1//===- ICF.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// ICF is short for Identical Code Folding. This is a size optimization to
10// identify and merge two or more read-only sections (typically functions)
11// that happened to have the same contents. It usually reduces output size
12// by a few percent.
13//
14// In ICF, two sections are considered identical if they have the same
15// section flags, section data, and relocations. Relocations are tricky,
16// because two relocations are considered the same if they have the same
17// relocation types, values, and if they point to the same sections *in
18// terms of ICF*.
19//
20// Here is an example. If foo and bar defined below are compiled to the
21// same machine instructions, ICF can and should merge the two, although
22// their relocations point to each other.
23//
24//   void foo() { bar(); }
25//   void bar() { foo(); }
26//
27// If you merge the two, their relocations point to the same section and
28// thus you know they are mergeable, but how do you know they are
29// mergeable in the first place? This is not an easy problem to solve.
30//
31// What we are doing in LLD is to partition sections into equivalence
32// classes. Sections in the same equivalence class when the algorithm
33// terminates are considered identical. Here are details:
34//
35// 1. First, we partition sections using their hash values as keys. Hash
36//    values contain section types, section contents and numbers of
37//    relocations. During this step, relocation targets are not taken into
38//    account. We just put sections that apparently differ into different
39//    equivalence classes.
40//
41// 2. Next, for each equivalence class, we visit sections to compare
42//    relocation targets. Relocation targets are considered equivalent if
43//    their targets are in the same equivalence class. Sections with
44//    different relocation targets are put into different equivalence
45//    classes.
46//
47// 3. If we split an equivalence class in step 2, two relocations
48//    previously target the same equivalence class may now target
49//    different equivalence classes. Therefore, we repeat step 2 until a
50//    convergence is obtained.
51//
52// 4. For each equivalence class C, pick an arbitrary section in C, and
53//    merge all the other sections in C with it.
54//
55// For small programs, this algorithm needs 3-5 iterations. For large
56// programs such as Chromium, it takes more than 20 iterations.
57//
58// This algorithm was mentioned as an "optimistic algorithm" in [1],
59// though gold implements a different algorithm than this.
60//
61// We parallelize each step so that multiple threads can work on different
62// equivalence classes concurrently. That gave us a large performance
63// boost when applying ICF on large programs. For example, MSVC link.exe
64// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67// faster than MSVC or gold though.
68//
69// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70// in the Gold Linker
71// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72//
73//===----------------------------------------------------------------------===//
74
75#include "ICF.h"
76#include "Config.h"
77#include "InputFiles.h"
78#include "LinkerScript.h"
79#include "OutputSections.h"
80#include "SymbolTable.h"
81#include "Symbols.h"
82#include "SyntheticSections.h"
83#include "llvm/BinaryFormat/ELF.h"
84#include "llvm/Object/ELF.h"
85#include "llvm/Support/Parallel.h"
86#include "llvm/Support/TimeProfiler.h"
87#include "llvm/Support/xxhash.h"
88#include <algorithm>
89#include <atomic>
90
91using namespace llvm;
92using namespace llvm::ELF;
93using namespace llvm::object;
94using namespace lld;
95using namespace lld::elf;
96
97namespace {
98template <class ELFT> class ICF {
99public:
100  void run();
101
102private:
103  void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
104
105  template <class RelTy>
106  bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
107                  const InputSection *b, ArrayRef<RelTy> relsB);
108
109  template <class RelTy>
110  bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
111                  const InputSection *b, ArrayRef<RelTy> relsB);
112
113  bool equalsConstant(const InputSection *a, const InputSection *b);
114  bool equalsVariable(const InputSection *a, const InputSection *b);
115
116  size_t findBoundary(size_t begin, size_t end);
117
118  void forEachClassRange(size_t begin, size_t end,
119                         llvm::function_ref<void(size_t, size_t)> fn);
120
121  void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
122
123  SmallVector<InputSection *, 0> sections;
124
125  // We repeat the main loop while `Repeat` is true.
126  std::atomic<bool> repeat;
127
128  // The main loop counter.
129  int cnt = 0;
130
131  // We have two locations for equivalence classes. On the first iteration
132  // of the main loop, Class[0] has a valid value, and Class[1] contains
133  // garbage. We read equivalence classes from slot 0 and write to slot 1.
134  // So, Class[0] represents the current class, and Class[1] represents
135  // the next class. On each iteration, we switch their roles and use them
136  // alternately.
137  //
138  // Why are we doing this? Recall that other threads may be working on
139  // other equivalence classes in parallel. They may read sections that we
140  // are updating. We cannot update equivalence classes in place because
141  // it breaks the invariance that all possibly-identical sections must be
142  // in the same equivalence class at any moment. In other words, the for
143  // loop to update equivalence classes is not atomic, and that is
144  // observable from other threads. By writing new classes to other
145  // places, we can keep the invariance.
146  //
147  // Below, `Current` has the index of the current class, and `Next` has
148  // the index of the next class. If threading is enabled, they are either
149  // (0, 1) or (1, 0).
150  //
151  // Note on single-thread: if that's the case, they are always (0, 0)
152  // because we can safely read the next class without worrying about race
153  // conditions. Using the same location makes this algorithm converge
154  // faster because it uses results of the same iteration earlier.
155  int current = 0;
156  int next = 0;
157};
158}
159
160// Returns true if section S is subject of ICF.
161static bool isEligible(InputSection *s) {
162  if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
163    return false;
164
165  // Don't merge writable sections. .data.rel.ro sections are marked as writable
166  // but are semantically read-only.
167  if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
168      !s->name.startswith(".data.rel.ro."))
169    return false;
170
171  // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
172  // so we don't consider them for ICF individually.
173  if (s->flags & SHF_LINK_ORDER)
174    return false;
175
176  // Don't merge synthetic sections as their Data member is not valid and empty.
177  // The Data member needs to be valid for ICF as it is used by ICF to determine
178  // the equality of section contents.
179  if (isa<SyntheticSection>(s))
180    return false;
181
182  // .init and .fini contains instructions that must be executed to initialize
183  // and finalize the process. They cannot and should not be merged.
184  if (s->name == ".init" || s->name == ".fini")
185    return false;
186
187  // A user program may enumerate sections named with a C identifier using
188  // __start_* and __stop_* symbols. We cannot ICF any such sections because
189  // that could change program semantics.
190  if (isValidCIdentifier(s->name))
191    return false;
192
193  return true;
194}
195
196// Split an equivalence class into smaller classes.
197template <class ELFT>
198void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
199                          bool constant) {
200  // This loop rearranges sections in [Begin, End) so that all sections
201  // that are equal in terms of equals{Constant,Variable} are contiguous
202  // in [Begin, End).
203  //
204  // The algorithm is quadratic in the worst case, but that is not an
205  // issue in practice because the number of the distinct sections in
206  // each range is usually very small.
207
208  while (begin < end) {
209    // Divide [Begin, End) into two. Let Mid be the start index of the
210    // second group.
211    auto bound =
212        std::stable_partition(sections.begin() + begin + 1,
213                              sections.begin() + end, [&](InputSection *s) {
214                                if (constant)
215                                  return equalsConstant(sections[begin], s);
216                                return equalsVariable(sections[begin], s);
217                              });
218    size_t mid = bound - sections.begin();
219
220    // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
221    // updating the sections in [Begin, Mid). We use Mid as the basis for
222    // the equivalence class ID because every group ends with a unique index.
223    // Add this to eqClassBase to avoid equality with unique IDs.
224    for (size_t i = begin; i < mid; ++i)
225      sections[i]->eqClass[next] = eqClassBase + mid;
226
227    // If we created a group, we need to iterate the main loop again.
228    if (mid != end)
229      repeat = true;
230
231    begin = mid;
232  }
233}
234
235// Compare two lists of relocations.
236template <class ELFT>
237template <class RelTy>
238bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
239                           const InputSection *secB, ArrayRef<RelTy> rb) {
240  if (ra.size() != rb.size())
241    return false;
242  for (size_t i = 0; i < ra.size(); ++i) {
243    if (ra[i].r_offset != rb[i].r_offset ||
244        ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
245      return false;
246
247    uint64_t addA = getAddend<ELFT>(ra[i]);
248    uint64_t addB = getAddend<ELFT>(rb[i]);
249
250    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
251    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
252    if (&sa == &sb) {
253      if (addA == addB)
254        continue;
255      return false;
256    }
257
258    auto *da = dyn_cast<Defined>(&sa);
259    auto *db = dyn_cast<Defined>(&sb);
260
261    // Placeholder symbols generated by linker scripts look the same now but
262    // may have different values later.
263    if (!da || !db || da->scriptDefined || db->scriptDefined)
264      return false;
265
266    // When comparing a pair of relocations, if they refer to different symbols,
267    // and either symbol is preemptible, the containing sections should be
268    // considered different. This is because even if the sections are identical
269    // in this DSO, they may not be after preemption.
270    if (da->isPreemptible || db->isPreemptible)
271      return false;
272
273    // Relocations referring to absolute symbols are constant-equal if their
274    // values are equal.
275    if (!da->section && !db->section && da->value + addA == db->value + addB)
276      continue;
277    if (!da->section || !db->section)
278      return false;
279
280    if (da->section->kind() != db->section->kind())
281      return false;
282
283    // Relocations referring to InputSections are constant-equal if their
284    // section offsets are equal.
285    if (isa<InputSection>(da->section)) {
286      if (da->value + addA == db->value + addB)
287        continue;
288      return false;
289    }
290
291    // Relocations referring to MergeInputSections are constant-equal if their
292    // offsets in the output section are equal.
293    auto *x = dyn_cast<MergeInputSection>(da->section);
294    if (!x)
295      return false;
296    auto *y = cast<MergeInputSection>(db->section);
297    if (x->getParent() != y->getParent())
298      return false;
299
300    uint64_t offsetA =
301        sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
302    uint64_t offsetB =
303        sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
304    if (offsetA != offsetB)
305      return false;
306  }
307
308  return true;
309}
310
311// Compare "non-moving" part of two InputSections, namely everything
312// except relocation targets.
313template <class ELFT>
314bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
315  if (a->flags != b->flags || a->getSize() != b->getSize() ||
316      a->content() != b->content())
317    return false;
318
319  // If two sections have different output sections, we cannot merge them.
320  assert(a->getParent() && b->getParent());
321  if (a->getParent() != b->getParent())
322    return false;
323
324  const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
325  const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
326  return ra.areRelocsRel() || rb.areRelocsRel()
327             ? constantEq(a, ra.rels, b, rb.rels)
328             : constantEq(a, ra.relas, b, rb.relas);
329}
330
331// Compare two lists of relocations. Returns true if all pairs of
332// relocations point to the same section in terms of ICF.
333template <class ELFT>
334template <class RelTy>
335bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
336                           const InputSection *secB, ArrayRef<RelTy> rb) {
337  assert(ra.size() == rb.size());
338
339  for (size_t i = 0; i < ra.size(); ++i) {
340    // The two sections must be identical.
341    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
342    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
343    if (&sa == &sb)
344      continue;
345
346    auto *da = cast<Defined>(&sa);
347    auto *db = cast<Defined>(&sb);
348
349    // We already dealt with absolute and non-InputSection symbols in
350    // constantEq, and for InputSections we have already checked everything
351    // except the equivalence class.
352    if (!da->section)
353      continue;
354    auto *x = dyn_cast<InputSection>(da->section);
355    if (!x)
356      continue;
357    auto *y = cast<InputSection>(db->section);
358
359    // Sections that are in the special equivalence class 0, can never be the
360    // same in terms of the equivalence class.
361    if (x->eqClass[current] == 0)
362      return false;
363    if (x->eqClass[current] != y->eqClass[current])
364      return false;
365  };
366
367  return true;
368}
369
370// Compare "moving" part of two InputSections, namely relocation targets.
371template <class ELFT>
372bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
373  const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
374  const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
375  return ra.areRelocsRel() || rb.areRelocsRel()
376             ? variableEq(a, ra.rels, b, rb.rels)
377             : variableEq(a, ra.relas, b, rb.relas);
378}
379
380template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
381  uint32_t eqClass = sections[begin]->eqClass[current];
382  for (size_t i = begin + 1; i < end; ++i)
383    if (eqClass != sections[i]->eqClass[current])
384      return i;
385  return end;
386}
387
388// Sections in the same equivalence class are contiguous in Sections
389// vector. Therefore, Sections vector can be considered as contiguous
390// groups of sections, grouped by the class.
391//
392// This function calls Fn on every group within [Begin, End).
393template <class ELFT>
394void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
395                                  llvm::function_ref<void(size_t, size_t)> fn) {
396  while (begin < end) {
397    size_t mid = findBoundary(begin, end);
398    fn(begin, mid);
399    begin = mid;
400  }
401}
402
403// Call Fn on each equivalence class.
404template <class ELFT>
405void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
406  // If threading is disabled or the number of sections are
407  // too small to use threading, call Fn sequentially.
408  if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
409    forEachClassRange(0, sections.size(), fn);
410    ++cnt;
411    return;
412  }
413
414  current = cnt % 2;
415  next = (cnt + 1) % 2;
416
417  // Shard into non-overlapping intervals, and call Fn in parallel.
418  // The sharding must be completed before any calls to Fn are made
419  // so that Fn can modify the Chunks in its shard without causing data
420  // races.
421  const size_t numShards = 256;
422  size_t step = sections.size() / numShards;
423  size_t boundaries[numShards + 1];
424  boundaries[0] = 0;
425  boundaries[numShards] = sections.size();
426
427  parallelFor(1, numShards, [&](size_t i) {
428    boundaries[i] = findBoundary((i - 1) * step, sections.size());
429  });
430
431  parallelFor(1, numShards + 1, [&](size_t i) {
432    if (boundaries[i - 1] < boundaries[i])
433      forEachClassRange(boundaries[i - 1], boundaries[i], fn);
434  });
435  ++cnt;
436}
437
438// Combine the hashes of the sections referenced by the given section into its
439// hash.
440template <class ELFT, class RelTy>
441static void combineRelocHashes(unsigned cnt, InputSection *isec,
442                               ArrayRef<RelTy> rels) {
443  uint32_t hash = isec->eqClass[cnt % 2];
444  for (RelTy rel : rels) {
445    Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
446    if (auto *d = dyn_cast<Defined>(&s))
447      if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
448        hash += relSec->eqClass[cnt % 2];
449  }
450  // Set MSB to 1 to avoid collisions with unique IDs.
451  isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
452}
453
454static void print(const Twine &s) {
455  if (config->printIcfSections)
456    message(s);
457}
458
459// The main function of ICF.
460template <class ELFT> void ICF<ELFT>::run() {
461  // Compute isPreemptible early. We may add more symbols later, so this loop
462  // cannot be merged with the later computeIsPreemptible() pass which is used
463  // by scanRelocations().
464  if (config->hasDynSymTab)
465    for (Symbol *sym : symtab.getSymbols())
466      sym->isPreemptible = computeIsPreemptible(*sym);
467
468  // Two text sections may have identical content and relocations but different
469  // LSDA, e.g. the two functions may have catch blocks of different types. If a
470  // text section is referenced by a .eh_frame FDE with LSDA, it is not
471  // eligible. This is implemented by iterating over CIE/FDE and setting
472  // eqClass[0] to the referenced text section from a live FDE.
473  //
474  // If two .gcc_except_table have identical semantics (usually identical
475  // content with PC-relative encoding), we will lose folding opportunity.
476  uint32_t uniqueId = 0;
477  for (Partition &part : partitions)
478    part.ehFrame->iterateFDEWithLSDA<ELFT>(
479        [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
480
481  // Collect sections to merge.
482  for (InputSectionBase *sec : ctx.inputSections) {
483    auto *s = dyn_cast<InputSection>(sec);
484    if (s && s->eqClass[0] == 0) {
485      if (isEligible(s))
486        sections.push_back(s);
487      else
488        // Ineligible sections are assigned unique IDs, i.e. each section
489        // belongs to an equivalence class of its own.
490        s->eqClass[0] = s->eqClass[1] = ++uniqueId;
491    }
492  }
493
494  // Initially, we use hash values to partition sections.
495  parallelForEach(sections, [&](InputSection *s) {
496    // Set MSB to 1 to avoid collisions with unique IDs.
497    s->eqClass[0] = xxHash64(s->content()) | (1U << 31);
498  });
499
500  // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
501  // reduce the average sizes of equivalence classes, i.e. segregate() which has
502  // a large time complexity will have less work to do.
503  for (unsigned cnt = 0; cnt != 2; ++cnt) {
504    parallelForEach(sections, [&](InputSection *s) {
505      const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
506      if (rels.areRelocsRel())
507        combineRelocHashes<ELFT>(cnt, s, rels.rels);
508      else
509        combineRelocHashes<ELFT>(cnt, s, rels.relas);
510    });
511  }
512
513  // From now on, sections in Sections vector are ordered so that sections
514  // in the same equivalence class are consecutive in the vector.
515  llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
516    return a->eqClass[0] < b->eqClass[0];
517  });
518
519  // Compare static contents and assign unique equivalence class IDs for each
520  // static content. Use a base offset for these IDs to ensure no overlap with
521  // the unique IDs already assigned.
522  uint32_t eqClassBase = ++uniqueId;
523  forEachClass([&](size_t begin, size_t end) {
524    segregate(begin, end, eqClassBase, true);
525  });
526
527  // Split groups by comparing relocations until convergence is obtained.
528  do {
529    repeat = false;
530    forEachClass([&](size_t begin, size_t end) {
531      segregate(begin, end, eqClassBase, false);
532    });
533  } while (repeat);
534
535  log("ICF needed " + Twine(cnt) + " iterations");
536
537  // Merge sections by the equivalence class.
538  forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
539    if (end - begin == 1)
540      return;
541    print("selected section " + toString(sections[begin]));
542    for (size_t i = begin + 1; i < end; ++i) {
543      print("  removing identical section " + toString(sections[i]));
544      sections[begin]->replace(sections[i]);
545
546      // At this point we know sections merged are fully identical and hence
547      // we want to remove duplicate implicit dependencies such as link order
548      // and relocation sections.
549      for (InputSection *isec : sections[i]->dependentSections)
550        isec->markDead();
551    }
552  });
553
554  // Change Defined symbol's section field to the canonical one.
555  auto fold = [](Symbol *sym) {
556    if (auto *d = dyn_cast<Defined>(sym))
557      if (auto *sec = dyn_cast_or_null<InputSection>(d->section))
558        if (sec->repl != d->section) {
559          d->section = sec->repl;
560          d->folded = true;
561        }
562  };
563  for (Symbol *sym : symtab.getSymbols())
564    fold(sym);
565  parallelForEach(ctx.objectFiles, [&](ELFFileBase *file) {
566    for (Symbol *sym : file->getLocalSymbols())
567      fold(sym);
568  });
569
570  // InputSectionDescription::sections is populated by processSectionCommands().
571  // ICF may fold some input sections assigned to output sections. Remove them.
572  for (SectionCommand *cmd : script->sectionCommands)
573    if (auto *osd = dyn_cast<OutputDesc>(cmd))
574      for (SectionCommand *subCmd : osd->osec.commands)
575        if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
576          llvm::erase_if(isd->sections,
577                         [](InputSection *isec) { return !isec->isLive(); });
578}
579
580// ICF entry point function.
581template <class ELFT> void elf::doIcf() {
582  llvm::TimeTraceScope timeScope("ICF");
583  ICF<ELFT>().run();
584}
585
586template void elf::doIcf<ELF32LE>();
587template void elf::doIcf<ELF32BE>();
588template void elf::doIcf<ELF64LE>();
589template void elf::doIcf<ELF64BE>();
590