1//===- InputFiles.cpp -----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains functions to parse Mach-O object files. In this comment,
10// we describe the Mach-O file structure and how we parse it.
11//
12// Mach-O is not very different from ELF or COFF. The notion of symbols,
13// sections and relocations exists in Mach-O as it does in ELF and COFF.
14//
15// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16// In ELF/COFF, sections are an atomic unit of data copied from input files to
17// output files. When we merge or garbage-collect sections, we treat each
18// section as an atomic unit. In Mach-O, that's not the case. Sections can
19// consist of multiple subsections, and subsections are a unit of merging and
20// garbage-collecting. Therefore, Mach-O's subsections are more similar to
21// ELF/COFF's sections than Mach-O's sections are.
22//
23// A section can have multiple symbols. A symbol that does not have the
24// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25// definition, a symbol is always present at the beginning of each subsection. A
26// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27// point to a middle of a subsection.
28//
29// The notion of subsections also affects how relocations are represented in
30// Mach-O. All references within a section need to be explicitly represented as
31// relocations if they refer to different subsections, because we obviously need
32// to fix up addresses if subsections are laid out in an output file differently
33// than they were in object files. To represent that, Mach-O relocations can
34// refer to an unnamed location via its address. Scattered relocations (those
35// with the R_SCATTERED bit set) always refer to unnamed locations.
36// Non-scattered relocations refer to an unnamed location if r_extern is not set
37// and r_symbolnum is zero.
38//
39// Without the above differences, I think you can use your knowledge about ELF
40// and COFF for Mach-O.
41//
42//===----------------------------------------------------------------------===//
43
44#include "InputFiles.h"
45#include "Config.h"
46#include "Driver.h"
47#include "Dwarf.h"
48#include "EhFrame.h"
49#include "ExportTrie.h"
50#include "InputSection.h"
51#include "MachOStructs.h"
52#include "ObjC.h"
53#include "OutputSection.h"
54#include "OutputSegment.h"
55#include "SymbolTable.h"
56#include "Symbols.h"
57#include "SyntheticSections.h"
58#include "Target.h"
59
60#include "lld/Common/CommonLinkerContext.h"
61#include "lld/Common/DWARF.h"
62#include "lld/Common/Reproduce.h"
63#include "llvm/ADT/iterator.h"
64#include "llvm/BinaryFormat/MachO.h"
65#include "llvm/LTO/LTO.h"
66#include "llvm/Support/BinaryStreamReader.h"
67#include "llvm/Support/Endian.h"
68#include "llvm/Support/LEB128.h"
69#include "llvm/Support/MemoryBuffer.h"
70#include "llvm/Support/Path.h"
71#include "llvm/Support/TarWriter.h"
72#include "llvm/Support/TimeProfiler.h"
73#include "llvm/TextAPI/Architecture.h"
74#include "llvm/TextAPI/InterfaceFile.h"
75
76#include <optional>
77#include <type_traits>
78
79using namespace llvm;
80using namespace llvm::MachO;
81using namespace llvm::support::endian;
82using namespace llvm::sys;
83using namespace lld;
84using namespace lld::macho;
85
86// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
87std::string lld::toString(const InputFile *f) {
88  if (!f)
89    return "<internal>";
90
91  // Multiple dylibs can be defined in one .tbd file.
92  if (auto dylibFile = dyn_cast<DylibFile>(f))
93    if (f->getName().endswith(".tbd"))
94      return (f->getName() + "(" + dylibFile->installName + ")").str();
95
96  if (f->archiveName.empty())
97    return std::string(f->getName());
98  return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
99}
100
101std::string lld::toString(const Section &sec) {
102  return (toString(sec.file) + ":(" + sec.name + ")").str();
103}
104
105SetVector<InputFile *> macho::inputFiles;
106std::unique_ptr<TarWriter> macho::tar;
107int InputFile::idCount = 0;
108
109static VersionTuple decodeVersion(uint32_t version) {
110  unsigned major = version >> 16;
111  unsigned minor = (version >> 8) & 0xffu;
112  unsigned subMinor = version & 0xffu;
113  return VersionTuple(major, minor, subMinor);
114}
115
116static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
117  if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
118    return {};
119
120  const char *hdr = input->mb.getBufferStart();
121
122  // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
123  std::vector<PlatformInfo> platformInfos;
124  for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
125    PlatformInfo info;
126    info.target.Platform = static_cast<PlatformType>(cmd->platform);
127    info.minimum = decodeVersion(cmd->minos);
128    platformInfos.emplace_back(std::move(info));
129  }
130  for (auto *cmd : findCommands<version_min_command>(
131           hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
132           LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
133    PlatformInfo info;
134    switch (cmd->cmd) {
135    case LC_VERSION_MIN_MACOSX:
136      info.target.Platform = PLATFORM_MACOS;
137      break;
138    case LC_VERSION_MIN_IPHONEOS:
139      info.target.Platform = PLATFORM_IOS;
140      break;
141    case LC_VERSION_MIN_TVOS:
142      info.target.Platform = PLATFORM_TVOS;
143      break;
144    case LC_VERSION_MIN_WATCHOS:
145      info.target.Platform = PLATFORM_WATCHOS;
146      break;
147    }
148    info.minimum = decodeVersion(cmd->version);
149    platformInfos.emplace_back(std::move(info));
150  }
151
152  return platformInfos;
153}
154
155static bool checkCompatibility(const InputFile *input) {
156  std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
157  if (platformInfos.empty())
158    return true;
159
160  auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
161    return removeSimulator(info.target.Platform) ==
162           removeSimulator(config->platform());
163  });
164  if (it == platformInfos.end()) {
165    std::string platformNames;
166    raw_string_ostream os(platformNames);
167    interleave(
168        platformInfos, os,
169        [&](const PlatformInfo &info) {
170          os << getPlatformName(info.target.Platform);
171        },
172        "/");
173    error(toString(input) + " has platform " + platformNames +
174          Twine(", which is different from target platform ") +
175          getPlatformName(config->platform()));
176    return false;
177  }
178
179  if (it->minimum > config->platformInfo.minimum)
180    warn(toString(input) + " has version " + it->minimum.getAsString() +
181         ", which is newer than target minimum of " +
182         config->platformInfo.minimum.getAsString());
183
184  return true;
185}
186
187// This cache mostly exists to store system libraries (and .tbds) as they're
188// loaded, rather than the input archives, which are already cached at a higher
189// level, and other files like the filelist that are only read once.
190// Theoretically this caching could be more efficient by hoisting it, but that
191// would require altering many callers to track the state.
192DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
193// Open a given file path and return it as a memory-mapped file.
194std::optional<MemoryBufferRef> macho::readFile(StringRef path) {
195  CachedHashStringRef key(path);
196  auto entry = cachedReads.find(key);
197  if (entry != cachedReads.end())
198    return entry->second;
199
200  ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
201  if (std::error_code ec = mbOrErr.getError()) {
202    error("cannot open " + path + ": " + ec.message());
203    return std::nullopt;
204  }
205
206  std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
207  MemoryBufferRef mbref = mb->getMemBufferRef();
208  make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
209
210  // If this is a regular non-fat file, return it.
211  const char *buf = mbref.getBufferStart();
212  const auto *hdr = reinterpret_cast<const fat_header *>(buf);
213  if (mbref.getBufferSize() < sizeof(uint32_t) ||
214      read32be(&hdr->magic) != FAT_MAGIC) {
215    if (tar)
216      tar->append(relativeToRoot(path), mbref.getBuffer());
217    return cachedReads[key] = mbref;
218  }
219
220  llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
221
222  // Object files and archive files may be fat files, which contain multiple
223  // real files for different CPU ISAs. Here, we search for a file that matches
224  // with the current link target and returns it as a MemoryBufferRef.
225  const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
226  auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) {
227    return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype));
228  };
229
230  std::vector<StringRef> archs;
231  for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
232    if (reinterpret_cast<const char *>(arch + i + 1) >
233        buf + mbref.getBufferSize()) {
234      error(path + ": fat_arch struct extends beyond end of file");
235      return std::nullopt;
236    }
237
238    uint32_t cpuType = read32be(&arch[i].cputype);
239    uint32_t cpuSubtype =
240        read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK;
241
242    // FIXME: LD64 has a more complex fallback logic here.
243    // Consider implementing that as well?
244    if (cpuType != static_cast<uint32_t>(target->cpuType) ||
245        cpuSubtype != target->cpuSubtype) {
246      archs.emplace_back(getArchName(cpuType, cpuSubtype));
247      continue;
248    }
249
250    uint32_t offset = read32be(&arch[i].offset);
251    uint32_t size = read32be(&arch[i].size);
252    if (offset + size > mbref.getBufferSize())
253      error(path + ": slice extends beyond end of file");
254    if (tar)
255      tar->append(relativeToRoot(path), mbref.getBuffer());
256    return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
257                                              path.copy(bAlloc));
258  }
259
260  auto targetArchName = getArchName(target->cpuType, target->cpuSubtype);
261  warn(path + ": ignoring file because it is universal (" + join(archs, ",") +
262       ") but does not contain the " + targetArchName + " architecture");
263  return std::nullopt;
264}
265
266InputFile::InputFile(Kind kind, const InterfaceFile &interface)
267    : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
268
269// Some sections comprise of fixed-size records, so instead of splitting them at
270// symbol boundaries, we split them based on size. Records are distinct from
271// literals in that they may contain references to other sections, instead of
272// being leaf nodes in the InputSection graph.
273//
274// Note that "record" is a term I came up with. In contrast, "literal" is a term
275// used by the Mach-O format.
276static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) {
277  if (name == section_names::compactUnwind) {
278    if (segname == segment_names::ld)
279      return target->wordSize == 8 ? 32 : 20;
280  }
281  if (!config->dedupStrings)
282    return {};
283
284  if (name == section_names::cfString && segname == segment_names::data)
285    return target->wordSize == 8 ? 32 : 16;
286
287  if (config->icfLevel == ICFLevel::none)
288    return {};
289
290  if (name == section_names::objcClassRefs && segname == segment_names::data)
291    return target->wordSize;
292
293  if (name == section_names::objcSelrefs && segname == segment_names::data)
294    return target->wordSize;
295  return {};
296}
297
298static Error parseCallGraph(ArrayRef<uint8_t> data,
299                            std::vector<CallGraphEntry> &callGraph) {
300  TimeTraceScope timeScope("Parsing call graph section");
301  BinaryStreamReader reader(data, support::little);
302  while (!reader.empty()) {
303    uint32_t fromIndex, toIndex;
304    uint64_t count;
305    if (Error err = reader.readInteger(fromIndex))
306      return err;
307    if (Error err = reader.readInteger(toIndex))
308      return err;
309    if (Error err = reader.readInteger(count))
310      return err;
311    callGraph.emplace_back(fromIndex, toIndex, count);
312  }
313  return Error::success();
314}
315
316// Parse the sequence of sections within a single LC_SEGMENT(_64).
317// Split each section into subsections.
318template <class SectionHeader>
319void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
320  sections.reserve(sectionHeaders.size());
321  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
322
323  for (const SectionHeader &sec : sectionHeaders) {
324    StringRef name =
325        StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
326    StringRef segname =
327        StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
328    sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
329    if (sec.align >= 32) {
330      error("alignment " + std::to_string(sec.align) + " of section " + name +
331            " is too large");
332      continue;
333    }
334    Section &section = *sections.back();
335    uint32_t align = 1 << sec.align;
336    ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
337                                                    : buf + sec.offset,
338                              static_cast<size_t>(sec.size)};
339
340    auto splitRecords = [&](size_t recordSize) -> void {
341      if (data.empty())
342        return;
343      Subsections &subsections = section.subsections;
344      subsections.reserve(data.size() / recordSize);
345      for (uint64_t off = 0; off < data.size(); off += recordSize) {
346        auto *isec = make<ConcatInputSection>(
347            section, data.slice(off, std::min(data.size(), recordSize)), align);
348        subsections.push_back({off, isec});
349      }
350      section.doneSplitting = true;
351    };
352
353    if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
354      if (sec.nreloc)
355        fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
356              " contains relocations, which is unsupported");
357      bool dedupLiterals =
358          name == section_names::objcMethname || config->dedupStrings;
359      InputSection *isec =
360          make<CStringInputSection>(section, data, align, dedupLiterals);
361      // FIXME: parallelize this?
362      cast<CStringInputSection>(isec)->splitIntoPieces();
363      section.subsections.push_back({0, isec});
364    } else if (isWordLiteralSection(sec.flags)) {
365      if (sec.nreloc)
366        fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
367              " contains relocations, which is unsupported");
368      InputSection *isec = make<WordLiteralInputSection>(section, data, align);
369      section.subsections.push_back({0, isec});
370    } else if (auto recordSize = getRecordSize(segname, name)) {
371      splitRecords(*recordSize);
372    } else if (name == section_names::ehFrame &&
373               segname == segment_names::text) {
374      splitEhFrames(data, *sections.back());
375    } else if (segname == segment_names::llvm) {
376      if (config->callGraphProfileSort && name == section_names::cgProfile)
377        checkError(parseCallGraph(data, callGraph));
378      // ld64 does not appear to emit contents from sections within the __LLVM
379      // segment. Symbols within those sections point to bitcode metadata
380      // instead of actual symbols. Global symbols within those sections could
381      // have the same name without causing duplicate symbol errors. To avoid
382      // spurious duplicate symbol errors, we do not parse these sections.
383      // TODO: Evaluate whether the bitcode metadata is needed.
384    } else if (name == section_names::objCImageInfo &&
385               segname == segment_names::data) {
386      objCImageInfo = data;
387    } else {
388      if (name == section_names::addrSig)
389        addrSigSection = sections.back();
390
391      auto *isec = make<ConcatInputSection>(section, data, align);
392      if (isDebugSection(isec->getFlags()) &&
393          isec->getSegName() == segment_names::dwarf) {
394        // Instead of emitting DWARF sections, we emit STABS symbols to the
395        // object files that contain them. We filter them out early to avoid
396        // parsing their relocations unnecessarily.
397        debugSections.push_back(isec);
398      } else {
399        section.subsections.push_back({0, isec});
400      }
401    }
402  }
403}
404
405void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
406  EhReader reader(this, data, /*dataOff=*/0);
407  size_t off = 0;
408  while (off < reader.size()) {
409    uint64_t frameOff = off;
410    uint64_t length = reader.readLength(&off);
411    if (length == 0)
412      break;
413    uint64_t fullLength = length + (off - frameOff);
414    off += length;
415    // We hard-code an alignment of 1 here because we don't actually want our
416    // EH frames to be aligned to the section alignment. EH frame decoders don't
417    // expect this alignment. Moreover, each EH frame must start where the
418    // previous one ends, and where it ends is indicated by the length field.
419    // Unless we update the length field (troublesome), we should keep the
420    // alignment to 1.
421    // Note that we still want to preserve the alignment of the overall section,
422    // just not of the individual EH frames.
423    ehFrameSection.subsections.push_back(
424        {frameOff, make<ConcatInputSection>(ehFrameSection,
425                                            data.slice(frameOff, fullLength),
426                                            /*align=*/1)});
427  }
428  ehFrameSection.doneSplitting = true;
429}
430
431template <class T>
432static Section *findContainingSection(const std::vector<Section *> &sections,
433                                      T *offset) {
434  static_assert(std::is_same<uint64_t, T>::value ||
435                    std::is_same<uint32_t, T>::value,
436                "unexpected type for offset");
437  auto it = std::prev(llvm::upper_bound(
438      sections, *offset,
439      [](uint64_t value, const Section *sec) { return value < sec->addr; }));
440  *offset -= (*it)->addr;
441  return *it;
442}
443
444// Find the subsection corresponding to the greatest section offset that is <=
445// that of the given offset.
446//
447// offset: an offset relative to the start of the original InputSection (before
448// any subsection splitting has occurred). It will be updated to represent the
449// same location as an offset relative to the start of the containing
450// subsection.
451template <class T>
452static InputSection *findContainingSubsection(const Section &section,
453                                              T *offset) {
454  static_assert(std::is_same<uint64_t, T>::value ||
455                    std::is_same<uint32_t, T>::value,
456                "unexpected type for offset");
457  auto it = std::prev(llvm::upper_bound(
458      section.subsections, *offset,
459      [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
460  *offset -= it->offset;
461  return it->isec;
462}
463
464// Find a symbol at offset `off` within `isec`.
465static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
466                                   uint64_t off) {
467  auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
468    return d->value < off;
469  });
470  // The offset should point at the exact address of a symbol (with no addend.)
471  if (it == isec->symbols.end() || (*it)->value != off) {
472    assert(isec->wasCoalesced);
473    return nullptr;
474  }
475  return *it;
476}
477
478template <class SectionHeader>
479static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
480                                   relocation_info rel) {
481  const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
482  bool valid = true;
483  auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
484    valid = false;
485    return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
486            std::to_string(rel.r_address) + " of " + sec.segname + "," +
487            sec.sectname + " in " + toString(file))
488        .str();
489  };
490
491  if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
492    error(message("must be extern"));
493  if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
494    error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
495                  "be PC-relative"));
496  if (isThreadLocalVariables(sec.flags) &&
497      !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
498    error(message("not allowed in thread-local section, must be UNSIGNED"));
499  if (rel.r_length < 2 || rel.r_length > 3 ||
500      !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
501    static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
502    error(message("has width " + std::to_string(1 << rel.r_length) +
503                  " bytes, but must be " +
504                  widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
505                  " bytes"));
506  }
507  return valid;
508}
509
510template <class SectionHeader>
511void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
512                               const SectionHeader &sec, Section &section) {
513  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
514  ArrayRef<relocation_info> relInfos(
515      reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
516
517  Subsections &subsections = section.subsections;
518  auto subsecIt = subsections.rbegin();
519  for (size_t i = 0; i < relInfos.size(); i++) {
520    // Paired relocations serve as Mach-O's method for attaching a
521    // supplemental datum to a primary relocation record. ELF does not
522    // need them because the *_RELOC_RELA records contain the extra
523    // addend field, vs. *_RELOC_REL which omit the addend.
524    //
525    // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
526    // and the paired *_RELOC_UNSIGNED record holds the minuend. The
527    // datum for each is a symbolic address. The result is the offset
528    // between two addresses.
529    //
530    // The ARM64_RELOC_ADDEND record holds the addend, and the paired
531    // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
532    // base symbolic address.
533    //
534    // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into
535    // the instruction stream. On X86, a relocatable address field always
536    // occupies an entire contiguous sequence of byte(s), so there is no need to
537    // merge opcode bits with address bits. Therefore, it's easy and convenient
538    // to store addends in the instruction-stream bytes that would otherwise
539    // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with
540    // address bits so that bitwise arithmetic is necessary to extract and
541    // insert them. Storing addends in the instruction stream is possible, but
542    // inconvenient and more costly at link time.
543
544    relocation_info relInfo = relInfos[i];
545    bool isSubtrahend =
546        target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
547    int64_t pairedAddend = 0;
548    if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
549      pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
550      relInfo = relInfos[++i];
551    }
552    assert(i < relInfos.size());
553    if (!validateRelocationInfo(this, sec, relInfo))
554      continue;
555    if (relInfo.r_address & R_SCATTERED)
556      fatal("TODO: Scattered relocations not supported");
557
558    int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
559    assert(!(embeddedAddend && pairedAddend));
560    int64_t totalAddend = pairedAddend + embeddedAddend;
561    Reloc r;
562    r.type = relInfo.r_type;
563    r.pcrel = relInfo.r_pcrel;
564    r.length = relInfo.r_length;
565    r.offset = relInfo.r_address;
566    if (relInfo.r_extern) {
567      r.referent = symbols[relInfo.r_symbolnum];
568      r.addend = isSubtrahend ? 0 : totalAddend;
569    } else {
570      assert(!isSubtrahend);
571      const SectionHeader &referentSecHead =
572          sectionHeaders[relInfo.r_symbolnum - 1];
573      uint64_t referentOffset;
574      if (relInfo.r_pcrel) {
575        // The implicit addend for pcrel section relocations is the pcrel offset
576        // in terms of the addresses in the input file. Here we adjust it so
577        // that it describes the offset from the start of the referent section.
578        // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
579        // have pcrel section relocations. We may want to factor this out into
580        // the arch-specific .cpp file.
581        assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
582        referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
583                         referentSecHead.addr;
584      } else {
585        // The addend for a non-pcrel relocation is its absolute address.
586        referentOffset = totalAddend - referentSecHead.addr;
587      }
588      r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
589                                            &referentOffset);
590      r.addend = referentOffset;
591    }
592
593    // Find the subsection that this relocation belongs to.
594    // Though not required by the Mach-O format, clang and gcc seem to emit
595    // relocations in order, so let's take advantage of it. However, ld64 emits
596    // unsorted relocations (in `-r` mode), so we have a fallback for that
597    // uncommon case.
598    InputSection *subsec;
599    while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
600      ++subsecIt;
601    if (subsecIt == subsections.rend() ||
602        subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
603      subsec = findContainingSubsection(section, &r.offset);
604      // Now that we know the relocs are unsorted, avoid trying the 'fast path'
605      // for the other relocations.
606      subsecIt = subsections.rend();
607    } else {
608      subsec = subsecIt->isec;
609      r.offset -= subsecIt->offset;
610    }
611    subsec->relocs.push_back(r);
612
613    if (isSubtrahend) {
614      relocation_info minuendInfo = relInfos[++i];
615      // SUBTRACTOR relocations should always be followed by an UNSIGNED one
616      // attached to the same address.
617      assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
618             relInfo.r_address == minuendInfo.r_address);
619      Reloc p;
620      p.type = minuendInfo.r_type;
621      if (minuendInfo.r_extern) {
622        p.referent = symbols[minuendInfo.r_symbolnum];
623        p.addend = totalAddend;
624      } else {
625        uint64_t referentOffset =
626            totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
627        p.referent = findContainingSubsection(
628            *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
629        p.addend = referentOffset;
630      }
631      subsec->relocs.push_back(p);
632    }
633  }
634}
635
636// Symbols with `l` or `L` as a prefix are linker-private and never appear in
637// the output.
638static bool isPrivateLabel(StringRef name) {
639  return name.startswith("l") || name.startswith("L");
640}
641
642template <class NList>
643static macho::Symbol *createDefined(const NList &sym, StringRef name,
644                                    InputSection *isec, uint64_t value,
645                                    uint64_t size, bool forceHidden) {
646  // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
647  // N_EXT: Global symbols. These go in the symbol table during the link,
648  //        and also in the export table of the output so that the dynamic
649  //        linker sees them.
650  // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
651  //                 symbol table during the link so that duplicates are
652  //                 either reported (for non-weak symbols) or merged
653  //                 (for weak symbols), but they do not go in the export
654  //                 table of the output.
655  // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
656  //         object files) may produce them. LLD does not yet support -r.
657  //         These are translation-unit scoped, identical to the `0` case.
658  // 0: Translation-unit scoped. These are not in the symbol table during
659  //    link, and not in the export table of the output either.
660  bool isWeakDefCanBeHidden =
661      (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
662
663  if (sym.n_type & N_EXT) {
664    // -load_hidden makes us treat global symbols as linkage unit scoped.
665    // Duplicates are reported but the symbol does not go in the export trie.
666    bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
667
668    // lld's behavior for merging symbols is slightly different from ld64:
669    // ld64 picks the winning symbol based on several criteria (see
670    // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
671    // just merges metadata and keeps the contents of the first symbol
672    // with that name (see SymbolTable::addDefined). For:
673    // * inline function F in a TU built with -fvisibility-inlines-hidden
674    // * and inline function F in another TU built without that flag
675    // ld64 will pick the one from the file built without
676    // -fvisibility-inlines-hidden.
677    // lld will instead pick the one listed first on the link command line and
678    // give it visibility as if the function was built without
679    // -fvisibility-inlines-hidden.
680    // If both functions have the same contents, this will have the same
681    // behavior. If not, it won't, but the input had an ODR violation in
682    // that case.
683    //
684    // Similarly, merging a symbol
685    // that's isPrivateExtern and not isWeakDefCanBeHidden with one
686    // that's not isPrivateExtern but isWeakDefCanBeHidden technically
687    // should produce one
688    // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
689    // with ld64's semantics, because it means the non-private-extern
690    // definition will continue to take priority if more private extern
691    // definitions are encountered. With lld's semantics there's no observable
692    // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
693    // that's privateExtern -- neither makes it into the dynamic symbol table,
694    // unless the autohide symbol is explicitly exported.
695    // But if a symbol is both privateExtern and autohide then it can't
696    // be exported.
697    // So we nullify the autohide flag when privateExtern is present
698    // and promote the symbol to privateExtern when it is not already.
699    if (isWeakDefCanBeHidden && isPrivateExtern)
700      isWeakDefCanBeHidden = false;
701    else if (isWeakDefCanBeHidden)
702      isPrivateExtern = true;
703    return symtab->addDefined(
704        name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
705        isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
706        sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
707        isWeakDefCanBeHidden);
708  }
709  bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec);
710  return make<Defined>(
711      name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
712      /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
713      sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
714      sym.n_desc & N_NO_DEAD_STRIP);
715}
716
717// Absolute symbols are defined symbols that do not have an associated
718// InputSection. They cannot be weak.
719template <class NList>
720static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
721                                     StringRef name, bool forceHidden) {
722  if (sym.n_type & N_EXT) {
723    bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
724    return symtab->addDefined(
725        name, file, nullptr, sym.n_value, /*size=*/0,
726        /*isWeakDef=*/false, isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
727        /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
728        /*isWeakDefCanBeHidden=*/false);
729  }
730  return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
731                       /*isWeakDef=*/false,
732                       /*isExternal=*/false, /*isPrivateExtern=*/false,
733                       /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
734                       /*isReferencedDynamically=*/false,
735                       sym.n_desc & N_NO_DEAD_STRIP);
736}
737
738template <class NList>
739macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
740                                              const char *strtab) {
741  StringRef name = StringRef(strtab + sym.n_strx);
742  uint8_t type = sym.n_type & N_TYPE;
743  bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
744  switch (type) {
745  case N_UNDF:
746    return sym.n_value == 0
747               ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
748               : symtab->addCommon(name, this, sym.n_value,
749                                   1 << GET_COMM_ALIGN(sym.n_desc),
750                                   isPrivateExtern);
751  case N_ABS:
752    return createAbsolute(sym, this, name, forceHidden);
753  case N_INDR: {
754    // Not much point in making local aliases -- relocs in the current file can
755    // just refer to the actual symbol itself. ld64 ignores these symbols too.
756    if (!(sym.n_type & N_EXT))
757      return nullptr;
758    StringRef aliasedName = StringRef(strtab + sym.n_value);
759    // isPrivateExtern is the only symbol flag that has an impact on the final
760    // aliased symbol.
761    auto alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern);
762    aliases.push_back(alias);
763    return alias;
764  }
765  case N_PBUD:
766    error("TODO: support symbols of type N_PBUD");
767    return nullptr;
768  case N_SECT:
769    llvm_unreachable(
770        "N_SECT symbols should not be passed to parseNonSectionSymbol");
771  default:
772    llvm_unreachable("invalid symbol type");
773  }
774}
775
776template <class NList> static bool isUndef(const NList &sym) {
777  return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
778}
779
780template <class LP>
781void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
782                           ArrayRef<typename LP::nlist> nList,
783                           const char *strtab, bool subsectionsViaSymbols) {
784  using NList = typename LP::nlist;
785
786  // Groups indices of the symbols by the sections that contain them.
787  std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
788  symbols.resize(nList.size());
789  SmallVector<unsigned, 32> undefineds;
790  for (uint32_t i = 0; i < nList.size(); ++i) {
791    const NList &sym = nList[i];
792
793    // Ignore debug symbols for now.
794    // FIXME: may need special handling.
795    if (sym.n_type & N_STAB)
796      continue;
797
798    if ((sym.n_type & N_TYPE) == N_SECT) {
799      Subsections &subsections = sections[sym.n_sect - 1]->subsections;
800      // parseSections() may have chosen not to parse this section.
801      if (subsections.empty())
802        continue;
803      symbolsBySection[sym.n_sect - 1].push_back(i);
804    } else if (isUndef(sym)) {
805      undefineds.push_back(i);
806    } else {
807      symbols[i] = parseNonSectionSymbol(sym, strtab);
808    }
809  }
810
811  for (size_t i = 0; i < sections.size(); ++i) {
812    Subsections &subsections = sections[i]->subsections;
813    if (subsections.empty())
814      continue;
815    std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
816    uint64_t sectionAddr = sectionHeaders[i].addr;
817    uint32_t sectionAlign = 1u << sectionHeaders[i].align;
818
819    // Some sections have already been split into subsections during
820    // parseSections(), so we simply need to match Symbols to the corresponding
821    // subsection here.
822    if (sections[i]->doneSplitting) {
823      for (size_t j = 0; j < symbolIndices.size(); ++j) {
824        const uint32_t symIndex = symbolIndices[j];
825        const NList &sym = nList[symIndex];
826        StringRef name = strtab + sym.n_strx;
827        uint64_t symbolOffset = sym.n_value - sectionAddr;
828        InputSection *isec =
829            findContainingSubsection(*sections[i], &symbolOffset);
830        if (symbolOffset != 0) {
831          error(toString(*sections[i]) + ":  symbol " + name +
832                " at misaligned offset");
833          continue;
834        }
835        symbols[symIndex] =
836            createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
837      }
838      continue;
839    }
840    sections[i]->doneSplitting = true;
841
842    auto getSymName = [strtab](const NList& sym) -> StringRef {
843      return StringRef(strtab + sym.n_strx);
844    };
845
846    // Calculate symbol sizes and create subsections by splitting the sections
847    // along symbol boundaries.
848    // We populate subsections by repeatedly splitting the last (highest
849    // address) subsection.
850    llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
851      // Put private-label symbols that have no flags after other symbols at the
852      // same address.
853      StringRef lhsName = getSymName(nList[lhs]);
854      StringRef rhsName = getSymName(nList[rhs]);
855      if (nList[lhs].n_value == nList[rhs].n_value) {
856        if (isPrivateLabel(lhsName) && isPrivateLabel(rhsName))
857          return nList[lhs].n_desc > nList[rhs].n_desc;
858        return !isPrivateLabel(lhsName) && isPrivateLabel(rhsName);
859      }
860      return nList[lhs].n_value < nList[rhs].n_value;
861    });
862    for (size_t j = 0; j < symbolIndices.size(); ++j) {
863      const uint32_t symIndex = symbolIndices[j];
864      const NList &sym = nList[symIndex];
865      StringRef name = getSymName(sym);
866      Subsection &subsec = subsections.back();
867      InputSection *isec = subsec.isec;
868
869      uint64_t subsecAddr = sectionAddr + subsec.offset;
870      size_t symbolOffset = sym.n_value - subsecAddr;
871      uint64_t symbolSize =
872          j + 1 < symbolIndices.size()
873              ? nList[symbolIndices[j + 1]].n_value - sym.n_value
874              : isec->data.size() - symbolOffset;
875      // There are 4 cases where we do not need to create a new subsection:
876      //   1. If the input file does not use subsections-via-symbols.
877      //   2. Multiple symbols at the same address only induce one subsection.
878      //      (The symbolOffset == 0 check covers both this case as well as
879      //      the first loop iteration.)
880      //   3. Alternative entry points do not induce new subsections.
881      //   4. If we have a literal section (e.g. __cstring and __literal4).
882      if (!subsectionsViaSymbols || symbolOffset == 0 ||
883          sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
884        isec->hasAltEntry = symbolOffset != 0;
885        // If we have an private-label symbol that's an alias, and that alias
886        // doesn't have any flags of its own, then we can just reuse the aliased
887        // symbol. Our sorting step above ensures that any such symbols will
888        // appear after the non-private-label ones. See weak-def-alias-ignored.s
889        // for the motivation behind this.
890        if (symbolOffset == 0 && isPrivateLabel(name) && j != 0 &&
891            sym.n_desc == 0)
892          symbols[symIndex] = symbols[symbolIndices[j - 1]];
893        else
894          symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
895                                            symbolSize, forceHidden);
896        continue;
897      }
898      auto *concatIsec = cast<ConcatInputSection>(isec);
899
900      auto *nextIsec = make<ConcatInputSection>(*concatIsec);
901      nextIsec->wasCoalesced = false;
902      if (isZeroFill(isec->getFlags())) {
903        // Zero-fill sections have NULL data.data() non-zero data.size()
904        nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
905        isec->data = {nullptr, symbolOffset};
906      } else {
907        nextIsec->data = isec->data.slice(symbolOffset);
908        isec->data = isec->data.slice(0, symbolOffset);
909      }
910
911      // By construction, the symbol will be at offset zero in the new
912      // subsection.
913      symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
914                                        symbolSize, forceHidden);
915      // TODO: ld64 appears to preserve the original alignment as well as each
916      // subsection's offset from the last aligned address. We should consider
917      // emulating that behavior.
918      nextIsec->align = MinAlign(sectionAlign, sym.n_value);
919      subsections.push_back({sym.n_value - sectionAddr, nextIsec});
920    }
921  }
922
923  // Undefined symbols can trigger recursive fetch from Archives due to
924  // LazySymbols. Process defined symbols first so that the relative order
925  // between a defined symbol and an undefined symbol does not change the
926  // symbol resolution behavior. In addition, a set of interconnected symbols
927  // will all be resolved to the same file, instead of being resolved to
928  // different files.
929  for (unsigned i : undefineds)
930    symbols[i] = parseNonSectionSymbol(nList[i], strtab);
931}
932
933OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
934                       StringRef sectName)
935    : InputFile(OpaqueKind, mb) {
936  const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
937  ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
938  sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
939                                   sectName.take_front(16),
940                                   /*flags=*/0, /*addr=*/0));
941  Section &section = *sections.back();
942  ConcatInputSection *isec = make<ConcatInputSection>(section, data);
943  isec->live = true;
944  section.subsections.push_back({0, isec});
945}
946
947ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
948                 bool lazy, bool forceHidden)
949    : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) {
950  this->archiveName = std::string(archiveName);
951  if (lazy) {
952    if (target->wordSize == 8)
953      parseLazy<LP64>();
954    else
955      parseLazy<ILP32>();
956  } else {
957    if (target->wordSize == 8)
958      parse<LP64>();
959    else
960      parse<ILP32>();
961  }
962}
963
964template <class LP> void ObjFile::parse() {
965  using Header = typename LP::mach_header;
966  using SegmentCommand = typename LP::segment_command;
967  using SectionHeader = typename LP::section;
968  using NList = typename LP::nlist;
969
970  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
971  auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
972
973  uint32_t cpuType;
974  std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch());
975  if (hdr->cputype != cpuType) {
976    Architecture arch =
977        getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
978    auto msg = config->errorForArchMismatch
979                   ? static_cast<void (*)(const Twine &)>(error)
980                   : warn;
981    msg(toString(this) + " has architecture " + getArchitectureName(arch) +
982        " which is incompatible with target architecture " +
983        getArchitectureName(config->arch()));
984    return;
985  }
986
987  if (!checkCompatibility(this))
988    return;
989
990  for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
991    StringRef data{reinterpret_cast<const char *>(cmd + 1),
992                   cmd->cmdsize - sizeof(linker_option_command)};
993    parseLCLinkerOption(this, cmd->count, data);
994  }
995
996  ArrayRef<SectionHeader> sectionHeaders;
997  if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
998    auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
999    sectionHeaders = ArrayRef<SectionHeader>{
1000        reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1001    parseSections(sectionHeaders);
1002  }
1003
1004  // TODO: Error on missing LC_SYMTAB?
1005  if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1006    auto *c = reinterpret_cast<const symtab_command *>(cmd);
1007    ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1008                          c->nsyms);
1009    const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1010    bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1011    parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1012  }
1013
1014  // The relocations may refer to the symbols, so we parse them after we have
1015  // parsed all the symbols.
1016  for (size_t i = 0, n = sections.size(); i < n; ++i)
1017    if (!sections[i]->subsections.empty())
1018      parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1019
1020  parseDebugInfo();
1021
1022  Section *ehFrameSection = nullptr;
1023  Section *compactUnwindSection = nullptr;
1024  for (Section *sec : sections) {
1025    Section **s = StringSwitch<Section **>(sec->name)
1026                      .Case(section_names::compactUnwind, &compactUnwindSection)
1027                      .Case(section_names::ehFrame, &ehFrameSection)
1028                      .Default(nullptr);
1029    if (s)
1030      *s = sec;
1031  }
1032  if (compactUnwindSection)
1033    registerCompactUnwind(*compactUnwindSection);
1034  if (ehFrameSection)
1035    registerEhFrames(*ehFrameSection);
1036}
1037
1038template <class LP> void ObjFile::parseLazy() {
1039  using Header = typename LP::mach_header;
1040  using NList = typename LP::nlist;
1041
1042  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1043  auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1044  const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1045  if (!cmd)
1046    return;
1047  auto *c = reinterpret_cast<const symtab_command *>(cmd);
1048  ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1049                        c->nsyms);
1050  const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1051  symbols.resize(nList.size());
1052  for (const auto &[i, sym] : llvm::enumerate(nList)) {
1053    if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1054      // TODO: Bound checking
1055      StringRef name = strtab + sym.n_strx;
1056      symbols[i] = symtab->addLazyObject(name, *this);
1057      if (!lazy)
1058        break;
1059    }
1060  }
1061}
1062
1063void ObjFile::parseDebugInfo() {
1064  std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1065  if (!dObj)
1066    return;
1067
1068  // We do not re-use the context from getDwarf() here as that function
1069  // constructs an expensive DWARFCache object.
1070  auto *ctx = make<DWARFContext>(
1071      std::move(dObj), "",
1072      [&](Error err) {
1073        warn(toString(this) + ": " + toString(std::move(err)));
1074      },
1075      [&](Error warning) {
1076        warn(toString(this) + ": " + toString(std::move(warning)));
1077      });
1078
1079  // TODO: Since object files can contain a lot of DWARF info, we should verify
1080  // that we are parsing just the info we need
1081  const DWARFContext::compile_unit_range &units = ctx->compile_units();
1082  // FIXME: There can be more than one compile unit per object file. See
1083  // PR48637.
1084  auto it = units.begin();
1085  compileUnit = it != units.end() ? it->get() : nullptr;
1086}
1087
1088ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1089  const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1090  const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1091  if (!cmd)
1092    return {};
1093  const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1094  return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1095          c->datasize / sizeof(data_in_code_entry)};
1096}
1097
1098ArrayRef<uint8_t> ObjFile::getOptimizationHints() const {
1099  const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1100  if (auto *cmd =
1101          findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT))
1102    return {buf + cmd->dataoff, cmd->datasize};
1103  return {};
1104}
1105
1106// Create pointers from symbols to their associated compact unwind entries.
1107void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1108  for (const Subsection &subsection : compactUnwindSection.subsections) {
1109    ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1110    // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1111    // their addends in its data. Thus if ICF operated naively and compared the
1112    // entire contents of each CUE, entries with identical unwind info but e.g.
1113    // belonging to different functions would never be considered equivalent. To
1114    // work around this problem, we remove some parts of the data containing the
1115    // embedded addends. In particular, we remove the function address and LSDA
1116    // pointers.  Since these locations are at the start and end of the entry,
1117    // we can do this using a simple, efficient slice rather than performing a
1118    // copy.  We are not losing any information here because the embedded
1119    // addends have already been parsed in the corresponding Reloc structs.
1120    //
1121    // Removing these pointers would not be safe if they were pointers to
1122    // absolute symbols. In that case, there would be no corresponding
1123    // relocation. However, (AFAIK) MC cannot emit references to absolute
1124    // symbols for either the function address or the LSDA. However, it *can* do
1125    // so for the personality pointer, so we are not slicing that field away.
1126    //
1127    // Note that we do not adjust the offsets of the corresponding relocations;
1128    // instead, we rely on `relocateCompactUnwind()` to correctly handle these
1129    // truncated input sections.
1130    isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1131    uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1132    // llvm-mc omits CU entries for functions that need DWARF encoding, but
1133    // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1134    // CU entries from the DWARF info during the output phase.
1135    if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) ==
1136        target->modeDwarfEncoding)
1137      continue;
1138
1139    ConcatInputSection *referentIsec;
1140    for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1141      Reloc &r = *it;
1142      // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1143      if (r.offset != 0) {
1144        ++it;
1145        continue;
1146      }
1147      uint64_t add = r.addend;
1148      if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1149        // Check whether the symbol defined in this file is the prevailing one.
1150        // Skip if it is e.g. a weak def that didn't prevail.
1151        if (sym->getFile() != this) {
1152          ++it;
1153          continue;
1154        }
1155        add += sym->value;
1156        referentIsec = cast<ConcatInputSection>(sym->isec);
1157      } else {
1158        referentIsec =
1159            cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1160      }
1161      // Unwind info lives in __DATA, and finalization of __TEXT will occur
1162      // before finalization of __DATA. Moreover, the finalization of unwind
1163      // info depends on the exact addresses that it references. So it is safe
1164      // for compact unwind to reference addresses in __TEXT, but not addresses
1165      // in any other segment.
1166      if (referentIsec->getSegName() != segment_names::text)
1167        error(isec->getLocation(r.offset) + " references section " +
1168              referentIsec->getName() + " which is not in segment __TEXT");
1169      // The functionAddress relocations are typically section relocations.
1170      // However, unwind info operates on a per-symbol basis, so we search for
1171      // the function symbol here.
1172      Defined *d = findSymbolAtOffset(referentIsec, add);
1173      if (!d) {
1174        ++it;
1175        continue;
1176      }
1177      d->unwindEntry = isec;
1178      // Now that the symbol points to the unwind entry, we can remove the reloc
1179      // that points from the unwind entry back to the symbol.
1180      //
1181      // First, the symbol keeps the unwind entry alive (and not vice versa), so
1182      // this keeps dead-stripping simple.
1183      //
1184      // Moreover, it reduces the work that ICF needs to do to figure out if
1185      // functions with unwind info are foldable.
1186      //
1187      // However, this does make it possible for ICF to fold CUEs that point to
1188      // distinct functions (if the CUEs are otherwise identical).
1189      // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1190      // each one can hold a distinct functionAddress value.
1191      //
1192      // Given that clang emits relocations in reverse order of address, this
1193      // relocation should be at the end of the vector for most of our input
1194      // object files, so this erase() is typically an O(1) operation.
1195      it = isec->relocs.erase(it);
1196    }
1197  }
1198}
1199
1200struct CIE {
1201  macho::Symbol *personalitySymbol = nullptr;
1202  bool fdesHaveAug = false;
1203  uint8_t lsdaPtrSize = 0; // 0 => no LSDA
1204  uint8_t funcPtrSize = 0;
1205};
1206
1207static uint8_t pointerEncodingToSize(uint8_t enc) {
1208  switch (enc & 0xf) {
1209  case dwarf::DW_EH_PE_absptr:
1210    return target->wordSize;
1211  case dwarf::DW_EH_PE_sdata4:
1212    return 4;
1213  case dwarf::DW_EH_PE_sdata8:
1214    // ld64 doesn't actually support sdata8, but this seems simple enough...
1215    return 8;
1216  default:
1217    return 0;
1218  };
1219}
1220
1221static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1222                    size_t off) {
1223  // Handling the full generality of possible DWARF encodings would be a major
1224  // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1225  // DWARF and handle just that.
1226  constexpr uint8_t expectedPersonalityEnc =
1227      dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1228
1229  CIE cie;
1230  uint8_t version = reader.readByte(&off);
1231  if (version != 1 && version != 3)
1232    fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1233  StringRef aug = reader.readString(&off);
1234  reader.skipLeb128(&off); // skip code alignment
1235  reader.skipLeb128(&off); // skip data alignment
1236  reader.skipLeb128(&off); // skip return address register
1237  reader.skipLeb128(&off); // skip aug data length
1238  uint64_t personalityAddrOff = 0;
1239  for (char c : aug) {
1240    switch (c) {
1241    case 'z':
1242      cie.fdesHaveAug = true;
1243      break;
1244    case 'P': {
1245      uint8_t personalityEnc = reader.readByte(&off);
1246      if (personalityEnc != expectedPersonalityEnc)
1247        reader.failOn(off, "unexpected personality encoding 0x" +
1248                               Twine::utohexstr(personalityEnc));
1249      personalityAddrOff = off;
1250      off += 4;
1251      break;
1252    }
1253    case 'L': {
1254      uint8_t lsdaEnc = reader.readByte(&off);
1255      cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
1256      if (cie.lsdaPtrSize == 0)
1257        reader.failOn(off, "unexpected LSDA encoding 0x" +
1258                               Twine::utohexstr(lsdaEnc));
1259      break;
1260    }
1261    case 'R': {
1262      uint8_t pointerEnc = reader.readByte(&off);
1263      cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
1264      if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
1265        reader.failOn(off, "unexpected pointer encoding 0x" +
1266                               Twine::utohexstr(pointerEnc));
1267      break;
1268    }
1269    default:
1270      break;
1271    }
1272  }
1273  if (personalityAddrOff != 0) {
1274    auto personalityRelocIt =
1275        llvm::find_if(isec->relocs, [=](const macho::Reloc &r) {
1276          return r.offset == personalityAddrOff;
1277        });
1278    if (personalityRelocIt == isec->relocs.end())
1279      reader.failOn(off, "Failed to locate relocation for personality symbol");
1280    cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>();
1281  }
1282  return cie;
1283}
1284
1285// EH frame target addresses may be encoded as pcrel offsets. However, instead
1286// of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1287// This function recovers the target address from the subtractors, essentially
1288// performing the inverse operation of EhRelocator.
1289//
1290// Concretely, we expect our relocations to write the value of `PC -
1291// target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1292// points to a symbol plus an addend.
1293//
1294// It is important that the minuend relocation point to a symbol within the
1295// same section as the fixup value, since sections may get moved around.
1296//
1297// For example, for arm64, llvm-mc emits relocations for the target function
1298// address like so:
1299//
1300//   ltmp:
1301//     <CIE start>
1302//     ...
1303//     <CIE end>
1304//     ... multiple FDEs ...
1305//     <FDE start>
1306//     <target function address - (ltmp + pcrel offset)>
1307//     ...
1308//
1309// If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1310// will move to an earlier address, and `ltmp + pcrel offset` will no longer
1311// reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1312// our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1313// the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1314//
1315// If `Invert` is set, then we instead expect `target_addr - PC` to be written
1316// to `PC`.
1317template <bool Invert = false>
1318Defined *
1319targetSymFromCanonicalSubtractor(const InputSection *isec,
1320                                 std::vector<macho::Reloc>::iterator relocIt) {
1321  macho::Reloc &subtrahend = *relocIt;
1322  macho::Reloc &minuend = *std::next(relocIt);
1323  assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1324  assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1325  // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1326  // addend.
1327  auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1328  Defined *target =
1329      cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1330  if (!pcSym) {
1331    auto *targetIsec =
1332        cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1333    target = findSymbolAtOffset(targetIsec, minuend.addend);
1334  }
1335  if (Invert)
1336    std::swap(pcSym, target);
1337  if (pcSym->isec == isec) {
1338    if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1339      fatal("invalid FDE relocation in __eh_frame");
1340  } else {
1341    // Ensure the pcReloc points to a symbol within the current EH frame.
1342    // HACK: we should really verify that the original relocation's semantics
1343    // are preserved. In particular, we should have
1344    // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1345    // have an easy way to access the offsets from this point in the code; some
1346    // refactoring is needed for that.
1347    macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1348    pcReloc.referent = isec->symbols[0];
1349    assert(isec->symbols[0]->value == 0);
1350    minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1351  }
1352  return target;
1353}
1354
1355Defined *findSymbolAtAddress(const std::vector<Section *> &sections,
1356                             uint64_t addr) {
1357  Section *sec = findContainingSection(sections, &addr);
1358  auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1359  return findSymbolAtOffset(isec, addr);
1360}
1361
1362// For symbols that don't have compact unwind info, associate them with the more
1363// general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1364//
1365// This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1366// description of its format.
1367//
1368// While parsing, we also look for what MC calls "abs-ified" relocations -- they
1369// are relocations which are implicitly encoded as offsets in the section data.
1370// We convert them into explicit Reloc structs so that the EH frames can be
1371// handled just like a regular ConcatInputSection later in our output phase.
1372//
1373// We also need to handle the case where our input object file has explicit
1374// relocations. This is the case when e.g. it's the output of `ld -r`. We only
1375// look for the "abs-ified" relocation if an explicit relocation is absent.
1376void ObjFile::registerEhFrames(Section &ehFrameSection) {
1377  DenseMap<const InputSection *, CIE> cieMap;
1378  for (const Subsection &subsec : ehFrameSection.subsections) {
1379    auto *isec = cast<ConcatInputSection>(subsec.isec);
1380    uint64_t isecOff = subsec.offset;
1381
1382    // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1383    // that all EH frames have an associated symbol so that we can generate
1384    // subtractor relocs that reference them.
1385    if (isec->symbols.size() == 0)
1386      make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0,
1387                    isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false,
1388                    /*isPrivateExtern=*/false, /*includeInSymtab=*/false,
1389                    /*isThumb=*/false, /*isReferencedDynamically=*/false,
1390                    /*noDeadStrip=*/false);
1391    else if (isec->symbols[0]->value != 0)
1392      fatal("found symbol at unexpected offset in __eh_frame");
1393
1394    EhReader reader(this, isec->data, subsec.offset);
1395    size_t dataOff = 0; // Offset from the start of the EH frame.
1396    reader.skipValidLength(&dataOff); // readLength() already validated this.
1397    // cieOffOff is the offset from the start of the EH frame to the cieOff
1398    // value, which is itself an offset from the current PC to a CIE.
1399    const size_t cieOffOff = dataOff;
1400
1401    EhRelocator ehRelocator(isec);
1402    auto cieOffRelocIt = llvm::find_if(
1403        isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1404    InputSection *cieIsec = nullptr;
1405    if (cieOffRelocIt != isec->relocs.end()) {
1406      // We already have an explicit relocation for the CIE offset.
1407      cieIsec =
1408          targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1409              ->isec;
1410      dataOff += sizeof(uint32_t);
1411    } else {
1412      // If we haven't found a relocation, then the CIE offset is most likely
1413      // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1414      // and generate a Reloc struct.
1415      uint32_t cieMinuend = reader.readU32(&dataOff);
1416      if (cieMinuend == 0) {
1417        cieIsec = isec;
1418      } else {
1419        uint32_t cieOff = isecOff + dataOff - cieMinuend;
1420        cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1421        if (cieIsec == nullptr)
1422          fatal("failed to find CIE");
1423      }
1424      if (cieIsec != isec)
1425        ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1426                                      /*length=*/2);
1427    }
1428    if (cieIsec == isec) {
1429      cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1430      continue;
1431    }
1432
1433    assert(cieMap.count(cieIsec));
1434    const CIE &cie = cieMap[cieIsec];
1435    // Offset of the function address within the EH frame.
1436    const size_t funcAddrOff = dataOff;
1437    uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
1438                        ehFrameSection.addr + isecOff + funcAddrOff;
1439    uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
1440    size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1441    std::optional<uint64_t> lsdaAddrOpt;
1442    if (cie.fdesHaveAug) {
1443      reader.skipLeb128(&dataOff);
1444      lsdaAddrOff = dataOff;
1445      if (cie.lsdaPtrSize != 0) {
1446        uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
1447        if (lsdaOff != 0) // FIXME possible to test this?
1448          lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1449      }
1450    }
1451
1452    auto funcAddrRelocIt = isec->relocs.end();
1453    auto lsdaAddrRelocIt = isec->relocs.end();
1454    for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1455      if (it->offset == funcAddrOff)
1456        funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1457      else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1458        lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1459    }
1460
1461    Defined *funcSym;
1462    if (funcAddrRelocIt != isec->relocs.end()) {
1463      funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1464      // Canonicalize the symbol. If there are multiple symbols at the same
1465      // address, we want both `registerEhFrame` and `registerCompactUnwind`
1466      // to register the unwind entry under same symbol.
1467      // This is not particularly efficient, but we should run into this case
1468      // infrequently (only when handling the output of `ld -r`).
1469      if (funcSym->isec)
1470        funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec),
1471                                     funcSym->value);
1472    } else {
1473      funcSym = findSymbolAtAddress(sections, funcAddr);
1474      ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1475    }
1476    // The symbol has been coalesced, or already has a compact unwind entry.
1477    if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
1478      // We must prune unused FDEs for correctness, so we cannot rely on
1479      // -dead_strip being enabled.
1480      isec->live = false;
1481      continue;
1482    }
1483
1484    InputSection *lsdaIsec = nullptr;
1485    if (lsdaAddrRelocIt != isec->relocs.end()) {
1486      lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
1487    } else if (lsdaAddrOpt) {
1488      uint64_t lsdaAddr = *lsdaAddrOpt;
1489      Section *sec = findContainingSection(sections, &lsdaAddr);
1490      lsdaIsec =
1491          cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1492      ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1493    }
1494
1495    fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1496    funcSym->unwindEntry = isec;
1497    ehRelocator.commit();
1498  }
1499
1500  // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
1501  // are normally required to be kept alive if they reference a live symbol.
1502  // However, we've explicitly created a dependency from a symbol to its FDE, so
1503  // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
1504  // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
1505  // live symbol (e.g. if there were multiple weak copies). Remove this flag to
1506  // let dead-stripping proceed correctly.
1507  ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
1508}
1509
1510std::string ObjFile::sourceFile() const {
1511  SmallString<261> dir(compileUnit->getCompilationDir());
1512  StringRef sep = sys::path::get_separator();
1513  // We don't use `path::append` here because we want an empty `dir` to result
1514  // in an absolute path. `append` would give us a relative path for that case.
1515  if (!dir.endswith(sep))
1516    dir += sep;
1517  return (dir + compileUnit->getUnitDIE().getShortName()).str();
1518}
1519
1520lld::DWARFCache *ObjFile::getDwarf() {
1521  llvm::call_once(initDwarf, [this]() {
1522    auto dwObj = DwarfObject::create(this);
1523    if (!dwObj)
1524      return;
1525    dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1526        std::move(dwObj), "",
1527        [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1528        [&](Error warning) {
1529          warn(getName() + ": " + toString(std::move(warning)));
1530        }));
1531  });
1532
1533  return dwarfCache.get();
1534}
1535// The path can point to either a dylib or a .tbd file.
1536static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1537  std::optional<MemoryBufferRef> mbref = readFile(path);
1538  if (!mbref) {
1539    error("could not read dylib file at " + path);
1540    return nullptr;
1541  }
1542  return loadDylib(*mbref, umbrella);
1543}
1544
1545// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1546// the first document storing child pointers to the rest of them. When we are
1547// processing a given TBD file, we store that top-level document in
1548// currentTopLevelTapi. When processing re-exports, we search its children for
1549// potentially matching documents in the same TBD file. Note that the children
1550// themselves don't point to further documents, i.e. this is a two-level tree.
1551//
1552// Re-exports can either refer to on-disk files, or to documents within .tbd
1553// files.
1554static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1555                            const InterfaceFile *currentTopLevelTapi) {
1556  // Search order:
1557  // 1. Install name basename in -F / -L directories.
1558  {
1559    StringRef stem = path::stem(path);
1560    SmallString<128> frameworkName;
1561    path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1562    bool isFramework = path.endswith(frameworkName);
1563    if (isFramework) {
1564      for (StringRef dir : config->frameworkSearchPaths) {
1565        SmallString<128> candidate = dir;
1566        path::append(candidate, frameworkName);
1567        if (std::optional<StringRef> dylibPath =
1568                resolveDylibPath(candidate.str()))
1569          return loadDylib(*dylibPath, umbrella);
1570      }
1571    } else if (std::optional<StringRef> dylibPath = findPathCombination(
1572                   stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1573      return loadDylib(*dylibPath, umbrella);
1574  }
1575
1576  // 2. As absolute path.
1577  if (path::is_absolute(path, path::Style::posix))
1578    for (StringRef root : config->systemLibraryRoots)
1579      if (std::optional<StringRef> dylibPath =
1580              resolveDylibPath((root + path).str()))
1581        return loadDylib(*dylibPath, umbrella);
1582
1583  // 3. As relative path.
1584
1585  // TODO: Handle -dylib_file
1586
1587  // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1588  SmallString<128> newPath;
1589  if (config->outputType == MH_EXECUTE &&
1590      path.consume_front("@executable_path/")) {
1591    // ld64 allows overriding this with the undocumented flag -executable_path.
1592    // lld doesn't currently implement that flag.
1593    // FIXME: Consider using finalOutput instead of outputFile.
1594    path::append(newPath, path::parent_path(config->outputFile), path);
1595    path = newPath;
1596  } else if (path.consume_front("@loader_path/")) {
1597    fs::real_path(umbrella->getName(), newPath);
1598    path::remove_filename(newPath);
1599    path::append(newPath, path);
1600    path = newPath;
1601  } else if (path.startswith("@rpath/")) {
1602    for (StringRef rpath : umbrella->rpaths) {
1603      newPath.clear();
1604      if (rpath.consume_front("@loader_path/")) {
1605        fs::real_path(umbrella->getName(), newPath);
1606        path::remove_filename(newPath);
1607      }
1608      path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1609      if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1610        return loadDylib(*dylibPath, umbrella);
1611    }
1612  }
1613
1614  // FIXME: Should this be further up?
1615  if (currentTopLevelTapi) {
1616    for (InterfaceFile &child :
1617         make_pointee_range(currentTopLevelTapi->documents())) {
1618      assert(child.documents().empty());
1619      if (path == child.getInstallName()) {
1620        auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1621                                    /*explicitlyLinked=*/false);
1622        file->parseReexports(child);
1623        return file;
1624      }
1625    }
1626  }
1627
1628  if (std::optional<StringRef> dylibPath = resolveDylibPath(path))
1629    return loadDylib(*dylibPath, umbrella);
1630
1631  return nullptr;
1632}
1633
1634// If a re-exported dylib is public (lives in /usr/lib or
1635// /System/Library/Frameworks), then it is considered implicitly linked: we
1636// should bind to its symbols directly instead of via the re-exporting umbrella
1637// library.
1638static bool isImplicitlyLinked(StringRef path) {
1639  if (!config->implicitDylibs)
1640    return false;
1641
1642  if (path::parent_path(path) == "/usr/lib")
1643    return true;
1644
1645  // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1646  if (path.consume_front("/System/Library/Frameworks/")) {
1647    StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1648    return path::filename(path) == frameworkName;
1649  }
1650
1651  return false;
1652}
1653
1654void DylibFile::loadReexport(StringRef path, DylibFile *umbrella,
1655                         const InterfaceFile *currentTopLevelTapi) {
1656  DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1657  if (!reexport)
1658    error(toString(this) + ": unable to locate re-export with install name " +
1659          path);
1660}
1661
1662DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1663                     bool isBundleLoader, bool explicitlyLinked)
1664    : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1665      explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1666  assert(!isBundleLoader || !umbrella);
1667  if (umbrella == nullptr)
1668    umbrella = this;
1669  this->umbrella = umbrella;
1670
1671  auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1672
1673  // Initialize installName.
1674  if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1675    auto *c = reinterpret_cast<const dylib_command *>(cmd);
1676    currentVersion = read32le(&c->dylib.current_version);
1677    compatibilityVersion = read32le(&c->dylib.compatibility_version);
1678    installName =
1679        reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1680  } else if (!isBundleLoader) {
1681    // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1682    // so it's OK.
1683    error(toString(this) + ": dylib missing LC_ID_DYLIB load command");
1684    return;
1685  }
1686
1687  if (config->printEachFile)
1688    message(toString(this));
1689  inputFiles.insert(this);
1690
1691  deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1692
1693  if (!checkCompatibility(this))
1694    return;
1695
1696  checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1697
1698  for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1699    StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1700    rpaths.push_back(rpath);
1701  }
1702
1703  // Initialize symbols.
1704  exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1705
1706  const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1707  const auto *exportsTrie =
1708      findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1709  if (dyldInfo && exportsTrie) {
1710    // It's unclear what should happen in this case. Maybe we should only error
1711    // out if the two load commands refer to different data?
1712    error(toString(this) +
1713          ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1714    return;
1715  } else if (dyldInfo) {
1716    parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1717  } else if (exportsTrie) {
1718    parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1719  } else {
1720    error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1721          toString(this));
1722    return;
1723  }
1724}
1725
1726void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1727  struct TrieEntry {
1728    StringRef name;
1729    uint64_t flags;
1730  };
1731
1732  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1733  std::vector<TrieEntry> entries;
1734  // Find all the $ld$* symbols to process first.
1735  parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1736    StringRef savedName = saver().save(name);
1737    if (handleLDSymbol(savedName))
1738      return;
1739    entries.push_back({savedName, flags});
1740  });
1741
1742  // Process the "normal" symbols.
1743  for (TrieEntry &entry : entries) {
1744    if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1745      continue;
1746
1747    bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1748    bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1749
1750    symbols.push_back(
1751        symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1752  }
1753}
1754
1755void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1756  auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1757  const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1758                     target->headerSize;
1759  for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1760    auto *cmd = reinterpret_cast<const load_command *>(p);
1761    p += cmd->cmdsize;
1762
1763    if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1764        cmd->cmd == LC_REEXPORT_DYLIB) {
1765      const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1766      StringRef reexportPath =
1767          reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1768      loadReexport(reexportPath, exportingFile, nullptr);
1769    }
1770
1771    // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1772    // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1773    // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1774    if (config->namespaceKind == NamespaceKind::flat &&
1775        cmd->cmd == LC_LOAD_DYLIB) {
1776      const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1777      StringRef dylibPath =
1778          reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1779      DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1780      if (!dylib)
1781        error(Twine("unable to locate library '") + dylibPath +
1782              "' loaded from '" + toString(this) + "' for -flat_namespace");
1783    }
1784  }
1785}
1786
1787// Some versions of Xcode ship with .tbd files that don't have the right
1788// platform settings.
1789constexpr std::array<StringRef, 3> skipPlatformChecks{
1790    "/usr/lib/system/libsystem_kernel.dylib",
1791    "/usr/lib/system/libsystem_platform.dylib",
1792    "/usr/lib/system/libsystem_pthread.dylib"};
1793
1794static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1795                                         bool explicitlyLinked) {
1796  // Catalyst outputs can link against implicitly linked macOS-only libraries.
1797  if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1798    return false;
1799  return is_contained(interface.targets(),
1800                      MachO::Target(config->arch(), PLATFORM_MACOS));
1801}
1802
1803static bool isArchABICompatible(ArchitectureSet archSet,
1804                                Architecture targetArch) {
1805  uint32_t cpuType;
1806  uint32_t targetCpuType;
1807  std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch);
1808
1809  return llvm::any_of(archSet, [&](const auto &p) {
1810    std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p);
1811    return cpuType == targetCpuType;
1812  });
1813}
1814
1815static bool isTargetPlatformArchCompatible(
1816    InterfaceFile::const_target_range interfaceTargets, Target target) {
1817  if (is_contained(interfaceTargets, target))
1818    return true;
1819
1820  if (config->forceExactCpuSubtypeMatch)
1821    return false;
1822
1823  ArchitectureSet archSet;
1824  for (const auto &p : interfaceTargets)
1825    if (p.Platform == target.Platform)
1826      archSet.set(p.Arch);
1827  if (archSet.empty())
1828    return false;
1829
1830  return isArchABICompatible(archSet, target.Arch);
1831}
1832
1833DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1834                     bool isBundleLoader, bool explicitlyLinked)
1835    : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1836      explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1837  // FIXME: Add test for the missing TBD code path.
1838
1839  if (umbrella == nullptr)
1840    umbrella = this;
1841  this->umbrella = umbrella;
1842
1843  installName = saver().save(interface.getInstallName());
1844  compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1845  currentVersion = interface.getCurrentVersion().rawValue();
1846
1847  if (config->printEachFile)
1848    message(toString(this));
1849  inputFiles.insert(this);
1850
1851  if (!is_contained(skipPlatformChecks, installName) &&
1852      !isTargetPlatformArchCompatible(interface.targets(),
1853                                      config->platformInfo.target) &&
1854      !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1855    error(toString(this) + " is incompatible with " +
1856          std::string(config->platformInfo.target));
1857    return;
1858  }
1859
1860  checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1861
1862  exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1863  auto addSymbol = [&](const llvm::MachO::Symbol &symbol,
1864                       const Twine &name) -> void {
1865    StringRef savedName = saver().save(name);
1866    if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1867      return;
1868
1869    symbols.push_back(symtab->addDylib(savedName, exportingFile,
1870                                       symbol.isWeakDefined(),
1871                                       symbol.isThreadLocalValue()));
1872  };
1873
1874  std::vector<const llvm::MachO::Symbol *> normalSymbols;
1875  normalSymbols.reserve(interface.symbolsCount());
1876  for (const auto *symbol : interface.symbols()) {
1877    if (!isArchABICompatible(symbol->getArchitectures(), config->arch()))
1878      continue;
1879    if (handleLDSymbol(symbol->getName()))
1880      continue;
1881
1882    switch (symbol->getKind()) {
1883    case SymbolKind::GlobalSymbol:
1884    case SymbolKind::ObjectiveCClass:
1885    case SymbolKind::ObjectiveCClassEHType:
1886    case SymbolKind::ObjectiveCInstanceVariable:
1887      normalSymbols.push_back(symbol);
1888    }
1889  }
1890
1891  // TODO(compnerd) filter out symbols based on the target platform
1892  for (const auto *symbol : normalSymbols) {
1893    switch (symbol->getKind()) {
1894    case SymbolKind::GlobalSymbol:
1895      addSymbol(*symbol, symbol->getName());
1896      break;
1897    case SymbolKind::ObjectiveCClass:
1898      // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1899      // want to emulate that.
1900      addSymbol(*symbol, objc::klass + symbol->getName());
1901      addSymbol(*symbol, objc::metaclass + symbol->getName());
1902      break;
1903    case SymbolKind::ObjectiveCClassEHType:
1904      addSymbol(*symbol, objc::ehtype + symbol->getName());
1905      break;
1906    case SymbolKind::ObjectiveCInstanceVariable:
1907      addSymbol(*symbol, objc::ivar + symbol->getName());
1908      break;
1909    }
1910  }
1911}
1912
1913DylibFile::DylibFile(DylibFile *umbrella)
1914    : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
1915      explicitlyLinked(false), isBundleLoader(false) {
1916  if (umbrella == nullptr)
1917    umbrella = this;
1918  this->umbrella = umbrella;
1919}
1920
1921void DylibFile::parseReexports(const InterfaceFile &interface) {
1922  const InterfaceFile *topLevel =
1923      interface.getParent() == nullptr ? &interface : interface.getParent();
1924  for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1925    InterfaceFile::const_target_range targets = intfRef.targets();
1926    if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1927        isTargetPlatformArchCompatible(targets, config->platformInfo.target))
1928      loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1929  }
1930}
1931
1932bool DylibFile::isExplicitlyLinked() const {
1933  if (!explicitlyLinked)
1934    return false;
1935
1936  // If this dylib was explicitly linked, but at least one of the symbols
1937  // of the synthetic dylibs it created via $ld$previous symbols is
1938  // referenced, then that synthetic dylib fulfils the explicit linkedness
1939  // and we can deadstrip this dylib if it's unreferenced.
1940  for (const auto *dylib : extraDylibs)
1941    if (dylib->isReferenced())
1942      return false;
1943
1944  return true;
1945}
1946
1947DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
1948                                        uint32_t currentVersion,
1949                                        uint32_t compatVersion) {
1950  for (DylibFile *dylib : extraDylibs)
1951    if (dylib->installName == installName) {
1952      // FIXME: Check what to do if different $ld$previous symbols
1953      // request the same dylib, but with different versions.
1954      return dylib;
1955    }
1956
1957  auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
1958  dylib->installName = saver().save(installName);
1959  dylib->currentVersion = currentVersion;
1960  dylib->compatibilityVersion = compatVersion;
1961  extraDylibs.push_back(dylib);
1962  return dylib;
1963}
1964
1965// $ld$ symbols modify the properties/behavior of the library (e.g. its install
1966// name, compatibility version or hide/add symbols) for specific target
1967// versions.
1968bool DylibFile::handleLDSymbol(StringRef originalName) {
1969  if (!originalName.startswith("$ld$"))
1970    return false;
1971
1972  StringRef action;
1973  StringRef name;
1974  std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1975  if (action == "previous")
1976    handleLDPreviousSymbol(name, originalName);
1977  else if (action == "install_name")
1978    handleLDInstallNameSymbol(name, originalName);
1979  else if (action == "hide")
1980    handleLDHideSymbol(name, originalName);
1981  return true;
1982}
1983
1984void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1985  // originalName: $ld$ previous $ <installname> $ <compatversion> $
1986  // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1987  StringRef installName;
1988  StringRef compatVersion;
1989  StringRef platformStr;
1990  StringRef startVersion;
1991  StringRef endVersion;
1992  StringRef symbolName;
1993  StringRef rest;
1994
1995  std::tie(installName, name) = name.split('$');
1996  std::tie(compatVersion, name) = name.split('$');
1997  std::tie(platformStr, name) = name.split('$');
1998  std::tie(startVersion, name) = name.split('$');
1999  std::tie(endVersion, name) = name.split('$');
2000  std::tie(symbolName, rest) = name.rsplit('$');
2001
2002  // FIXME: Does this do the right thing for zippered files?
2003  unsigned platform;
2004  if (platformStr.getAsInteger(10, platform) ||
2005      platform != static_cast<unsigned>(config->platform()))
2006    return;
2007
2008  VersionTuple start;
2009  if (start.tryParse(startVersion)) {
2010    warn(toString(this) + ": failed to parse start version, symbol '" +
2011         originalName + "' ignored");
2012    return;
2013  }
2014  VersionTuple end;
2015  if (end.tryParse(endVersion)) {
2016    warn(toString(this) + ": failed to parse end version, symbol '" +
2017         originalName + "' ignored");
2018    return;
2019  }
2020  if (config->platformInfo.minimum < start ||
2021      config->platformInfo.minimum >= end)
2022    return;
2023
2024  // Initialized to compatibilityVersion for the symbolName branch below.
2025  uint32_t newCompatibilityVersion = compatibilityVersion;
2026  uint32_t newCurrentVersionForSymbol = currentVersion;
2027  if (!compatVersion.empty()) {
2028    VersionTuple cVersion;
2029    if (cVersion.tryParse(compatVersion)) {
2030      warn(toString(this) +
2031           ": failed to parse compatibility version, symbol '" + originalName +
2032           "' ignored");
2033      return;
2034    }
2035    newCompatibilityVersion = encodeVersion(cVersion);
2036    newCurrentVersionForSymbol = newCompatibilityVersion;
2037  }
2038
2039  if (!symbolName.empty()) {
2040    // A $ld$previous$ symbol with symbol name adds a symbol with that name to
2041    // a dylib with given name and version.
2042    auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
2043                                    newCompatibilityVersion);
2044
2045    // The tbd file usually contains the $ld$previous symbol for an old version,
2046    // and then the symbol itself later, for newer deployment targets, like so:
2047    //    symbols: [
2048    //      '$ld$previous$/Another$$1$3.0$14.0$_zzz$',
2049    //      _zzz,
2050    //    ]
2051    // Since the symbols are sorted, adding them to the symtab in the given
2052    // order means the $ld$previous version of _zzz will prevail, as desired.
2053    dylib->symbols.push_back(symtab->addDylib(
2054        saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
2055    return;
2056  }
2057
2058  // A $ld$previous$ symbol without symbol name modifies the dylib it's in.
2059  this->installName = saver().save(installName);
2060  this->compatibilityVersion = newCompatibilityVersion;
2061}
2062
2063void DylibFile::handleLDInstallNameSymbol(StringRef name,
2064                                          StringRef originalName) {
2065  // originalName: $ld$ install_name $ os<version> $ install_name
2066  StringRef condition, installName;
2067  std::tie(condition, installName) = name.split('$');
2068  VersionTuple version;
2069  if (!condition.consume_front("os") || version.tryParse(condition))
2070    warn(toString(this) + ": failed to parse os version, symbol '" +
2071         originalName + "' ignored");
2072  else if (version == config->platformInfo.minimum)
2073    this->installName = saver().save(installName);
2074}
2075
2076void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2077  StringRef symbolName;
2078  bool shouldHide = true;
2079  if (name.startswith("os")) {
2080    // If it's hidden based on versions.
2081    name = name.drop_front(2);
2082    StringRef minVersion;
2083    std::tie(minVersion, symbolName) = name.split('$');
2084    VersionTuple versionTup;
2085    if (versionTup.tryParse(minVersion)) {
2086      warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName +
2087           "` ignored.");
2088      return;
2089    }
2090    shouldHide = versionTup == config->platformInfo.minimum;
2091  } else {
2092    symbolName = name;
2093  }
2094
2095  if (shouldHide)
2096    exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2097}
2098
2099void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2100  if (config->applicationExtension && !dylibIsAppExtensionSafe)
2101    warn("using '-application_extension' with unsafe dylib: " + toString(this));
2102}
2103
2104ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
2105    : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
2106      forceHidden(forceHidden) {}
2107
2108void ArchiveFile::addLazySymbols() {
2109  for (const object::Archive::Symbol &sym : file->symbols())
2110    symtab->addLazyArchive(sym.getName(), this, sym);
2111}
2112
2113static Expected<InputFile *>
2114loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
2115                  uint64_t offsetInArchive, bool forceHidden) {
2116  if (config->zeroModTime)
2117    modTime = 0;
2118
2119  switch (identify_magic(mb.getBuffer())) {
2120  case file_magic::macho_object:
2121    return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden);
2122  case file_magic::bitcode:
2123    return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
2124                             forceHidden);
2125  default:
2126    return createStringError(inconvertibleErrorCode(),
2127                             mb.getBufferIdentifier() +
2128                                 " has unhandled file type");
2129  }
2130}
2131
2132Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2133  if (!seen.insert(c.getChildOffset()).second)
2134    return Error::success();
2135
2136  Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2137  if (!mb)
2138    return mb.takeError();
2139
2140  // Thin archives refer to .o files, so --reproduce needs the .o files too.
2141  if (tar && c.getParent()->isThin())
2142    tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
2143
2144  Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2145  if (!modTime)
2146    return modTime.takeError();
2147
2148  Expected<InputFile *> file = loadArchiveMember(
2149      *mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden);
2150
2151  if (!file)
2152    return file.takeError();
2153
2154  inputFiles.insert(*file);
2155  printArchiveMemberLoad(reason, *file);
2156  return Error::success();
2157}
2158
2159void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2160  object::Archive::Child c =
2161      CHECK(sym.getMember(), toString(this) +
2162                                 ": could not get the member defining symbol " +
2163                                 toMachOString(sym));
2164
2165  // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2166  // and become invalid after that call. Copy it to the stack so we can refer
2167  // to it later.
2168  const object::Archive::Symbol symCopy = sym;
2169
2170  // ld64 doesn't demangle sym here even with -demangle.
2171  // Match that: intentionally don't call toMachOString().
2172  if (Error e = fetch(c, symCopy.getName()))
2173    error(toString(this) + ": could not get the member defining symbol " +
2174          toMachOString(symCopy) + ": " + toString(std::move(e)));
2175}
2176
2177static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2178                                          BitcodeFile &file) {
2179  StringRef name = saver().save(objSym.getName());
2180
2181  if (objSym.isUndefined())
2182    return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2183
2184  // TODO: Write a test demonstrating why computing isPrivateExtern before
2185  // LTO compilation is important.
2186  bool isPrivateExtern = false;
2187  switch (objSym.getVisibility()) {
2188  case GlobalValue::HiddenVisibility:
2189    isPrivateExtern = true;
2190    break;
2191  case GlobalValue::ProtectedVisibility:
2192    error(name + " has protected visibility, which is not supported by Mach-O");
2193    break;
2194  case GlobalValue::DefaultVisibility:
2195    break;
2196  }
2197  isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
2198                    file.forceHidden;
2199
2200  if (objSym.isCommon())
2201    return symtab->addCommon(name, &file, objSym.getCommonSize(),
2202                             objSym.getCommonAlignment(), isPrivateExtern);
2203
2204  return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2205                            /*size=*/0, objSym.isWeak(), isPrivateExtern,
2206                            /*isThumb=*/false,
2207                            /*isReferencedDynamically=*/false,
2208                            /*noDeadStrip=*/false,
2209                            /*isWeakDefCanBeHidden=*/false);
2210}
2211
2212BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2213                         uint64_t offsetInArchive, bool lazy, bool forceHidden)
2214    : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
2215  this->archiveName = std::string(archiveName);
2216  std::string path = mb.getBufferIdentifier().str();
2217  if (config->thinLTOIndexOnly)
2218    path = replaceThinLTOSuffix(mb.getBufferIdentifier());
2219
2220  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2221  // name. If two members with the same name are provided, this causes a
2222  // collision and ThinLTO can't proceed.
2223  // So, we append the archive name to disambiguate two members with the same
2224  // name from multiple different archives, and offset within the archive to
2225  // disambiguate two members of the same name from a single archive.
2226  MemoryBufferRef mbref(mb.getBuffer(),
2227                        saver().save(archiveName.empty()
2228                                         ? path
2229                                         : archiveName +
2230                                               sys::path::filename(path) +
2231                                               utostr(offsetInArchive)));
2232
2233  obj = check(lto::InputFile::create(mbref));
2234  if (lazy)
2235    parseLazy();
2236  else
2237    parse();
2238}
2239
2240void BitcodeFile::parse() {
2241  // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2242  // "winning" symbol will then be marked as Prevailing at LTO compilation
2243  // time.
2244  symbols.clear();
2245  for (const lto::InputFile::Symbol &objSym : obj->symbols())
2246    symbols.push_back(createBitcodeSymbol(objSym, *this));
2247}
2248
2249void BitcodeFile::parseLazy() {
2250  symbols.resize(obj->symbols().size());
2251  for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) {
2252    if (!objSym.isUndefined()) {
2253      symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this);
2254      if (!lazy)
2255        break;
2256    }
2257  }
2258}
2259
2260std::string macho::replaceThinLTOSuffix(StringRef path) {
2261  auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
2262  if (path.consume_back(suffix))
2263    return (path + repl).str();
2264  return std::string(path);
2265}
2266
2267void macho::extract(InputFile &file, StringRef reason) {
2268  if (!file.lazy)
2269    return;
2270  file.lazy = false;
2271
2272  printArchiveMemberLoad(reason, &file);
2273  if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2274    bitcode->parse();
2275  } else {
2276    auto &f = cast<ObjFile>(file);
2277    if (target->wordSize == 8)
2278      f.parse<LP64>();
2279    else
2280      f.parse<ILP32>();
2281  }
2282}
2283
2284template void ObjFile::parse<LP64>();
2285