1//===-- combined.h ----------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef SCUDO_COMBINED_H_
10#define SCUDO_COMBINED_H_
11
12#include "chunk.h"
13#include "common.h"
14#include "flags.h"
15#include "flags_parser.h"
16#include "local_cache.h"
17#include "memtag.h"
18#include "options.h"
19#include "quarantine.h"
20#include "report.h"
21#include "rss_limit_checker.h"
22#include "secondary.h"
23#include "stack_depot.h"
24#include "string_utils.h"
25#include "tsd.h"
26
27#include "scudo/interface.h"
28
29#ifdef GWP_ASAN_HOOKS
30#include "gwp_asan/guarded_pool_allocator.h"
31#include "gwp_asan/optional/backtrace.h"
32#include "gwp_asan/optional/segv_handler.h"
33#endif // GWP_ASAN_HOOKS
34
35extern "C" inline void EmptyCallback() {}
36
37#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
38// This function is not part of the NDK so it does not appear in any public
39// header files. We only declare/use it when targeting the platform.
40extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
41                                                     size_t num_entries);
42#endif
43
44namespace scudo {
45
46template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
47class Allocator {
48public:
49  using PrimaryT = typename Params::Primary;
50  using CacheT = typename PrimaryT::CacheT;
51  typedef Allocator<Params, PostInitCallback> ThisT;
52  typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;
53
54  void callPostInitCallback() {
55    pthread_once(&PostInitNonce, PostInitCallback);
56  }
57
58  struct QuarantineCallback {
59    explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
60        : Allocator(Instance), Cache(LocalCache) {}
61
62    // Chunk recycling function, returns a quarantined chunk to the backend,
63    // first making sure it hasn't been tampered with.
64    void recycle(void *Ptr) {
65      Chunk::UnpackedHeader Header;
66      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
67      if (UNLIKELY(Header.State != Chunk::State::Quarantined))
68        reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
69
70      Chunk::UnpackedHeader NewHeader = Header;
71      NewHeader.State = Chunk::State::Available;
72      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
73
74      if (allocatorSupportsMemoryTagging<Params>())
75        Ptr = untagPointer(Ptr);
76      void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
77      Cache.deallocate(NewHeader.ClassId, BlockBegin);
78    }
79
80    // We take a shortcut when allocating a quarantine batch by working with the
81    // appropriate class ID instead of using Size. The compiler should optimize
82    // the class ID computation and work with the associated cache directly.
83    void *allocate(UNUSED uptr Size) {
84      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
85          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
86      void *Ptr = Cache.allocate(QuarantineClassId);
87      // Quarantine batch allocation failure is fatal.
88      if (UNLIKELY(!Ptr))
89        reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
90
91      Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
92                                     Chunk::getHeaderSize());
93      Chunk::UnpackedHeader Header = {};
94      Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
95      Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
96      Header.State = Chunk::State::Allocated;
97      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
98
99      // Reset tag to 0 as this chunk may have been previously used for a tagged
100      // user allocation.
101      if (UNLIKELY(useMemoryTagging<Params>(Allocator.Primary.Options.load())))
102        storeTags(reinterpret_cast<uptr>(Ptr),
103                  reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
104
105      return Ptr;
106    }
107
108    void deallocate(void *Ptr) {
109      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
110          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
111      Chunk::UnpackedHeader Header;
112      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
113
114      if (UNLIKELY(Header.State != Chunk::State::Allocated))
115        reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
116      DCHECK_EQ(Header.ClassId, QuarantineClassId);
117      DCHECK_EQ(Header.Offset, 0);
118      DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
119
120      Chunk::UnpackedHeader NewHeader = Header;
121      NewHeader.State = Chunk::State::Available;
122      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
123      Cache.deallocate(QuarantineClassId,
124                       reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
125                                                Chunk::getHeaderSize()));
126    }
127
128  private:
129    ThisT &Allocator;
130    CacheT &Cache;
131  };
132
133  typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
134  typedef typename QuarantineT::CacheT QuarantineCacheT;
135
136  void init() {
137    performSanityChecks();
138
139    // Check if hardware CRC32 is supported in the binary and by the platform,
140    // if so, opt for the CRC32 hardware version of the checksum.
141    if (&computeHardwareCRC32 && hasHardwareCRC32())
142      HashAlgorithm = Checksum::HardwareCRC32;
143
144    if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
145      Cookie = static_cast<u32>(getMonotonicTime() ^
146                                (reinterpret_cast<uptr>(this) >> 4));
147
148    initFlags();
149    reportUnrecognizedFlags();
150
151    RssChecker.init(scudo::getFlags()->soft_rss_limit_mb,
152                    scudo::getFlags()->hard_rss_limit_mb);
153
154    // Store some flags locally.
155    if (getFlags()->may_return_null)
156      Primary.Options.set(OptionBit::MayReturnNull);
157    if (getFlags()->zero_contents)
158      Primary.Options.setFillContentsMode(ZeroFill);
159    else if (getFlags()->pattern_fill_contents)
160      Primary.Options.setFillContentsMode(PatternOrZeroFill);
161    if (getFlags()->dealloc_type_mismatch)
162      Primary.Options.set(OptionBit::DeallocTypeMismatch);
163    if (getFlags()->delete_size_mismatch)
164      Primary.Options.set(OptionBit::DeleteSizeMismatch);
165    if (allocatorSupportsMemoryTagging<Params>() &&
166        systemSupportsMemoryTagging())
167      Primary.Options.set(OptionBit::UseMemoryTagging);
168    Primary.Options.set(OptionBit::UseOddEvenTags);
169
170    QuarantineMaxChunkSize =
171        static_cast<u32>(getFlags()->quarantine_max_chunk_size);
172
173    Stats.init();
174    const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
175    Primary.init(ReleaseToOsIntervalMs);
176    Secondary.init(&Stats, ReleaseToOsIntervalMs);
177    Quarantine.init(
178        static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
179        static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
180
181    initRingBuffer();
182  }
183
184  // Initialize the embedded GWP-ASan instance. Requires the main allocator to
185  // be functional, best called from PostInitCallback.
186  void initGwpAsan() {
187#ifdef GWP_ASAN_HOOKS
188    gwp_asan::options::Options Opt;
189    Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
190    Opt.MaxSimultaneousAllocations =
191        getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
192    Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
193    Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
194    Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable;
195    // Embedded GWP-ASan is locked through the Scudo atfork handler (via
196    // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
197    // handler.
198    Opt.InstallForkHandlers = false;
199    Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
200    GuardedAlloc.init(Opt);
201
202    if (Opt.InstallSignalHandlers)
203      gwp_asan::segv_handler::installSignalHandlers(
204          &GuardedAlloc, Printf,
205          gwp_asan::backtrace::getPrintBacktraceFunction(),
206          gwp_asan::backtrace::getSegvBacktraceFunction(),
207          Opt.Recoverable);
208
209    GuardedAllocSlotSize =
210        GuardedAlloc.getAllocatorState()->maximumAllocationSize();
211    Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
212                            GuardedAllocSlotSize);
213#endif // GWP_ASAN_HOOKS
214  }
215
216#ifdef GWP_ASAN_HOOKS
217  const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() {
218    return GuardedAlloc.getMetadataRegion();
219  }
220
221  const gwp_asan::AllocatorState *getGwpAsanAllocatorState() {
222    return GuardedAlloc.getAllocatorState();
223  }
224#endif // GWP_ASAN_HOOKS
225
226  ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
227    TSDRegistry.initThreadMaybe(this, MinimalInit);
228  }
229
230  void unmapTestOnly() {
231    TSDRegistry.unmapTestOnly(this);
232    Primary.unmapTestOnly();
233    Secondary.unmapTestOnly();
234#ifdef GWP_ASAN_HOOKS
235    if (getFlags()->GWP_ASAN_InstallSignalHandlers)
236      gwp_asan::segv_handler::uninstallSignalHandlers();
237    GuardedAlloc.uninitTestOnly();
238#endif // GWP_ASAN_HOOKS
239  }
240
241  TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
242
243  // The Cache must be provided zero-initialized.
244  void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
245
246  // Release the resources used by a TSD, which involves:
247  // - draining the local quarantine cache to the global quarantine;
248  // - releasing the cached pointers back to the Primary;
249  // - unlinking the local stats from the global ones (destroying the cache does
250  //   the last two items).
251  void commitBack(TSD<ThisT> *TSD) {
252    Quarantine.drain(&TSD->QuarantineCache,
253                     QuarantineCallback(*this, TSD->Cache));
254    TSD->Cache.destroy(&Stats);
255  }
256
257  ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
258    if (!allocatorSupportsMemoryTagging<Params>())
259      return Ptr;
260    auto UntaggedPtr = untagPointer(Ptr);
261    if (UntaggedPtr != Ptr)
262      return UntaggedPtr;
263    // Secondary, or pointer allocated while memory tagging is unsupported or
264    // disabled. The tag mismatch is okay in the latter case because tags will
265    // not be checked.
266    return addHeaderTag(Ptr);
267  }
268
269  ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
270    if (!allocatorSupportsMemoryTagging<Params>())
271      return Ptr;
272    return addFixedTag(Ptr, 2);
273  }
274
275  ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
276    return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
277  }
278
279  NOINLINE u32 collectStackTrace() {
280#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
281    // Discard collectStackTrace() frame and allocator function frame.
282    constexpr uptr DiscardFrames = 2;
283    uptr Stack[MaxTraceSize + DiscardFrames];
284    uptr Size =
285        android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
286    Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
287    return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
288#else
289    return 0;
290#endif
291  }
292
293  uptr computeOddEvenMaskForPointerMaybe(Options Options, uptr Ptr,
294                                         uptr ClassId) {
295    if (!Options.get(OptionBit::UseOddEvenTags))
296      return 0;
297
298    // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
299    // even, and vice versa. Blocks are laid out Size bytes apart, and adding
300    // Size to Ptr will flip the least significant set bit of Size in Ptr, so
301    // that bit will have the pattern 010101... for consecutive blocks, which we
302    // can use to determine which tag mask to use.
303    return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
304  }
305
306  NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
307                          uptr Alignment = MinAlignment,
308                          bool ZeroContents = false) {
309    initThreadMaybe();
310
311    const Options Options = Primary.Options.load();
312    if (UNLIKELY(Alignment > MaxAlignment)) {
313      if (Options.get(OptionBit::MayReturnNull))
314        return nullptr;
315      reportAlignmentTooBig(Alignment, MaxAlignment);
316    }
317    if (Alignment < MinAlignment)
318      Alignment = MinAlignment;
319
320#ifdef GWP_ASAN_HOOKS
321    if (UNLIKELY(GuardedAlloc.shouldSample())) {
322      if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
323        if (UNLIKELY(&__scudo_allocate_hook))
324          __scudo_allocate_hook(Ptr, Size);
325        Stats.lock();
326        Stats.add(StatAllocated, GuardedAllocSlotSize);
327        Stats.sub(StatFree, GuardedAllocSlotSize);
328        Stats.unlock();
329        return Ptr;
330      }
331    }
332#endif // GWP_ASAN_HOOKS
333
334    const FillContentsMode FillContents = ZeroContents ? ZeroFill
335                                          : TSDRegistry.getDisableMemInit()
336                                              ? NoFill
337                                              : Options.getFillContentsMode();
338
339    // If the requested size happens to be 0 (more common than you might think),
340    // allocate MinAlignment bytes on top of the header. Then add the extra
341    // bytes required to fulfill the alignment requirements: we allocate enough
342    // to be sure that there will be an address in the block that will satisfy
343    // the alignment.
344    const uptr NeededSize =
345        roundUpTo(Size, MinAlignment) +
346        ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
347
348    // Takes care of extravagantly large sizes as well as integer overflows.
349    static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
350    if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
351      if (Options.get(OptionBit::MayReturnNull))
352        return nullptr;
353      reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
354    }
355    DCHECK_LE(Size, NeededSize);
356
357    switch (RssChecker.getRssLimitExceeded()) {
358    case RssLimitChecker::Neither:
359      break;
360    case RssLimitChecker::Soft:
361      if (Options.get(OptionBit::MayReturnNull))
362        return nullptr;
363      reportSoftRSSLimit(RssChecker.getSoftRssLimit());
364      break;
365    case RssLimitChecker::Hard:
366      reportHardRSSLimit(RssChecker.getHardRssLimit());
367      break;
368    }
369
370    void *Block = nullptr;
371    uptr ClassId = 0;
372    uptr SecondaryBlockEnd = 0;
373    if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
374      ClassId = SizeClassMap::getClassIdBySize(NeededSize);
375      DCHECK_NE(ClassId, 0U);
376      bool UnlockRequired;
377      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
378      Block = TSD->Cache.allocate(ClassId);
379      // If the allocation failed, the most likely reason with a 32-bit primary
380      // is the region being full. In that event, retry in each successively
381      // larger class until it fits. If it fails to fit in the largest class,
382      // fallback to the Secondary.
383      if (UNLIKELY(!Block)) {
384        while (ClassId < SizeClassMap::LargestClassId && !Block)
385          Block = TSD->Cache.allocate(++ClassId);
386        if (!Block)
387          ClassId = 0;
388      }
389      if (UnlockRequired)
390        TSD->unlock();
391    }
392    if (UNLIKELY(ClassId == 0))
393      Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
394                                 FillContents);
395
396    if (UNLIKELY(!Block)) {
397      if (Options.get(OptionBit::MayReturnNull))
398        return nullptr;
399      reportOutOfMemory(NeededSize);
400    }
401
402    const uptr BlockUptr = reinterpret_cast<uptr>(Block);
403    const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
404    const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment);
405
406    void *Ptr = reinterpret_cast<void *>(UserPtr);
407    void *TaggedPtr = Ptr;
408    if (LIKELY(ClassId)) {
409      // We only need to zero or tag the contents for Primary backed
410      // allocations. We only set tags for primary allocations in order to avoid
411      // faulting potentially large numbers of pages for large secondary
412      // allocations. We assume that guard pages are enough to protect these
413      // allocations.
414      //
415      // FIXME: When the kernel provides a way to set the background tag of a
416      // mapping, we should be able to tag secondary allocations as well.
417      //
418      // When memory tagging is enabled, zeroing the contents is done as part of
419      // setting the tag.
420      if (UNLIKELY(useMemoryTagging<Params>(Options))) {
421        uptr PrevUserPtr;
422        Chunk::UnpackedHeader Header;
423        const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
424        const uptr BlockEnd = BlockUptr + BlockSize;
425        // If possible, try to reuse the UAF tag that was set by deallocate().
426        // For simplicity, only reuse tags if we have the same start address as
427        // the previous allocation. This handles the majority of cases since
428        // most allocations will not be more aligned than the minimum alignment.
429        //
430        // We need to handle situations involving reclaimed chunks, and retag
431        // the reclaimed portions if necessary. In the case where the chunk is
432        // fully reclaimed, the chunk's header will be zero, which will trigger
433        // the code path for new mappings and invalid chunks that prepares the
434        // chunk from scratch. There are three possibilities for partial
435        // reclaiming:
436        //
437        // (1) Header was reclaimed, data was partially reclaimed.
438        // (2) Header was not reclaimed, all data was reclaimed (e.g. because
439        //     data started on a page boundary).
440        // (3) Header was not reclaimed, data was partially reclaimed.
441        //
442        // Case (1) will be handled in the same way as for full reclaiming,
443        // since the header will be zero.
444        //
445        // We can detect case (2) by loading the tag from the start
446        // of the chunk. If it is zero, it means that either all data was
447        // reclaimed (since we never use zero as the chunk tag), or that the
448        // previous allocation was of size zero. Either way, we need to prepare
449        // a new chunk from scratch.
450        //
451        // We can detect case (3) by moving to the next page (if covered by the
452        // chunk) and loading the tag of its first granule. If it is zero, it
453        // means that all following pages may need to be retagged. On the other
454        // hand, if it is nonzero, we can assume that all following pages are
455        // still tagged, according to the logic that if any of the pages
456        // following the next page were reclaimed, the next page would have been
457        // reclaimed as well.
458        uptr TaggedUserPtr;
459        if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
460            PrevUserPtr == UserPtr &&
461            (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
462          uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
463          const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached());
464          if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
465            PrevEnd = NextPage;
466          TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
467          resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
468          if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
469            // If an allocation needs to be zeroed (i.e. calloc) we can normally
470            // avoid zeroing the memory now since we can rely on memory having
471            // been zeroed on free, as this is normally done while setting the
472            // UAF tag. But if tagging was disabled per-thread when the memory
473            // was freed, it would not have been retagged and thus zeroed, and
474            // therefore it needs to be zeroed now.
475            memset(TaggedPtr, 0,
476                   Min(Size, roundUpTo(PrevEnd - TaggedUserPtr,
477                                       archMemoryTagGranuleSize())));
478          } else if (Size) {
479            // Clear any stack metadata that may have previously been stored in
480            // the chunk data.
481            memset(TaggedPtr, 0, archMemoryTagGranuleSize());
482          }
483        } else {
484          const uptr OddEvenMask =
485              computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
486          TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
487        }
488        storePrimaryAllocationStackMaybe(Options, Ptr);
489      } else {
490        Block = addHeaderTag(Block);
491        Ptr = addHeaderTag(Ptr);
492        if (UNLIKELY(FillContents != NoFill)) {
493          // This condition is not necessarily unlikely, but since memset is
494          // costly, we might as well mark it as such.
495          memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
496                 PrimaryT::getSizeByClassId(ClassId));
497        }
498      }
499    } else {
500      Block = addHeaderTag(Block);
501      Ptr = addHeaderTag(Ptr);
502      if (UNLIKELY(useMemoryTagging<Params>(Options))) {
503        storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
504        storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
505      }
506    }
507
508    Chunk::UnpackedHeader Header = {};
509    if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
510      const uptr Offset = UserPtr - UnalignedUserPtr;
511      DCHECK_GE(Offset, 2 * sizeof(u32));
512      // The BlockMarker has no security purpose, but is specifically meant for
513      // the chunk iteration function that can be used in debugging situations.
514      // It is the only situation where we have to locate the start of a chunk
515      // based on its block address.
516      reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
517      reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
518      Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
519    }
520    Header.ClassId = ClassId & Chunk::ClassIdMask;
521    Header.State = Chunk::State::Allocated;
522    Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
523    Header.SizeOrUnusedBytes =
524        (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
525        Chunk::SizeOrUnusedBytesMask;
526    Chunk::storeHeader(Cookie, Ptr, &Header);
527
528    if (UNLIKELY(&__scudo_allocate_hook))
529      __scudo_allocate_hook(TaggedPtr, Size);
530
531    return TaggedPtr;
532  }
533
534  NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
535                           UNUSED uptr Alignment = MinAlignment) {
536    // For a deallocation, we only ensure minimal initialization, meaning thread
537    // local data will be left uninitialized for now (when using ELF TLS). The
538    // fallback cache will be used instead. This is a workaround for a situation
539    // where the only heap operation performed in a thread would be a free past
540    // the TLS destructors, ending up in initialized thread specific data never
541    // being destroyed properly. Any other heap operation will do a full init.
542    initThreadMaybe(/*MinimalInit=*/true);
543
544    if (UNLIKELY(&__scudo_deallocate_hook))
545      __scudo_deallocate_hook(Ptr);
546
547    if (UNLIKELY(!Ptr))
548      return;
549
550#ifdef GWP_ASAN_HOOKS
551    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
552      GuardedAlloc.deallocate(Ptr);
553      Stats.lock();
554      Stats.add(StatFree, GuardedAllocSlotSize);
555      Stats.sub(StatAllocated, GuardedAllocSlotSize);
556      Stats.unlock();
557      return;
558    }
559#endif // GWP_ASAN_HOOKS
560
561    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
562      reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
563
564    void *TaggedPtr = Ptr;
565    Ptr = getHeaderTaggedPointer(Ptr);
566
567    Chunk::UnpackedHeader Header;
568    Chunk::loadHeader(Cookie, Ptr, &Header);
569
570    if (UNLIKELY(Header.State != Chunk::State::Allocated))
571      reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
572
573    const Options Options = Primary.Options.load();
574    if (Options.get(OptionBit::DeallocTypeMismatch)) {
575      if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
576        // With the exception of memalign'd chunks, that can be still be free'd.
577        if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
578            Origin != Chunk::Origin::Malloc)
579          reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
580                                    Header.OriginOrWasZeroed, Origin);
581      }
582    }
583
584    const uptr Size = getSize(Ptr, &Header);
585    if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
586      if (UNLIKELY(DeleteSize != Size))
587        reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
588    }
589
590    quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
591  }
592
593  void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
594    initThreadMaybe();
595
596    const Options Options = Primary.Options.load();
597    if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
598      if (Options.get(OptionBit::MayReturnNull))
599        return nullptr;
600      reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
601    }
602
603    // The following cases are handled by the C wrappers.
604    DCHECK_NE(OldPtr, nullptr);
605    DCHECK_NE(NewSize, 0);
606
607#ifdef GWP_ASAN_HOOKS
608    if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
609      uptr OldSize = GuardedAlloc.getSize(OldPtr);
610      void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
611      if (NewPtr)
612        memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
613      GuardedAlloc.deallocate(OldPtr);
614      Stats.lock();
615      Stats.add(StatFree, GuardedAllocSlotSize);
616      Stats.sub(StatAllocated, GuardedAllocSlotSize);
617      Stats.unlock();
618      return NewPtr;
619    }
620#endif // GWP_ASAN_HOOKS
621
622    void *OldTaggedPtr = OldPtr;
623    OldPtr = getHeaderTaggedPointer(OldPtr);
624
625    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
626      reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
627
628    Chunk::UnpackedHeader OldHeader;
629    Chunk::loadHeader(Cookie, OldPtr, &OldHeader);
630
631    if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
632      reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
633
634    // Pointer has to be allocated with a malloc-type function. Some
635    // applications think that it is OK to realloc a memalign'ed pointer, which
636    // will trigger this check. It really isn't.
637    if (Options.get(OptionBit::DeallocTypeMismatch)) {
638      if (UNLIKELY(OldHeader.OriginOrWasZeroed != Chunk::Origin::Malloc))
639        reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
640                                  OldHeader.OriginOrWasZeroed,
641                                  Chunk::Origin::Malloc);
642    }
643
644    void *BlockBegin = getBlockBegin(OldTaggedPtr, &OldHeader);
645    uptr BlockEnd;
646    uptr OldSize;
647    const uptr ClassId = OldHeader.ClassId;
648    if (LIKELY(ClassId)) {
649      BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
650                 SizeClassMap::getSizeByClassId(ClassId);
651      OldSize = OldHeader.SizeOrUnusedBytes;
652    } else {
653      BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
654      OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
655                            OldHeader.SizeOrUnusedBytes);
656    }
657    // If the new chunk still fits in the previously allocated block (with a
658    // reasonable delta), we just keep the old block, and update the chunk
659    // header to reflect the size change.
660    if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
661      if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
662        Chunk::UnpackedHeader NewHeader = OldHeader;
663        NewHeader.SizeOrUnusedBytes =
664            (ClassId ? NewSize
665                     : BlockEnd -
666                           (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
667            Chunk::SizeOrUnusedBytesMask;
668        Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
669        if (UNLIKELY(useMemoryTagging<Params>(Options))) {
670          if (ClassId) {
671            resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
672                              reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
673                              NewSize, untagPointer(BlockEnd));
674            storePrimaryAllocationStackMaybe(Options, OldPtr);
675          } else {
676            storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
677          }
678        }
679        return OldTaggedPtr;
680      }
681    }
682
683    // Otherwise we allocate a new one, and deallocate the old one. Some
684    // allocators will allocate an even larger chunk (by a fixed factor) to
685    // allow for potential further in-place realloc. The gains of such a trick
686    // are currently unclear.
687    void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
688    if (LIKELY(NewPtr)) {
689      memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
690      quarantineOrDeallocateChunk(Options, OldTaggedPtr, &OldHeader, OldSize);
691    }
692    return NewPtr;
693  }
694
695  // TODO(kostyak): disable() is currently best-effort. There are some small
696  //                windows of time when an allocation could still succeed after
697  //                this function finishes. We will revisit that later.
698  void disable() {
699    initThreadMaybe();
700#ifdef GWP_ASAN_HOOKS
701    GuardedAlloc.disable();
702#endif
703    TSDRegistry.disable();
704    Stats.disable();
705    Quarantine.disable();
706    Primary.disable();
707    Secondary.disable();
708  }
709
710  void enable() {
711    initThreadMaybe();
712    Secondary.enable();
713    Primary.enable();
714    Quarantine.enable();
715    Stats.enable();
716    TSDRegistry.enable();
717#ifdef GWP_ASAN_HOOKS
718    GuardedAlloc.enable();
719#endif
720  }
721
722  // The function returns the amount of bytes required to store the statistics,
723  // which might be larger than the amount of bytes provided. Note that the
724  // statistics buffer is not necessarily constant between calls to this
725  // function. This can be called with a null buffer or zero size for buffer
726  // sizing purposes.
727  uptr getStats(char *Buffer, uptr Size) {
728    ScopedString Str;
729    disable();
730    const uptr Length = getStats(&Str) + 1;
731    enable();
732    if (Length < Size)
733      Size = Length;
734    if (Buffer && Size) {
735      memcpy(Buffer, Str.data(), Size);
736      Buffer[Size - 1] = '\0';
737    }
738    return Length;
739  }
740
741  void printStats() {
742    ScopedString Str;
743    disable();
744    getStats(&Str);
745    enable();
746    Str.output();
747  }
748
749  void releaseToOS() {
750    initThreadMaybe();
751    Primary.releaseToOS();
752    Secondary.releaseToOS();
753  }
754
755  // Iterate over all chunks and call a callback for all busy chunks located
756  // within the provided memory range. Said callback must not use this allocator
757  // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
758  void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
759                         void *Arg) {
760    initThreadMaybe();
761    if (archSupportsMemoryTagging())
762      Base = untagPointer(Base);
763    const uptr From = Base;
764    const uptr To = Base + Size;
765    bool MayHaveTaggedPrimary = allocatorSupportsMemoryTagging<Params>() &&
766                                systemSupportsMemoryTagging();
767    auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
768                   Arg](uptr Block) {
769      if (Block < From || Block >= To)
770        return;
771      uptr Chunk;
772      Chunk::UnpackedHeader Header;
773      if (MayHaveTaggedPrimary) {
774        // A chunk header can either have a zero tag (tagged primary) or the
775        // header tag (secondary, or untagged primary). We don't know which so
776        // try both.
777        ScopedDisableMemoryTagChecks x;
778        if (!getChunkFromBlock(Block, &Chunk, &Header) &&
779            !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
780          return;
781      } else {
782        if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
783          return;
784      }
785      if (Header.State == Chunk::State::Allocated) {
786        uptr TaggedChunk = Chunk;
787        if (allocatorSupportsMemoryTagging<Params>())
788          TaggedChunk = untagPointer(TaggedChunk);
789        if (useMemoryTagging<Params>(Primary.Options.load()))
790          TaggedChunk = loadTag(Chunk);
791        Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
792                 Arg);
793      }
794    };
795    Primary.iterateOverBlocks(Lambda);
796    Secondary.iterateOverBlocks(Lambda);
797#ifdef GWP_ASAN_HOOKS
798    GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
799#endif
800  }
801
802  bool canReturnNull() {
803    initThreadMaybe();
804    return Primary.Options.load().get(OptionBit::MayReturnNull);
805  }
806
807  bool setOption(Option O, sptr Value) {
808    initThreadMaybe();
809    if (O == Option::MemtagTuning) {
810      // Enabling odd/even tags involves a tradeoff between use-after-free
811      // detection and buffer overflow detection. Odd/even tags make it more
812      // likely for buffer overflows to be detected by increasing the size of
813      // the guaranteed "red zone" around the allocation, but on the other hand
814      // use-after-free is less likely to be detected because the tag space for
815      // any particular chunk is cut in half. Therefore we use this tuning
816      // setting to control whether odd/even tags are enabled.
817      if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
818        Primary.Options.set(OptionBit::UseOddEvenTags);
819      else if (Value == M_MEMTAG_TUNING_UAF)
820        Primary.Options.clear(OptionBit::UseOddEvenTags);
821      return true;
822    } else {
823      // We leave it to the various sub-components to decide whether or not they
824      // want to handle the option, but we do not want to short-circuit
825      // execution if one of the setOption was to return false.
826      const bool PrimaryResult = Primary.setOption(O, Value);
827      const bool SecondaryResult = Secondary.setOption(O, Value);
828      const bool RegistryResult = TSDRegistry.setOption(O, Value);
829      return PrimaryResult && SecondaryResult && RegistryResult;
830    }
831    return false;
832  }
833
834  // Return the usable size for a given chunk. Technically we lie, as we just
835  // report the actual size of a chunk. This is done to counteract code actively
836  // writing past the end of a chunk (like sqlite3) when the usable size allows
837  // for it, which then forces realloc to copy the usable size of a chunk as
838  // opposed to its actual size.
839  uptr getUsableSize(const void *Ptr) {
840    initThreadMaybe();
841    if (UNLIKELY(!Ptr))
842      return 0;
843
844#ifdef GWP_ASAN_HOOKS
845    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
846      return GuardedAlloc.getSize(Ptr);
847#endif // GWP_ASAN_HOOKS
848
849    Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
850    Chunk::UnpackedHeader Header;
851    Chunk::loadHeader(Cookie, Ptr, &Header);
852    // Getting the usable size of a chunk only makes sense if it's allocated.
853    if (UNLIKELY(Header.State != Chunk::State::Allocated))
854      reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
855    return getSize(Ptr, &Header);
856  }
857
858  void getStats(StatCounters S) {
859    initThreadMaybe();
860    Stats.get(S);
861  }
862
863  // Returns true if the pointer provided was allocated by the current
864  // allocator instance, which is compliant with tcmalloc's ownership concept.
865  // A corrupted chunk will not be reported as owned, which is WAI.
866  bool isOwned(const void *Ptr) {
867    initThreadMaybe();
868#ifdef GWP_ASAN_HOOKS
869    if (GuardedAlloc.pointerIsMine(Ptr))
870      return true;
871#endif // GWP_ASAN_HOOKS
872    if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
873      return false;
874    Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
875    Chunk::UnpackedHeader Header;
876    return Chunk::isValid(Cookie, Ptr, &Header) &&
877           Header.State == Chunk::State::Allocated;
878  }
879
880  void setRssLimitsTestOnly(int SoftRssLimitMb, int HardRssLimitMb,
881                            bool MayReturnNull) {
882    RssChecker.init(SoftRssLimitMb, HardRssLimitMb);
883    if (MayReturnNull)
884      Primary.Options.set(OptionBit::MayReturnNull);
885  }
886
887  bool useMemoryTaggingTestOnly() const {
888    return useMemoryTagging<Params>(Primary.Options.load());
889  }
890  void disableMemoryTagging() {
891    // If we haven't been initialized yet, we need to initialize now in order to
892    // prevent a future call to initThreadMaybe() from enabling memory tagging
893    // based on feature detection. But don't call initThreadMaybe() because it
894    // may end up calling the allocator (via pthread_atfork, via the post-init
895    // callback), which may cause mappings to be created with memory tagging
896    // enabled.
897    TSDRegistry.initOnceMaybe(this);
898    if (allocatorSupportsMemoryTagging<Params>()) {
899      Secondary.disableMemoryTagging();
900      Primary.Options.clear(OptionBit::UseMemoryTagging);
901    }
902  }
903
904  void setTrackAllocationStacks(bool Track) {
905    initThreadMaybe();
906    if (getFlags()->allocation_ring_buffer_size == 0) {
907      DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks));
908      return;
909    }
910    if (Track)
911      Primary.Options.set(OptionBit::TrackAllocationStacks);
912    else
913      Primary.Options.clear(OptionBit::TrackAllocationStacks);
914  }
915
916  void setFillContents(FillContentsMode FillContents) {
917    initThreadMaybe();
918    Primary.Options.setFillContentsMode(FillContents);
919  }
920
921  void setAddLargeAllocationSlack(bool AddSlack) {
922    initThreadMaybe();
923    if (AddSlack)
924      Primary.Options.set(OptionBit::AddLargeAllocationSlack);
925    else
926      Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
927  }
928
929  const char *getStackDepotAddress() const {
930    return reinterpret_cast<const char *>(&Depot);
931  }
932
933  const char *getRegionInfoArrayAddress() const {
934    return Primary.getRegionInfoArrayAddress();
935  }
936
937  static uptr getRegionInfoArraySize() {
938    return PrimaryT::getRegionInfoArraySize();
939  }
940
941  const char *getRingBufferAddress() {
942    initThreadMaybe();
943    return RawRingBuffer;
944  }
945
946  uptr getRingBufferSize() {
947    initThreadMaybe();
948    auto *RingBuffer = getRingBuffer();
949    return RingBuffer ? ringBufferSizeInBytes(RingBuffer->Size) : 0;
950  }
951
952  static bool setRingBufferSizeForBuffer(char *Buffer, size_t Size) {
953    // Need at least one entry.
954    if (Size < sizeof(AllocationRingBuffer) +
955                   sizeof(typename AllocationRingBuffer::Entry)) {
956      return false;
957    }
958    AllocationRingBuffer *RingBuffer =
959        reinterpret_cast<AllocationRingBuffer *>(Buffer);
960    RingBuffer->Size = (Size - sizeof(AllocationRingBuffer)) /
961                       sizeof(typename AllocationRingBuffer::Entry);
962    return true;
963  }
964
965  static const uptr MaxTraceSize = 64;
966
967  static void collectTraceMaybe(const StackDepot *Depot,
968                                uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
969    uptr RingPos, Size;
970    if (!Depot->find(Hash, &RingPos, &Size))
971      return;
972    for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
973      Trace[I] = static_cast<uintptr_t>((*Depot)[RingPos + I]);
974  }
975
976  static void getErrorInfo(struct scudo_error_info *ErrorInfo,
977                           uintptr_t FaultAddr, const char *DepotPtr,
978                           const char *RegionInfoPtr, const char *RingBufferPtr,
979                           const char *Memory, const char *MemoryTags,
980                           uintptr_t MemoryAddr, size_t MemorySize) {
981    *ErrorInfo = {};
982    if (!allocatorSupportsMemoryTagging<Params>() ||
983        MemoryAddr + MemorySize < MemoryAddr)
984      return;
985
986    auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
987    size_t NextErrorReport = 0;
988
989    // Check for OOB in the current block and the two surrounding blocks. Beyond
990    // that, UAF is more likely.
991    if (extractTag(FaultAddr) != 0)
992      getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
993                         RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
994                         MemorySize, 0, 2);
995
996    // Check the ring buffer. For primary allocations this will only find UAF;
997    // for secondary allocations we can find either UAF or OOB.
998    getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
999                           RingBufferPtr);
1000
1001    // Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
1002    // Beyond that we are likely to hit false positives.
1003    if (extractTag(FaultAddr) != 0)
1004      getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
1005                         RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
1006                         MemorySize, 2, 16);
1007  }
1008
1009private:
1010  using SecondaryT = MapAllocator<Params>;
1011  typedef typename PrimaryT::SizeClassMap SizeClassMap;
1012
1013  static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
1014  static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
1015  static const uptr MinAlignment = 1UL << MinAlignmentLog;
1016  static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
1017  static const uptr MaxAllowedMallocSize =
1018      FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
1019
1020  static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
1021                "Minimal alignment must at least cover a chunk header.");
1022  static_assert(!allocatorSupportsMemoryTagging<Params>() ||
1023                    MinAlignment >= archMemoryTagGranuleSize(),
1024                "");
1025
1026  static const u32 BlockMarker = 0x44554353U;
1027
1028  // These are indexes into an "array" of 32-bit values that store information
1029  // inline with a chunk that is relevant to diagnosing memory tag faults, where
1030  // 0 corresponds to the address of the user memory. This means that only
1031  // negative indexes may be used. The smallest index that may be used is -2,
1032  // which corresponds to 8 bytes before the user memory, because the chunk
1033  // header size is 8 bytes and in allocators that support memory tagging the
1034  // minimum alignment is at least the tag granule size (16 on aarch64).
1035  static const sptr MemTagAllocationTraceIndex = -2;
1036  static const sptr MemTagAllocationTidIndex = -1;
1037
1038  u32 Cookie = 0;
1039  u32 QuarantineMaxChunkSize = 0;
1040
1041  GlobalStats Stats;
1042  PrimaryT Primary;
1043  SecondaryT Secondary;
1044  QuarantineT Quarantine;
1045  TSDRegistryT TSDRegistry;
1046  pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
1047  RssLimitChecker RssChecker;
1048
1049#ifdef GWP_ASAN_HOOKS
1050  gwp_asan::GuardedPoolAllocator GuardedAlloc;
1051  uptr GuardedAllocSlotSize = 0;
1052#endif // GWP_ASAN_HOOKS
1053
1054  StackDepot Depot;
1055
1056  struct AllocationRingBuffer {
1057    struct Entry {
1058      atomic_uptr Ptr;
1059      atomic_uptr AllocationSize;
1060      atomic_u32 AllocationTrace;
1061      atomic_u32 AllocationTid;
1062      atomic_u32 DeallocationTrace;
1063      atomic_u32 DeallocationTid;
1064    };
1065
1066    atomic_uptr Pos;
1067    u32 Size;
1068    // An array of Size (at least one) elements of type Entry is immediately
1069    // following to this struct.
1070  };
1071  // Pointer to memory mapped area starting with AllocationRingBuffer struct,
1072  // and immediately followed by Size elements of type Entry.
1073  char *RawRingBuffer = {};
1074
1075  // The following might get optimized out by the compiler.
1076  NOINLINE void performSanityChecks() {
1077    // Verify that the header offset field can hold the maximum offset. In the
1078    // case of the Secondary allocator, it takes care of alignment and the
1079    // offset will always be small. In the case of the Primary, the worst case
1080    // scenario happens in the last size class, when the backend allocation
1081    // would already be aligned on the requested alignment, which would happen
1082    // to be the maximum alignment that would fit in that size class. As a
1083    // result, the maximum offset will be at most the maximum alignment for the
1084    // last size class minus the header size, in multiples of MinAlignment.
1085    Chunk::UnpackedHeader Header = {};
1086    const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
1087                                         SizeClassMap::MaxSize - MinAlignment);
1088    const uptr MaxOffset =
1089        (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
1090    Header.Offset = MaxOffset & Chunk::OffsetMask;
1091    if (UNLIKELY(Header.Offset != MaxOffset))
1092      reportSanityCheckError("offset");
1093
1094    // Verify that we can fit the maximum size or amount of unused bytes in the
1095    // header. Given that the Secondary fits the allocation to a page, the worst
1096    // case scenario happens in the Primary. It will depend on the second to
1097    // last and last class sizes, as well as the dynamic base for the Primary.
1098    // The following is an over-approximation that works for our needs.
1099    const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1100    Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1101    if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1102      reportSanityCheckError("size (or unused bytes)");
1103
1104    const uptr LargestClassId = SizeClassMap::LargestClassId;
1105    Header.ClassId = LargestClassId;
1106    if (UNLIKELY(Header.ClassId != LargestClassId))
1107      reportSanityCheckError("class ID");
1108  }
1109
1110  static inline void *getBlockBegin(const void *Ptr,
1111                                    Chunk::UnpackedHeader *Header) {
1112    return reinterpret_cast<void *>(
1113        reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1114        (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1115  }
1116
1117  // Return the size of a chunk as requested during its allocation.
1118  inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1119    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1120    if (LIKELY(Header->ClassId))
1121      return SizeOrUnusedBytes;
1122    if (allocatorSupportsMemoryTagging<Params>())
1123      Ptr = untagPointer(const_cast<void *>(Ptr));
1124    return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1125           reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1126  }
1127
1128  void quarantineOrDeallocateChunk(Options Options, void *TaggedPtr,
1129                                   Chunk::UnpackedHeader *Header, uptr Size) {
1130    void *Ptr = getHeaderTaggedPointer(TaggedPtr);
1131    Chunk::UnpackedHeader NewHeader = *Header;
1132    // If the quarantine is disabled, the actual size of a chunk is 0 or larger
1133    // than the maximum allowed, we return a chunk directly to the backend.
1134    // This purposefully underflows for Size == 0.
1135    const bool BypassQuarantine = !Quarantine.getCacheSize() ||
1136                                  ((Size - 1) >= QuarantineMaxChunkSize) ||
1137                                  !NewHeader.ClassId;
1138    if (BypassQuarantine)
1139      NewHeader.State = Chunk::State::Available;
1140    else
1141      NewHeader.State = Chunk::State::Quarantined;
1142    NewHeader.OriginOrWasZeroed = useMemoryTagging<Params>(Options) &&
1143                                  NewHeader.ClassId &&
1144                                  !TSDRegistry.getDisableMemInit();
1145    Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
1146
1147    if (UNLIKELY(useMemoryTagging<Params>(Options))) {
1148      u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
1149      storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
1150      if (NewHeader.ClassId) {
1151        if (!TSDRegistry.getDisableMemInit()) {
1152          uptr TaggedBegin, TaggedEnd;
1153          const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1154              Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, &NewHeader)),
1155              NewHeader.ClassId);
1156          // Exclude the previous tag so that immediate use after free is
1157          // detected 100% of the time.
1158          setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1159                       &TaggedEnd);
1160        }
1161      }
1162    }
1163    if (BypassQuarantine) {
1164      if (allocatorSupportsMemoryTagging<Params>())
1165        Ptr = untagPointer(Ptr);
1166      void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
1167      const uptr ClassId = NewHeader.ClassId;
1168      if (LIKELY(ClassId)) {
1169        bool UnlockRequired;
1170        auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1171        TSD->Cache.deallocate(ClassId, BlockBegin);
1172        if (UnlockRequired)
1173          TSD->unlock();
1174      } else {
1175        if (UNLIKELY(useMemoryTagging<Params>(Options)))
1176          storeTags(reinterpret_cast<uptr>(BlockBegin),
1177                    reinterpret_cast<uptr>(Ptr));
1178        Secondary.deallocate(Options, BlockBegin);
1179      }
1180    } else {
1181      bool UnlockRequired;
1182      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1183      Quarantine.put(&TSD->QuarantineCache,
1184                     QuarantineCallback(*this, TSD->Cache), Ptr, Size);
1185      if (UnlockRequired)
1186        TSD->unlock();
1187    }
1188  }
1189
1190  bool getChunkFromBlock(uptr Block, uptr *Chunk,
1191                         Chunk::UnpackedHeader *Header) {
1192    *Chunk =
1193        Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1194    return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1195  }
1196
1197  static uptr getChunkOffsetFromBlock(const char *Block) {
1198    u32 Offset = 0;
1199    if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1200      Offset = reinterpret_cast<const u32 *>(Block)[1];
1201    return Offset + Chunk::getHeaderSize();
1202  }
1203
1204  // Set the tag of the granule past the end of the allocation to 0, to catch
1205  // linear overflows even if a previous larger allocation used the same block
1206  // and tag. Only do this if the granule past the end is in our block, because
1207  // this would otherwise lead to a SEGV if the allocation covers the entire
1208  // block and our block is at the end of a mapping. The tag of the next block's
1209  // header granule will be set to 0, so it will serve the purpose of catching
1210  // linear overflows in this case.
1211  //
1212  // For allocations of size 0 we do not end up storing the address tag to the
1213  // memory tag space, which getInlineErrorInfo() normally relies on to match
1214  // address tags against chunks. To allow matching in this case we store the
1215  // address tag in the first byte of the chunk.
1216  void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
1217    DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
1218    uptr UntaggedEnd = untagPointer(End);
1219    if (UntaggedEnd != BlockEnd) {
1220      storeTag(UntaggedEnd);
1221      if (Size == 0)
1222        *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
1223    }
1224  }
1225
1226  void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
1227                           uptr BlockEnd) {
1228    // Prepare the granule before the chunk to store the chunk header by setting
1229    // its tag to 0. Normally its tag will already be 0, but in the case where a
1230    // chunk holding a low alignment allocation is reused for a higher alignment
1231    // allocation, the chunk may already have a non-zero tag from the previous
1232    // allocation.
1233    storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
1234
1235    uptr TaggedBegin, TaggedEnd;
1236    setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
1237
1238    storeEndMarker(TaggedEnd, Size, BlockEnd);
1239    return reinterpret_cast<void *>(TaggedBegin);
1240  }
1241
1242  void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
1243                         uptr BlockEnd) {
1244    uptr RoundOldPtr = roundUpTo(OldPtr, archMemoryTagGranuleSize());
1245    uptr RoundNewPtr;
1246    if (RoundOldPtr >= NewPtr) {
1247      // If the allocation is shrinking we just need to set the tag past the end
1248      // of the allocation to 0. See explanation in storeEndMarker() above.
1249      RoundNewPtr = roundUpTo(NewPtr, archMemoryTagGranuleSize());
1250    } else {
1251      // Set the memory tag of the region
1252      // [RoundOldPtr, roundUpTo(NewPtr, archMemoryTagGranuleSize()))
1253      // to the pointer tag stored in OldPtr.
1254      RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
1255    }
1256    storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
1257  }
1258
1259  void storePrimaryAllocationStackMaybe(Options Options, void *Ptr) {
1260    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1261      return;
1262    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1263    Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
1264    Ptr32[MemTagAllocationTidIndex] = getThreadID();
1265  }
1266
1267  void storeRingBufferEntry(void *Ptr, u32 AllocationTrace, u32 AllocationTid,
1268                            uptr AllocationSize, u32 DeallocationTrace,
1269                            u32 DeallocationTid) {
1270    uptr Pos = atomic_fetch_add(&getRingBuffer()->Pos, 1, memory_order_relaxed);
1271    typename AllocationRingBuffer::Entry *Entry =
1272        getRingBufferEntry(RawRingBuffer, Pos % getRingBuffer()->Size);
1273
1274    // First invalidate our entry so that we don't attempt to interpret a
1275    // partially written state in getSecondaryErrorInfo(). The fences below
1276    // ensure that the compiler does not move the stores to Ptr in between the
1277    // stores to the other fields.
1278    atomic_store_relaxed(&Entry->Ptr, 0);
1279
1280    __atomic_signal_fence(__ATOMIC_SEQ_CST);
1281    atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
1282    atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
1283    atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
1284    atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
1285    atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
1286    __atomic_signal_fence(__ATOMIC_SEQ_CST);
1287
1288    atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
1289  }
1290
1291  void storeSecondaryAllocationStackMaybe(Options Options, void *Ptr,
1292                                          uptr Size) {
1293    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1294      return;
1295
1296    u32 Trace = collectStackTrace();
1297    u32 Tid = getThreadID();
1298
1299    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1300    Ptr32[MemTagAllocationTraceIndex] = Trace;
1301    Ptr32[MemTagAllocationTidIndex] = Tid;
1302
1303    storeRingBufferEntry(untagPointer(Ptr), Trace, Tid, Size, 0, 0);
1304  }
1305
1306  void storeDeallocationStackMaybe(Options Options, void *Ptr, u8 PrevTag,
1307                                   uptr Size) {
1308    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1309      return;
1310
1311    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1312    u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
1313    u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
1314
1315    u32 DeallocationTrace = collectStackTrace();
1316    u32 DeallocationTid = getThreadID();
1317
1318    storeRingBufferEntry(addFixedTag(untagPointer(Ptr), PrevTag),
1319                         AllocationTrace, AllocationTid, Size,
1320                         DeallocationTrace, DeallocationTid);
1321  }
1322
1323  static const size_t NumErrorReports =
1324      sizeof(((scudo_error_info *)nullptr)->reports) /
1325      sizeof(((scudo_error_info *)nullptr)->reports[0]);
1326
1327  static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
1328                                 size_t &NextErrorReport, uintptr_t FaultAddr,
1329                                 const StackDepot *Depot,
1330                                 const char *RegionInfoPtr, const char *Memory,
1331                                 const char *MemoryTags, uintptr_t MemoryAddr,
1332                                 size_t MemorySize, size_t MinDistance,
1333                                 size_t MaxDistance) {
1334    uptr UntaggedFaultAddr = untagPointer(FaultAddr);
1335    u8 FaultAddrTag = extractTag(FaultAddr);
1336    BlockInfo Info =
1337        PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
1338
1339    auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
1340      if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
1341          Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
1342        return false;
1343      *Data = &Memory[Addr - MemoryAddr];
1344      *Tag = static_cast<u8>(
1345          MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
1346      return true;
1347    };
1348
1349    auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
1350                         Chunk::UnpackedHeader *Header, const u32 **Data,
1351                         u8 *Tag) {
1352      const char *BlockBegin;
1353      u8 BlockBeginTag;
1354      if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
1355        return false;
1356      uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
1357      *ChunkAddr = Addr + ChunkOffset;
1358
1359      const char *ChunkBegin;
1360      if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
1361        return false;
1362      *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
1363          ChunkBegin - Chunk::getHeaderSize());
1364      *Data = reinterpret_cast<const u32 *>(ChunkBegin);
1365
1366      // Allocations of size 0 will have stashed the tag in the first byte of
1367      // the chunk, see storeEndMarker().
1368      if (Header->SizeOrUnusedBytes == 0)
1369        *Tag = static_cast<u8>(*ChunkBegin);
1370
1371      return true;
1372    };
1373
1374    if (NextErrorReport == NumErrorReports)
1375      return;
1376
1377    auto CheckOOB = [&](uptr BlockAddr) {
1378      if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
1379        return false;
1380
1381      uptr ChunkAddr;
1382      Chunk::UnpackedHeader Header;
1383      const u32 *Data;
1384      uint8_t Tag;
1385      if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
1386          Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
1387        return false;
1388
1389      auto *R = &ErrorInfo->reports[NextErrorReport++];
1390      R->error_type =
1391          UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
1392      R->allocation_address = ChunkAddr;
1393      R->allocation_size = Header.SizeOrUnusedBytes;
1394      collectTraceMaybe(Depot, R->allocation_trace,
1395                        Data[MemTagAllocationTraceIndex]);
1396      R->allocation_tid = Data[MemTagAllocationTidIndex];
1397      return NextErrorReport == NumErrorReports;
1398    };
1399
1400    if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
1401      return;
1402
1403    for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
1404      if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
1405          CheckOOB(Info.BlockBegin - I * Info.BlockSize))
1406        return;
1407  }
1408
1409  static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
1410                                     size_t &NextErrorReport,
1411                                     uintptr_t FaultAddr,
1412                                     const StackDepot *Depot,
1413                                     const char *RingBufferPtr) {
1414    auto *RingBuffer =
1415        reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
1416    if (!RingBuffer || RingBuffer->Size == 0)
1417      return;
1418    uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
1419
1420    for (uptr I = Pos - 1;
1421         I != Pos - 1 - RingBuffer->Size && NextErrorReport != NumErrorReports;
1422         --I) {
1423      auto *Entry = getRingBufferEntry(RingBufferPtr, I % RingBuffer->Size);
1424      uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
1425      if (!EntryPtr)
1426        continue;
1427
1428      uptr UntaggedEntryPtr = untagPointer(EntryPtr);
1429      uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
1430      u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
1431      u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
1432      u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
1433      u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
1434
1435      if (DeallocationTid) {
1436        // For UAF we only consider in-bounds fault addresses because
1437        // out-of-bounds UAF is rare and attempting to detect it is very likely
1438        // to result in false positives.
1439        if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
1440          continue;
1441      } else {
1442        // Ring buffer OOB is only possible with secondary allocations. In this
1443        // case we are guaranteed a guard region of at least a page on either
1444        // side of the allocation (guard page on the right, guard page + tagged
1445        // region on the left), so ignore any faults outside of that range.
1446        if (FaultAddr < EntryPtr - getPageSizeCached() ||
1447            FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
1448          continue;
1449
1450        // For UAF the ring buffer will contain two entries, one for the
1451        // allocation and another for the deallocation. Don't report buffer
1452        // overflow/underflow using the allocation entry if we have already
1453        // collected a report from the deallocation entry.
1454        bool Found = false;
1455        for (uptr J = 0; J != NextErrorReport; ++J) {
1456          if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
1457            Found = true;
1458            break;
1459          }
1460        }
1461        if (Found)
1462          continue;
1463      }
1464
1465      auto *R = &ErrorInfo->reports[NextErrorReport++];
1466      if (DeallocationTid)
1467        R->error_type = USE_AFTER_FREE;
1468      else if (FaultAddr < EntryPtr)
1469        R->error_type = BUFFER_UNDERFLOW;
1470      else
1471        R->error_type = BUFFER_OVERFLOW;
1472
1473      R->allocation_address = UntaggedEntryPtr;
1474      R->allocation_size = EntrySize;
1475      collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
1476      R->allocation_tid = AllocationTid;
1477      collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
1478      R->deallocation_tid = DeallocationTid;
1479    }
1480  }
1481
1482  uptr getStats(ScopedString *Str) {
1483    Primary.getStats(Str);
1484    Secondary.getStats(Str);
1485    Quarantine.getStats(Str);
1486    return Str->length();
1487  }
1488
1489  static typename AllocationRingBuffer::Entry *
1490  getRingBufferEntry(char *RawRingBuffer, uptr N) {
1491    return &reinterpret_cast<typename AllocationRingBuffer::Entry *>(
1492        &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1493  }
1494  static const typename AllocationRingBuffer::Entry *
1495  getRingBufferEntry(const char *RawRingBuffer, uptr N) {
1496    return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>(
1497        &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1498  }
1499
1500  void initRingBuffer() {
1501    u32 AllocationRingBufferSize =
1502        static_cast<u32>(getFlags()->allocation_ring_buffer_size);
1503    if (AllocationRingBufferSize < 1)
1504      return;
1505    MapPlatformData Data = {};
1506    RawRingBuffer = static_cast<char *>(
1507        map(/*Addr=*/nullptr,
1508            roundUpTo(ringBufferSizeInBytes(AllocationRingBufferSize), getPageSizeCached()),
1509            "AllocatorRingBuffer", /*Flags=*/0, &Data));
1510    auto *RingBuffer = reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1511    RingBuffer->Size = AllocationRingBufferSize;
1512    static_assert(sizeof(AllocationRingBuffer) %
1513                          alignof(typename AllocationRingBuffer::Entry) ==
1514                      0,
1515                  "invalid alignment");
1516  }
1517
1518  static constexpr size_t ringBufferSizeInBytes(u32 AllocationRingBufferSize) {
1519    return sizeof(AllocationRingBuffer) +
1520           AllocationRingBufferSize *
1521               sizeof(typename AllocationRingBuffer::Entry);
1522  }
1523
1524  inline AllocationRingBuffer *getRingBuffer() {
1525    return reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1526  }
1527};
1528
1529} // namespace scudo
1530
1531#endif // SCUDO_COMBINED_H_
1532