbolFileDWARF().GetVendorDWARFOpcodeSize(
353        data, data_offset, op);
354  }
355}
356
357lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(const DWARFUnit *dwarf_cu,
358                                                     uint32_t op_addr_idx,
359                                                     bool &error) const {
360  error = false;
361  lldb::offset_t offset = 0;
362  uint32_t curr_op_addr_idx = 0;
363  while (m_data.ValidOffset(offset)) {
364    const uint8_t op = m_data.GetU8(&offset);
365
366    if (op == DW_OP_addr) {
367      const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
368      if (curr_op_addr_idx == op_addr_idx)
369        return op_file_addr;
370      ++curr_op_addr_idx;
371    } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
372      uint64_t index = m_data.GetULEB128(&offset);
373      if (curr_op_addr_idx == op_addr_idx) {
374        if (!dwarf_cu) {
375          error = true;
376          break;
377        }
378
379        return dwarf_cu->ReadAddressFromDebugAddrSection(index);
380      }
381      ++curr_op_addr_idx;
382    } else {
383      const offset_t op_arg_size =
384          GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
385      if (op_arg_size == LLDB_INVALID_OFFSET) {
386        error = true;
387        break;
388      }
389      offset += op_arg_size;
390    }
391  }
392  return LLDB_INVALID_ADDRESS;
393}
394
395bool DWARFExpression::Update_DW_OP_addr(const DWARFUnit *dwarf_cu,
396                                        lldb::addr_t file_addr) {
397  lldb::offset_t offset = 0;
398  while (m_data.ValidOffset(offset)) {
399    const uint8_t op = m_data.GetU8(&offset);
400
401    if (op == DW_OP_addr) {
402      const uint32_t addr_byte_size = m_data.GetAddressByteSize();
403      // We have to make a copy of the data as we don't know if this data is
404      // from a read only memory mapped buffer, so we duplicate all of the data
405      // first, then modify it, and if all goes well, we then replace the data
406      // for this expression
407
408      // Make en encoder that contains a copy of the location expression data
409      // so we can write the address into the buffer using the correct byte
410      // order.
411      DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
412                          m_data.GetByteOrder(), addr_byte_size);
413
414      // Replace the address in the new buffer
415      if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
416        return false;
417
418      // All went well, so now we can reset the data using a shared pointer to
419      // the heap data so "m_data" will now correctly manage the heap data.
420      m_data.SetData(encoder.GetDataBuffer());
421      return true;
422    } else {
423      const offset_t op_arg_size =
424          GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
425      if (op_arg_size == LLDB_INVALID_OFFSET)
426        break;
427      offset += op_arg_size;
428    }
429  }
430  return false;
431}
432
433bool DWARFExpression::ContainsThreadLocalStorage(
434    const DWARFUnit *dwarf_cu) const {
435  lldb::offset_t offset = 0;
436  while (m_data.ValidOffset(offset)) {
437    const uint8_t op = m_data.GetU8(&offset);
438
439    if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
440      return true;
441    const offset_t op_arg_size =
442        GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
443    if (op_arg_size == LLDB_INVALID_OFFSET)
444      return false;
445    offset += op_arg_size;
446  }
447  return false;
448}
449bool DWARFExpression::LinkThreadLocalStorage(
450    const DWARFUnit *dwarf_cu,
451    std::function<lldb::addr_t(lldb::addr_t file_addr)> const
452        &link_address_callback) {
453  const uint32_t addr_byte_size = m_data.GetAddressByteSize();
454  // We have to make a copy of the data as we don't know if this data is from a
455  // read only memory mapped buffer, so we duplicate all of the data first,
456  // then modify it, and if all goes well, we then replace the data for this
457  // expression.
458  // Make en encoder that contains a copy of the location expression data so we
459  // can write the address into the buffer using the correct byte order.
460  DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
461                      m_data.GetByteOrder(), addr_byte_size);
462
463  lldb::offset_t offset = 0;
464  lldb::offset_t const_offset = 0;
465  lldb::addr_t const_value = 0;
466  size_t const_byte_size = 0;
467  while (m_data.ValidOffset(offset)) {
468    const uint8_t op = m_data.GetU8(&offset);
469
470    bool decoded_data = false;
471    switch (op) {
472    case DW_OP_const4u:
473      // Remember the const offset in case we later have a
474      // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
475      const_offset = offset;
476      const_value = m_data.GetU32(&offset);
477      decoded_data = true;
478      const_byte_size = 4;
479      break;
480
481    case DW_OP_const8u:
482      // Remember the const offset in case we later have a
483      // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
484      const_offset = offset;
485      const_value = m_data.GetU64(&offset);
486      decoded_data = true;
487      const_byte_size = 8;
488      break;
489
490    case DW_OP_form_tls_address:
491    case DW_OP_GNU_push_tls_address:
492      // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
493      // by a file address on the stack. We assume that DW_OP_const4u or
494      // DW_OP_const8u is used for these values, and we check that the last
495      // opcode we got before either of these was DW_OP_const4u or
496      // DW_OP_const8u. If so, then we can link the value accordingly. For
497      // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
498      // address of a structure that contains a function pointer, the pthread
499      // key and the offset into the data pointed to by the pthread key. So we
500      // must link this address and also set the module of this expression to
501      // the new_module_sp so we can resolve the file address correctly
502      if (const_byte_size > 0) {
503        lldb::addr_t linked_file_addr = link_address_callback(const_value);
504        if (linked_file_addr == LLDB_INVALID_ADDRESS)
505          return false;
506        // Replace the address in the new buffer
507        if (encoder.PutUnsigned(const_offset, const_byte_size,
508                                linked_file_addr) == UINT32_MAX)
509          return false;
510      }
511      break;
512
513    default:
514      const_offset = 0;
515      const_value = 0;
516      const_byte_size = 0;
517      break;
518    }
519
520    if (!decoded_data) {
521      const offset_t op_arg_size =
522          GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
523      if (op_arg_size == LLDB_INVALID_OFFSET)
524        return false;
525      else
526        offset += op_arg_size;
527    }
528  }
529
530  m_data.SetData(encoder.GetDataBuffer());
531  return true;
532}
533
534static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
535                                       ExecutionContext *exe_ctx,
536                                       RegisterContext *reg_ctx,
537                                       const DataExtractor &opcodes,
538                                       lldb::offset_t &opcode_offset,
539                                       Status *error_ptr, Log *log) {
540  // DW_OP_entry_value(sub-expr) describes the location a variable had upon
541  // function entry: this variable location is presumed to be optimized out at
542  // the current PC value.  The caller of the function may have call site
543  // information that describes an alternate location for the variable (e.g. a
544  // constant literal, or a spilled stack value) in the parent frame.
545  //
546  // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
547  //
548  //     void child(int &sink, int x) {
549  //       ...
550  //       /* "x" gets optimized out. */
551  //
552  //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
553  //       ++sink;
554  //     }
555  //
556  //     void parent() {
557  //       int sink;
558  //
559  //       /*
560  //        * The callsite information emitted here is:
561  //        *
562  //        * DW_TAG_call_site
563  //        *   DW_AT_return_pc ... (for "child(sink, 123);")
564  //        *   DW_TAG_call_site_parameter (for "sink")
565  //        *     DW_AT_location   ($reg1)
566  //        *     DW_AT_call_value ($SP - 8)
567  //        *   DW_TAG_call_site_parameter (for "x")
568  //        *     DW_AT_location   ($reg2)
569  //        *     DW_AT_call_value ($literal 123)
570  //        *
571  //        * DW_TAG_call_site
572  //        *   DW_AT_return_pc ... (for "child(sink, 456);")
573  //        *   ...
574  //        */
575  //       child(sink, 123);
576  //       child(sink, 456);
577  //     }
578  //
579  // When the program stops at "++sink" within `child`, the debugger determines
580  // the call site by analyzing the return address. Once the call site is found,
581  // the debugger determines which parameter is referenced by DW_OP_entry_value
582  // and evaluates the corresponding location for that parameter in `parent`.
583
584  // 1. Find the function which pushed the current frame onto the stack.
585  if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
586    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
587    return false;
588  }
589
590  StackFrame *current_frame = exe_ctx->GetFramePtr();
591  Thread *thread = exe_ctx->GetThreadPtr();
592  if (!current_frame || !thread) {
593    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
594    return false;
595  }
596
597  Target &target = exe_ctx->GetTargetRef();
598  StackFrameSP parent_frame = nullptr;
599  addr_t return_pc = LLDB_INVALID_ADDRESS;
600  uint32_t current_frame_idx = current_frame->GetFrameIndex();
601  uint32_t num_frames = thread->GetStackFrameCount();
602  for (uint32_t parent_frame_idx = current_frame_idx + 1;
603       parent_frame_idx < num_frames; ++parent_frame_idx) {
604    parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
605    // Require a valid sequence of frames.
606    if (!parent_frame)
607      break;
608
609    // Record the first valid return address, even if this is an inlined frame,
610    // in order to look up the associated call edge in the first non-inlined
611    // parent frame.
612    if (return_pc == LLDB_INVALID_ADDRESS) {
613      return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
614      LLDB_LOG(log,
615               "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
616               return_pc);
617    }
618
619    // If we've found an inlined frame, skip it (these have no call site
620    // parameters).
621    if (parent_frame->IsInlined())
622      continue;
623
624    // We've found the first non-inlined parent frame.
625    break;
626  }
627  if (!parent_frame || !parent_frame->GetRegisterContext()) {
628    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
629    return false;
630  }
631
632  Function *parent_func =
633      parent_frame->GetSymbolContext(eSymbolContextFunction).function;
634  if (!parent_func) {
635    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
636    return false;
637  }
638
639  // 2. Find the call edge in the parent function responsible for creating the
640  //    current activation.
641  Function *current_func =
642      current_frame->GetSymbolContext(eSymbolContextFunction).function;
643  if (!current_func) {
644    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
645    return false;
646  }
647
648  CallEdge *call_edge = nullptr;
649  ModuleList &modlist = target.GetImages();
650  ExecutionContext parent_exe_ctx = *exe_ctx;
651  parent_exe_ctx.SetFrameSP(parent_frame);
652  if (!parent_frame->IsArtificial()) {
653    // If the parent frame is not artificial, the current activation may be
654    // produced by an ambiguous tail call. In this case, refuse to proceed.
655    call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
656    if (!call_edge) {
657      LLDB_LOG(log,
658               "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
659               "in parent frame {1}",
660               return_pc, parent_func->GetName());
661      return false;
662    }
663    Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
664    if (callee_func != current_func) {
665      LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
666                    "can't find real parent frame");
667      return false;
668    }
669  } else {
670    // The StackFrameList solver machinery has deduced that an unambiguous tail
671    // call sequence that produced the current activation.  The first edge in
672    // the parent that points to the current function must be valid.
673    for (auto &edge : parent_func->GetTailCallingEdges()) {
674      if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
675        call_edge = edge.get();
676        break;
677      }
678    }
679  }
680  if (!call_edge) {
681    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
682                  "to current function");
683    return false;
684  }
685
686  // 3. Attempt to locate the DW_OP_entry_value expression in the set of
687  //    available call site parameters. If found, evaluate the corresponding
688  //    parameter in the context of the parent frame.
689  const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
690  const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
691  if (!subexpr_data) {
692    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
693    return false;
694  }
695
696  const CallSiteParameter *matched_param = nullptr;
697  for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
698    DataExtractor param_subexpr_extractor;
699    if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
700      continue;
701    lldb::offset_t param_subexpr_offset = 0;
702    const void *param_subexpr_data =
703        param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
704    if (!param_subexpr_data ||
705        param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
706      continue;
707
708    // At this point, the DW_OP_entry_value sub-expression and the callee-side
709    // expression in the call site parameter are known to have the same length.
710    // Check whether they are equal.
711    //
712    // Note that an equality check is sufficient: the contents of the
713    // DW_OP_entry_value subexpression are only used to identify the right call
714    // site parameter in the parent, and do not require any special handling.
715    if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
716      matched_param = &param;
717      break;
718    }
719  }
720  if (!matched_param) {
721    LLDB_LOG(log,
722             "Evaluate_DW_OP_entry_value: no matching call site param found");
723    return false;
724  }
725
726  // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
727  // subexpresion whenever llvm does.
728  Value result;
729  const DWARFExpressionList &param_expr = matched_param->LocationInCaller;
730  if (!param_expr.Evaluate(&parent_exe_ctx,
731                           parent_frame->GetRegisterContext().get(),
732                           LLDB_INVALID_ADDRESS,
733                           /*initial_value_ptr=*/nullptr,
734                           /*object_address_ptr=*/nullptr, result, error_ptr)) {
735    LLDB_LOG(log,
736             "Evaluate_DW_OP_entry_value: call site param evaluation failed");
737    return false;
738  }
739
740  stack.push_back(result);
741  return true;
742}
743
744namespace {
745/// The location description kinds described by the DWARF v5
746/// specification.  Composite locations are handled out-of-band and
747/// thus aren't part of the enum.
748enum LocationDescriptionKind {
749  Empty,
750  Memory,
751  Register,
752  Implicit
753  /* Composite*/
754};
755/// Adjust value's ValueType according to the kind of location description.
756void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
757                                            LocationDescriptionKind kind,
758                                            Value *value = nullptr) {
759  // Note that this function is conflating DWARF expressions with
760  // DWARF location descriptions. Perhaps it would be better to define
761  // a wrapper for DWARFExpression::Eval() that deals with DWARF
762  // location descriptions (which consist of one or more DWARF
763  // expressions). But doing this would mean we'd also need factor the
764  // handling of DW_OP_(bit_)piece out of this function.
765  if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
766    const char *log_msg = "DWARF location description kind: %s";
767    switch (kind) {
768    case Empty:
769      LLDB_LOGF(log, log_msg, "Empty");
770      break;
771    case Memory:
772      LLDB_LOGF(log, log_msg, "Memory");
773      if (value->GetValueType() == Value::ValueType::Scalar)
774        value->SetValueType(Value::ValueType::LoadAddress);
775      break;
776    case Register:
777      LLDB_LOGF(log, log_msg, "Register");
778      value->SetValueType(Value::ValueType::Scalar);
779      break;
780    case Implicit:
781      LLDB_LOGF(log, log_msg, "Implicit");
782      if (value->GetValueType() == Value::ValueType::LoadAddress)
783        value->SetValueType(Value::ValueType::Scalar);
784      break;
785    }
786  }
787}
788} // namespace
789
790/// Helper function to move common code used to resolve a file address and turn
791/// into a load address.
792///
793/// \param exe_ctx Pointer to the execution context
794/// \param module_sp shared_ptr contains the module if we have one
795/// \param error_ptr pointer to Status object if we have one
796/// \param dw_op_type C-style string used to vary the error output
797/// \param file_addr the file address we are trying to resolve and turn into a
798///                  load address
799/// \param so_addr out parameter, will be set to load address or section offset
800/// \param check_sectionoffset bool which determines if having a section offset
801///                            but not a load address is considerd a success
802/// \returns std::optional containing the load address if resolving and getting
803///          the load address succeed or an empty Optinal otherwise. If
804///          check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a
805///          success if so_addr.IsSectionOffset() is true.
806static std::optional<lldb::addr_t>
807ResolveLoadAddress(ExecutionContext *exe_ctx, lldb::ModuleSP &module_sp,
808                   Status *error_ptr, const char *dw_op_type,
809                   lldb::addr_t file_addr, Address &so_addr,
810                   bool check_sectionoffset = false) {
811  if (!module_sp) {
812    if (error_ptr)
813      error_ptr->SetErrorStringWithFormat(
814          "need module to resolve file address for %s", dw_op_type);
815    return {};
816  }
817
818  if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
819    if (error_ptr)
820      error_ptr->SetErrorString("failed to resolve file address in module");
821    return {};
822  }
823
824  addr_t load_addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
825
826  if (load_addr == LLDB_INVALID_ADDRESS &&
827      (check_sectionoffset && !so_addr.IsSectionOffset())) {
828    if (error_ptr)
829      error_ptr->SetErrorString("failed to resolve load address");
830    return {};
831  }
832
833  return load_addr;
834}
835
836/// Helper function to move common code used to load sized data from a uint8_t
837/// buffer.
838///
839/// \param addr_bytes uint8_t buffer containg raw data
840/// \param size_addr_bytes how large is the underlying raw data
841/// \param byte_order what is the byter order of the underlyig data
842/// \param size How much of the underlying data we want to use
843/// \return The underlying data converted into a Scalar
844static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes,
845                                         size_t size_addr_bytes,
846                                         ByteOrder byte_order, size_t size) {
847  DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size);
848
849  lldb::offset_t addr_data_offset = 0;
850  if (size <= 8)
851    return addr_data.GetMaxU64(&addr_data_offset, size);
852  else
853    return addr_data.GetAddress(&addr_data_offset);
854}
855
856bool DWARFExpression::Evaluate(
857    ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
858    lldb::ModuleSP module_sp, const DataExtractor &opcodes,
859    const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
860    const Value *initial_value_ptr, const Value *object_address_ptr,
861    Value &result, Status *error_ptr) {
862
863  if (opcodes.GetByteSize() == 0) {
864    if (error_ptr)
865      error_ptr->SetErrorString(
866          "no location, value may have been optimized out");
867    return false;
868  }
869  std::vector<Value> stack;
870
871  Process *process = nullptr;
872  StackFrame *frame = nullptr;
873  Target *target = nullptr;
874
875  if (exe_ctx) {
876    process = exe_ctx->GetProcessPtr();
877    frame = exe_ctx->GetFramePtr();
878    target = exe_ctx->GetTargetPtr();
879  }
880  if (reg_ctx == nullptr && frame)
881    reg_ctx = frame->GetRegisterContext().get();
882
883  if (initial_value_ptr)
884    stack.push_back(*initial_value_ptr);
885
886  lldb::offset_t offset = 0;
887  Value tmp;
888  uint32_t reg_num;
889
890  /// Insertion point for evaluating multi-piece expression.
891  uint64_t op_piece_offset = 0;
892  Value pieces; // Used for DW_OP_piece
893
894  Log *log = GetLog(LLDBLog::Expressions);
895  // A generic type is "an integral type that has the size of an address and an
896  // unspecified signedness". For now, just use the signedness of the operand.
897  // TODO: Implement a real typed stack, and store the genericness of the value
898  // there.
899  auto to_generic = [&](auto v) {
900    bool is_signed = std::is_signed<decltype(v)>::value;
901    return Scalar(llvm::APSInt(
902        llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
903        !is_signed));
904  };
905
906  // The default kind is a memory location. This is updated by any
907  // operation that changes this, such as DW_OP_stack_value, and reset
908  // by composition operations like DW_OP_piece.
909  LocationDescriptionKind dwarf4_location_description_kind = Memory;
910
911  while (opcodes.ValidOffset(offset)) {
912    const lldb::offset_t op_offset = offset;
913    const uint8_t op = opcodes.GetU8(&offset);
914
915    if (log && log->GetVerbose()) {
916      size_t count = stack.size();
917      LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
918                (uint64_t)count);
919      for (size_t i = 0; i < count; ++i) {
920        StreamString new_value;
921        new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
922        stack[i].Dump(&new_value);
923        LLDB_LOGF(log, "  %s", new_value.GetData());
924      }
925      LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
926                DW_OP_value_to_name(op));
927    }
928
929    switch (op) {
930    // The DW_OP_addr operation has a single operand that encodes a machine
931    // address and whose size is the size of an address on the target machine.
932    case DW_OP_addr:
933      stack.push_back(Scalar(opcodes.GetAddress(&offset)));
934      if (target &&
935          target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) {
936        // wasm file sections aren't mapped into memory, therefore addresses can
937        // never point into a file section and are always LoadAddresses.
938        stack.back().SetValueType(Value::ValueType::LoadAddress);
939      } else {
940        stack.back().SetValueType(Value::ValueType::FileAddress);
941      }
942      break;
943
944    // The DW_OP_addr_sect_offset4 is used for any location expressions in
945    // shared libraries that have a location like:
946    //  DW_OP_addr(0x1000)
947    // If this address resides in a shared library, then this virtual address
948    // won't make sense when it is evaluated in the context of a running
949    // process where shared libraries have been slid. To account for this, this
950    // new address type where we can store the section pointer and a 4 byte
951    // offset.
952    //      case DW_OP_addr_sect_offset4:
953    //          {
954    //              result_type = eResultTypeFileAddress;
955    //              lldb::Section *sect = (lldb::Section
956    //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
957    //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
958    //
959    //              Address so_addr (sect, sect_offset);
960    //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
961    //              if (load_addr != LLDB_INVALID_ADDRESS)
962    //              {
963    //                  // We successfully resolve a file address to a load
964    //                  // address.
965    //                  stack.push_back(load_addr);
966    //                  break;
967    //              }
968    //              else
969    //              {
970    //                  // We were able
971    //                  if (error_ptr)
972    //                      error_ptr->SetErrorStringWithFormat ("Section %s in
973    //                      %s is not currently loaded.\n",
974    //                      sect->GetName().AsCString(),
975    //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
976    //                  return false;
977    //              }
978    //          }
979    //          break;
980
981    // OPCODE: DW_OP_deref
982    // OPERANDS: none
983    // DESCRIPTION: Pops the top stack entry and treats it as an address.
984    // The value retrieved from that address is pushed. The size of the data
985    // retrieved from the dereferenced address is the size of an address on the
986    // target machine.
987    case DW_OP_deref: {
988      if (stack.empty()) {
989        if (error_ptr)
990          error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
991        return false;
992      }
993      Value::ValueType value_type = stack.back().GetValueType();
994      switch (value_type) {
995      case Value::ValueType::HostAddress: {
996        void *src = (void *)stack.back().GetScalar().ULongLong();
997        intptr_t ptr;
998        ::memcpy(&ptr, src, sizeof(void *));
999        stack.back().GetScalar() = ptr;
1000        stack.back().ClearContext();
1001      } break;
1002      case Value::ValueType::FileAddress: {
1003        auto file_addr = stack.back().GetScalar().ULongLong(
1004            LLDB_INVALID_ADDRESS);
1005
1006        Address so_addr;
1007        auto maybe_load_addr = ResolveLoadAddress(
1008            exe_ctx, module_sp, error_ptr, "DW_OP_deref", file_addr, so_addr);
1009
1010        if (!maybe_load_addr)
1011          return false;
1012
1013        stack.back().GetScalar() = *maybe_load_addr;
1014        // Fall through to load address promotion code below.
1015      }
1016        [[fallthrough]];
1017      case Value::ValueType::Scalar:
1018        // Promote Scalar to LoadAddress and fall through.
1019        stack.back().SetValueType(Value::ValueType::LoadAddress);
1020        [[fallthrough]];
1021      case Value::ValueType::LoadAddress:
1022        if (exe_ctx) {
1023          if (process) {
1024            lldb::addr_t pointer_addr =
1025                stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1026            Status error;
1027            lldb::addr_t pointer_value =
1028                process->ReadPointerFromMemory(pointer_addr, error);
1029            if (pointer_value != LLDB_INVALID_ADDRESS) {
1030              if (ABISP abi_sp = process->GetABI())
1031                pointer_value = abi_sp->FixCodeAddress(pointer_value);
1032              stack.back().GetScalar() = pointer_value;
1033              stack.back().ClearContext();
1034            } else {
1035              if (error_ptr)
1036                error_ptr->SetErrorStringWithFormat(
1037                    "Failed to dereference pointer from 0x%" PRIx64
1038                    " for DW_OP_deref: %s\n",
1039                    pointer_addr, error.AsCString());
1040              return false;
1041            }
1042          } else {
1043            if (error_ptr)
1044              error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1045            return false;
1046          }
1047        } else {
1048          if (error_ptr)
1049            error_ptr->SetErrorString(
1050                "NULL execution context for DW_OP_deref.\n");
1051          return false;
1052        }
1053        break;
1054
1055      case Value::ValueType::Invalid:
1056        if (error_ptr)
1057          error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1058        return false;
1059      }
1060
1061    } break;
1062
1063    // OPCODE: DW_OP_deref_size
1064    // OPERANDS: 1
1065    //  1 - uint8_t that specifies the size of the data to dereference.
1066    // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1067    // stack entry and treats it as an address. The value retrieved from that
1068    // address is pushed. In the DW_OP_deref_size operation, however, the size
1069    // in bytes of the data retrieved from the dereferenced address is
1070    // specified by the single operand. This operand is a 1-byte unsigned
1071    // integral constant whose value may not be larger than the size of an
1072    // address on the target machine. The data retrieved is zero extended to
1073    // the size of an address on the target machine before being pushed on the
1074    // expression stack.
1075    case DW_OP_deref_size: {
1076      if (stack.empty()) {
1077        if (error_ptr)
1078          error_ptr->SetErrorString(
1079              "Expression stack empty for DW_OP_deref_size.");
1080        return false;
1081      }
1082      uint8_t size = opcodes.GetU8(&offset);
1083      Value::ValueType value_type = stack.back().GetValueType();
1084      switch (value_type) {
1085      case Value::ValueType::HostAddress: {
1086        void *src = (void *)stack.back().GetScalar().ULongLong();
1087        intptr_t ptr;
1088        ::memcpy(&ptr, src, sizeof(void *));
1089        // I can't decide whether the size operand should apply to the bytes in
1090        // their
1091        // lldb-host endianness or the target endianness.. I doubt this'll ever
1092        // come up but I'll opt for assuming big endian regardless.
1093        switch (size) {
1094        case 1:
1095          ptr = ptr & 0xff;
1096          break;
1097        case 2:
1098          ptr = ptr & 0xffff;
1099          break;
1100        case 3:
1101          ptr = ptr & 0xffffff;
1102          break;
1103        case 4:
1104          ptr = ptr & 0xffffffff;
1105          break;
1106        // the casts are added to work around the case where intptr_t is a 32
1107        // bit quantity;
1108        // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1109        // program.
1110        case 5:
1111          ptr = (intptr_t)ptr & 0xffffffffffULL;
1112          break;
1113        case 6:
1114          ptr = (intptr_t)ptr & 0xffffffffffffULL;
1115          break;
1116        case 7:
1117          ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1118          break;
1119        default:
1120          break;
1121        }
1122        stack.back().GetScalar() = ptr;
1123        stack.back().ClearContext();
1124      } break;
1125      case Value::ValueType::FileAddress: {
1126        auto file_addr =
1127            stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1128        Address so_addr;
1129        auto maybe_load_addr =
1130            ResolveLoadAddress(exe_ctx, module_sp, error_ptr,
1131                                      "DW_OP_deref_size", file_addr, so_addr,
1132                                      /*check_sectionoffset=*/true);
1133
1134        if (!maybe_load_addr)
1135          return false;
1136
1137        addr_t load_addr = *maybe_load_addr;
1138
1139        if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) {
1140          uint8_t addr_bytes[8];
1141          Status error;
1142
1143          if (exe_ctx->GetTargetRef().ReadMemory(
1144                  so_addr, &addr_bytes, size, error,
1145                  /*force_live_memory=*/false) == size) {
1146            ObjectFile *objfile = module_sp->GetObjectFile();
1147
1148            stack.back().GetScalar() = DerefSizeExtractDataHelper(
1149                addr_bytes, size, objfile->GetByteOrder(), size);
1150            stack.back().ClearContext();
1151            break;
1152          } else {
1153            if (error_ptr)
1154              error_ptr->SetErrorStringWithFormat(
1155                  "Failed to dereference pointer for for DW_OP_deref_size: "
1156                  "%s\n",
1157                  error.AsCString());
1158            return false;
1159          }
1160        }
1161        stack.back().GetScalar() = load_addr;
1162        // Fall through to load address promotion code below.
1163      }
1164
1165        [[fallthrough]];
1166      case Value::ValueType::Scalar:
1167      case Value::ValueType::LoadAddress:
1168        if (exe_ctx) {
1169          if (process) {
1170            lldb::addr_t pointer_addr =
1171                stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1172            uint8_t addr_bytes[sizeof(lldb::addr_t)];
1173            Status error;
1174            if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1175                size) {
1176
1177              stack.back().GetScalar() =
1178                  DerefSizeExtractDataHelper(addr_bytes, sizeof(addr_bytes),
1179                                             process->GetByteOrder(), size);
1180              stack.back().ClearContext();
1181            } else {
1182              if (error_ptr)
1183                error_ptr->SetErrorStringWithFormat(
1184                    "Failed to dereference pointer from 0x%" PRIx64
1185                    " for DW_OP_deref: %s\n",
1186                    pointer_addr, error.AsCString());
1187              return false;
1188            }
1189          } else {
1190            if (error_ptr)
1191              error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1192            return false;
1193          }
1194        } else {
1195          if (error_ptr)
1196            error_ptr->SetErrorString(
1197                "NULL execution context for DW_OP_deref_size.\n");
1198          return false;
1199        }
1200        break;
1201
1202      case Value::ValueType::Invalid:
1203        if (error_ptr)
1204          error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1205        return false;
1206      }
1207
1208    } break;
1209
1210    // OPCODE: DW_OP_xderef_size
1211    // OPERANDS: 1
1212    //  1 - uint8_t that specifies the size of the data to dereference.
1213    // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1214    // the top of the stack is treated as an address. The second stack entry is
1215    // treated as an "address space identifier" for those architectures that
1216    // support multiple address spaces. The top two stack elements are popped,
1217    // a data item is retrieved through an implementation-defined address
1218    // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1219    // operation, however, the size in bytes of the data retrieved from the
1220    // dereferenced address is specified by the single operand. This operand is
1221    // a 1-byte unsigned integral constant whose value may not be larger than
1222    // the size of an address on the target machine. The data retrieved is zero
1223    // extended to the size of an address on the target machine before being
1224    // pushed on the expression stack.
1225    case DW_OP_xderef_size:
1226      if (error_ptr)
1227        error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1228      return false;
1229    // OPCODE: DW_OP_xderef
1230    // OPERANDS: none
1231    // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1232    // the top of the stack is treated as an address. The second stack entry is
1233    // treated as an "address space identifier" for those architectures that
1234    // support multiple address spaces. The top two stack elements are popped,
1235    // a data item is retrieved through an implementation-defined address
1236    // calculation and pushed as the new stack top. The size of the data
1237    // retrieved from the dereferenced address is the size of an address on the
1238    // target machine.
1239    case DW_OP_xderef:
1240      if (error_ptr)
1241        error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1242      return false;
1243
1244    // All DW_OP_constXXX opcodes have a single operand as noted below:
1245    //
1246    // Opcode           Operand 1
1247    // DW_OP_const1u    1-byte unsigned integer constant
1248    // DW_OP_const1s    1-byte signed integer constant
1249    // DW_OP_const2u    2-byte unsigned integer constant
1250    // DW_OP_const2s    2-byte signed integer constant
1251    // DW_OP_const4u    4-byte unsigned integer constant
1252    // DW_OP_const4s    4-byte signed integer constant
1253    // DW_OP_const8u    8-byte unsigned integer constant
1254    // DW_OP_const8s    8-byte signed integer constant
1255    // DW_OP_constu     unsigned LEB128 integer constant
1256    // DW_OP_consts     signed LEB128 integer constant
1257    case DW_OP_const1u:
1258      stack.push_back(to_generic(opcodes.GetU8(&offset)));
1259      break;
1260    case DW_OP_const1s:
1261      stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1262      break;
1263    case DW_OP_const2u:
1264      stack.push_back(to_generic(opcodes.GetU16(&offset)));
1265      break;
1266    case DW_OP_const2s:
1267      stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1268      break;
1269    case DW_OP_const4u:
1270      stack.push_back(to_generic(opcodes.GetU32(&offset)));
1271      break;
1272    case DW_OP_const4s:
1273      stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1274      break;
1275    case DW_OP_const8u:
1276      stack.push_back(to_generic(opcodes.GetU64(&offset)));
1277      break;
1278    case DW_OP_const8s:
1279      stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1280      break;
1281    // These should also use to_generic, but we can't do that due to a
1282    // producer-side bug in llvm. See llvm.org/pr48087.
1283    case DW_OP_constu:
1284      stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1285      break;
1286    case DW_OP_consts:
1287      stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1288      break;
1289
1290    // OPCODE: DW_OP_dup
1291    // OPERANDS: none
1292    // DESCRIPTION: duplicates the value at the top of the stack
1293    case DW_OP_dup:
1294      if (stack.empty()) {
1295        if (error_ptr)
1296          error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1297        return false;
1298      } else
1299        stack.push_back(stack.back());
1300      break;
1301
1302    // OPCODE: DW_OP_drop
1303    // OPERANDS: none
1304    // DESCRIPTION: pops the value at the top of the stack
1305    case DW_OP_drop:
1306      if (stack.empty()) {
1307        if (error_ptr)
1308          error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1309        return false;
1310      } else
1311        stack.pop_back();
1312      break;
1313
1314    // OPCODE: DW_OP_over
1315    // OPERANDS: none
1316    // DESCRIPTION: Duplicates the entry currently second in the stack at
1317    // the top of the stack.
1318    case DW_OP_over:
1319      if (stack.size() < 2) {
1320        if (error_ptr)
1321          error_ptr->SetErrorString(
1322              "Expression stack needs at least 2 items for DW_OP_over.");
1323        return false;
1324      } else
1325        stack.push_back(stack[stack.size() - 2]);
1326      break;
1327
1328    // OPCODE: DW_OP_pick
1329    // OPERANDS: uint8_t index into the current stack
1330    // DESCRIPTION: The stack entry with the specified index (0 through 255,
1331    // inclusive) is pushed on the stack
1332    case DW_OP_pick: {
1333      uint8_t pick_idx = opcodes.GetU8(&offset);
1334      if (pick_idx < stack.size())
1335        stack.push_back(stack[stack.size() - 1 - pick_idx]);
1336      else {
1337        if (error_ptr)
1338          error_ptr->SetErrorStringWithFormat(
1339              "Index %u out of range for DW_OP_pick.\n", pick_idx);
1340        return false;
1341      }
1342    } break;
1343
1344    // OPCODE: DW_OP_swap
1345    // OPERANDS: none
1346    // DESCRIPTION: swaps the top two stack entries. The entry at the top
1347    // of the stack becomes the second stack entry, and the second entry
1348    // becomes the top of the stack
1349    case DW_OP_swap:
1350      if (stack.size() < 2) {
1351        if (error_ptr)
1352          error_ptr->SetErrorString(
1353              "Expression stack needs at least 2 items for DW_OP_swap.");
1354        return false;
1355      } else {
1356        tmp = stack.back();
1357        stack.back() = stack[stack.size() - 2];
1358        stack[stack.size() - 2] = tmp;
1359      }
1360      break;
1361
1362    // OPCODE: DW_OP_rot
1363    // OPERANDS: none
1364    // DESCRIPTION: Rotates the first three stack entries. The entry at
1365    // the top of the stack becomes the third stack entry, the second entry
1366    // becomes the top of the stack, and the third entry becomes the second
1367    // entry.
1368    case DW_OP_rot:
1369      if (stack.size() < 3) {
1370        if (error_ptr)
1371          error_ptr->SetErrorString(
1372              "Expression stack needs at least 3 items for DW_OP_rot.");
1373        return false;
1374      } else {
1375        size_t last_idx = stack.size() - 1;
1376        Value old_top = stack[last_idx];
1377        stack[last_idx] = stack[last_idx - 1];
1378        stack[last_idx - 1] = stack[last_idx - 2];
1379        stack[last_idx - 2] = old_top;
1380      }
1381      break;
1382
1383    // OPCODE: DW_OP_abs
1384    // OPERANDS: none
1385    // DESCRIPTION: pops the top stack entry, interprets it as a signed
1386    // value and pushes its absolute value. If the absolute value can not be
1387    // represented, the result is undefined.
1388    case DW_OP_abs:
1389      if (stack.empty()) {
1390        if (error_ptr)
1391          error_ptr->SetErrorString(
1392              "Expression stack needs at least 1 item for DW_OP_abs.");
1393        return false;
1394      } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1395        if (error_ptr)
1396          error_ptr->SetErrorString(
1397              "Failed to take the absolute value of the first stack item.");
1398        return false;
1399      }
1400      break;
1401
1402    // OPCODE: DW_OP_and
1403    // OPERANDS: none
1404    // DESCRIPTION: pops the top two stack values, performs a bitwise and
1405    // operation on the two, and pushes the result.
1406    case DW_OP_and:
1407      if (stack.size() < 2) {
1408        if (error_ptr)
1409          error_ptr->SetErrorString(
1410              "Expression stack needs at least 2 items for DW_OP_and.");
1411        return false;
1412      } else {
1413        tmp = stack.back();
1414        stack.pop_back();
1415        stack.back().ResolveValue(exe_ctx) =
1416            stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1417      }
1418      break;
1419
1420    // OPCODE: DW_OP_div
1421    // OPERANDS: none
1422    // DESCRIPTION: pops the top two stack values, divides the former second
1423    // entry by the former top of the stack using signed division, and pushes
1424    // the result.
1425    case DW_OP_div:
1426      if (stack.size() < 2) {
1427        if (error_ptr)
1428          error_ptr->SetErrorString(
1429              "Expression stack needs at least 2 items for DW_OP_div.");
1430        return false;
1431      } else {
1432        tmp = stack.back();
1433        if (tmp.ResolveValue(exe_ctx).IsZero()) {
1434          if (error_ptr)
1435            error_ptr->SetErrorString("Divide by zero.");
1436          return false;
1437        } else {
1438          stack.pop_back();
1439          stack.back() =
1440              stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1441          if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1442            if (error_ptr)
1443              error_ptr->SetErrorString("Divide failed.");
1444            return false;
1445          }
1446        }
1447      }
1448      break;
1449
1450    // OPCODE: DW_OP_minus
1451    // OPERANDS: none
1452    // DESCRIPTION: pops the top two stack values, subtracts the former top
1453    // of the stack from the former second entry, and pushes the result.
1454    case DW_OP_minus:
1455      if (stack.size() < 2) {
1456        if (error_ptr)
1457          error_ptr->SetErrorString(
1458              "Expression stack needs at least 2 items for DW_OP_minus.");
1459        return false;
1460      } else {
1461        tmp = stack.back();
1462        stack.pop_back();
1463        stack.back().ResolveValue(exe_ctx) =
1464            stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1465      }
1466      break;
1467
1468    // OPCODE: DW_OP_mod
1469    // OPERANDS: none
1470    // DESCRIPTION: pops the top two stack values and pushes the result of
1471    // the calculation: former second stack entry modulo the former top of the
1472    // stack.
1473    case DW_OP_mod:
1474      if (stack.size() < 2) {
1475        if (error_ptr)
1476          error_ptr->SetErrorString(
1477              "Expression stack needs at least 2 items for DW_OP_mod.");
1478        return false;
1479      } else {
1480        tmp = stack.back();
1481        stack.pop_back();
1482        stack.back().ResolveValue(exe_ctx) =
1483            stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1484      }
1485      break;
1486
1487    // OPCODE: DW_OP_mul
1488    // OPERANDS: none
1489    // DESCRIPTION: pops the top two stack entries, multiplies them
1490    // together, and pushes the result.
1491    case DW_OP_mul:
1492      if (stack.size() < 2) {
1493        if (error_ptr)
1494          error_ptr->SetErrorString(
1495              "Expression stack needs at least 2 items for DW_OP_mul.");
1496        return false;
1497      } else {
1498        tmp = stack.back();
1499        stack.pop_back();
1500        stack.back().ResolveValue(exe_ctx) =
1501            stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1502      }
1503      break;
1504
1505    // OPCODE: DW_OP_neg
1506    // OPERANDS: none
1507    // DESCRIPTION: pops the top stack entry, and pushes its negation.
1508    case DW_OP_neg:
1509      if (stack.empty()) {
1510        if (error_ptr)
1511          error_ptr->SetErrorString(
1512              "Expression stack needs at least 1 item for DW_OP_neg.");
1513        return false;
1514      } else {
1515        if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1516          if (error_ptr)
1517            error_ptr->SetErrorString("Unary negate failed.");
1518          return false;
1519        }
1520      }
1521      break;
1522
1523    // OPCODE: DW_OP_not
1524    // OPERANDS: none
1525    // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1526    // complement
1527    case DW_OP_not:
1528      if (stack.empty()) {
1529        if (error_ptr)
1530          error_ptr->SetErrorString(
1531              "Expression stack needs at least 1 item for DW_OP_not.");
1532        return false;
1533      } else {
1534        if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1535          if (error_ptr)
1536            error_ptr->SetErrorString("Logical NOT failed.");
1537          return false;
1538        }
1539      }
1540      break;
1541
1542    // OPCODE: DW_OP_or
1543    // OPERANDS: none
1544    // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1545    // operation on the two, and pushes the result.
1546    case DW_OP_or:
1547      if (stack.size() < 2) {
1548        if (error_ptr)
1549          error_ptr->SetErrorString(
1550              "Expression stack needs at least 2 items for DW_OP_or.");
1551        return false;
1552      } else {
1553        tmp = stack.back();
1554        stack.pop_back();
1555        stack.back().ResolveValue(exe_ctx) =
1556            stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1557      }
1558      break;
1559
1560    // OPCODE: DW_OP_plus
1561    // OPERANDS: none
1562    // DESCRIPTION: pops the top two stack entries, adds them together, and
1563    // pushes the result.
1564    case DW_OP_plus:
1565      if (stack.size() < 2) {
1566        if (error_ptr)
1567          error_ptr->SetErrorString(
1568              "Expression stack needs at least 2 items for DW_OP_plus.");
1569        return false;
1570      } else {
1571        tmp = stack.back();
1572        stack.pop_back();
1573        stack.back().GetScalar() += tmp.GetScalar();
1574      }
1575      break;
1576
1577    // OPCODE: DW_OP_plus_uconst
1578    // OPERANDS: none
1579    // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1580    // constant operand and pushes the result.
1581    case DW_OP_plus_uconst:
1582      if (stack.empty()) {
1583        if (error_ptr)
1584          error_ptr->SetErrorString(
1585              "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1586        return false;
1587      } else {
1588        const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1589        // Implicit conversion from a UINT to a Scalar...
1590        stack.back().GetScalar() += uconst_value;
1591        if (!stack.back().GetScalar().IsValid()) {
1592          if (error_ptr)
1593            error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1594          return false;
1595        }
1596      }
1597      break;
1598
1599    // OPCODE: DW_OP_shl
1600    // OPERANDS: none
1601    // DESCRIPTION:  pops the top two stack entries, shifts the former
1602    // second entry left by the number of bits specified by the former top of
1603    // the stack, and pushes the result.
1604    case DW_OP_shl:
1605      if (stack.size() < 2) {
1606        if (error_ptr)
1607          error_ptr->SetErrorString(
1608              "Expression stack needs at least 2 items for DW_OP_shl.");
1609        return false;
1610      } else {
1611        tmp = stack.back();
1612        stack.pop_back();
1613        stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1614      }
1615      break;
1616
1617    // OPCODE: DW_OP_shr
1618    // OPERANDS: none
1619    // DESCRIPTION: pops the top two stack entries, shifts the former second
1620    // entry right logically (filling with zero bits) by the number of bits
1621    // specified by the former top of the stack, and pushes the result.
1622    case DW_OP_shr:
1623      if (stack.size() < 2) {
1624        if (error_ptr)
1625          error_ptr->SetErrorString(
1626              "Expression stack needs at least 2 items for DW_OP_shr.");
1627        return false;
1628      } else {
1629        tmp = stack.back();
1630        stack.pop_back();
1631        if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1632                tmp.ResolveValue(exe_ctx))) {
1633          if (error_ptr)
1634            error_ptr->SetErrorString("DW_OP_shr failed.");
1635          return false;
1636        }
1637      }
1638      break;
1639
1640    // OPCODE: DW_OP_shra
1641    // OPERANDS: none
1642    // DESCRIPTION: pops the top two stack entries, shifts the former second
1643    // entry right arithmetically (divide the magnitude by 2, keep the same
1644    // sign for the result) by the number of bits specified by the former top
1645    // of the stack, and pushes the result.
1646    case DW_OP_shra:
1647      if (stack.size() < 2) {
1648        if (error_ptr)
1649          error_ptr->SetErrorString(
1650              "Expression stack needs at least 2 items for DW_OP_shra.");
1651        return false;
1652      } else {
1653        tmp = stack.back();
1654        stack.pop_back();
1655        stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1656      }
1657      break;
1658
1659    // OPCODE: DW_OP_xor
1660    // OPERANDS: none
1661    // DESCRIPTION: pops the top two stack entries, performs the bitwise
1662    // exclusive-or operation on the two, and pushes the result.
1663    case DW_OP_xor:
1664      if (stack.size() < 2) {
1665        if (error_ptr)
1666          error_ptr->SetErrorString(
1667              "Expression stack needs at least 2 items for DW_OP_xor.");
1668        return false;
1669      } else {
1670        tmp = stack.back();
1671        stack.pop_back();
1672        stack.back().ResolveValue(exe_ctx) =
1673            stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1674      }
1675      break;
1676
1677    // OPCODE: DW_OP_skip
1678    // OPERANDS: int16_t
1679    // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1680    // signed integer constant. The 2-byte constant is the number of bytes of
1681    // the DWARF expression to skip forward or backward from the current
1682    // operation, beginning after the 2-byte constant.
1683    case DW_OP_skip: {
1684      int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1685      lldb::offset_t new_offset = offset + skip_offset;
1686      // New offset can point at the end of the data, in this case we should
1687      // terminate the DWARF expression evaluation (will happen in the loop
1688      // condition).
1689      if (new_offset <= opcodes.GetByteSize())
1690        offset = new_offset;
1691      else {
1692        if (error_ptr)
1693          error_ptr->SetErrorStringWithFormatv(
1694              "Invalid opcode offset in DW_OP_skip: {0}+({1}) > {2}", offset,
1695              skip_offset, opcodes.GetByteSize());
1696        return false;
1697      }
1698    } break;
1699
1700    // OPCODE: DW_OP_bra
1701    // OPERANDS: int16_t
1702    // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1703    // signed integer constant. This operation pops the top of stack. If the
1704    // value popped is not the constant 0, the 2-byte constant operand is the
1705    // number of bytes of the DWARF expression to skip forward or backward from
1706    // the current operation, beginning after the 2-byte constant.
1707    case DW_OP_bra:
1708      if (stack.empty()) {
1709        if (error_ptr)
1710          error_ptr->SetErrorString(
1711              "Expression stack needs at least 1 item for DW_OP_bra.");
1712        return false;
1713      } else {
1714        tmp = stack.back();
1715        stack.pop_back();
1716        int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1717        Scalar zero(0);
1718        if (tmp.ResolveValue(exe_ctx) != zero) {
1719          lldb::offset_t new_offset = offset + bra_offset;
1720          // New offset can point at the end of the data, in this case we should
1721          // terminate the DWARF expression evaluation (will happen in the loop
1722          // condition).
1723          if (new_offset <= opcodes.GetByteSize())
1724            offset = new_offset;
1725          else {
1726            if (error_ptr)
1727              error_ptr->SetErrorStringWithFormatv(
1728                  "Invalid opcode offset in DW_OP_bra: {0}+({1}) > {2}", offset,
1729                  bra_offset, opcodes.GetByteSize());
1730            return false;
1731          }
1732        }
1733      }
1734      break;
1735
1736    // OPCODE: DW_OP_eq
1737    // OPERANDS: none
1738    // DESCRIPTION: pops the top two stack values, compares using the
1739    // equals (==) operator.
1740    // STACK RESULT: push the constant value 1 onto the stack if the result
1741    // of the operation is true or the constant value 0 if the result of the
1742    // operation is false.
1743    case DW_OP_eq:
1744      if (stack.size() < 2) {
1745        if (error_ptr)
1746          error_ptr->SetErrorString(
1747              "Expression stack needs at least 2 items for DW_OP_eq.");
1748        return false;
1749      } else {
1750        tmp = stack.back();
1751        stack.pop_back();
1752        stack.back().ResolveValue(exe_ctx) =
1753            stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1754      }
1755      break;
1756
1757    // OPCODE: DW_OP_ge
1758    // OPERANDS: none
1759    // DESCRIPTION: pops the top two stack values, compares using the
1760    // greater than or equal to (>=) operator.
1761    // STACK RESULT: push the constant value 1 onto the stack if the result
1762    // of the operation is true or the constant value 0 if the result of the
1763    // operation is false.
1764    case DW_OP_ge:
1765      if (stack.size() < 2) {
1766        if (error_ptr)
1767          error_ptr->SetErrorString(
1768              "Expression stack needs at least 2 items for DW_OP_ge.");
1769        return false;
1770      } else {
1771        tmp = stack.back();
1772        stack.pop_back();
1773        stack.back().ResolveValue(exe_ctx) =
1774            stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1775      }
1776      break;
1777
1778    // OPCODE: DW_OP_gt
1779    // OPERANDS: none
1780    // DESCRIPTION: pops the top two stack values, compares using the
1781    // greater than (>) operator.
1782    // STACK RESULT: push the constant value 1 onto the stack if the result
1783    // of the operation is true or the constant value 0 if the result of the
1784    // operation is false.
1785    case DW_OP_gt:
1786      if (stack.size() < 2) {
1787        if (error_ptr)
1788          error_ptr->SetErrorString(
1789              "Expression stack needs at least 2 items for DW_OP_gt.");
1790        return false;
1791      } else {
1792        tmp = stack.back();
1793        stack.pop_back();
1794        stack.back().ResolveValue(exe_ctx) =
1795            stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1796      }
1797      break;
1798
1799    // OPCODE: DW_OP_le
1800    // OPERANDS: none
1801    // DESCRIPTION: pops the top two stack values, compares using the
1802    // less than or equal to (<=) operator.
1803    // STACK RESULT: push the constant value 1 onto the stack if the result
1804    // of the operation is true or the constant value 0 if the result of the
1805    // operation is false.
1806    case DW_OP_le:
1807      if (stack.size() < 2) {
1808        if (error_ptr)
1809          error_ptr->SetErrorString(
1810              "Expression stack needs at least 2 items for DW_OP_le.");
1811        return false;
1812      } else {
1813        tmp = stack.back();
1814        stack.pop_back();
1815        stack.back().ResolveValue(exe_ctx) =
1816            stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1817      }
1818      break;
1819
1820    // OPCODE: DW_OP_lt
1821    // OPERANDS: none
1822    // DESCRIPTION: pops the top two stack values, compares using the
1823    // less than (<) operator.
1824    // STACK RESULT: push the constant value 1 onto the stack if the result
1825    // of the operation is true or the constant value 0 if the result of the
1826    // operation is false.
1827    case DW_OP_lt:
1828      if (stack.size() < 2) {
1829        if (error_ptr)
1830          error_ptr->SetErrorString(
1831              "Expression stack needs at least 2 items for DW_OP_lt.");
1832        return false;
1833      } else {
1834        tmp = stack.back();
1835        stack.pop_back();
1836        stack.back().ResolveValue(exe_ctx) =
1837            stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1838      }
1839      break;
1840
1841    // OPCODE: DW_OP_ne
1842    // OPERANDS: none
1843    // DESCRIPTION: pops the top two stack values, compares using the
1844    // not equal (!=) operator.
1845    // STACK RESULT: push the constant value 1 onto the stack if the result
1846    // of the operation is true or the constant value 0 if the result of the
1847    // operation is false.
1848    case DW_OP_ne:
1849      if (stack.size() < 2) {
1850        if (error_ptr)
1851          error_ptr->SetErrorString(
1852              "Expression stack needs at least 2 items for DW_OP_ne.");
1853        return false;
1854      } else {
1855        tmp = stack.back();
1856        stack.pop_back();
1857        stack.back().ResolveValue(exe_ctx) =
1858            stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1859      }
1860      break;
1861
1862    // OPCODE: DW_OP_litn
1863    // OPERANDS: none
1864    // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1865    // STACK RESULT: push the unsigned literal constant value onto the top
1866    // of the stack.
1867    case DW_OP_lit0:
1868    case DW_OP_lit1:
1869    case DW_OP_lit2:
1870    case DW_OP_lit3:
1871    case DW_OP_lit4:
1872    case DW_OP_lit5:
1873    case DW_OP_lit6:
1874    case DW_OP_lit7:
1875    case DW_OP_lit8:
1876    case DW_OP_lit9:
1877    case DW_OP_lit10:
1878    case DW_OP_lit11:
1879    case DW_OP_lit12:
1880    case DW_OP_lit13:
1881    case DW_OP_lit14:
1882    case DW_OP_lit15:
1883    case DW_OP_lit16:
1884    case DW_OP_lit17:
1885    case DW_OP_lit18:
1886    case DW_OP_lit19:
1887    case DW_OP_lit20:
1888    case DW_OP_lit21:
1889    case DW_OP_lit22:
1890    case DW_OP_lit23:
1891    case DW_OP_lit24:
1892    case DW_OP_lit25:
1893    case DW_OP_lit26:
1894    case DW_OP_lit27:
1895    case DW_OP_lit28:
1896    case DW_OP_lit29:
1897    case DW_OP_lit30:
1898    case DW_OP_lit31:
1899      stack.push_back(to_generic(op - DW_OP_lit0));
1900      break;
1901
1902    // OPCODE: DW_OP_regN
1903    // OPERANDS: none
1904    // DESCRIPTION: Push the value in register n on the top of the stack.
1905    case DW_OP_reg0:
1906    case DW_OP_reg1:
1907    case DW_OP_reg2:
1908    case DW_OP_reg3:
1909    case DW_OP_reg4:
1910    case DW_OP_reg5:
1911    case DW_OP_reg6:
1912    case DW_OP_reg7:
1913    case DW_OP_reg8:
1914    case DW_OP_reg9:
1915    case DW_OP_reg10:
1916    case DW_OP_reg11:
1917    case DW_OP_reg12:
1918    case DW_OP_reg13:
1919    case DW_OP_reg14:
1920    case DW_OP_reg15:
1921    case DW_OP_reg16:
1922    case DW_OP_reg17:
1923    case DW_OP_reg18:
1924    case DW_OP_reg19:
1925    case DW_OP_reg20:
1926    case DW_OP_reg21:
1927    case DW_OP_reg22:
1928    case DW_OP_reg23:
1929    case DW_OP_reg24:
1930    case DW_OP_reg25:
1931    case DW_OP_reg26:
1932    case DW_OP_reg27:
1933    case DW_OP_reg28:
1934    case DW_OP_reg29:
1935    case DW_OP_reg30:
1936    case DW_OP_reg31: {
1937      dwarf4_location_description_kind = Register;
1938      reg_num = op - DW_OP_reg0;
1939
1940      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1941        stack.push_back(tmp);
1942      else
1943        return false;
1944    } break;
1945    // OPCODE: DW_OP_regx
1946    // OPERANDS:
1947    //      ULEB128 literal operand that encodes the register.
1948    // DESCRIPTION: Push the value in register on the top of the stack.
1949    case DW_OP_regx: {
1950      dwarf4_location_description_kind = Register;
1951      reg_num = opcodes.GetULEB128(&offset);
1952      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1953        stack.push_back(tmp);
1954      else
1955        return false;
1956    } break;
1957
1958    // OPCODE: DW_OP_bregN
1959    // OPERANDS:
1960    //      SLEB128 offset from register N
1961    // DESCRIPTION: Value is in memory at the address specified by register
1962    // N plus an offset.
1963    case DW_OP_breg0:
1964    case DW_OP_breg1:
1965    case DW_OP_breg2:
1966    case DW_OP_breg3:
1967    case DW_OP_breg4:
1968    case DW_OP_breg5:
1969    case DW_OP_breg6:
1970    case DW_OP_breg7:
1971    case DW_OP_breg8:
1972    case DW_OP_breg9:
1973    case DW_OP_breg10:
1974    case DW_OP_breg11:
1975    case DW_OP_breg12:
1976    case DW_OP_breg13:
1977    case DW_OP_breg14:
1978    case DW_OP_breg15:
1979    case DW_OP_breg16:
1980    case DW_OP_breg17:
1981    case DW_OP_breg18:
1982    case DW_OP_breg19:
1983    case DW_OP_breg20:
1984    case DW_OP_breg21:
1985    case DW_OP_breg22:
1986    case DW_OP_breg23:
1987    case DW_OP_breg24:
1988    case DW_OP_breg25:
1989    case DW_OP_breg26:
1990    case DW_OP_breg27:
1991    case DW_OP_breg28:
1992    case DW_OP_breg29:
1993    case DW_OP_breg30:
1994    case DW_OP_breg31: {
1995      reg_num = op - DW_OP_breg0;
1996
1997      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
1998                                    tmp)) {
1999        int64_t breg_offset = opcodes.GetSLEB128(&offset);
2000        tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2001        tmp.ClearContext();
2002        stack.push_back(tmp);
2003        stack.back().SetValueType(Value::ValueType::LoadAddress);
2004      } else
2005        return false;
2006    } break;
2007    // OPCODE: DW_OP_bregx
2008    // OPERANDS: 2
2009    //      ULEB128 literal operand that encodes the register.
2010    //      SLEB128 offset from register N
2011    // DESCRIPTION: Value is in memory at the address specified by register
2012    // N plus an offset.
2013    case DW_OP_bregx: {
2014      reg_num = opcodes.GetULEB128(&offset);
2015
2016      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2017                                    tmp)) {
2018        int64_t breg_offset = opcodes.GetSLEB128(&offset);
2019        tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2020        tmp.ClearContext();
2021        stack.push_back(tmp);
2022        stack.back().SetValueType(Value::ValueType::LoadAddress);
2023      } else
2024        return false;
2025    } break;
2026
2027    case DW_OP_fbreg:
2028      if (exe_ctx) {
2029        if (frame) {
2030          Scalar value;
2031          if (frame->GetFrameBaseValue(value, error_ptr)) {
2032            int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2033            value += fbreg_offset;
2034            stack.push_back(value);
2035            stack.back().SetValueType(Value::ValueType::LoadAddress);
2036          } else
2037            return false;
2038        } else {
2039          if (error_ptr)
2040            error_ptr->SetErrorString(
2041                "Invalid stack frame in context for DW_OP_fbreg opcode.");
2042          return false;
2043        }
2044      } else {
2045        if (error_ptr)
2046          error_ptr->SetErrorString(
2047              "NULL execution context for DW_OP_fbreg.\n");
2048        return false;
2049      }
2050
2051      break;
2052
2053    // OPCODE: DW_OP_nop
2054    // OPERANDS: none
2055    // DESCRIPTION: A place holder. It has no effect on the location stack
2056    // or any of its values.
2057    case DW_OP_nop:
2058      break;
2059
2060    // OPCODE: DW_OP_piece
2061    // OPERANDS: 1
2062    //      ULEB128: byte size of the piece
2063    // DESCRIPTION: The operand describes the size in bytes of the piece of
2064    // the object referenced by the DWARF expression whose result is at the top
2065    // of the stack. If the piece is located in a register, but does not occupy
2066    // the entire register, the placement of the piece within that register is
2067    // defined by the ABI.
2068    //
2069    // Many compilers store a single variable in sets of registers, or store a
2070    // variable partially in memory and partially in registers. DW_OP_piece
2071    // provides a way of describing how large a part of a variable a particular
2072    // DWARF expression refers to.
2073    case DW_OP_piece: {
2074      LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2075      // Reset for the next piece.
2076      dwarf4_location_description_kind = Memory;
2077
2078      const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2079
2080      if (piece_byte_size > 0) {
2081        Value curr_piece;
2082
2083        if (stack.empty()) {
2084          UpdateValueTypeFromLocationDescription(
2085              log, dwarf_cu, LocationDescriptionKind::Empty);
2086          // In a multi-piece expression, this means that the current piece is
2087          // not available. Fill with zeros for now by resizing the data and
2088          // appending it
2089          curr_piece.ResizeData(piece_byte_size);
2090          // Note that "0" is not a correct value for the unknown bits.
2091          // It would be better to also return a mask of valid bits together
2092          // with the expression result, so the debugger can print missing
2093          // members as "<optimized out>" or something.
2094          ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2095          pieces.AppendDataToHostBuffer(curr_piece);
2096        } else {
2097          Status error;
2098          // Extract the current piece into "curr_piece"
2099          Value curr_piece_source_value(stack.back());
2100          stack.pop_back();
2101          UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2102                                                 &curr_piece_source_value);
2103
2104          const Value::ValueType curr_piece_source_value_type =
2105              curr_piece_source_value.GetValueType();
2106          switch (curr_piece_source_value_type) {
2107          case Value::ValueType::Invalid:
2108            return false;
2109          case Value::ValueType::LoadAddress:
2110            if (process) {
2111              if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2112                lldb::addr_t load_addr =
2113                    curr_piece_source_value.GetScalar().ULongLong(
2114                        LLDB_INVALID_ADDRESS);
2115                if (process->ReadMemory(
2116                        load_addr, curr_piece.GetBuffer().GetBytes(),
2117                        piece_byte_size, error) != piece_byte_size) {
2118                  if (error_ptr)
2119                    error_ptr->SetErrorStringWithFormat(
2120                        "failed to read memory DW_OP_piece(%" PRIu64
2121                        ") from 0x%" PRIx64,
2122                        piece_byte_size, load_addr);
2123                  return false;
2124                }
2125              } else {
2126                if (error_ptr)
2127                  error_ptr->SetErrorStringWithFormat(
2128                      "failed to resize the piece memory buffer for "
2129                      "DW_OP_piece(%" PRIu64 ")",
2130                      piece_byte_size);
2131                return false;
2132              }
2133            }
2134            break;
2135
2136          case Value::ValueType::FileAddress:
2137          case Value::ValueType::HostAddress:
2138            if (error_ptr) {
2139              lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2140                  LLDB_INVALID_ADDRESS);
2141              error_ptr->SetErrorStringWithFormat(
2142                  "failed to read memory DW_OP_piece(%" PRIu64
2143                  ") from %s address 0x%" PRIx64,
2144                  piece_byte_size, curr_piece_source_value.GetValueType() ==
2145                                           Value::ValueType::FileAddress
2146                                       ? "file"
2147                                       : "host",
2148                  addr);
2149            }
2150            return false;
2151
2152          case Value::ValueType::Scalar: {
2153            uint32_t bit_size = piece_byte_size * 8;
2154            uint32_t bit_offset = 0;
2155            Scalar &scalar = curr_piece_source_value.GetScalar();
2156            if (!scalar.ExtractBitfield(
2157                    bit_size, bit_offset)) {
2158              if (error_ptr)
2159                error_ptr->SetErrorStringWithFormat(
2160                    "unable to extract %" PRIu64 " bytes from a %" PRIu64
2161                    " byte scalar value.",
2162                    piece_byte_size,
2163                    (uint64_t)curr_piece_source_value.GetScalar()
2164                        .GetByteSize());
2165              return false;
2166            }
2167            // Create curr_piece with bit_size. By default Scalar
2168            // grows to the nearest host integer type.
2169            llvm::APInt fail_value(1, 0, false);
2170            llvm::APInt ap_int = scalar.UInt128(fail_value);
2171            assert(ap_int.getBitWidth() >= bit_size);
2172            llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2173                                         ap_int.getNumWords()};
2174            curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2175          } break;
2176          }
2177
2178          // Check if this is the first piece?
2179          if (op_piece_offset == 0) {
2180            // This is the first piece, we should push it back onto the stack
2181            // so subsequent pieces will be able to access this piece and add
2182            // to it.
2183            if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2184              if (error_ptr)
2185                error_ptr->SetErrorString("failed to append piece data");
2186              return false;
2187            }
2188          } else {
2189            // If this is the second or later piece there should be a value on
2190            // the stack.
2191            if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2192              if (error_ptr)
2193                error_ptr->SetErrorStringWithFormat(
2194                    "DW_OP_piece for offset %" PRIu64
2195                    " but top of stack is of size %" PRIu64,
2196                    op_piece_offset, pieces.GetBuffer().GetByteSize());
2197              return false;
2198            }
2199
2200            if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2201              if (error_ptr)
2202                error_ptr->SetErrorString("failed to append piece data");
2203              return false;
2204            }
2205          }
2206        }
2207        op_piece_offset += piece_byte_size;
2208      }
2209    } break;
2210
2211    case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2212      if (stack.size() < 1) {
2213        UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2214                                               LocationDescriptionKind::Empty);
2215        // Reset for the next piece.
2216        dwarf4_location_description_kind = Memory;
2217        if (error_ptr)
2218          error_ptr->SetErrorString(
2219              "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2220        return false;
2221      } else {
2222        UpdateValueTypeFromLocationDescription(
2223            log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2224        // Reset for the next piece.
2225        dwarf4_location_description_kind = Memory;
2226        const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2227        const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2228        switch (stack.back().GetValueType()) {
2229        case Value::ValueType::Invalid:
2230          return false;
2231        case Value::ValueType::Scalar: {
2232          if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2233                                                        piece_bit_offset)) {
2234            if (error_ptr)
2235              error_ptr->SetErrorStringWithFormat(
2236                  "unable to extract %" PRIu64 " bit value with %" PRIu64
2237                  " bit offset from a %" PRIu64 " bit scalar value.",
2238                  piece_bit_size, piece_bit_offset,
2239                  (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2240            return false;
2241          }
2242        } break;
2243
2244        case Value::ValueType::FileAddress:
2245        case Value::ValueType::LoadAddress:
2246        case Value::ValueType::HostAddress:
2247          if (error_ptr) {
2248            error_ptr->SetErrorStringWithFormat(
2249                "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2250                ", bit_offset = %" PRIu64 ") from an address value.",
2251                piece_bit_size, piece_bit_offset);
2252          }
2253          return false;
2254        }
2255      }
2256      break;
2257
2258    // OPCODE: DW_OP_implicit_value
2259    // OPERANDS: 2
2260    //      ULEB128  size of the value block in bytes
2261    //      uint8_t* block bytes encoding value in target's memory
2262    //      representation
2263    // DESCRIPTION: Value is immediately stored in block in the debug info with
2264    // the memory representation of the target.
2265    case DW_OP_implicit_value: {
2266      dwarf4_location_description_kind = Implicit;
2267
2268      const uint32_t len = opcodes.GetULEB128(&offset);
2269      const void *data = opcodes.GetData(&offset, len);
2270
2271      if (!data) {
2272        LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2273        LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2274                    DW_OP_value_to_name(op));
2275        return false;
2276      }
2277
2278      Value result(data, len);
2279      stack.push_back(result);
2280      break;
2281    }
2282
2283    case DW_OP_implicit_pointer: {
2284      dwarf4_location_description_kind = Implicit;
2285      LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2286      return false;
2287    }
2288
2289    // OPCODE: DW_OP_push_object_address
2290    // OPERANDS: none
2291    // DESCRIPTION: Pushes the address of the object currently being
2292    // evaluated as part of evaluation of a user presented expression. This
2293    // object may correspond to an independent variable described by its own
2294    // DIE or it may be a component of an array, structure, or class whose
2295    // address has been dynamically determined by an earlier step during user
2296    // expression evaluation.
2297    case DW_OP_push_object_address:
2298      if (object_address_ptr)
2299        stack.push_back(*object_address_ptr);
2300      else {
2301        if (error_ptr)
2302          error_ptr->SetErrorString("DW_OP_push_object_address used without "
2303                                    "specifying an object address");
2304        return false;
2305      }
2306      break;
2307
2308    // OPCODE: DW_OP_call2
2309    // OPERANDS:
2310    //      uint16_t compile unit relative offset of a DIE
2311    // DESCRIPTION: Performs subroutine calls during evaluation
2312    // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2313    // debugging information entry in the current compilation unit.
2314    //
2315    // Operand interpretation is exactly like that for DW_FORM_ref2.
2316    //
2317    // This operation transfers control of DWARF expression evaluation to the
2318    // DW_AT_location attribute of the referenced DIE. If there is no such
2319    // attribute, then there is no effect. Execution of the DWARF expression of
2320    // a DW_AT_location attribute may add to and/or remove from values on the
2321    // stack. Execution returns to the point following the call when the end of
2322    // the attribute is reached. Values on the stack at the time of the call
2323    // may be used as parameters by the called expression and values left on
2324    // the stack by the called expression may be used as return values by prior
2325    // agreement between the calling and called expressions.
2326    case DW_OP_call2:
2327      if (error_ptr)
2328        error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2329      return false;
2330    // OPCODE: DW_OP_call4
2331    // OPERANDS: 1
2332    //      uint32_t compile unit relative offset of a DIE
2333    // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2334    // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2335    // a debugging information entry in  the current compilation unit.
2336    //
2337    // Operand interpretation DW_OP_call4 is exactly like that for
2338    // DW_FORM_ref4.
2339    //
2340    // This operation transfers control of DWARF expression evaluation to the
2341    // DW_AT_location attribute of the referenced DIE. If there is no such
2342    // attribute, then there is no effect. Execution of the DWARF expression of
2343    // a DW_AT_location attribute may add to and/or remove from values on the
2344    // stack. Execution returns to the point following the call when the end of
2345    // the attribute is reached. Values on the stack at the time of the call
2346    // may be used as parameters by the called expression and values left on
2347    // the stack by the called expression may be used as return values by prior
2348    // agreement between the calling and called expressions.
2349    case DW_OP_call4:
2350      if (error_ptr)
2351        error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2352      return false;
2353
2354    // OPCODE: DW_OP_stack_value
2355    // OPERANDS: None
2356    // DESCRIPTION: Specifies that the object does not exist in memory but
2357    // rather is a constant value.  The value from the top of the stack is the
2358    // value to be used.  This is the actual object value and not the location.
2359    case DW_OP_stack_value:
2360      dwarf4_location_description_kind = Implicit;
2361      if (stack.empty()) {
2362        if (error_ptr)
2363          error_ptr->SetErrorString(
2364              "Expression stack needs at least 1 item for DW_OP_stack_value.");
2365        return false;
2366      }
2367      stack.back().SetValueType(Value::ValueType::Scalar);
2368      break;
2369
2370    // OPCODE: DW_OP_convert
2371    // OPERANDS: 1
2372    //      A ULEB128 that is either a DIE offset of a
2373    //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2374    //
2375    // DESCRIPTION: Pop the top stack element, convert it to a
2376    // different type, and push the result.
2377    case DW_OP_convert: {
2378      if (stack.size() < 1) {
2379        if (error_ptr)
2380          error_ptr->SetErrorString(
2381              "Expression stack needs at least 1 item for DW_OP_convert.");
2382        return false;
2383      }
2384      const uint64_t die_offset = opcodes.GetULEB128(&offset);
2385      uint64_t bit_size;
2386      bool sign;
2387      if (die_offset == 0) {
2388        // The generic type has the size of an address on the target
2389        // machine and an unspecified signedness. Scalar has no
2390        // "unspecified signedness", so we use unsigned types.
2391        if (!module_sp) {
2392          if (error_ptr)
2393            error_ptr->SetErrorString("No module");
2394          return false;
2395        }
2396        sign = false;
2397        bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2398        if (!bit_size) {
2399          if (error_ptr)
2400            error_ptr->SetErrorString("unspecified architecture");
2401          return false;
2402        }
2403      } else {
2404        // Retrieve the type DIE that the value is being converted to. This
2405        // offset is compile unit relative so we need to fix it up.
2406        const uint64_t abs_die_offset = die_offset +  dwarf_cu->GetOffset();
2407        // FIXME: the constness has annoying ripple effects.
2408        DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(abs_die_offset);
2409        if (!die) {
2410          if (error_ptr)
2411            error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2412          return false;
2413        }
2414        uint64_t encoding =
2415            die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2416        bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2417        if (!bit_size)
2418          bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2419        if (!bit_size) {
2420          if (error_ptr)
2421            error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2422          return false;
2423        }
2424        switch (encoding) {
2425        case DW_ATE_signed:
2426        case DW_ATE_signed_char:
2427          sign = true;
2428          break;
2429        case DW_ATE_unsigned:
2430        case DW_ATE_unsigned_char:
2431          sign = false;
2432          break;
2433        default:
2434          if (error_ptr)
2435            error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2436          return false;
2437        }
2438      }
2439      Scalar &top = stack.back().ResolveValue(exe_ctx);
2440      top.TruncOrExtendTo(bit_size, sign);
2441      break;
2442    }
2443
2444    // OPCODE: DW_OP_call_frame_cfa
2445    // OPERANDS: None
2446    // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2447    // the canonical frame address consistent with the call frame information
2448    // located in .debug_frame (or in the FDEs of the eh_frame section).
2449    case DW_OP_call_frame_cfa:
2450      if (frame) {
2451        // Note that we don't have to parse FDEs because this DWARF expression
2452        // is commonly evaluated with a valid stack frame.
2453        StackID id = frame->GetStackID();
2454        addr_t cfa = id.GetCallFrameAddress();
2455        if (cfa != LLDB_INVALID_ADDRESS) {
2456          stack.push_back(Scalar(cfa));
2457          stack.back().SetValueType(Value::ValueType::LoadAddress);
2458        } else if (error_ptr)
2459          error_ptr->SetErrorString("Stack frame does not include a canonical "
2460                                    "frame address for DW_OP_call_frame_cfa "
2461                                    "opcode.");
2462      } else {
2463        if (error_ptr)
2464          error_ptr->SetErrorString("Invalid stack frame in context for "
2465                                    "DW_OP_call_frame_cfa opcode.");
2466        return false;
2467      }
2468      break;
2469
2470    // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2471    // opcode, DW_OP_GNU_push_tls_address)
2472    // OPERANDS: none
2473    // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2474    // an address in the current thread's thread-local storage block, and
2475    // pushes it on the stack.
2476    case DW_OP_form_tls_address:
2477    case DW_OP_GNU_push_tls_address: {
2478      if (stack.size() < 1) {
2479        if (error_ptr) {
2480          if (op == DW_OP_form_tls_address)
2481            error_ptr->SetErrorString(
2482                "DW_OP_form_tls_address needs an argument.");
2483          else
2484            error_ptr->SetErrorString(
2485                "DW_OP_GNU_push_tls_address needs an argument.");
2486        }
2487        return false;
2488      }
2489
2490      if (!exe_ctx || !module_sp) {
2491        if (error_ptr)
2492          error_ptr->SetErrorString("No context to evaluate TLS within.");
2493        return false;
2494      }
2495
2496      Thread *thread = exe_ctx->GetThreadPtr();
2497      if (!thread) {
2498        if (error_ptr)
2499          error_ptr->SetErrorString("No thread to evaluate TLS within.");
2500        return false;
2501      }
2502
2503      // Lookup the TLS block address for this thread and module.
2504      const addr_t tls_file_addr =
2505          stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2506      const addr_t tls_load_addr =
2507          thread->GetThreadLocalData(module_sp, tls_file_addr);
2508
2509      if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2510        if (error_ptr)
2511          error_ptr->SetErrorString(
2512              "No TLS data currently exists for this thread.");
2513        return false;
2514      }
2515
2516      stack.back().GetScalar() = tls_load_addr;
2517      stack.back().SetValueType(Value::ValueType::LoadAddress);
2518    } break;
2519
2520    // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2521    // OPERANDS: 1
2522    //      ULEB128: index to the .debug_addr section
2523    // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2524    // section with the base address specified by the DW_AT_addr_base attribute
2525    // and the 0 based index is the ULEB128 encoded index.
2526    case DW_OP_addrx:
2527    case DW_OP_GNU_addr_index: {
2528      if (!dwarf_cu) {
2529        if (error_ptr)
2530          error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2531                                    "compile unit being specified");
2532        return false;
2533      }
2534      uint64_t index = opcodes.GetULEB128(&offset);
2535      lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2536      stack.push_back(Scalar(value));
2537      if (target &&
2538          target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) {
2539        // wasm file sections aren't mapped into memory, therefore addresses can
2540        // never point into a file section and are always LoadAddresses.
2541        stack.back().SetValueType(Value::ValueType::LoadAddress);
2542      } else {
2543        stack.back().SetValueType(Value::ValueType::FileAddress);
2544      }
2545    } break;
2546
2547    // OPCODE: DW_OP_GNU_const_index
2548    // OPERANDS: 1
2549    //      ULEB128: index to the .debug_addr section
2550    // DESCRIPTION: Pushes an constant with the size of a machine address to
2551    // the stack from the .debug_addr section with the base address specified
2552    // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2553    // encoded index.
2554    case DW_OP_GNU_const_index: {
2555      if (!dwarf_cu) {
2556        if (error_ptr)
2557          error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2558                                    "compile unit being specified");
2559        return false;
2560      }
2561      uint64_t index = opcodes.GetULEB128(&offset);
2562      lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2563      stack.push_back(Scalar(value));
2564    } break;
2565
2566    case DW_OP_GNU_entry_value:
2567    case DW_OP_entry_value: {
2568      if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2569                                      error_ptr, log)) {
2570        LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2571                    DW_OP_value_to_name(op));
2572        return false;
2573      }
2574      break;
2575    }
2576
2577    default:
2578      if (dwarf_cu) {
2579        if (dwarf_cu->GetSymbolFileDWARF().ParseVendorDWARFOpcode(
2580                op, opcodes, offset, stack)) {
2581          break;
2582        }
2583      }
2584      if (error_ptr)
2585        error_ptr->SetErrorStringWithFormatv(
2586            "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2587      return false;
2588    }
2589  }
2590
2591  if (stack.empty()) {
2592    // Nothing on the stack, check if we created a piece value from DW_OP_piece
2593    // or DW_OP_bit_piece opcodes
2594    if (pieces.GetBuffer().GetByteSize()) {
2595      result = pieces;
2596      return true;
2597    }
2598    if (error_ptr)
2599      error_ptr->SetErrorString("Stack empty after evaluation.");
2600    return false;
2601  }
2602
2603  UpdateValueTypeFromLocationDescription(
2604      log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2605
2606  if (log && log->GetVerbose()) {
2607    size_t count = stack.size();
2608    LLDB_LOGF(log,
2609              "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2610    for (size_t i = 0; i < count; ++i) {
2611      StreamString new_value;
2612      new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2613      stack[i].Dump(&new_value);
2614      LLDB_LOGF(log, "  %s", new_value.GetData());
2615    }
2616  }
2617  result = stack.back();
2618  return true; // Return true on success
2619}
2620
2621bool DWARFExpression::ParseDWARFLocationList(
2622    const DWARFUnit *dwarf_cu, const DataExtractor &data,
2623    DWARFExpressionList *location_list) {
2624  location_list->Clear();
2625  std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2626      dwarf_cu->GetLocationTable(data);
2627  Log *log = GetLog(LLDBLog::Expressions);
2628  auto lookup_addr =
2629      [&](uint32_t index) -> std::optional<llvm::object::SectionedAddress> {
2630    addr_t address = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2631    if (address == LLDB_INVALID_ADDRESS)
2632      return std::nullopt;
2633    return llvm::object::SectionedAddress{address};
2634  };
2635  auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2636    if (!loc) {
2637      LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2638      return true;
2639    }
2640    auto buffer_sp =
2641        std::make_shared<DataBufferHeap>(loc->Expr.data(), loc->Expr.size());
2642    DWARFExpression expr = DWARFExpression(DataExtractor(
2643        buffer_sp, data.GetByteOrder(), data.GetAddressByteSize()));
2644    location_list->AddExpression(loc->Range->LowPC, loc->Range->HighPC, expr);
2645    return true;
2646  };
2647  llvm::Error error = loctable_up->visitAbsoluteLocationList(
2648      0, llvm::object::SectionedAddress{dwarf_cu->GetBaseAddress()},
2649      lookup_addr, process_list);
2650  location_list->Sort();
2651  if (error) {
2652    LLDB_LOG_ERROR(log, std::move(error), "{0}");
2653    return false;
2654  }
2655  return true;
2656}
2657
2658bool DWARFExpression::MatchesOperand(
2659    StackFrame &frame, const Instruction::Operand &operand) const {
2660  using namespace OperandMatchers;
2661
2662  RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2663  if (!reg_ctx_sp) {
2664    return false;
2665  }
2666
2667  DataExtractor opcodes(m_data);
2668
2669  lldb::offset_t op_offset = 0;
2670  uint8_t opcode = opcodes.GetU8(&op_offset);
2671
2672  if (opcode == DW_OP_fbreg) {
2673    int64_t offset = opcodes.GetSLEB128(&op_offset);
2674
2675    DWARFExpressionList *fb_expr = frame.GetFrameBaseExpression(nullptr);
2676    if (!fb_expr) {
2677      return false;
2678    }
2679
2680    auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2681      return fb_expr->MatchesOperand(frame, child);
2682    };
2683
2684    if (!offset &&
2685        MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2686                     recurse)(operand)) {
2687      return true;
2688    }
2689
2690    return MatchUnaryOp(
2691        MatchOpType(Instruction::Operand::Type::Dereference),
2692        MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2693                      MatchImmOp(offset), recurse))(operand);
2694  }
2695
2696  bool dereference = false;
2697  const RegisterInfo *reg = nullptr;
2698  int64_t offset = 0;
2699
2700  if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2701    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2702  } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2703    offset = opcodes.GetSLEB128(&op_offset);
2704    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2705  } else if (opcode == DW_OP_regx) {
2706    uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2707    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2708  } else if (opcode == DW_OP_bregx) {
2709    uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2710    offset = opcodes.GetSLEB128(&op_offset);
2711    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2712  } else {
2713    return false;
2714  }
2715
2716  if (!reg) {
2717    return false;
2718  }
2719
2720  if (dereference) {
2721    if (!offset &&
2722        MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2723                     MatchRegOp(*reg))(operand)) {
2724      return true;
2725    }
2726
2727    return MatchUnaryOp(
2728        MatchOpType(Instruction::Operand::Type::Dereference),
2729        MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2730                      MatchRegOp(*reg),
2731                      MatchImmOp(offset)))(operand);
2732  } else {
2733    return MatchRegOp(*reg)(operand);
2734  }
2735}
2736