1//===----------------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// Copyright (c) Microsoft Corporation.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11
12// Copyright 2018 Ulf Adams
13// Copyright (c) Microsoft Corporation. All rights reserved.
14
15// Boost Software License - Version 1.0 - August 17th, 2003
16
17// Permission is hereby granted, free of charge, to any person or organization
18// obtaining a copy of the software and accompanying documentation covered by
19// this license (the "Software") to use, reproduce, display, distribute,
20// execute, and transmit the Software, and to prepare derivative works of the
21// Software, and to permit third-parties to whom the Software is furnished to
22// do so, all subject to the following:
23
24// The copyright notices in the Software and this entire statement, including
25// the above license grant, this restriction and the following disclaimer,
26// must be included in all copies of the Software, in whole or in part, and
27// all derivative works of the Software, unless such copies or derivative
28// works are solely in the form of machine-executable object code generated by
29// a source language processor.
30
31// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
34// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
35// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
36// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
37// DEALINGS IN THE SOFTWARE.
38
39// Avoid formatting to keep the changes with the original code minimal.
40// clang-format off
41
42#include <__assert>
43#include <__config>
44#include <charconv>
45
46#include "include/ryu/common.h"
47#include "include/ryu/d2fixed.h"
48#include "include/ryu/d2s.h"
49#include "include/ryu/d2s_full_table.h"
50#include "include/ryu/d2s_intrinsics.h"
51#include "include/ryu/digit_table.h"
52#include "include/ryu/ryu.h"
53
54_LIBCPP_BEGIN_NAMESPACE_STD
55
56// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
57// Multiplication:
58//   The 64-bit factor is variable and passed in, the 128-bit factor comes
59//   from a lookup table. We know that the 64-bit factor only has 55
60//   significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
61//   factor only has 124 significant bits (i.e., the 4 topmost bits are
62//   zeros).
63// Shift:
64//   In principle, the multiplication result requires 55 + 124 = 179 bits to
65//   represent. However, we then shift this value to the right by __j, which is
66//   at least __j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
67//   bits. This means that we only need the topmost 64 significant bits of
68//   the 64x128-bit multiplication.
69//
70// There are several ways to do this:
71// 1. Best case: the compiler exposes a 128-bit type.
72//    We perform two 64x64-bit multiplications, add the higher 64 bits of the
73//    lower result to the higher result, and shift by __j - 64 bits.
74//
75//    We explicitly cast from 64-bit to 128-bit, so the compiler can tell
76//    that these are only 64-bit inputs, and can map these to the best
77//    possible sequence of assembly instructions.
78//    x64 machines happen to have matching assembly instructions for
79//    64x64-bit multiplications and 128-bit shifts.
80//
81// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
82//    instructions mentioned in 1.
83//
84// 3. We only have 64x64 bit instructions that return the lower 64 bits of
85//    the result, i.e., we have to use plain C.
86//    Our inputs are less than the full width, so we have three options:
87//    a. Ignore this fact and just implement the intrinsics manually.
88//    b. Split both into 31-bit pieces, which guarantees no internal overflow,
89//       but requires extra work upfront (unless we change the lookup table).
90//    c. Split only the first factor into 31-bit pieces, which also guarantees
91//       no internal overflow, but requires extra work since the intermediate
92//       results are not perfectly aligned.
93#ifdef _LIBCPP_INTRINSIC128
94
95[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShift(const uint64_t __m, const uint64_t* const __mul, const int32_t __j) {
96  // __m is maximum 55 bits
97  uint64_t __high1;                                               // 128
98  const uint64_t __low1 = __ryu_umul128(__m, __mul[1], &__high1); // 64
99  uint64_t __high0;                                               // 64
100  (void) __ryu_umul128(__m, __mul[0], &__high0);                  // 0
101  const uint64_t __sum = __high0 + __low1;
102  if (__sum < __high0) {
103    ++__high1; // overflow into __high1
104  }
105  return __ryu_shiftright128(__sum, __high1, static_cast<uint32_t>(__j - 64));
106}
107
108[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShiftAll(const uint64_t __m, const uint64_t* const __mul, const int32_t __j,
109  uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) {
110  *__vp = __mulShift(4 * __m + 2, __mul, __j);
111  *__vm = __mulShift(4 * __m - 1 - __mmShift, __mul, __j);
112  return __mulShift(4 * __m, __mul, __j);
113}
114
115#else // ^^^ intrinsics available ^^^ / vvv intrinsics unavailable vvv
116
117[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline _LIBCPP_ALWAYS_INLINE uint64_t __mulShiftAll(uint64_t __m, const uint64_t* const __mul, const int32_t __j,
118  uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) { // TRANSITION, VSO-634761
119  __m <<= 1;
120  // __m is maximum 55 bits
121  uint64_t __tmp;
122  const uint64_t __lo = __ryu_umul128(__m, __mul[0], &__tmp);
123  uint64_t __hi;
124  const uint64_t __mid = __tmp + __ryu_umul128(__m, __mul[1], &__hi);
125  __hi += __mid < __tmp; // overflow into __hi
126
127  const uint64_t __lo2 = __lo + __mul[0];
128  const uint64_t __mid2 = __mid + __mul[1] + (__lo2 < __lo);
129  const uint64_t __hi2 = __hi + (__mid2 < __mid);
130  *__vp = __ryu_shiftright128(__mid2, __hi2, static_cast<uint32_t>(__j - 64 - 1));
131
132  if (__mmShift == 1) {
133    const uint64_t __lo3 = __lo - __mul[0];
134    const uint64_t __mid3 = __mid - __mul[1] - (__lo3 > __lo);
135    const uint64_t __hi3 = __hi - (__mid3 > __mid);
136    *__vm = __ryu_shiftright128(__mid3, __hi3, static_cast<uint32_t>(__j - 64 - 1));
137  } else {
138    const uint64_t __lo3 = __lo + __lo;
139    const uint64_t __mid3 = __mid + __mid + (__lo3 < __lo);
140    const uint64_t __hi3 = __hi + __hi + (__mid3 < __mid);
141    const uint64_t __lo4 = __lo3 - __mul[0];
142    const uint64_t __mid4 = __mid3 - __mul[1] - (__lo4 > __lo3);
143    const uint64_t __hi4 = __hi3 - (__mid4 > __mid3);
144    *__vm = __ryu_shiftright128(__mid4, __hi4, static_cast<uint32_t>(__j - 64));
145  }
146
147  return __ryu_shiftright128(__mid, __hi, static_cast<uint32_t>(__j - 64 - 1));
148}
149
150#endif // ^^^ intrinsics unavailable ^^^
151
152[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __decimalLength17(const uint64_t __v) {
153  // This is slightly faster than a loop.
154  // The average output length is 16.38 digits, so we check high-to-low.
155  // Function precondition: __v is not an 18, 19, or 20-digit number.
156  // (17 digits are sufficient for round-tripping.)
157  _LIBCPP_ASSERT(__v < 100000000000000000u, "");
158  if (__v >= 10000000000000000u) { return 17; }
159  if (__v >= 1000000000000000u) { return 16; }
160  if (__v >= 100000000000000u) { return 15; }
161  if (__v >= 10000000000000u) { return 14; }
162  if (__v >= 1000000000000u) { return 13; }
163  if (__v >= 100000000000u) { return 12; }
164  if (__v >= 10000000000u) { return 11; }
165  if (__v >= 1000000000u) { return 10; }
166  if (__v >= 100000000u) { return 9; }
167  if (__v >= 10000000u) { return 8; }
168  if (__v >= 1000000u) { return 7; }
169  if (__v >= 100000u) { return 6; }
170  if (__v >= 10000u) { return 5; }
171  if (__v >= 1000u) { return 4; }
172  if (__v >= 100u) { return 3; }
173  if (__v >= 10u) { return 2; }
174  return 1;
175}
176
177// A floating decimal representing m * 10^e.
178struct __floating_decimal_64 {
179  uint64_t __mantissa;
180  int32_t __exponent;
181};
182
183[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_64 __d2d(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent) {
184  int32_t __e2;
185  uint64_t __m2;
186  if (__ieeeExponent == 0) {
187    // We subtract 2 so that the bounds computation has 2 additional bits.
188    __e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2;
189    __m2 = __ieeeMantissa;
190  } else {
191    __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2;
192    __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
193  }
194  const bool __even = (__m2 & 1) == 0;
195  const bool __acceptBounds = __even;
196
197  // Step 2: Determine the interval of valid decimal representations.
198  const uint64_t __mv = 4 * __m2;
199  // Implicit bool -> int conversion. True is 1, false is 0.
200  const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
201  // We would compute __mp and __mm like this:
202  // uint64_t __mp = 4 * __m2 + 2;
203  // uint64_t __mm = __mv - 1 - __mmShift;
204
205  // Step 3: Convert to a decimal power base using 128-bit arithmetic.
206  uint64_t __vr, __vp, __vm;
207  int32_t __e10;
208  bool __vmIsTrailingZeros = false;
209  bool __vrIsTrailingZeros = false;
210  if (__e2 >= 0) {
211    // I tried special-casing __q == 0, but there was no effect on performance.
212    // This expression is slightly faster than max(0, __log10Pow2(__e2) - 1).
213    const uint32_t __q = __log10Pow2(__e2) - (__e2 > 3);
214    __e10 = static_cast<int32_t>(__q);
215    const int32_t __k = __DOUBLE_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
216    const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
217    __vr = __mulShiftAll(__m2, __DOUBLE_POW5_INV_SPLIT[__q], __i, &__vp, &__vm, __mmShift);
218    if (__q <= 21) {
219      // This should use __q <= 22, but I think 21 is also safe. Smaller values
220      // may still be safe, but it's more difficult to reason about them.
221      // Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
222      const uint32_t __mvMod5 = static_cast<uint32_t>(__mv) - 5 * static_cast<uint32_t>(__div5(__mv));
223      if (__mvMod5 == 0) {
224        __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
225      } else if (__acceptBounds) {
226        // Same as min(__e2 + (~__mm & 1), __pow5Factor(__mm)) >= __q
227        // <=> __e2 + (~__mm & 1) >= __q && __pow5Factor(__mm) >= __q
228        // <=> true && __pow5Factor(__mm) >= __q, since __e2 >= __q.
229        __vmIsTrailingZeros = __multipleOfPowerOf5(__mv - 1 - __mmShift, __q);
230      } else {
231        // Same as min(__e2 + 1, __pow5Factor(__mp)) >= __q.
232        __vp -= __multipleOfPowerOf5(__mv + 2, __q);
233      }
234    }
235  } else {
236    // This expression is slightly faster than max(0, __log10Pow5(-__e2) - 1).
237    const uint32_t __q = __log10Pow5(-__e2) - (-__e2 > 1);
238    __e10 = static_cast<int32_t>(__q) + __e2;
239    const int32_t __i = -__e2 - static_cast<int32_t>(__q);
240    const int32_t __k = __pow5bits(__i) - __DOUBLE_POW5_BITCOUNT;
241    const int32_t __j = static_cast<int32_t>(__q) - __k;
242    __vr = __mulShiftAll(__m2, __DOUBLE_POW5_SPLIT[__i], __j, &__vp, &__vm, __mmShift);
243    if (__q <= 1) {
244      // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
245      // __mv = 4 * __m2, so it always has at least two trailing 0 bits.
246      __vrIsTrailingZeros = true;
247      if (__acceptBounds) {
248        // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
249        __vmIsTrailingZeros = __mmShift == 1;
250      } else {
251        // __mp = __mv + 2, so it always has at least one trailing 0 bit.
252        --__vp;
253      }
254    } else if (__q < 63) { // TRANSITION(ulfjack): Use a tighter bound here.
255      // We need to compute min(ntz(__mv), __pow5Factor(__mv) - __e2) >= __q - 1
256      // <=> ntz(__mv) >= __q - 1 && __pow5Factor(__mv) - __e2 >= __q - 1
257      // <=> ntz(__mv) >= __q - 1 (__e2 is negative and -__e2 >= __q)
258      // <=> (__mv & ((1 << (__q - 1)) - 1)) == 0
259      // We also need to make sure that the left shift does not overflow.
260      __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
261    }
262  }
263
264  // Step 4: Find the shortest decimal representation in the interval of valid representations.
265  int32_t __removed = 0;
266  uint8_t __lastRemovedDigit = 0;
267  uint64_t _Output;
268  // On average, we remove ~2 digits.
269  if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
270    // General case, which happens rarely (~0.7%).
271    for (;;) {
272      const uint64_t __vpDiv10 = __div10(__vp);
273      const uint64_t __vmDiv10 = __div10(__vm);
274      if (__vpDiv10 <= __vmDiv10) {
275        break;
276      }
277      const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10);
278      const uint64_t __vrDiv10 = __div10(__vr);
279      const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
280      __vmIsTrailingZeros &= __vmMod10 == 0;
281      __vrIsTrailingZeros &= __lastRemovedDigit == 0;
282      __lastRemovedDigit = static_cast<uint8_t>(__vrMod10);
283      __vr = __vrDiv10;
284      __vp = __vpDiv10;
285      __vm = __vmDiv10;
286      ++__removed;
287    }
288    if (__vmIsTrailingZeros) {
289      for (;;) {
290        const uint64_t __vmDiv10 = __div10(__vm);
291        const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10);
292        if (__vmMod10 != 0) {
293          break;
294        }
295        const uint64_t __vpDiv10 = __div10(__vp);
296        const uint64_t __vrDiv10 = __div10(__vr);
297        const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
298        __vrIsTrailingZeros &= __lastRemovedDigit == 0;
299        __lastRemovedDigit = static_cast<uint8_t>(__vrMod10);
300        __vr = __vrDiv10;
301        __vp = __vpDiv10;
302        __vm = __vmDiv10;
303        ++__removed;
304      }
305    }
306    if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
307      // Round even if the exact number is .....50..0.
308      __lastRemovedDigit = 4;
309    }
310    // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
311    _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
312  } else {
313    // Specialized for the common case (~99.3%). Percentages below are relative to this.
314    bool __roundUp = false;
315    const uint64_t __vpDiv100 = __div100(__vp);
316    const uint64_t __vmDiv100 = __div100(__vm);
317    if (__vpDiv100 > __vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
318      const uint64_t __vrDiv100 = __div100(__vr);
319      const uint32_t __vrMod100 = static_cast<uint32_t>(__vr) - 100 * static_cast<uint32_t>(__vrDiv100);
320      __roundUp = __vrMod100 >= 50;
321      __vr = __vrDiv100;
322      __vp = __vpDiv100;
323      __vm = __vmDiv100;
324      __removed += 2;
325    }
326    // Loop iterations below (approximately), without optimization above:
327    // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
328    // Loop iterations below (approximately), with optimization above:
329    // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
330    for (;;) {
331      const uint64_t __vpDiv10 = __div10(__vp);
332      const uint64_t __vmDiv10 = __div10(__vm);
333      if (__vpDiv10 <= __vmDiv10) {
334        break;
335      }
336      const uint64_t __vrDiv10 = __div10(__vr);
337      const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
338      __roundUp = __vrMod10 >= 5;
339      __vr = __vrDiv10;
340      __vp = __vpDiv10;
341      __vm = __vmDiv10;
342      ++__removed;
343    }
344    // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
345    _Output = __vr + (__vr == __vm || __roundUp);
346  }
347  const int32_t __exp = __e10 + __removed;
348
349  __floating_decimal_64 __fd;
350  __fd.__exponent = __exp;
351  __fd.__mantissa = _Output;
352  return __fd;
353}
354
355[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_64 __v,
356  chars_format _Fmt, const double __f) {
357  // Step 5: Print the decimal representation.
358  uint64_t _Output = __v.__mantissa;
359  int32_t _Ryu_exponent = __v.__exponent;
360  const uint32_t __olength = __decimalLength17(_Output);
361  int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
362
363  if (_Fmt == chars_format{}) {
364    int32_t _Lower;
365    int32_t _Upper;
366
367    if (__olength == 1) {
368      // Value | Fixed   | Scientific
369      // 1e-3  | "0.001" | "1e-03"
370      // 1e4   | "10000" | "1e+04"
371      _Lower = -3;
372      _Upper = 4;
373    } else {
374      // Value   | Fixed       | Scientific
375      // 1234e-7 | "0.0001234" | "1.234e-04"
376      // 1234e5  | "123400000" | "1.234e+08"
377      _Lower = -static_cast<int32_t>(__olength + 3);
378      _Upper = 5;
379    }
380
381    if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
382      _Fmt = chars_format::fixed;
383    } else {
384      _Fmt = chars_format::scientific;
385    }
386  } else if (_Fmt == chars_format::general) {
387    // C11 7.21.6.1 "The fprintf function"/8:
388    // "Let P equal [...] 6 if the precision is omitted [...].
389    // Then, if a conversion with style E would have an exponent of X:
390    // - if P > X >= -4, the conversion is with style f [...].
391    // - otherwise, the conversion is with style e [...]."
392    if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
393      _Fmt = chars_format::fixed;
394    } else {
395      _Fmt = chars_format::scientific;
396    }
397  }
398
399  if (_Fmt == chars_format::fixed) {
400    // Example: _Output == 1729, __olength == 4
401
402    // _Ryu_exponent | Printed  | _Whole_digits | _Total_fixed_length  | Notes
403    // --------------|----------|---------------|----------------------|---------------------------------------
404    //             2 | 172900   |  6            | _Whole_digits        | Ryu can't be used for printing
405    //             1 | 17290    |  5            | (sometimes adjusted) | when the trimmed digits are nonzero.
406    // --------------|----------|---------------|----------------------|---------------------------------------
407    //             0 | 1729     |  4            | _Whole_digits        | Unified length cases.
408    // --------------|----------|---------------|----------------------|---------------------------------------
409    //            -1 | 172.9    |  3            | __olength + 1        | This case can't happen for
410    //            -2 | 17.29    |  2            |                      | __olength == 1, but no additional
411    //            -3 | 1.729    |  1            |                      | code is needed to avoid it.
412    // --------------|----------|---------------|----------------------|---------------------------------------
413    //            -4 | 0.1729   |  0            | 2 - _Ryu_exponent    | C11 7.21.6.1 "The fprintf function"/8:
414    //            -5 | 0.01729  | -1            |                      | "If a decimal-point character appears,
415    //            -6 | 0.001729 | -2            |                      | at least one digit appears before it."
416
417    const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
418
419    uint32_t _Total_fixed_length;
420    if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
421      _Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
422      if (_Output == 1) {
423        // Rounding can affect the number of digits.
424        // For example, 1e23 is exactly "99999999999999991611392" which is 23 digits instead of 24.
425        // We can use a lookup table to detect this and adjust the total length.
426        static constexpr uint8_t _Adjustment[309] = {
427          0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0,
428          1,1,0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1,1,
429          1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1,
430          1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,
431          0,1,0,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,1,
432          1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,0,1,1,0,
433          0,1,0,1,1,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1,0,1,0 };
434        _Total_fixed_length -= _Adjustment[_Ryu_exponent];
435        // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
436      }
437    } else if (_Whole_digits > 0) { // case "17.29"
438      _Total_fixed_length = __olength + 1;
439    } else { // case "0.001729"
440      _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
441    }
442
443    if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
444      return { _Last, errc::value_too_large };
445    }
446
447    char* _Mid;
448    if (_Ryu_exponent > 0) { // case "172900"
449      bool _Can_use_ryu;
450
451      if (_Ryu_exponent > 22) { // 10^22 is the largest power of 10 that's exactly representable as a double.
452        _Can_use_ryu = false;
453      } else {
454        // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
455        // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
456        // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
457
458        // _Trailing_zero_bits is [0, 56] (aside: because 2^56 is the largest power of 2
459        // with 17 decimal digits, which is double's round-trip limit.)
460        // _Ryu_exponent is [1, 22].
461        // Normalization adds [2, 52] (aside: at least 2 because the pre-normalized mantissa is at least 5).
462        // This adds up to [3, 130], which is well below double's maximum binary exponent 1023.
463
464        // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
465
466        // If that product would exceed 53 bits, then X can't be exactly represented as a double.
467        // (That's not a problem for round-tripping, because X is close enough to the original double,
468        // but X isn't mathematically equal to the original double.) This requires a high-precision fallback.
469
470        // If the product is 53 bits or smaller, then X can be exactly represented as a double (and we don't
471        // need to re-synthesize it; the original double must have been X, because Ryu wouldn't produce the
472        // same output for two different doubles X and Y). This allows Ryu's output to be used (zero-filled).
473
474        // (2^53 - 1) / 5^0 (for indexing), (2^53 - 1) / 5^1, ..., (2^53 - 1) / 5^22
475        static constexpr uint64_t _Max_shifted_mantissa[23] = {
476          9007199254740991u, 1801439850948198u, 360287970189639u, 72057594037927u, 14411518807585u,
477          2882303761517u, 576460752303u, 115292150460u, 23058430092u, 4611686018u, 922337203u, 184467440u,
478          36893488u, 7378697u, 1475739u, 295147u, 59029u, 11805u, 2361u, 472u, 94u, 18u, 3u };
479
480        unsigned long _Trailing_zero_bits;
481#ifdef _LIBCPP_HAS_BITSCAN64
482        (void) _BitScanForward64(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
483#else // ^^^ 64-bit ^^^ / vvv 32-bit vvv
484        const uint32_t _Low_mantissa = static_cast<uint32_t>(__v.__mantissa);
485        if (_Low_mantissa != 0) {
486          (void) _BitScanForward(&_Trailing_zero_bits, _Low_mantissa);
487        } else {
488          const uint32_t _High_mantissa = static_cast<uint32_t>(__v.__mantissa >> 32); // nonzero here
489          (void) _BitScanForward(&_Trailing_zero_bits, _High_mantissa);
490          _Trailing_zero_bits += 32;
491        }
492#endif // ^^^ 32-bit ^^^
493        const uint64_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
494        _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
495      }
496
497      if (!_Can_use_ryu) {
498        // Print the integer exactly.
499        // Performance note: This will redundantly perform bounds checking.
500        // Performance note: This will redundantly decompose the IEEE representation.
501        return __d2fixed_buffered_n(_First, _Last, __f, 0);
502      }
503
504      // _Can_use_ryu
505      // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
506      _Mid = _First + __olength;
507    } else { // cases "1729", "17.29", and "0.001729"
508      // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
509      _Mid = _First + _Total_fixed_length;
510    }
511
512    // We prefer 32-bit operations, even on 64-bit platforms.
513    // We have at most 17 digits, and uint32_t can store 9 digits.
514    // If _Output doesn't fit into uint32_t, we cut off 8 digits,
515    // so the rest will fit into uint32_t.
516    if ((_Output >> 32) != 0) {
517      // Expensive 64-bit division.
518      const uint64_t __q = __div1e8(_Output);
519      uint32_t __output2 = static_cast<uint32_t>(_Output - 100000000 * __q);
520      _Output = __q;
521
522      const uint32_t __c = __output2 % 10000;
523      __output2 /= 10000;
524      const uint32_t __d = __output2 % 10000;
525      const uint32_t __c0 = (__c % 100) << 1;
526      const uint32_t __c1 = (__c / 100) << 1;
527      const uint32_t __d0 = (__d % 100) << 1;
528      const uint32_t __d1 = (__d / 100) << 1;
529
530      _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
531      _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
532      _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d0, 2);
533      _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d1, 2);
534    }
535    uint32_t __output2 = static_cast<uint32_t>(_Output);
536    while (__output2 >= 10000) {
537#ifdef __clang__ // TRANSITION, LLVM-38217
538      const uint32_t __c = __output2 - 10000 * (__output2 / 10000);
539#else
540      const uint32_t __c = __output2 % 10000;
541#endif
542      __output2 /= 10000;
543      const uint32_t __c0 = (__c % 100) << 1;
544      const uint32_t __c1 = (__c / 100) << 1;
545      _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
546      _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
547    }
548    if (__output2 >= 100) {
549      const uint32_t __c = (__output2 % 100) << 1;
550      __output2 /= 100;
551      _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
552    }
553    if (__output2 >= 10) {
554      const uint32_t __c = __output2 << 1;
555      _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
556    } else {
557      *--_Mid = static_cast<char>('0' + __output2);
558    }
559
560    if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
561      // Performance note: it might be more efficient to do this immediately after setting _Mid.
562      _VSTD::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
563    } else if (_Ryu_exponent == 0) { // case "1729"
564      // Done!
565    } else if (_Whole_digits > 0) { // case "17.29"
566      // Performance note: moving digits might not be optimal.
567      _VSTD::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
568      _First[_Whole_digits] = '.';
569    } else { // case "0.001729"
570      // Performance note: a larger memset() followed by overwriting '.' might be more efficient.
571      _First[0] = '0';
572      _First[1] = '.';
573      _VSTD::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
574    }
575
576    return { _First + _Total_fixed_length, errc{} };
577  }
578
579  const uint32_t _Total_scientific_length = __olength + (__olength > 1) // digits + possible decimal point
580    + (-100 < _Scientific_exponent && _Scientific_exponent < 100 ? 4 : 5); // + scientific exponent
581  if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
582    return { _Last, errc::value_too_large };
583  }
584  char* const __result = _First;
585
586  // Print the decimal digits.
587  uint32_t __i = 0;
588  // We prefer 32-bit operations, even on 64-bit platforms.
589  // We have at most 17 digits, and uint32_t can store 9 digits.
590  // If _Output doesn't fit into uint32_t, we cut off 8 digits,
591  // so the rest will fit into uint32_t.
592  if ((_Output >> 32) != 0) {
593    // Expensive 64-bit division.
594    const uint64_t __q = __div1e8(_Output);
595    uint32_t __output2 = static_cast<uint32_t>(_Output) - 100000000 * static_cast<uint32_t>(__q);
596    _Output = __q;
597
598    const uint32_t __c = __output2 % 10000;
599    __output2 /= 10000;
600    const uint32_t __d = __output2 % 10000;
601    const uint32_t __c0 = (__c % 100) << 1;
602    const uint32_t __c1 = (__c / 100) << 1;
603    const uint32_t __d0 = (__d % 100) << 1;
604    const uint32_t __d1 = (__d / 100) << 1;
605    _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
606    _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
607    _VSTD::memcpy(__result + __olength - __i - 5, __DIGIT_TABLE + __d0, 2);
608    _VSTD::memcpy(__result + __olength - __i - 7, __DIGIT_TABLE + __d1, 2);
609    __i += 8;
610  }
611  uint32_t __output2 = static_cast<uint32_t>(_Output);
612  while (__output2 >= 10000) {
613#ifdef __clang__ // TRANSITION, LLVM-38217
614    const uint32_t __c = __output2 - 10000 * (__output2 / 10000);
615#else
616    const uint32_t __c = __output2 % 10000;
617#endif
618    __output2 /= 10000;
619    const uint32_t __c0 = (__c % 100) << 1;
620    const uint32_t __c1 = (__c / 100) << 1;
621    _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
622    _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
623    __i += 4;
624  }
625  if (__output2 >= 100) {
626    const uint32_t __c = (__output2 % 100) << 1;
627    __output2 /= 100;
628    _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
629    __i += 2;
630  }
631  if (__output2 >= 10) {
632    const uint32_t __c = __output2 << 1;
633    // We can't use memcpy here: the decimal dot goes between these two digits.
634    __result[2] = __DIGIT_TABLE[__c + 1];
635    __result[0] = __DIGIT_TABLE[__c];
636  } else {
637    __result[0] = static_cast<char>('0' + __output2);
638  }
639
640  // Print decimal point if needed.
641  uint32_t __index;
642  if (__olength > 1) {
643    __result[1] = '.';
644    __index = __olength + 1;
645  } else {
646    __index = 1;
647  }
648
649  // Print the exponent.
650  __result[__index++] = 'e';
651  if (_Scientific_exponent < 0) {
652    __result[__index++] = '-';
653    _Scientific_exponent = -_Scientific_exponent;
654  } else {
655    __result[__index++] = '+';
656  }
657
658  if (_Scientific_exponent >= 100) {
659    const int32_t __c = _Scientific_exponent % 10;
660    _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * (_Scientific_exponent / 10), 2);
661    __result[__index + 2] = static_cast<char>('0' + __c);
662    __index += 3;
663  } else {
664    _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
665    __index += 2;
666  }
667
668  return { _First + _Total_scientific_length, errc{} };
669}
670
671[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __d2d_small_int(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent,
672  __floating_decimal_64* const __v) {
673  const uint64_t __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
674  const int32_t __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
675
676  if (__e2 > 0) {
677    // f = __m2 * 2^__e2 >= 2^53 is an integer.
678    // Ignore this case for now.
679    return false;
680  }
681
682  if (__e2 < -52) {
683    // f < 1.
684    return false;
685  }
686
687  // Since 2^52 <= __m2 < 2^53 and 0 <= -__e2 <= 52: 1 <= f = __m2 / 2^-__e2 < 2^53.
688  // Test if the lower -__e2 bits of the significand are 0, i.e. whether the fraction is 0.
689  const uint64_t __mask = (1ull << -__e2) - 1;
690  const uint64_t __fraction = __m2 & __mask;
691  if (__fraction != 0) {
692    return false;
693  }
694
695  // f is an integer in the range [1, 2^53).
696  // Note: __mantissa might contain trailing (decimal) 0's.
697  // Note: since 2^53 < 10^16, there is no need to adjust __decimalLength17().
698  __v->__mantissa = __m2 >> -__e2;
699  __v->__exponent = 0;
700  return true;
701}
702
703[[nodiscard]] to_chars_result __d2s_buffered_n(char* const _First, char* const _Last, const double __f,
704  const chars_format _Fmt) {
705
706  // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
707  const uint64_t __bits = __double_to_bits(__f);
708
709  // Case distinction; exit early for the easy cases.
710  if (__bits == 0) {
711    if (_Fmt == chars_format::scientific) {
712      if (_Last - _First < 5) {
713        return { _Last, errc::value_too_large };
714      }
715
716      _VSTD::memcpy(_First, "0e+00", 5);
717
718      return { _First + 5, errc{} };
719    }
720
721    // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
722    if (_First == _Last) {
723      return { _Last, errc::value_too_large };
724    }
725
726    *_First = '0';
727
728    return { _First + 1, errc{} };
729  }
730
731  // Decode __bits into mantissa and exponent.
732  const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1);
733  const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS);
734
735  if (_Fmt == chars_format::fixed) {
736    // const uint64_t _Mantissa2 = __ieeeMantissa | (1ull << __DOUBLE_MANTISSA_BITS); // restore implicit bit
737    const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
738      - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS; // bias and normalization
739
740    // Normal values are equal to _Mantissa2 * 2^_Exponent2.
741    // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
742
743    // For nonzero integers, _Exponent2 >= -52. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
744    // In that case, _Mantissa2 is the implicit 1 bit followed by 52 zeros, so _Exponent2 is -52 to shift away
745    // the zeros.) The dense range of exactly representable integers has negative or zero exponents
746    // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
747    // every digit is necessary to uniquely identify the value, so Ryu must print them all.
748
749    // Positive exponents are the non-dense range of exactly representable integers. This contains all of the values
750    // for which Ryu can't be used (and a few Ryu-friendly values). We can save time by detecting positive
751    // exponents here and skipping Ryu. Calling __d2fixed_buffered_n() with precision 0 is valid for all integers
752    // (so it's okay if we call it with a Ryu-friendly value).
753    if (_Exponent2 > 0) {
754      return __d2fixed_buffered_n(_First, _Last, __f, 0);
755    }
756  }
757
758  __floating_decimal_64 __v;
759  const bool __isSmallInt = __d2d_small_int(__ieeeMantissa, __ieeeExponent, &__v);
760  if (__isSmallInt) {
761    // For small integers in the range [1, 2^53), __v.__mantissa might contain trailing (decimal) zeros.
762    // For scientific notation we need to move these zeros into the exponent.
763    // (This is not needed for fixed-point notation, so it might be beneficial to trim
764    // trailing zeros in __to_chars only if needed - once fixed-point notation output is implemented.)
765    for (;;) {
766      const uint64_t __q = __div10(__v.__mantissa);
767      const uint32_t __r = static_cast<uint32_t>(__v.__mantissa) - 10 * static_cast<uint32_t>(__q);
768      if (__r != 0) {
769        break;
770      }
771      __v.__mantissa = __q;
772      ++__v.__exponent;
773    }
774  } else {
775    __v = __d2d(__ieeeMantissa, __ieeeExponent);
776  }
777
778  return __to_chars(_First, _Last, __v, _Fmt, __f);
779}
780
781_LIBCPP_END_NAMESPACE_STD
782
783// clang-format on
784