combined.h revision 1.1.1.3
1//===-- combined.h ----------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef SCUDO_COMBINED_H_
10#define SCUDO_COMBINED_H_
11
12#include "chunk.h"
13#include "common.h"
14#include "flags.h"
15#include "flags_parser.h"
16#include "local_cache.h"
17#include "memtag.h"
18#include "options.h"
19#include "quarantine.h"
20#include "report.h"
21#include "secondary.h"
22#include "stack_depot.h"
23#include "string_utils.h"
24#include "tsd.h"
25
26#include "scudo/interface.h"
27
28#ifdef GWP_ASAN_HOOKS
29#include "gwp_asan/guarded_pool_allocator.h"
30#include "gwp_asan/optional/backtrace.h"
31#include "gwp_asan/optional/segv_handler.h"
32#endif // GWP_ASAN_HOOKS
33
34extern "C" inline void EmptyCallback() {}
35
36#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
37// This function is not part of the NDK so it does not appear in any public
38// header files. We only declare/use it when targeting the platform.
39extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
40                                                     size_t num_entries);
41#endif
42
43namespace scudo {
44
45template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
46class Allocator {
47public:
48  using PrimaryT = typename Params::Primary;
49  using CacheT = typename PrimaryT::CacheT;
50  typedef Allocator<Params, PostInitCallback> ThisT;
51  typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;
52
53  void callPostInitCallback() {
54    pthread_once(&PostInitNonce, PostInitCallback);
55  }
56
57  struct QuarantineCallback {
58    explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
59        : Allocator(Instance), Cache(LocalCache) {}
60
61    // Chunk recycling function, returns a quarantined chunk to the backend,
62    // first making sure it hasn't been tampered with.
63    void recycle(void *Ptr) {
64      Chunk::UnpackedHeader Header;
65      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
66      if (UNLIKELY(Header.State != Chunk::State::Quarantined))
67        reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
68
69      Chunk::UnpackedHeader NewHeader = Header;
70      NewHeader.State = Chunk::State::Available;
71      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
72
73      if (allocatorSupportsMemoryTagging<Params>())
74        Ptr = untagPointer(Ptr);
75      void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
76      Cache.deallocate(NewHeader.ClassId, BlockBegin);
77    }
78
79    // We take a shortcut when allocating a quarantine batch by working with the
80    // appropriate class ID instead of using Size. The compiler should optimize
81    // the class ID computation and work with the associated cache directly.
82    void *allocate(UNUSED uptr Size) {
83      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
84          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
85      void *Ptr = Cache.allocate(QuarantineClassId);
86      // Quarantine batch allocation failure is fatal.
87      if (UNLIKELY(!Ptr))
88        reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
89
90      Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
91                                     Chunk::getHeaderSize());
92      Chunk::UnpackedHeader Header = {};
93      Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
94      Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
95      Header.State = Chunk::State::Allocated;
96      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
97
98      // Reset tag to 0 as this chunk may have been previously used for a tagged
99      // user allocation.
100      if (UNLIKELY(useMemoryTagging<Params>(Allocator.Primary.Options.load())))
101        storeTags(reinterpret_cast<uptr>(Ptr),
102                  reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
103
104      return Ptr;
105    }
106
107    void deallocate(void *Ptr) {
108      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
109          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
110      Chunk::UnpackedHeader Header;
111      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
112
113      if (UNLIKELY(Header.State != Chunk::State::Allocated))
114        reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
115      DCHECK_EQ(Header.ClassId, QuarantineClassId);
116      DCHECK_EQ(Header.Offset, 0);
117      DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
118
119      Chunk::UnpackedHeader NewHeader = Header;
120      NewHeader.State = Chunk::State::Available;
121      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
122      Cache.deallocate(QuarantineClassId,
123                       reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
124                                                Chunk::getHeaderSize()));
125    }
126
127  private:
128    ThisT &Allocator;
129    CacheT &Cache;
130  };
131
132  typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
133  typedef typename QuarantineT::CacheT QuarantineCacheT;
134
135  void init() {
136    performSanityChecks();
137
138    // Check if hardware CRC32 is supported in the binary and by the platform,
139    // if so, opt for the CRC32 hardware version of the checksum.
140    if (&computeHardwareCRC32 && hasHardwareCRC32())
141      HashAlgorithm = Checksum::HardwareCRC32;
142
143    if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
144      Cookie = static_cast<u32>(getMonotonicTime() ^
145                                (reinterpret_cast<uptr>(this) >> 4));
146
147    initFlags();
148    reportUnrecognizedFlags();
149
150    // Store some flags locally.
151    if (getFlags()->may_return_null)
152      Primary.Options.set(OptionBit::MayReturnNull);
153    if (getFlags()->zero_contents)
154      Primary.Options.setFillContentsMode(ZeroFill);
155    else if (getFlags()->pattern_fill_contents)
156      Primary.Options.setFillContentsMode(PatternOrZeroFill);
157    if (getFlags()->dealloc_type_mismatch)
158      Primary.Options.set(OptionBit::DeallocTypeMismatch);
159    if (getFlags()->delete_size_mismatch)
160      Primary.Options.set(OptionBit::DeleteSizeMismatch);
161    if (allocatorSupportsMemoryTagging<Params>() &&
162        systemSupportsMemoryTagging())
163      Primary.Options.set(OptionBit::UseMemoryTagging);
164    Primary.Options.set(OptionBit::UseOddEvenTags);
165
166    QuarantineMaxChunkSize =
167        static_cast<u32>(getFlags()->quarantine_max_chunk_size);
168
169    Stats.init();
170    const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
171    Primary.init(ReleaseToOsIntervalMs);
172    Secondary.init(&Stats, ReleaseToOsIntervalMs);
173    Quarantine.init(
174        static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
175        static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
176  }
177
178  // Initialize the embedded GWP-ASan instance. Requires the main allocator to
179  // be functional, best called from PostInitCallback.
180  void initGwpAsan() {
181#ifdef GWP_ASAN_HOOKS
182    gwp_asan::options::Options Opt;
183    Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
184    Opt.MaxSimultaneousAllocations =
185        getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
186    Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
187    Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
188    // Embedded GWP-ASan is locked through the Scudo atfork handler (via
189    // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
190    // handler.
191    Opt.InstallForkHandlers = false;
192    Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
193    GuardedAlloc.init(Opt);
194
195    if (Opt.InstallSignalHandlers)
196      gwp_asan::segv_handler::installSignalHandlers(
197          &GuardedAlloc, Printf,
198          gwp_asan::backtrace::getPrintBacktraceFunction(),
199          gwp_asan::backtrace::getSegvBacktraceFunction());
200
201    GuardedAllocSlotSize =
202        GuardedAlloc.getAllocatorState()->maximumAllocationSize();
203    Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
204                            GuardedAllocSlotSize);
205#endif // GWP_ASAN_HOOKS
206  }
207
208  ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
209    TSDRegistry.initThreadMaybe(this, MinimalInit);
210  }
211
212  void unmapTestOnly() {
213    TSDRegistry.unmapTestOnly(this);
214    Primary.unmapTestOnly();
215    Secondary.unmapTestOnly();
216#ifdef GWP_ASAN_HOOKS
217    if (getFlags()->GWP_ASAN_InstallSignalHandlers)
218      gwp_asan::segv_handler::uninstallSignalHandlers();
219    GuardedAlloc.uninitTestOnly();
220#endif // GWP_ASAN_HOOKS
221  }
222
223  TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
224
225  // The Cache must be provided zero-initialized.
226  void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
227
228  // Release the resources used by a TSD, which involves:
229  // - draining the local quarantine cache to the global quarantine;
230  // - releasing the cached pointers back to the Primary;
231  // - unlinking the local stats from the global ones (destroying the cache does
232  //   the last two items).
233  void commitBack(TSD<ThisT> *TSD) {
234    Quarantine.drain(&TSD->QuarantineCache,
235                     QuarantineCallback(*this, TSD->Cache));
236    TSD->Cache.destroy(&Stats);
237  }
238
239  ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
240    if (!allocatorSupportsMemoryTagging<Params>())
241      return Ptr;
242    auto UntaggedPtr = untagPointer(Ptr);
243    if (UntaggedPtr != Ptr)
244      return UntaggedPtr;
245    // Secondary, or pointer allocated while memory tagging is unsupported or
246    // disabled. The tag mismatch is okay in the latter case because tags will
247    // not be checked.
248    return addHeaderTag(Ptr);
249  }
250
251  ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
252    if (!allocatorSupportsMemoryTagging<Params>())
253      return Ptr;
254    return addFixedTag(Ptr, 2);
255  }
256
257  ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
258    return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
259  }
260
261  NOINLINE u32 collectStackTrace() {
262#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
263    // Discard collectStackTrace() frame and allocator function frame.
264    constexpr uptr DiscardFrames = 2;
265    uptr Stack[MaxTraceSize + DiscardFrames];
266    uptr Size =
267        android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
268    Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
269    return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
270#else
271    return 0;
272#endif
273  }
274
275  uptr computeOddEvenMaskForPointerMaybe(Options Options, uptr Ptr,
276                                         uptr ClassId) {
277    if (!Options.get(OptionBit::UseOddEvenTags))
278      return 0;
279
280    // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
281    // even, and vice versa. Blocks are laid out Size bytes apart, and adding
282    // Size to Ptr will flip the least significant set bit of Size in Ptr, so
283    // that bit will have the pattern 010101... for consecutive blocks, which we
284    // can use to determine which tag mask to use.
285    return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
286  }
287
288  NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
289                          uptr Alignment = MinAlignment,
290                          bool ZeroContents = false) {
291    initThreadMaybe();
292
293    const Options Options = Primary.Options.load();
294    if (UNLIKELY(Alignment > MaxAlignment)) {
295      if (Options.get(OptionBit::MayReturnNull))
296        return nullptr;
297      reportAlignmentTooBig(Alignment, MaxAlignment);
298    }
299    if (Alignment < MinAlignment)
300      Alignment = MinAlignment;
301
302#ifdef GWP_ASAN_HOOKS
303    if (UNLIKELY(GuardedAlloc.shouldSample())) {
304      if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
305        if (UNLIKELY(&__scudo_allocate_hook))
306          __scudo_allocate_hook(Ptr, Size);
307        Stats.lock();
308        Stats.add(StatAllocated, GuardedAllocSlotSize);
309        Stats.sub(StatFree, GuardedAllocSlotSize);
310        Stats.unlock();
311        return Ptr;
312      }
313    }
314#endif // GWP_ASAN_HOOKS
315
316    const FillContentsMode FillContents = ZeroContents ? ZeroFill
317                                          : TSDRegistry.getDisableMemInit()
318                                              ? NoFill
319                                              : Options.getFillContentsMode();
320
321    // If the requested size happens to be 0 (more common than you might think),
322    // allocate MinAlignment bytes on top of the header. Then add the extra
323    // bytes required to fulfill the alignment requirements: we allocate enough
324    // to be sure that there will be an address in the block that will satisfy
325    // the alignment.
326    const uptr NeededSize =
327        roundUpTo(Size, MinAlignment) +
328        ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
329
330    // Takes care of extravagantly large sizes as well as integer overflows.
331    static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
332    if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
333      if (Options.get(OptionBit::MayReturnNull))
334        return nullptr;
335      reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
336    }
337    DCHECK_LE(Size, NeededSize);
338
339    void *Block = nullptr;
340    uptr ClassId = 0;
341    uptr SecondaryBlockEnd = 0;
342    if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
343      ClassId = SizeClassMap::getClassIdBySize(NeededSize);
344      DCHECK_NE(ClassId, 0U);
345      bool UnlockRequired;
346      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
347      Block = TSD->Cache.allocate(ClassId);
348      // If the allocation failed, the most likely reason with a 32-bit primary
349      // is the region being full. In that event, retry in each successively
350      // larger class until it fits. If it fails to fit in the largest class,
351      // fallback to the Secondary.
352      if (UNLIKELY(!Block)) {
353        while (ClassId < SizeClassMap::LargestClassId && !Block)
354          Block = TSD->Cache.allocate(++ClassId);
355        if (!Block)
356          ClassId = 0;
357      }
358      if (UnlockRequired)
359        TSD->unlock();
360    }
361    if (UNLIKELY(ClassId == 0))
362      Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
363                                 FillContents);
364
365    if (UNLIKELY(!Block)) {
366      if (Options.get(OptionBit::MayReturnNull))
367        return nullptr;
368      reportOutOfMemory(NeededSize);
369    }
370
371    const uptr BlockUptr = reinterpret_cast<uptr>(Block);
372    const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
373    const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment);
374
375    void *Ptr = reinterpret_cast<void *>(UserPtr);
376    void *TaggedPtr = Ptr;
377    if (LIKELY(ClassId)) {
378      // We only need to zero or tag the contents for Primary backed
379      // allocations. We only set tags for primary allocations in order to avoid
380      // faulting potentially large numbers of pages for large secondary
381      // allocations. We assume that guard pages are enough to protect these
382      // allocations.
383      //
384      // FIXME: When the kernel provides a way to set the background tag of a
385      // mapping, we should be able to tag secondary allocations as well.
386      //
387      // When memory tagging is enabled, zeroing the contents is done as part of
388      // setting the tag.
389      if (UNLIKELY(useMemoryTagging<Params>(Options))) {
390        uptr PrevUserPtr;
391        Chunk::UnpackedHeader Header;
392        const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
393        const uptr BlockEnd = BlockUptr + BlockSize;
394        // If possible, try to reuse the UAF tag that was set by deallocate().
395        // For simplicity, only reuse tags if we have the same start address as
396        // the previous allocation. This handles the majority of cases since
397        // most allocations will not be more aligned than the minimum alignment.
398        //
399        // We need to handle situations involving reclaimed chunks, and retag
400        // the reclaimed portions if necessary. In the case where the chunk is
401        // fully reclaimed, the chunk's header will be zero, which will trigger
402        // the code path for new mappings and invalid chunks that prepares the
403        // chunk from scratch. There are three possibilities for partial
404        // reclaiming:
405        //
406        // (1) Header was reclaimed, data was partially reclaimed.
407        // (2) Header was not reclaimed, all data was reclaimed (e.g. because
408        //     data started on a page boundary).
409        // (3) Header was not reclaimed, data was partially reclaimed.
410        //
411        // Case (1) will be handled in the same way as for full reclaiming,
412        // since the header will be zero.
413        //
414        // We can detect case (2) by loading the tag from the start
415        // of the chunk. If it is zero, it means that either all data was
416        // reclaimed (since we never use zero as the chunk tag), or that the
417        // previous allocation was of size zero. Either way, we need to prepare
418        // a new chunk from scratch.
419        //
420        // We can detect case (3) by moving to the next page (if covered by the
421        // chunk) and loading the tag of its first granule. If it is zero, it
422        // means that all following pages may need to be retagged. On the other
423        // hand, if it is nonzero, we can assume that all following pages are
424        // still tagged, according to the logic that if any of the pages
425        // following the next page were reclaimed, the next page would have been
426        // reclaimed as well.
427        uptr TaggedUserPtr;
428        if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
429            PrevUserPtr == UserPtr &&
430            (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
431          uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
432          const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached());
433          if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
434            PrevEnd = NextPage;
435          TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
436          resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
437          if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
438            // If an allocation needs to be zeroed (i.e. calloc) we can normally
439            // avoid zeroing the memory now since we can rely on memory having
440            // been zeroed on free, as this is normally done while setting the
441            // UAF tag. But if tagging was disabled per-thread when the memory
442            // was freed, it would not have been retagged and thus zeroed, and
443            // therefore it needs to be zeroed now.
444            memset(TaggedPtr, 0,
445                   Min(Size, roundUpTo(PrevEnd - TaggedUserPtr,
446                                       archMemoryTagGranuleSize())));
447          } else if (Size) {
448            // Clear any stack metadata that may have previously been stored in
449            // the chunk data.
450            memset(TaggedPtr, 0, archMemoryTagGranuleSize());
451          }
452        } else {
453          const uptr OddEvenMask =
454              computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
455          TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
456        }
457        storePrimaryAllocationStackMaybe(Options, Ptr);
458      } else {
459        Block = addHeaderTag(Block);
460        Ptr = addHeaderTag(Ptr);
461        if (UNLIKELY(FillContents != NoFill)) {
462          // This condition is not necessarily unlikely, but since memset is
463          // costly, we might as well mark it as such.
464          memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
465                 PrimaryT::getSizeByClassId(ClassId));
466        }
467      }
468    } else {
469      Block = addHeaderTag(Block);
470      Ptr = addHeaderTag(Ptr);
471      if (UNLIKELY(useMemoryTagging<Params>(Options))) {
472        storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
473        storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
474      }
475    }
476
477    Chunk::UnpackedHeader Header = {};
478    if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
479      const uptr Offset = UserPtr - UnalignedUserPtr;
480      DCHECK_GE(Offset, 2 * sizeof(u32));
481      // The BlockMarker has no security purpose, but is specifically meant for
482      // the chunk iteration function that can be used in debugging situations.
483      // It is the only situation where we have to locate the start of a chunk
484      // based on its block address.
485      reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
486      reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
487      Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
488    }
489    Header.ClassId = ClassId & Chunk::ClassIdMask;
490    Header.State = Chunk::State::Allocated;
491    Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
492    Header.SizeOrUnusedBytes =
493        (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
494        Chunk::SizeOrUnusedBytesMask;
495    Chunk::storeHeader(Cookie, Ptr, &Header);
496
497    if (UNLIKELY(&__scudo_allocate_hook))
498      __scudo_allocate_hook(TaggedPtr, Size);
499
500    return TaggedPtr;
501  }
502
503  NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
504                           UNUSED uptr Alignment = MinAlignment) {
505    // For a deallocation, we only ensure minimal initialization, meaning thread
506    // local data will be left uninitialized for now (when using ELF TLS). The
507    // fallback cache will be used instead. This is a workaround for a situation
508    // where the only heap operation performed in a thread would be a free past
509    // the TLS destructors, ending up in initialized thread specific data never
510    // being destroyed properly. Any other heap operation will do a full init.
511    initThreadMaybe(/*MinimalInit=*/true);
512
513    if (UNLIKELY(&__scudo_deallocate_hook))
514      __scudo_deallocate_hook(Ptr);
515
516    if (UNLIKELY(!Ptr))
517      return;
518
519#ifdef GWP_ASAN_HOOKS
520    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
521      GuardedAlloc.deallocate(Ptr);
522      Stats.lock();
523      Stats.add(StatFree, GuardedAllocSlotSize);
524      Stats.sub(StatAllocated, GuardedAllocSlotSize);
525      Stats.unlock();
526      return;
527    }
528#endif // GWP_ASAN_HOOKS
529
530    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
531      reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
532
533    void *TaggedPtr = Ptr;
534    Ptr = getHeaderTaggedPointer(Ptr);
535
536    Chunk::UnpackedHeader Header;
537    Chunk::loadHeader(Cookie, Ptr, &Header);
538
539    if (UNLIKELY(Header.State != Chunk::State::Allocated))
540      reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
541
542    const Options Options = Primary.Options.load();
543    if (Options.get(OptionBit::DeallocTypeMismatch)) {
544      if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
545        // With the exception of memalign'd chunks, that can be still be free'd.
546        if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
547            Origin != Chunk::Origin::Malloc)
548          reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
549                                    Header.OriginOrWasZeroed, Origin);
550      }
551    }
552
553    const uptr Size = getSize(Ptr, &Header);
554    if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
555      if (UNLIKELY(DeleteSize != Size))
556        reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
557    }
558
559    quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
560  }
561
562  void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
563    initThreadMaybe();
564
565    const Options Options = Primary.Options.load();
566    if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
567      if (Options.get(OptionBit::MayReturnNull))
568        return nullptr;
569      reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
570    }
571
572    // The following cases are handled by the C wrappers.
573    DCHECK_NE(OldPtr, nullptr);
574    DCHECK_NE(NewSize, 0);
575
576#ifdef GWP_ASAN_HOOKS
577    if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
578      uptr OldSize = GuardedAlloc.getSize(OldPtr);
579      void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
580      if (NewPtr)
581        memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
582      GuardedAlloc.deallocate(OldPtr);
583      Stats.lock();
584      Stats.add(StatFree, GuardedAllocSlotSize);
585      Stats.sub(StatAllocated, GuardedAllocSlotSize);
586      Stats.unlock();
587      return NewPtr;
588    }
589#endif // GWP_ASAN_HOOKS
590
591    void *OldTaggedPtr = OldPtr;
592    OldPtr = getHeaderTaggedPointer(OldPtr);
593
594    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
595      reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
596
597    Chunk::UnpackedHeader OldHeader;
598    Chunk::loadHeader(Cookie, OldPtr, &OldHeader);
599
600    if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
601      reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
602
603    // Pointer has to be allocated with a malloc-type function. Some
604    // applications think that it is OK to realloc a memalign'ed pointer, which
605    // will trigger this check. It really isn't.
606    if (Options.get(OptionBit::DeallocTypeMismatch)) {
607      if (UNLIKELY(OldHeader.OriginOrWasZeroed != Chunk::Origin::Malloc))
608        reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
609                                  OldHeader.OriginOrWasZeroed,
610                                  Chunk::Origin::Malloc);
611    }
612
613    void *BlockBegin = getBlockBegin(OldTaggedPtr, &OldHeader);
614    uptr BlockEnd;
615    uptr OldSize;
616    const uptr ClassId = OldHeader.ClassId;
617    if (LIKELY(ClassId)) {
618      BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
619                 SizeClassMap::getSizeByClassId(ClassId);
620      OldSize = OldHeader.SizeOrUnusedBytes;
621    } else {
622      BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
623      OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
624                            OldHeader.SizeOrUnusedBytes);
625    }
626    // If the new chunk still fits in the previously allocated block (with a
627    // reasonable delta), we just keep the old block, and update the chunk
628    // header to reflect the size change.
629    if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
630      if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
631        Chunk::UnpackedHeader NewHeader = OldHeader;
632        NewHeader.SizeOrUnusedBytes =
633            (ClassId ? NewSize
634                     : BlockEnd -
635                           (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
636            Chunk::SizeOrUnusedBytesMask;
637        Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
638        if (UNLIKELY(useMemoryTagging<Params>(Options))) {
639          if (ClassId) {
640            resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
641                              reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
642                              NewSize, untagPointer(BlockEnd));
643            storePrimaryAllocationStackMaybe(Options, OldPtr);
644          } else {
645            storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
646          }
647        }
648        return OldTaggedPtr;
649      }
650    }
651
652    // Otherwise we allocate a new one, and deallocate the old one. Some
653    // allocators will allocate an even larger chunk (by a fixed factor) to
654    // allow for potential further in-place realloc. The gains of such a trick
655    // are currently unclear.
656    void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
657    if (LIKELY(NewPtr)) {
658      memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
659      quarantineOrDeallocateChunk(Options, OldTaggedPtr, &OldHeader, OldSize);
660    }
661    return NewPtr;
662  }
663
664  // TODO(kostyak): disable() is currently best-effort. There are some small
665  //                windows of time when an allocation could still succeed after
666  //                this function finishes. We will revisit that later.
667  void disable() {
668    initThreadMaybe();
669#ifdef GWP_ASAN_HOOKS
670    GuardedAlloc.disable();
671#endif
672    TSDRegistry.disable();
673    Stats.disable();
674    Quarantine.disable();
675    Primary.disable();
676    Secondary.disable();
677  }
678
679  void enable() {
680    initThreadMaybe();
681    Secondary.enable();
682    Primary.enable();
683    Quarantine.enable();
684    Stats.enable();
685    TSDRegistry.enable();
686#ifdef GWP_ASAN_HOOKS
687    GuardedAlloc.enable();
688#endif
689  }
690
691  // The function returns the amount of bytes required to store the statistics,
692  // which might be larger than the amount of bytes provided. Note that the
693  // statistics buffer is not necessarily constant between calls to this
694  // function. This can be called with a null buffer or zero size for buffer
695  // sizing purposes.
696  uptr getStats(char *Buffer, uptr Size) {
697    ScopedString Str;
698    disable();
699    const uptr Length = getStats(&Str) + 1;
700    enable();
701    if (Length < Size)
702      Size = Length;
703    if (Buffer && Size) {
704      memcpy(Buffer, Str.data(), Size);
705      Buffer[Size - 1] = '\0';
706    }
707    return Length;
708  }
709
710  void printStats() {
711    ScopedString Str;
712    disable();
713    getStats(&Str);
714    enable();
715    Str.output();
716  }
717
718  void releaseToOS() {
719    initThreadMaybe();
720    Primary.releaseToOS();
721    Secondary.releaseToOS();
722  }
723
724  // Iterate over all chunks and call a callback for all busy chunks located
725  // within the provided memory range. Said callback must not use this allocator
726  // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
727  void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
728                         void *Arg) {
729    initThreadMaybe();
730    if (archSupportsMemoryTagging())
731      Base = untagPointer(Base);
732    const uptr From = Base;
733    const uptr To = Base + Size;
734    bool MayHaveTaggedPrimary = allocatorSupportsMemoryTagging<Params>() &&
735                                systemSupportsMemoryTagging();
736    auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
737                   Arg](uptr Block) {
738      if (Block < From || Block >= To)
739        return;
740      uptr Chunk;
741      Chunk::UnpackedHeader Header;
742      if (MayHaveTaggedPrimary) {
743        // A chunk header can either have a zero tag (tagged primary) or the
744        // header tag (secondary, or untagged primary). We don't know which so
745        // try both.
746        ScopedDisableMemoryTagChecks x;
747        if (!getChunkFromBlock(Block, &Chunk, &Header) &&
748            !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
749          return;
750      } else {
751        if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
752          return;
753      }
754      if (Header.State == Chunk::State::Allocated) {
755        uptr TaggedChunk = Chunk;
756        if (allocatorSupportsMemoryTagging<Params>())
757          TaggedChunk = untagPointer(TaggedChunk);
758        if (useMemoryTagging<Params>(Primary.Options.load()))
759          TaggedChunk = loadTag(Chunk);
760        Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
761                 Arg);
762      }
763    };
764    Primary.iterateOverBlocks(Lambda);
765    Secondary.iterateOverBlocks(Lambda);
766#ifdef GWP_ASAN_HOOKS
767    GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
768#endif
769  }
770
771  bool canReturnNull() {
772    initThreadMaybe();
773    return Primary.Options.load().get(OptionBit::MayReturnNull);
774  }
775
776  bool setOption(Option O, sptr Value) {
777    initThreadMaybe();
778    if (O == Option::MemtagTuning) {
779      // Enabling odd/even tags involves a tradeoff between use-after-free
780      // detection and buffer overflow detection. Odd/even tags make it more
781      // likely for buffer overflows to be detected by increasing the size of
782      // the guaranteed "red zone" around the allocation, but on the other hand
783      // use-after-free is less likely to be detected because the tag space for
784      // any particular chunk is cut in half. Therefore we use this tuning
785      // setting to control whether odd/even tags are enabled.
786      if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
787        Primary.Options.set(OptionBit::UseOddEvenTags);
788      else if (Value == M_MEMTAG_TUNING_UAF)
789        Primary.Options.clear(OptionBit::UseOddEvenTags);
790      return true;
791    } else {
792      // We leave it to the various sub-components to decide whether or not they
793      // want to handle the option, but we do not want to short-circuit
794      // execution if one of the setOption was to return false.
795      const bool PrimaryResult = Primary.setOption(O, Value);
796      const bool SecondaryResult = Secondary.setOption(O, Value);
797      const bool RegistryResult = TSDRegistry.setOption(O, Value);
798      return PrimaryResult && SecondaryResult && RegistryResult;
799    }
800    return false;
801  }
802
803  // Return the usable size for a given chunk. Technically we lie, as we just
804  // report the actual size of a chunk. This is done to counteract code actively
805  // writing past the end of a chunk (like sqlite3) when the usable size allows
806  // for it, which then forces realloc to copy the usable size of a chunk as
807  // opposed to its actual size.
808  uptr getUsableSize(const void *Ptr) {
809    initThreadMaybe();
810    if (UNLIKELY(!Ptr))
811      return 0;
812
813#ifdef GWP_ASAN_HOOKS
814    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
815      return GuardedAlloc.getSize(Ptr);
816#endif // GWP_ASAN_HOOKS
817
818    Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
819    Chunk::UnpackedHeader Header;
820    Chunk::loadHeader(Cookie, Ptr, &Header);
821    // Getting the usable size of a chunk only makes sense if it's allocated.
822    if (UNLIKELY(Header.State != Chunk::State::Allocated))
823      reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
824    return getSize(Ptr, &Header);
825  }
826
827  void getStats(StatCounters S) {
828    initThreadMaybe();
829    Stats.get(S);
830  }
831
832  // Returns true if the pointer provided was allocated by the current
833  // allocator instance, which is compliant with tcmalloc's ownership concept.
834  // A corrupted chunk will not be reported as owned, which is WAI.
835  bool isOwned(const void *Ptr) {
836    initThreadMaybe();
837#ifdef GWP_ASAN_HOOKS
838    if (GuardedAlloc.pointerIsMine(Ptr))
839      return true;
840#endif // GWP_ASAN_HOOKS
841    if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
842      return false;
843    Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
844    Chunk::UnpackedHeader Header;
845    return Chunk::isValid(Cookie, Ptr, &Header) &&
846           Header.State == Chunk::State::Allocated;
847  }
848
849  bool useMemoryTaggingTestOnly() const {
850    return useMemoryTagging<Params>(Primary.Options.load());
851  }
852  void disableMemoryTagging() {
853    // If we haven't been initialized yet, we need to initialize now in order to
854    // prevent a future call to initThreadMaybe() from enabling memory tagging
855    // based on feature detection. But don't call initThreadMaybe() because it
856    // may end up calling the allocator (via pthread_atfork, via the post-init
857    // callback), which may cause mappings to be created with memory tagging
858    // enabled.
859    TSDRegistry.initOnceMaybe(this);
860    if (allocatorSupportsMemoryTagging<Params>()) {
861      Secondary.disableMemoryTagging();
862      Primary.Options.clear(OptionBit::UseMemoryTagging);
863    }
864  }
865
866  void setTrackAllocationStacks(bool Track) {
867    initThreadMaybe();
868    if (Track)
869      Primary.Options.set(OptionBit::TrackAllocationStacks);
870    else
871      Primary.Options.clear(OptionBit::TrackAllocationStacks);
872  }
873
874  void setFillContents(FillContentsMode FillContents) {
875    initThreadMaybe();
876    Primary.Options.setFillContentsMode(FillContents);
877  }
878
879  void setAddLargeAllocationSlack(bool AddSlack) {
880    initThreadMaybe();
881    if (AddSlack)
882      Primary.Options.set(OptionBit::AddLargeAllocationSlack);
883    else
884      Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
885  }
886
887  const char *getStackDepotAddress() const {
888    return reinterpret_cast<const char *>(&Depot);
889  }
890
891  const char *getRegionInfoArrayAddress() const {
892    return Primary.getRegionInfoArrayAddress();
893  }
894
895  static uptr getRegionInfoArraySize() {
896    return PrimaryT::getRegionInfoArraySize();
897  }
898
899  const char *getRingBufferAddress() const {
900    return reinterpret_cast<const char *>(&RingBuffer);
901  }
902
903  static uptr getRingBufferSize() { return sizeof(RingBuffer); }
904
905  static const uptr MaxTraceSize = 64;
906
907  static void collectTraceMaybe(const StackDepot *Depot,
908                                uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
909    uptr RingPos, Size;
910    if (!Depot->find(Hash, &RingPos, &Size))
911      return;
912    for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
913      Trace[I] = (*Depot)[RingPos + I];
914  }
915
916  static void getErrorInfo(struct scudo_error_info *ErrorInfo,
917                           uintptr_t FaultAddr, const char *DepotPtr,
918                           const char *RegionInfoPtr, const char *RingBufferPtr,
919                           const char *Memory, const char *MemoryTags,
920                           uintptr_t MemoryAddr, size_t MemorySize) {
921    *ErrorInfo = {};
922    if (!allocatorSupportsMemoryTagging<Params>() ||
923        MemoryAddr + MemorySize < MemoryAddr)
924      return;
925
926    auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
927    size_t NextErrorReport = 0;
928
929    // Check for OOB in the current block and the two surrounding blocks. Beyond
930    // that, UAF is more likely.
931    if (extractTag(FaultAddr) != 0)
932      getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
933                         RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
934                         MemorySize, 0, 2);
935
936    // Check the ring buffer. For primary allocations this will only find UAF;
937    // for secondary allocations we can find either UAF or OOB.
938    getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
939                           RingBufferPtr);
940
941    // Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
942    // Beyond that we are likely to hit false positives.
943    if (extractTag(FaultAddr) != 0)
944      getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
945                         RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
946                         MemorySize, 2, 16);
947  }
948
949private:
950  using SecondaryT = MapAllocator<Params>;
951  typedef typename PrimaryT::SizeClassMap SizeClassMap;
952
953  static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
954  static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
955  static const uptr MinAlignment = 1UL << MinAlignmentLog;
956  static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
957  static const uptr MaxAllowedMallocSize =
958      FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
959
960  static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
961                "Minimal alignment must at least cover a chunk header.");
962  static_assert(!allocatorSupportsMemoryTagging<Params>() ||
963                    MinAlignment >= archMemoryTagGranuleSize(),
964                "");
965
966  static const u32 BlockMarker = 0x44554353U;
967
968  // These are indexes into an "array" of 32-bit values that store information
969  // inline with a chunk that is relevant to diagnosing memory tag faults, where
970  // 0 corresponds to the address of the user memory. This means that only
971  // negative indexes may be used. The smallest index that may be used is -2,
972  // which corresponds to 8 bytes before the user memory, because the chunk
973  // header size is 8 bytes and in allocators that support memory tagging the
974  // minimum alignment is at least the tag granule size (16 on aarch64).
975  static const sptr MemTagAllocationTraceIndex = -2;
976  static const sptr MemTagAllocationTidIndex = -1;
977
978  u32 Cookie = 0;
979  u32 QuarantineMaxChunkSize = 0;
980
981  GlobalStats Stats;
982  PrimaryT Primary;
983  SecondaryT Secondary;
984  QuarantineT Quarantine;
985  TSDRegistryT TSDRegistry;
986  pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
987
988#ifdef GWP_ASAN_HOOKS
989  gwp_asan::GuardedPoolAllocator GuardedAlloc;
990  uptr GuardedAllocSlotSize = 0;
991#endif // GWP_ASAN_HOOKS
992
993  StackDepot Depot;
994
995  struct AllocationRingBuffer {
996    struct Entry {
997      atomic_uptr Ptr;
998      atomic_uptr AllocationSize;
999      atomic_u32 AllocationTrace;
1000      atomic_u32 AllocationTid;
1001      atomic_u32 DeallocationTrace;
1002      atomic_u32 DeallocationTid;
1003    };
1004
1005    atomic_uptr Pos;
1006#ifdef SCUDO_FUZZ
1007    static const uptr NumEntries = 2;
1008#else
1009    static const uptr NumEntries = 32768;
1010#endif
1011    Entry Entries[NumEntries];
1012  };
1013  AllocationRingBuffer RingBuffer = {};
1014
1015  // The following might get optimized out by the compiler.
1016  NOINLINE void performSanityChecks() {
1017    // Verify that the header offset field can hold the maximum offset. In the
1018    // case of the Secondary allocator, it takes care of alignment and the
1019    // offset will always be small. In the case of the Primary, the worst case
1020    // scenario happens in the last size class, when the backend allocation
1021    // would already be aligned on the requested alignment, which would happen
1022    // to be the maximum alignment that would fit in that size class. As a
1023    // result, the maximum offset will be at most the maximum alignment for the
1024    // last size class minus the header size, in multiples of MinAlignment.
1025    Chunk::UnpackedHeader Header = {};
1026    const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
1027                                         SizeClassMap::MaxSize - MinAlignment);
1028    const uptr MaxOffset =
1029        (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
1030    Header.Offset = MaxOffset & Chunk::OffsetMask;
1031    if (UNLIKELY(Header.Offset != MaxOffset))
1032      reportSanityCheckError("offset");
1033
1034    // Verify that we can fit the maximum size or amount of unused bytes in the
1035    // header. Given that the Secondary fits the allocation to a page, the worst
1036    // case scenario happens in the Primary. It will depend on the second to
1037    // last and last class sizes, as well as the dynamic base for the Primary.
1038    // The following is an over-approximation that works for our needs.
1039    const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1040    Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1041    if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1042      reportSanityCheckError("size (or unused bytes)");
1043
1044    const uptr LargestClassId = SizeClassMap::LargestClassId;
1045    Header.ClassId = LargestClassId;
1046    if (UNLIKELY(Header.ClassId != LargestClassId))
1047      reportSanityCheckError("class ID");
1048  }
1049
1050  static inline void *getBlockBegin(const void *Ptr,
1051                                    Chunk::UnpackedHeader *Header) {
1052    return reinterpret_cast<void *>(
1053        reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1054        (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1055  }
1056
1057  // Return the size of a chunk as requested during its allocation.
1058  inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1059    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1060    if (LIKELY(Header->ClassId))
1061      return SizeOrUnusedBytes;
1062    if (allocatorSupportsMemoryTagging<Params>())
1063      Ptr = untagPointer(const_cast<void *>(Ptr));
1064    return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1065           reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1066  }
1067
1068  void quarantineOrDeallocateChunk(Options Options, void *TaggedPtr,
1069                                   Chunk::UnpackedHeader *Header, uptr Size) {
1070    void *Ptr = getHeaderTaggedPointer(TaggedPtr);
1071    Chunk::UnpackedHeader NewHeader = *Header;
1072    // If the quarantine is disabled, the actual size of a chunk is 0 or larger
1073    // than the maximum allowed, we return a chunk directly to the backend.
1074    // This purposefully underflows for Size == 0.
1075    const bool BypassQuarantine = !Quarantine.getCacheSize() ||
1076                                  ((Size - 1) >= QuarantineMaxChunkSize) ||
1077                                  !NewHeader.ClassId;
1078    if (BypassQuarantine)
1079      NewHeader.State = Chunk::State::Available;
1080    else
1081      NewHeader.State = Chunk::State::Quarantined;
1082    NewHeader.OriginOrWasZeroed = useMemoryTagging<Params>(Options) &&
1083                                  NewHeader.ClassId &&
1084                                  !TSDRegistry.getDisableMemInit();
1085    Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
1086
1087    if (UNLIKELY(useMemoryTagging<Params>(Options))) {
1088      u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
1089      storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
1090      if (NewHeader.ClassId) {
1091        if (!TSDRegistry.getDisableMemInit()) {
1092          uptr TaggedBegin, TaggedEnd;
1093          const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1094              Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, &NewHeader)),
1095              NewHeader.ClassId);
1096          // Exclude the previous tag so that immediate use after free is
1097          // detected 100% of the time.
1098          setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1099                       &TaggedEnd);
1100        }
1101      }
1102    }
1103    if (BypassQuarantine) {
1104      if (allocatorSupportsMemoryTagging<Params>())
1105        Ptr = untagPointer(Ptr);
1106      void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
1107      const uptr ClassId = NewHeader.ClassId;
1108      if (LIKELY(ClassId)) {
1109        bool UnlockRequired;
1110        auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1111        TSD->Cache.deallocate(ClassId, BlockBegin);
1112        if (UnlockRequired)
1113          TSD->unlock();
1114      } else {
1115        if (UNLIKELY(useMemoryTagging<Params>(Options)))
1116          storeTags(reinterpret_cast<uptr>(BlockBegin),
1117                    reinterpret_cast<uptr>(Ptr));
1118        Secondary.deallocate(Options, BlockBegin);
1119      }
1120    } else {
1121      bool UnlockRequired;
1122      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1123      Quarantine.put(&TSD->QuarantineCache,
1124                     QuarantineCallback(*this, TSD->Cache), Ptr, Size);
1125      if (UnlockRequired)
1126        TSD->unlock();
1127    }
1128  }
1129
1130  bool getChunkFromBlock(uptr Block, uptr *Chunk,
1131                         Chunk::UnpackedHeader *Header) {
1132    *Chunk =
1133        Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1134    return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1135  }
1136
1137  static uptr getChunkOffsetFromBlock(const char *Block) {
1138    u32 Offset = 0;
1139    if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1140      Offset = reinterpret_cast<const u32 *>(Block)[1];
1141    return Offset + Chunk::getHeaderSize();
1142  }
1143
1144  // Set the tag of the granule past the end of the allocation to 0, to catch
1145  // linear overflows even if a previous larger allocation used the same block
1146  // and tag. Only do this if the granule past the end is in our block, because
1147  // this would otherwise lead to a SEGV if the allocation covers the entire
1148  // block and our block is at the end of a mapping. The tag of the next block's
1149  // header granule will be set to 0, so it will serve the purpose of catching
1150  // linear overflows in this case.
1151  //
1152  // For allocations of size 0 we do not end up storing the address tag to the
1153  // memory tag space, which getInlineErrorInfo() normally relies on to match
1154  // address tags against chunks. To allow matching in this case we store the
1155  // address tag in the first byte of the chunk.
1156  void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
1157    DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
1158    uptr UntaggedEnd = untagPointer(End);
1159    if (UntaggedEnd != BlockEnd) {
1160      storeTag(UntaggedEnd);
1161      if (Size == 0)
1162        *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
1163    }
1164  }
1165
1166  void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
1167                           uptr BlockEnd) {
1168    // Prepare the granule before the chunk to store the chunk header by setting
1169    // its tag to 0. Normally its tag will already be 0, but in the case where a
1170    // chunk holding a low alignment allocation is reused for a higher alignment
1171    // allocation, the chunk may already have a non-zero tag from the previous
1172    // allocation.
1173    storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
1174
1175    uptr TaggedBegin, TaggedEnd;
1176    setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
1177
1178    storeEndMarker(TaggedEnd, Size, BlockEnd);
1179    return reinterpret_cast<void *>(TaggedBegin);
1180  }
1181
1182  void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
1183                         uptr BlockEnd) {
1184    uptr RoundOldPtr = roundUpTo(OldPtr, archMemoryTagGranuleSize());
1185    uptr RoundNewPtr;
1186    if (RoundOldPtr >= NewPtr) {
1187      // If the allocation is shrinking we just need to set the tag past the end
1188      // of the allocation to 0. See explanation in storeEndMarker() above.
1189      RoundNewPtr = roundUpTo(NewPtr, archMemoryTagGranuleSize());
1190    } else {
1191      // Set the memory tag of the region
1192      // [RoundOldPtr, roundUpTo(NewPtr, archMemoryTagGranuleSize()))
1193      // to the pointer tag stored in OldPtr.
1194      RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
1195    }
1196    storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
1197  }
1198
1199  void storePrimaryAllocationStackMaybe(Options Options, void *Ptr) {
1200    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1201      return;
1202    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1203    Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
1204    Ptr32[MemTagAllocationTidIndex] = getThreadID();
1205  }
1206
1207  void storeRingBufferEntry(void *Ptr, u32 AllocationTrace, u32 AllocationTid,
1208                            uptr AllocationSize, u32 DeallocationTrace,
1209                            u32 DeallocationTid) {
1210    uptr Pos = atomic_fetch_add(&RingBuffer.Pos, 1, memory_order_relaxed);
1211    typename AllocationRingBuffer::Entry *Entry =
1212        &RingBuffer.Entries[Pos % AllocationRingBuffer::NumEntries];
1213
1214    // First invalidate our entry so that we don't attempt to interpret a
1215    // partially written state in getSecondaryErrorInfo(). The fences below
1216    // ensure that the compiler does not move the stores to Ptr in between the
1217    // stores to the other fields.
1218    atomic_store_relaxed(&Entry->Ptr, 0);
1219
1220    __atomic_signal_fence(__ATOMIC_SEQ_CST);
1221    atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
1222    atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
1223    atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
1224    atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
1225    atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
1226    __atomic_signal_fence(__ATOMIC_SEQ_CST);
1227
1228    atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
1229  }
1230
1231  void storeSecondaryAllocationStackMaybe(Options Options, void *Ptr,
1232                                          uptr Size) {
1233    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1234      return;
1235
1236    u32 Trace = collectStackTrace();
1237    u32 Tid = getThreadID();
1238
1239    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1240    Ptr32[MemTagAllocationTraceIndex] = Trace;
1241    Ptr32[MemTagAllocationTidIndex] = Tid;
1242
1243    storeRingBufferEntry(untagPointer(Ptr), Trace, Tid, Size, 0, 0);
1244  }
1245
1246  void storeDeallocationStackMaybe(Options Options, void *Ptr, u8 PrevTag,
1247                                   uptr Size) {
1248    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1249      return;
1250
1251    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1252    u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
1253    u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
1254
1255    u32 DeallocationTrace = collectStackTrace();
1256    u32 DeallocationTid = getThreadID();
1257
1258    storeRingBufferEntry(addFixedTag(untagPointer(Ptr), PrevTag),
1259                         AllocationTrace, AllocationTid, Size,
1260                         DeallocationTrace, DeallocationTid);
1261  }
1262
1263  static const size_t NumErrorReports =
1264      sizeof(((scudo_error_info *)0)->reports) /
1265      sizeof(((scudo_error_info *)0)->reports[0]);
1266
1267  static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
1268                                 size_t &NextErrorReport, uintptr_t FaultAddr,
1269                                 const StackDepot *Depot,
1270                                 const char *RegionInfoPtr, const char *Memory,
1271                                 const char *MemoryTags, uintptr_t MemoryAddr,
1272                                 size_t MemorySize, size_t MinDistance,
1273                                 size_t MaxDistance) {
1274    uptr UntaggedFaultAddr = untagPointer(FaultAddr);
1275    u8 FaultAddrTag = extractTag(FaultAddr);
1276    BlockInfo Info =
1277        PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
1278
1279    auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
1280      if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
1281          Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
1282        return false;
1283      *Data = &Memory[Addr - MemoryAddr];
1284      *Tag = static_cast<u8>(
1285          MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
1286      return true;
1287    };
1288
1289    auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
1290                         Chunk::UnpackedHeader *Header, const u32 **Data,
1291                         u8 *Tag) {
1292      const char *BlockBegin;
1293      u8 BlockBeginTag;
1294      if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
1295        return false;
1296      uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
1297      *ChunkAddr = Addr + ChunkOffset;
1298
1299      const char *ChunkBegin;
1300      if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
1301        return false;
1302      *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
1303          ChunkBegin - Chunk::getHeaderSize());
1304      *Data = reinterpret_cast<const u32 *>(ChunkBegin);
1305
1306      // Allocations of size 0 will have stashed the tag in the first byte of
1307      // the chunk, see storeEndMarker().
1308      if (Header->SizeOrUnusedBytes == 0)
1309        *Tag = static_cast<u8>(*ChunkBegin);
1310
1311      return true;
1312    };
1313
1314    if (NextErrorReport == NumErrorReports)
1315      return;
1316
1317    auto CheckOOB = [&](uptr BlockAddr) {
1318      if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
1319        return false;
1320
1321      uptr ChunkAddr;
1322      Chunk::UnpackedHeader Header;
1323      const u32 *Data;
1324      uint8_t Tag;
1325      if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
1326          Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
1327        return false;
1328
1329      auto *R = &ErrorInfo->reports[NextErrorReport++];
1330      R->error_type =
1331          UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
1332      R->allocation_address = ChunkAddr;
1333      R->allocation_size = Header.SizeOrUnusedBytes;
1334      collectTraceMaybe(Depot, R->allocation_trace,
1335                        Data[MemTagAllocationTraceIndex]);
1336      R->allocation_tid = Data[MemTagAllocationTidIndex];
1337      return NextErrorReport == NumErrorReports;
1338    };
1339
1340    if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
1341      return;
1342
1343    for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
1344      if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
1345          CheckOOB(Info.BlockBegin - I * Info.BlockSize))
1346        return;
1347  }
1348
1349  static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
1350                                     size_t &NextErrorReport,
1351                                     uintptr_t FaultAddr,
1352                                     const StackDepot *Depot,
1353                                     const char *RingBufferPtr) {
1354    auto *RingBuffer =
1355        reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
1356    uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
1357
1358    for (uptr I = Pos - 1; I != Pos - 1 - AllocationRingBuffer::NumEntries &&
1359                           NextErrorReport != NumErrorReports;
1360         --I) {
1361      auto *Entry = &RingBuffer->Entries[I % AllocationRingBuffer::NumEntries];
1362      uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
1363      if (!EntryPtr)
1364        continue;
1365
1366      uptr UntaggedEntryPtr = untagPointer(EntryPtr);
1367      uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
1368      u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
1369      u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
1370      u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
1371      u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
1372
1373      if (DeallocationTid) {
1374        // For UAF we only consider in-bounds fault addresses because
1375        // out-of-bounds UAF is rare and attempting to detect it is very likely
1376        // to result in false positives.
1377        if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
1378          continue;
1379      } else {
1380        // Ring buffer OOB is only possible with secondary allocations. In this
1381        // case we are guaranteed a guard region of at least a page on either
1382        // side of the allocation (guard page on the right, guard page + tagged
1383        // region on the left), so ignore any faults outside of that range.
1384        if (FaultAddr < EntryPtr - getPageSizeCached() ||
1385            FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
1386          continue;
1387
1388        // For UAF the ring buffer will contain two entries, one for the
1389        // allocation and another for the deallocation. Don't report buffer
1390        // overflow/underflow using the allocation entry if we have already
1391        // collected a report from the deallocation entry.
1392        bool Found = false;
1393        for (uptr J = 0; J != NextErrorReport; ++J) {
1394          if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
1395            Found = true;
1396            break;
1397          }
1398        }
1399        if (Found)
1400          continue;
1401      }
1402
1403      auto *R = &ErrorInfo->reports[NextErrorReport++];
1404      if (DeallocationTid)
1405        R->error_type = USE_AFTER_FREE;
1406      else if (FaultAddr < EntryPtr)
1407        R->error_type = BUFFER_UNDERFLOW;
1408      else
1409        R->error_type = BUFFER_OVERFLOW;
1410
1411      R->allocation_address = UntaggedEntryPtr;
1412      R->allocation_size = EntrySize;
1413      collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
1414      R->allocation_tid = AllocationTid;
1415      collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
1416      R->deallocation_tid = DeallocationTid;
1417    }
1418  }
1419
1420  uptr getStats(ScopedString *Str) {
1421    Primary.getStats(Str);
1422    Secondary.getStats(Str);
1423    Quarantine.getStats(Str);
1424    return Str->length();
1425  }
1426};
1427
1428} // namespace scudo
1429
1430#endif // SCUDO_COMBINED_H_
1431