1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-function state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenFunction.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGDebugInfo.h"
19#include "CGHLSLRuntime.h"
20#include "CGOpenMPRuntime.h"
21#include "CodeGenModule.h"
22#include "CodeGenPGO.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/ASTLambda.h"
26#include "clang/AST/Attr.h"
27#include "clang/AST/Decl.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/Expr.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/StmtObjC.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/CodeGenOptions.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/CodeGen/CGFunctionInfo.h"
36#include "clang/Frontend/FrontendDiagnostic.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/Dominators.h"
41#include "llvm/IR/FPEnv.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/MDBuilder.h"
45#include "llvm/IR/Operator.h"
46#include "llvm/Support/CRC.h"
47#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
48#include "llvm/Transforms/Utils/PromoteMemToReg.h"
49#include <optional>
50
51using namespace clang;
52using namespace CodeGen;
53
54/// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
55/// markers.
56static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
57                                      const LangOptions &LangOpts) {
58  if (CGOpts.DisableLifetimeMarkers)
59    return false;
60
61  // Sanitizers may use markers.
62  if (CGOpts.SanitizeAddressUseAfterScope ||
63      LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
64      LangOpts.Sanitize.has(SanitizerKind::Memory))
65    return true;
66
67  // For now, only in optimized builds.
68  return CGOpts.OptimizationLevel != 0;
69}
70
71CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
72    : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
73      Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
74              CGBuilderInserterTy(this)),
75      SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
76      DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
77      ShouldEmitLifetimeMarkers(
78          shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
79  if (!suppressNewContext)
80    CGM.getCXXABI().getMangleContext().startNewFunction();
81  EHStack.setCGF(this);
82
83  SetFastMathFlags(CurFPFeatures);
84}
85
86CodeGenFunction::~CodeGenFunction() {
87  assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
88
89  if (getLangOpts().OpenMP && CurFn)
90    CGM.getOpenMPRuntime().functionFinished(*this);
91
92  // If we have an OpenMPIRBuilder we want to finalize functions (incl.
93  // outlining etc) at some point. Doing it once the function codegen is done
94  // seems to be a reasonable spot. We do it here, as opposed to the deletion
95  // time of the CodeGenModule, because we have to ensure the IR has not yet
96  // been "emitted" to the outside, thus, modifications are still sensible.
97  if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
98    CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
99}
100
101// Map the LangOption for exception behavior into
102// the corresponding enum in the IR.
103llvm::fp::ExceptionBehavior
104clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
105
106  switch (Kind) {
107  case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
108  case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
109  case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
110  default:
111    llvm_unreachable("Unsupported FP Exception Behavior");
112  }
113}
114
115void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
116  llvm::FastMathFlags FMF;
117  FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
118  FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
119  FMF.setNoInfs(FPFeatures.getNoHonorInfs());
120  FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
121  FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
122  FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
123  FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
124  Builder.setFastMathFlags(FMF);
125}
126
127CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
128                                                  const Expr *E)
129    : CGF(CGF) {
130  ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
131}
132
133CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
134                                                  FPOptions FPFeatures)
135    : CGF(CGF) {
136  ConstructorHelper(FPFeatures);
137}
138
139void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
140  OldFPFeatures = CGF.CurFPFeatures;
141  CGF.CurFPFeatures = FPFeatures;
142
143  OldExcept = CGF.Builder.getDefaultConstrainedExcept();
144  OldRounding = CGF.Builder.getDefaultConstrainedRounding();
145
146  if (OldFPFeatures == FPFeatures)
147    return;
148
149  FMFGuard.emplace(CGF.Builder);
150
151  llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
152  CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
153  auto NewExceptionBehavior =
154      ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
155          FPFeatures.getExceptionMode()));
156  CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
157
158  CGF.SetFastMathFlags(FPFeatures);
159
160  assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
161          isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
162          isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
163          (NewExceptionBehavior == llvm::fp::ebIgnore &&
164           NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
165         "FPConstrained should be enabled on entire function");
166
167  auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
168    auto OldValue =
169        CGF.CurFn->getFnAttribute(Name).getValueAsBool();
170    auto NewValue = OldValue & Value;
171    if (OldValue != NewValue)
172      CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
173  };
174  mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
175  mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
176  mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
177  mergeFnAttrValue(
178      "unsafe-fp-math",
179      FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
180          FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
181          FPFeatures.allowFPContractAcrossStatement());
182}
183
184CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
185  CGF.CurFPFeatures = OldFPFeatures;
186  CGF.Builder.setDefaultConstrainedExcept(OldExcept);
187  CGF.Builder.setDefaultConstrainedRounding(OldRounding);
188}
189
190LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
191  LValueBaseInfo BaseInfo;
192  TBAAAccessInfo TBAAInfo;
193  CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
194  Address Addr(V, ConvertTypeForMem(T), Alignment);
195  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
196}
197
198/// Given a value of type T* that may not be to a complete object,
199/// construct an l-value with the natural pointee alignment of T.
200LValue
201CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
202  LValueBaseInfo BaseInfo;
203  TBAAAccessInfo TBAAInfo;
204  CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
205                                                /* forPointeeType= */ true);
206  Address Addr(V, ConvertTypeForMem(T), Align);
207  return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
208}
209
210
211llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
212  return CGM.getTypes().ConvertTypeForMem(T);
213}
214
215llvm::Type *CodeGenFunction::ConvertType(QualType T) {
216  return CGM.getTypes().ConvertType(T);
217}
218
219TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
220  type = type.getCanonicalType();
221  while (true) {
222    switch (type->getTypeClass()) {
223#define TYPE(name, parent)
224#define ABSTRACT_TYPE(name, parent)
225#define NON_CANONICAL_TYPE(name, parent) case Type::name:
226#define DEPENDENT_TYPE(name, parent) case Type::name:
227#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
228#include "clang/AST/TypeNodes.inc"
229      llvm_unreachable("non-canonical or dependent type in IR-generation");
230
231    case Type::Auto:
232    case Type::DeducedTemplateSpecialization:
233      llvm_unreachable("undeduced type in IR-generation");
234
235    // Various scalar types.
236    case Type::Builtin:
237    case Type::Pointer:
238    case Type::BlockPointer:
239    case Type::LValueReference:
240    case Type::RValueReference:
241    case Type::MemberPointer:
242    case Type::Vector:
243    case Type::ExtVector:
244    case Type::ConstantMatrix:
245    case Type::FunctionProto:
246    case Type::FunctionNoProto:
247    case Type::Enum:
248    case Type::ObjCObjectPointer:
249    case Type::Pipe:
250    case Type::BitInt:
251      return TEK_Scalar;
252
253    // Complexes.
254    case Type::Complex:
255      return TEK_Complex;
256
257    // Arrays, records, and Objective-C objects.
258    case Type::ConstantArray:
259    case Type::IncompleteArray:
260    case Type::VariableArray:
261    case Type::Record:
262    case Type::ObjCObject:
263    case Type::ObjCInterface:
264      return TEK_Aggregate;
265
266    // We operate on atomic values according to their underlying type.
267    case Type::Atomic:
268      type = cast<AtomicType>(type)->getValueType();
269      continue;
270    }
271    llvm_unreachable("unknown type kind!");
272  }
273}
274
275llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
276  // For cleanliness, we try to avoid emitting the return block for
277  // simple cases.
278  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
279
280  if (CurBB) {
281    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
282
283    // We have a valid insert point, reuse it if it is empty or there are no
284    // explicit jumps to the return block.
285    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
286      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
287      delete ReturnBlock.getBlock();
288      ReturnBlock = JumpDest();
289    } else
290      EmitBlock(ReturnBlock.getBlock());
291    return llvm::DebugLoc();
292  }
293
294  // Otherwise, if the return block is the target of a single direct
295  // branch then we can just put the code in that block instead. This
296  // cleans up functions which started with a unified return block.
297  if (ReturnBlock.getBlock()->hasOneUse()) {
298    llvm::BranchInst *BI =
299      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
300    if (BI && BI->isUnconditional() &&
301        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
302      // Record/return the DebugLoc of the simple 'return' expression to be used
303      // later by the actual 'ret' instruction.
304      llvm::DebugLoc Loc = BI->getDebugLoc();
305      Builder.SetInsertPoint(BI->getParent());
306      BI->eraseFromParent();
307      delete ReturnBlock.getBlock();
308      ReturnBlock = JumpDest();
309      return Loc;
310    }
311  }
312
313  // FIXME: We are at an unreachable point, there is no reason to emit the block
314  // unless it has uses. However, we still need a place to put the debug
315  // region.end for now.
316
317  EmitBlock(ReturnBlock.getBlock());
318  return llvm::DebugLoc();
319}
320
321static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
322  if (!BB) return;
323  if (!BB->use_empty()) {
324    CGF.CurFn->insert(CGF.CurFn->end(), BB);
325    return;
326  }
327  delete BB;
328}
329
330void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
331  assert(BreakContinueStack.empty() &&
332         "mismatched push/pop in break/continue stack!");
333
334  bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
335    && NumSimpleReturnExprs == NumReturnExprs
336    && ReturnBlock.getBlock()->use_empty();
337  // Usually the return expression is evaluated before the cleanup
338  // code.  If the function contains only a simple return statement,
339  // such as a constant, the location before the cleanup code becomes
340  // the last useful breakpoint in the function, because the simple
341  // return expression will be evaluated after the cleanup code. To be
342  // safe, set the debug location for cleanup code to the location of
343  // the return statement.  Otherwise the cleanup code should be at the
344  // end of the function's lexical scope.
345  //
346  // If there are multiple branches to the return block, the branch
347  // instructions will get the location of the return statements and
348  // all will be fine.
349  if (CGDebugInfo *DI = getDebugInfo()) {
350    if (OnlySimpleReturnStmts)
351      DI->EmitLocation(Builder, LastStopPoint);
352    else
353      DI->EmitLocation(Builder, EndLoc);
354  }
355
356  // Pop any cleanups that might have been associated with the
357  // parameters.  Do this in whatever block we're currently in; it's
358  // important to do this before we enter the return block or return
359  // edges will be *really* confused.
360  bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
361  bool HasOnlyLifetimeMarkers =
362      HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
363  bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
364
365  std::optional<ApplyDebugLocation> OAL;
366  if (HasCleanups) {
367    // Make sure the line table doesn't jump back into the body for
368    // the ret after it's been at EndLoc.
369    if (CGDebugInfo *DI = getDebugInfo()) {
370      if (OnlySimpleReturnStmts)
371        DI->EmitLocation(Builder, EndLoc);
372      else
373        // We may not have a valid end location. Try to apply it anyway, and
374        // fall back to an artificial location if needed.
375        OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
376    }
377
378    PopCleanupBlocks(PrologueCleanupDepth);
379  }
380
381  // Emit function epilog (to return).
382  llvm::DebugLoc Loc = EmitReturnBlock();
383
384  if (ShouldInstrumentFunction()) {
385    if (CGM.getCodeGenOpts().InstrumentFunctions)
386      CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
387    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
388      CurFn->addFnAttr("instrument-function-exit-inlined",
389                       "__cyg_profile_func_exit");
390  }
391
392  // Emit debug descriptor for function end.
393  if (CGDebugInfo *DI = getDebugInfo())
394    DI->EmitFunctionEnd(Builder, CurFn);
395
396  // Reset the debug location to that of the simple 'return' expression, if any
397  // rather than that of the end of the function's scope '}'.
398  ApplyDebugLocation AL(*this, Loc);
399  EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
400  EmitEndEHSpec(CurCodeDecl);
401
402  assert(EHStack.empty() &&
403         "did not remove all scopes from cleanup stack!");
404
405  // If someone did an indirect goto, emit the indirect goto block at the end of
406  // the function.
407  if (IndirectBranch) {
408    EmitBlock(IndirectBranch->getParent());
409    Builder.ClearInsertionPoint();
410  }
411
412  // If some of our locals escaped, insert a call to llvm.localescape in the
413  // entry block.
414  if (!EscapedLocals.empty()) {
415    // Invert the map from local to index into a simple vector. There should be
416    // no holes.
417    SmallVector<llvm::Value *, 4> EscapeArgs;
418    EscapeArgs.resize(EscapedLocals.size());
419    for (auto &Pair : EscapedLocals)
420      EscapeArgs[Pair.second] = Pair.first;
421    llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
422        &CGM.getModule(), llvm::Intrinsic::localescape);
423    CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
424  }
425
426  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
427  llvm::Instruction *Ptr = AllocaInsertPt;
428  AllocaInsertPt = nullptr;
429  Ptr->eraseFromParent();
430
431  // PostAllocaInsertPt, if created, was lazily created when it was required,
432  // remove it now since it was just created for our own convenience.
433  if (PostAllocaInsertPt) {
434    llvm::Instruction *PostPtr = PostAllocaInsertPt;
435    PostAllocaInsertPt = nullptr;
436    PostPtr->eraseFromParent();
437  }
438
439  // If someone took the address of a label but never did an indirect goto, we
440  // made a zero entry PHI node, which is illegal, zap it now.
441  if (IndirectBranch) {
442    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
443    if (PN->getNumIncomingValues() == 0) {
444      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
445      PN->eraseFromParent();
446    }
447  }
448
449  EmitIfUsed(*this, EHResumeBlock);
450  EmitIfUsed(*this, TerminateLandingPad);
451  EmitIfUsed(*this, TerminateHandler);
452  EmitIfUsed(*this, UnreachableBlock);
453
454  for (const auto &FuncletAndParent : TerminateFunclets)
455    EmitIfUsed(*this, FuncletAndParent.second);
456
457  if (CGM.getCodeGenOpts().EmitDeclMetadata)
458    EmitDeclMetadata();
459
460  for (const auto &R : DeferredReplacements) {
461    if (llvm::Value *Old = R.first) {
462      Old->replaceAllUsesWith(R.second);
463      cast<llvm::Instruction>(Old)->eraseFromParent();
464    }
465  }
466  DeferredReplacements.clear();
467
468  // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
469  // PHIs if the current function is a coroutine. We don't do it for all
470  // functions as it may result in slight increase in numbers of instructions
471  // if compiled with no optimizations. We do it for coroutine as the lifetime
472  // of CleanupDestSlot alloca make correct coroutine frame building very
473  // difficult.
474  if (NormalCleanupDest.isValid() && isCoroutine()) {
475    llvm::DominatorTree DT(*CurFn);
476    llvm::PromoteMemToReg(
477        cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
478    NormalCleanupDest = Address::invalid();
479  }
480
481  // Scan function arguments for vector width.
482  for (llvm::Argument &A : CurFn->args())
483    if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
484      LargestVectorWidth =
485          std::max((uint64_t)LargestVectorWidth,
486                   VT->getPrimitiveSizeInBits().getKnownMinValue());
487
488  // Update vector width based on return type.
489  if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
490    LargestVectorWidth =
491        std::max((uint64_t)LargestVectorWidth,
492                 VT->getPrimitiveSizeInBits().getKnownMinValue());
493
494  if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
495    LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
496
497  // Add the required-vector-width attribute. This contains the max width from:
498  // 1. min-vector-width attribute used in the source program.
499  // 2. Any builtins used that have a vector width specified.
500  // 3. Values passed in and out of inline assembly.
501  // 4. Width of vector arguments and return types for this function.
502  // 5. Width of vector aguments and return types for functions called by this
503  //    function.
504  if (getContext().getTargetInfo().getTriple().isX86())
505    CurFn->addFnAttr("min-legal-vector-width",
506                     llvm::utostr(LargestVectorWidth));
507
508  // Add vscale_range attribute if appropriate.
509  std::optional<std::pair<unsigned, unsigned>> VScaleRange =
510      getContext().getTargetInfo().getVScaleRange(getLangOpts());
511  if (VScaleRange) {
512    CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
513        getLLVMContext(), VScaleRange->first, VScaleRange->second));
514  }
515
516  // If we generated an unreachable return block, delete it now.
517  if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
518    Builder.ClearInsertionPoint();
519    ReturnBlock.getBlock()->eraseFromParent();
520  }
521  if (ReturnValue.isValid()) {
522    auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
523    if (RetAlloca && RetAlloca->use_empty()) {
524      RetAlloca->eraseFromParent();
525      ReturnValue = Address::invalid();
526    }
527  }
528}
529
530/// ShouldInstrumentFunction - Return true if the current function should be
531/// instrumented with __cyg_profile_func_* calls
532bool CodeGenFunction::ShouldInstrumentFunction() {
533  if (!CGM.getCodeGenOpts().InstrumentFunctions &&
534      !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
535      !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
536    return false;
537  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
538    return false;
539  return true;
540}
541
542bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
543  if (!CurFuncDecl)
544    return false;
545  return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
546}
547
548/// ShouldXRayInstrument - Return true if the current function should be
549/// instrumented with XRay nop sleds.
550bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
551  return CGM.getCodeGenOpts().XRayInstrumentFunctions;
552}
553
554/// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
555/// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
556bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
557  return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558         (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
559          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560              XRayInstrKind::Custom);
561}
562
563bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
564  return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
565         (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
566          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
567              XRayInstrKind::Typed);
568}
569
570llvm::Value *
571CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
572                                          llvm::Value *EncodedAddr) {
573  // Reconstruct the address of the global.
574  auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
575  auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
576  auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
577  auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
578
579  // Load the original pointer through the global.
580  return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
581                            "decoded_addr");
582}
583
584void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
585                                         llvm::Function *Fn) {
586  if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
587    return;
588
589  llvm::LLVMContext &Context = getLLVMContext();
590
591  CGM.GenKernelArgMetadata(Fn, FD, this);
592
593  if (!getLangOpts().OpenCL)
594    return;
595
596  if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
597    QualType HintQTy = A->getTypeHint();
598    const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
599    bool IsSignedInteger =
600        HintQTy->isSignedIntegerType() ||
601        (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
602    llvm::Metadata *AttrMDArgs[] = {
603        llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
604            CGM.getTypes().ConvertType(A->getTypeHint()))),
605        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606            llvm::IntegerType::get(Context, 32),
607            llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
608    Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
609  }
610
611  if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
612    llvm::Metadata *AttrMDArgs[] = {
613        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
614        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
615        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
616    Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
617  }
618
619  if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
620    llvm::Metadata *AttrMDArgs[] = {
621        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
622        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
623        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
624    Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
625  }
626
627  if (const OpenCLIntelReqdSubGroupSizeAttr *A =
628          FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
629    llvm::Metadata *AttrMDArgs[] = {
630        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
631    Fn->setMetadata("intel_reqd_sub_group_size",
632                    llvm::MDNode::get(Context, AttrMDArgs));
633  }
634}
635
636/// Determine whether the function F ends with a return stmt.
637static bool endsWithReturn(const Decl* F) {
638  const Stmt *Body = nullptr;
639  if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
640    Body = FD->getBody();
641  else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
642    Body = OMD->getBody();
643
644  if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
645    auto LastStmt = CS->body_rbegin();
646    if (LastStmt != CS->body_rend())
647      return isa<ReturnStmt>(*LastStmt);
648  }
649  return false;
650}
651
652void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
653  if (SanOpts.has(SanitizerKind::Thread)) {
654    Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
655    Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
656  }
657}
658
659/// Check if the return value of this function requires sanitization.
660bool CodeGenFunction::requiresReturnValueCheck() const {
661  return requiresReturnValueNullabilityCheck() ||
662         (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
663          CurCodeDecl->getAttr<ReturnsNonNullAttr>());
664}
665
666static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
667  auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
668  if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
669      !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
670      (MD->getNumParams() != 1 && MD->getNumParams() != 2))
671    return false;
672
673  if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
674    return false;
675
676  if (MD->getNumParams() == 2) {
677    auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
678    if (!PT || !PT->isVoidPointerType() ||
679        !PT->getPointeeType().isConstQualified())
680      return false;
681  }
682
683  return true;
684}
685
686/// Return the UBSan prologue signature for \p FD if one is available.
687static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
688                                            const FunctionDecl *FD) {
689  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
690    if (!MD->isStatic())
691      return nullptr;
692  return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
693}
694
695void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
696                                    llvm::Function *Fn,
697                                    const CGFunctionInfo &FnInfo,
698                                    const FunctionArgList &Args,
699                                    SourceLocation Loc,
700                                    SourceLocation StartLoc) {
701  assert(!CurFn &&
702         "Do not use a CodeGenFunction object for more than one function");
703
704  const Decl *D = GD.getDecl();
705
706  DidCallStackSave = false;
707  CurCodeDecl = D;
708  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
709  if (FD && FD->usesSEHTry())
710    CurSEHParent = GD;
711  CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
712  FnRetTy = RetTy;
713  CurFn = Fn;
714  CurFnInfo = &FnInfo;
715  assert(CurFn->isDeclaration() && "Function already has body?");
716
717  // If this function is ignored for any of the enabled sanitizers,
718  // disable the sanitizer for the function.
719  do {
720#define SANITIZER(NAME, ID)                                                    \
721  if (SanOpts.empty())                                                         \
722    break;                                                                     \
723  if (SanOpts.has(SanitizerKind::ID))                                          \
724    if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
725      SanOpts.set(SanitizerKind::ID, false);
726
727#include "clang/Basic/Sanitizers.def"
728#undef SANITIZER
729  } while (false);
730
731  if (D) {
732    const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
733    bool NoSanitizeCoverage = false;
734
735    for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
736      // Apply the no_sanitize* attributes to SanOpts.
737      SanitizerMask mask = Attr->getMask();
738      SanOpts.Mask &= ~mask;
739      if (mask & SanitizerKind::Address)
740        SanOpts.set(SanitizerKind::KernelAddress, false);
741      if (mask & SanitizerKind::KernelAddress)
742        SanOpts.set(SanitizerKind::Address, false);
743      if (mask & SanitizerKind::HWAddress)
744        SanOpts.set(SanitizerKind::KernelHWAddress, false);
745      if (mask & SanitizerKind::KernelHWAddress)
746        SanOpts.set(SanitizerKind::HWAddress, false);
747
748      // SanitizeCoverage is not handled by SanOpts.
749      if (Attr->hasCoverage())
750        NoSanitizeCoverage = true;
751    }
752
753    if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
754      Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
755
756    if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
757      Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
758  }
759
760  if (ShouldSkipSanitizerInstrumentation()) {
761    CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
762  } else {
763    // Apply sanitizer attributes to the function.
764    if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
765      Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
766    if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
767                         SanitizerKind::KernelHWAddress))
768      Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
769    if (SanOpts.has(SanitizerKind::MemtagStack))
770      Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
771    if (SanOpts.has(SanitizerKind::Thread))
772      Fn->addFnAttr(llvm::Attribute::SanitizeThread);
773    if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
774      Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
775  }
776  if (SanOpts.has(SanitizerKind::SafeStack))
777    Fn->addFnAttr(llvm::Attribute::SafeStack);
778  if (SanOpts.has(SanitizerKind::ShadowCallStack))
779    Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
780
781  // Apply fuzzing attribute to the function.
782  if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
783    Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
784
785  // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
786  // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
787  if (SanOpts.has(SanitizerKind::Thread)) {
788    if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
789      IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
790      if (OMD->getMethodFamily() == OMF_dealloc ||
791          OMD->getMethodFamily() == OMF_initialize ||
792          (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
793        markAsIgnoreThreadCheckingAtRuntime(Fn);
794      }
795    }
796  }
797
798  // Ignore unrelated casts in STL allocate() since the allocator must cast
799  // from void* to T* before object initialization completes. Don't match on the
800  // namespace because not all allocators are in std::
801  if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
802    if (matchesStlAllocatorFn(D, getContext()))
803      SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
804  }
805
806  // Ignore null checks in coroutine functions since the coroutines passes
807  // are not aware of how to move the extra UBSan instructions across the split
808  // coroutine boundaries.
809  if (D && SanOpts.has(SanitizerKind::Null))
810    if (FD && FD->getBody() &&
811        FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
812      SanOpts.Mask &= ~SanitizerKind::Null;
813
814  // Apply xray attributes to the function (as a string, for now)
815  bool AlwaysXRayAttr = false;
816  if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
817    if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
818            XRayInstrKind::FunctionEntry) ||
819        CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
820            XRayInstrKind::FunctionExit)) {
821      if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
822        Fn->addFnAttr("function-instrument", "xray-always");
823        AlwaysXRayAttr = true;
824      }
825      if (XRayAttr->neverXRayInstrument())
826        Fn->addFnAttr("function-instrument", "xray-never");
827      if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
828        if (ShouldXRayInstrumentFunction())
829          Fn->addFnAttr("xray-log-args",
830                        llvm::utostr(LogArgs->getArgumentCount()));
831    }
832  } else {
833    if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
834      Fn->addFnAttr(
835          "xray-instruction-threshold",
836          llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
837  }
838
839  if (ShouldXRayInstrumentFunction()) {
840    if (CGM.getCodeGenOpts().XRayIgnoreLoops)
841      Fn->addFnAttr("xray-ignore-loops");
842
843    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
844            XRayInstrKind::FunctionExit))
845      Fn->addFnAttr("xray-skip-exit");
846
847    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
848            XRayInstrKind::FunctionEntry))
849      Fn->addFnAttr("xray-skip-entry");
850
851    auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
852    if (FuncGroups > 1) {
853      auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
854                                              CurFn->getName().bytes_end());
855      auto Group = crc32(FuncName) % FuncGroups;
856      if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
857          !AlwaysXRayAttr)
858        Fn->addFnAttr("function-instrument", "xray-never");
859    }
860  }
861
862  if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
863    switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
864    case ProfileList::Skip:
865      Fn->addFnAttr(llvm::Attribute::SkipProfile);
866      break;
867    case ProfileList::Forbid:
868      Fn->addFnAttr(llvm::Attribute::NoProfile);
869      break;
870    case ProfileList::Allow:
871      break;
872    }
873  }
874
875  unsigned Count, Offset;
876  if (const auto *Attr =
877          D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
878    Count = Attr->getCount();
879    Offset = Attr->getOffset();
880  } else {
881    Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
882    Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
883  }
884  if (Count && Offset <= Count) {
885    Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
886    if (Offset)
887      Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
888  }
889  // Instruct that functions for COFF/CodeView targets should start with a
890  // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
891  // backends as they don't need it -- instructions on these architectures are
892  // always atomically patchable at runtime.
893  if (CGM.getCodeGenOpts().HotPatch &&
894      getContext().getTargetInfo().getTriple().isX86() &&
895      getContext().getTargetInfo().getTriple().getEnvironment() !=
896          llvm::Triple::CODE16)
897    Fn->addFnAttr("patchable-function", "prologue-short-redirect");
898
899  // Add no-jump-tables value.
900  if (CGM.getCodeGenOpts().NoUseJumpTables)
901    Fn->addFnAttr("no-jump-tables", "true");
902
903  // Add no-inline-line-tables value.
904  if (CGM.getCodeGenOpts().NoInlineLineTables)
905    Fn->addFnAttr("no-inline-line-tables");
906
907  // Add profile-sample-accurate value.
908  if (CGM.getCodeGenOpts().ProfileSampleAccurate)
909    Fn->addFnAttr("profile-sample-accurate");
910
911  if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
912    Fn->addFnAttr("use-sample-profile");
913
914  if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
915    Fn->addFnAttr("cfi-canonical-jump-table");
916
917  if (D && D->hasAttr<NoProfileFunctionAttr>())
918    Fn->addFnAttr(llvm::Attribute::NoProfile);
919
920  if (D) {
921    // Function attributes take precedence over command line flags.
922    if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
923      switch (A->getThunkType()) {
924      case FunctionReturnThunksAttr::Kind::Keep:
925        break;
926      case FunctionReturnThunksAttr::Kind::Extern:
927        Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
928        break;
929      }
930    } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
931      Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
932  }
933
934  if (FD && (getLangOpts().OpenCL ||
935             (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
936    // Add metadata for a kernel function.
937    EmitKernelMetadata(FD, Fn);
938  }
939
940  // If we are checking function types, emit a function type signature as
941  // prologue data.
942  if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
943    if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
944      // Remove any (C++17) exception specifications, to allow calling e.g. a
945      // noexcept function through a non-noexcept pointer.
946      auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
947          FD->getType(), EST_None);
948      llvm::Constant *FTRTTIConst =
949          CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
950      llvm::GlobalVariable *FTRTTIProxy =
951          CGM.GetOrCreateRTTIProxyGlobalVariable(FTRTTIConst);
952      llvm::LLVMContext &Ctx = Fn->getContext();
953      llvm::MDBuilder MDB(Ctx);
954      Fn->setMetadata(llvm::LLVMContext::MD_func_sanitize,
955                      MDB.createRTTIPointerPrologue(PrologueSig, FTRTTIProxy));
956      CGM.addCompilerUsedGlobal(FTRTTIProxy);
957    }
958  }
959
960  // If we're checking nullability, we need to know whether we can check the
961  // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
962  if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
963    auto Nullability = FnRetTy->getNullability();
964    if (Nullability && *Nullability == NullabilityKind::NonNull) {
965      if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
966            CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
967        RetValNullabilityPrecondition =
968            llvm::ConstantInt::getTrue(getLLVMContext());
969    }
970  }
971
972  // If we're in C++ mode and the function name is "main", it is guaranteed
973  // to be norecurse by the standard (3.6.1.3 "The function main shall not be
974  // used within a program").
975  //
976  // OpenCL C 2.0 v2.2-11 s6.9.i:
977  //     Recursion is not supported.
978  //
979  // SYCL v1.2.1 s3.10:
980  //     kernels cannot include RTTI information, exception classes,
981  //     recursive code, virtual functions or make use of C++ libraries that
982  //     are not compiled for the device.
983  if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
984             getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
985             (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
986    Fn->addFnAttr(llvm::Attribute::NoRecurse);
987
988  llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
989  llvm::fp::ExceptionBehavior FPExceptionBehavior =
990      ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
991  Builder.setDefaultConstrainedRounding(RM);
992  Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
993  if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
994      (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
995               RM != llvm::RoundingMode::NearestTiesToEven))) {
996    Builder.setIsFPConstrained(true);
997    Fn->addFnAttr(llvm::Attribute::StrictFP);
998  }
999
1000  // If a custom alignment is used, force realigning to this alignment on
1001  // any main function which certainly will need it.
1002  if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1003             CGM.getCodeGenOpts().StackAlignment))
1004    Fn->addFnAttr("stackrealign");
1005
1006  // "main" doesn't need to zero out call-used registers.
1007  if (FD && FD->isMain())
1008    Fn->removeFnAttr("zero-call-used-regs");
1009
1010  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1011
1012  // Create a marker to make it easy to insert allocas into the entryblock
1013  // later.  Don't create this with the builder, because we don't want it
1014  // folded.
1015  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1016  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1017
1018  ReturnBlock = getJumpDestInCurrentScope("return");
1019
1020  Builder.SetInsertPoint(EntryBB);
1021
1022  // If we're checking the return value, allocate space for a pointer to a
1023  // precise source location of the checked return statement.
1024  if (requiresReturnValueCheck()) {
1025    ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1026    Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1027                        ReturnLocation);
1028  }
1029
1030  // Emit subprogram debug descriptor.
1031  if (CGDebugInfo *DI = getDebugInfo()) {
1032    // Reconstruct the type from the argument list so that implicit parameters,
1033    // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1034    // convention.
1035    DI->emitFunctionStart(GD, Loc, StartLoc,
1036                          DI->getFunctionType(FD, RetTy, Args), CurFn,
1037                          CurFuncIsThunk);
1038  }
1039
1040  if (ShouldInstrumentFunction()) {
1041    if (CGM.getCodeGenOpts().InstrumentFunctions)
1042      CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1043    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1044      CurFn->addFnAttr("instrument-function-entry-inlined",
1045                       "__cyg_profile_func_enter");
1046    if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1047      CurFn->addFnAttr("instrument-function-entry-inlined",
1048                       "__cyg_profile_func_enter_bare");
1049  }
1050
1051  // Since emitting the mcount call here impacts optimizations such as function
1052  // inlining, we just add an attribute to insert a mcount call in backend.
1053  // The attribute "counting-function" is set to mcount function name which is
1054  // architecture dependent.
1055  if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1056    // Calls to fentry/mcount should not be generated if function has
1057    // the no_instrument_function attribute.
1058    if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1059      if (CGM.getCodeGenOpts().CallFEntry)
1060        Fn->addFnAttr("fentry-call", "true");
1061      else {
1062        Fn->addFnAttr("instrument-function-entry-inlined",
1063                      getTarget().getMCountName());
1064      }
1065      if (CGM.getCodeGenOpts().MNopMCount) {
1066        if (!CGM.getCodeGenOpts().CallFEntry)
1067          CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1068            << "-mnop-mcount" << "-mfentry";
1069        Fn->addFnAttr("mnop-mcount");
1070      }
1071
1072      if (CGM.getCodeGenOpts().RecordMCount) {
1073        if (!CGM.getCodeGenOpts().CallFEntry)
1074          CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1075            << "-mrecord-mcount" << "-mfentry";
1076        Fn->addFnAttr("mrecord-mcount");
1077      }
1078    }
1079  }
1080
1081  if (CGM.getCodeGenOpts().PackedStack) {
1082    if (getContext().getTargetInfo().getTriple().getArch() !=
1083        llvm::Triple::systemz)
1084      CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1085        << "-mpacked-stack";
1086    Fn->addFnAttr("packed-stack");
1087  }
1088
1089  if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1090      !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1091    Fn->addFnAttr("warn-stack-size",
1092                  std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1093
1094  if (RetTy->isVoidType()) {
1095    // Void type; nothing to return.
1096    ReturnValue = Address::invalid();
1097
1098    // Count the implicit return.
1099    if (!endsWithReturn(D))
1100      ++NumReturnExprs;
1101  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1102    // Indirect return; emit returned value directly into sret slot.
1103    // This reduces code size, and affects correctness in C++.
1104    auto AI = CurFn->arg_begin();
1105    if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1106      ++AI;
1107    ReturnValue = Address(&*AI, ConvertType(RetTy),
1108                          CurFnInfo->getReturnInfo().getIndirectAlign());
1109    if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1110      ReturnValuePointer =
1111          CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1112      Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1113                              ReturnValue.getPointer(), Int8PtrTy),
1114                          ReturnValuePointer);
1115    }
1116  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1117             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1118    // Load the sret pointer from the argument struct and return into that.
1119    unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1120    llvm::Function::arg_iterator EI = CurFn->arg_end();
1121    --EI;
1122    llvm::Value *Addr = Builder.CreateStructGEP(
1123        CurFnInfo->getArgStruct(), &*EI, Idx);
1124    llvm::Type *Ty =
1125        cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1126    ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1127    Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1128    ReturnValue =
1129        Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1130  } else {
1131    ReturnValue = CreateIRTemp(RetTy, "retval");
1132
1133    // Tell the epilog emitter to autorelease the result.  We do this
1134    // now so that various specialized functions can suppress it
1135    // during their IR-generation.
1136    if (getLangOpts().ObjCAutoRefCount &&
1137        !CurFnInfo->isReturnsRetained() &&
1138        RetTy->isObjCRetainableType())
1139      AutoreleaseResult = true;
1140  }
1141
1142  EmitStartEHSpec(CurCodeDecl);
1143
1144  PrologueCleanupDepth = EHStack.stable_begin();
1145
1146  // Emit OpenMP specific initialization of the device functions.
1147  if (getLangOpts().OpenMP && CurCodeDecl)
1148    CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1149
1150  // Handle emitting HLSL entry functions.
1151  if (D && D->hasAttr<HLSLShaderAttr>())
1152    CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1153
1154  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1155
1156  if (isa_and_nonnull<CXXMethodDecl>(D) &&
1157      cast<CXXMethodDecl>(D)->isInstance()) {
1158    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1159    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1160    if (MD->getParent()->isLambda() &&
1161        MD->getOverloadedOperator() == OO_Call) {
1162      // We're in a lambda; figure out the captures.
1163      MD->getParent()->getCaptureFields(LambdaCaptureFields,
1164                                        LambdaThisCaptureField);
1165      if (LambdaThisCaptureField) {
1166        // If the lambda captures the object referred to by '*this' - either by
1167        // value or by reference, make sure CXXThisValue points to the correct
1168        // object.
1169
1170        // Get the lvalue for the field (which is a copy of the enclosing object
1171        // or contains the address of the enclosing object).
1172        LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1173        if (!LambdaThisCaptureField->getType()->isPointerType()) {
1174          // If the enclosing object was captured by value, just use its address.
1175          CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1176        } else {
1177          // Load the lvalue pointed to by the field, since '*this' was captured
1178          // by reference.
1179          CXXThisValue =
1180              EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1181        }
1182      }
1183      for (auto *FD : MD->getParent()->fields()) {
1184        if (FD->hasCapturedVLAType()) {
1185          auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1186                                           SourceLocation()).getScalarVal();
1187          auto VAT = FD->getCapturedVLAType();
1188          VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1189        }
1190      }
1191    } else {
1192      // Not in a lambda; just use 'this' from the method.
1193      // FIXME: Should we generate a new load for each use of 'this'?  The
1194      // fast register allocator would be happier...
1195      CXXThisValue = CXXABIThisValue;
1196    }
1197
1198    // Check the 'this' pointer once per function, if it's available.
1199    if (CXXABIThisValue) {
1200      SanitizerSet SkippedChecks;
1201      SkippedChecks.set(SanitizerKind::ObjectSize, true);
1202      QualType ThisTy = MD->getThisType();
1203
1204      // If this is the call operator of a lambda with no capture-default, it
1205      // may have a static invoker function, which may call this operator with
1206      // a null 'this' pointer.
1207      if (isLambdaCallOperator(MD) &&
1208          MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1209        SkippedChecks.set(SanitizerKind::Null, true);
1210
1211      EmitTypeCheck(
1212          isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1213          Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1214    }
1215  }
1216
1217  // If any of the arguments have a variably modified type, make sure to
1218  // emit the type size, but only if the function is not naked. Naked functions
1219  // have no prolog to run this evaluation.
1220  if (!FD || !FD->hasAttr<NakedAttr>()) {
1221    for (const VarDecl *VD : Args) {
1222      // Dig out the type as written from ParmVarDecls; it's unclear whether
1223      // the standard (C99 6.9.1p10) requires this, but we're following the
1224      // precedent set by gcc.
1225      QualType Ty;
1226      if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1227        Ty = PVD->getOriginalType();
1228      else
1229        Ty = VD->getType();
1230
1231      if (Ty->isVariablyModifiedType())
1232        EmitVariablyModifiedType(Ty);
1233    }
1234  }
1235  // Emit a location at the end of the prologue.
1236  if (CGDebugInfo *DI = getDebugInfo())
1237    DI->EmitLocation(Builder, StartLoc);
1238  // TODO: Do we need to handle this in two places like we do with
1239  // target-features/target-cpu?
1240  if (CurFuncDecl)
1241    if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1242      LargestVectorWidth = VecWidth->getVectorWidth();
1243}
1244
1245void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1246  incrementProfileCounter(Body);
1247  if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1248    EmitCompoundStmtWithoutScope(*S);
1249  else
1250    EmitStmt(Body);
1251
1252  // This is checked after emitting the function body so we know if there
1253  // are any permitted infinite loops.
1254  if (checkIfFunctionMustProgress())
1255    CurFn->addFnAttr(llvm::Attribute::MustProgress);
1256}
1257
1258/// When instrumenting to collect profile data, the counts for some blocks
1259/// such as switch cases need to not include the fall-through counts, so
1260/// emit a branch around the instrumentation code. When not instrumenting,
1261/// this just calls EmitBlock().
1262void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1263                                               const Stmt *S) {
1264  llvm::BasicBlock *SkipCountBB = nullptr;
1265  if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1266    // When instrumenting for profiling, the fallthrough to certain
1267    // statements needs to skip over the instrumentation code so that we
1268    // get an accurate count.
1269    SkipCountBB = createBasicBlock("skipcount");
1270    EmitBranch(SkipCountBB);
1271  }
1272  EmitBlock(BB);
1273  uint64_t CurrentCount = getCurrentProfileCount();
1274  incrementProfileCounter(S);
1275  setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1276  if (SkipCountBB)
1277    EmitBlock(SkipCountBB);
1278}
1279
1280/// Tries to mark the given function nounwind based on the
1281/// non-existence of any throwing calls within it.  We believe this is
1282/// lightweight enough to do at -O0.
1283static void TryMarkNoThrow(llvm::Function *F) {
1284  // LLVM treats 'nounwind' on a function as part of the type, so we
1285  // can't do this on functions that can be overwritten.
1286  if (F->isInterposable()) return;
1287
1288  for (llvm::BasicBlock &BB : *F)
1289    for (llvm::Instruction &I : BB)
1290      if (I.mayThrow())
1291        return;
1292
1293  F->setDoesNotThrow();
1294}
1295
1296QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1297                                               FunctionArgList &Args) {
1298  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1299  QualType ResTy = FD->getReturnType();
1300
1301  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1302  if (MD && MD->isInstance()) {
1303    if (CGM.getCXXABI().HasThisReturn(GD))
1304      ResTy = MD->getThisType();
1305    else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1306      ResTy = CGM.getContext().VoidPtrTy;
1307    CGM.getCXXABI().buildThisParam(*this, Args);
1308  }
1309
1310  // The base version of an inheriting constructor whose constructed base is a
1311  // virtual base is not passed any arguments (because it doesn't actually call
1312  // the inherited constructor).
1313  bool PassedParams = true;
1314  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1315    if (auto Inherited = CD->getInheritedConstructor())
1316      PassedParams =
1317          getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1318
1319  if (PassedParams) {
1320    for (auto *Param : FD->parameters()) {
1321      Args.push_back(Param);
1322      if (!Param->hasAttr<PassObjectSizeAttr>())
1323        continue;
1324
1325      auto *Implicit = ImplicitParamDecl::Create(
1326          getContext(), Param->getDeclContext(), Param->getLocation(),
1327          /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1328      SizeArguments[Param] = Implicit;
1329      Args.push_back(Implicit);
1330    }
1331  }
1332
1333  if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1334    CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1335
1336  return ResTy;
1337}
1338
1339void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1340                                   const CGFunctionInfo &FnInfo) {
1341  assert(Fn && "generating code for null Function");
1342  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1343  CurGD = GD;
1344
1345  FunctionArgList Args;
1346  QualType ResTy = BuildFunctionArgList(GD, Args);
1347
1348  if (FD->isInlineBuiltinDeclaration()) {
1349    // When generating code for a builtin with an inline declaration, use a
1350    // mangled name to hold the actual body, while keeping an external
1351    // definition in case the function pointer is referenced somewhere.
1352    std::string FDInlineName = (Fn->getName() + ".inline").str();
1353    llvm::Module *M = Fn->getParent();
1354    llvm::Function *Clone = M->getFunction(FDInlineName);
1355    if (!Clone) {
1356      Clone = llvm::Function::Create(Fn->getFunctionType(),
1357                                     llvm::GlobalValue::InternalLinkage,
1358                                     Fn->getAddressSpace(), FDInlineName, M);
1359      Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1360    }
1361    Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1362    Fn = Clone;
1363  } else {
1364    // Detect the unusual situation where an inline version is shadowed by a
1365    // non-inline version. In that case we should pick the external one
1366    // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1367    // to detect that situation before we reach codegen, so do some late
1368    // replacement.
1369    for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1370         PD = PD->getPreviousDecl()) {
1371      if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1372        std::string FDInlineName = (Fn->getName() + ".inline").str();
1373        llvm::Module *M = Fn->getParent();
1374        if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1375          Clone->replaceAllUsesWith(Fn);
1376          Clone->eraseFromParent();
1377        }
1378        break;
1379      }
1380    }
1381  }
1382
1383  // Check if we should generate debug info for this function.
1384  if (FD->hasAttr<NoDebugAttr>()) {
1385    // Clear non-distinct debug info that was possibly attached to the function
1386    // due to an earlier declaration without the nodebug attribute
1387    Fn->setSubprogram(nullptr);
1388    // Disable debug info indefinitely for this function
1389    DebugInfo = nullptr;
1390  }
1391
1392  // The function might not have a body if we're generating thunks for a
1393  // function declaration.
1394  SourceRange BodyRange;
1395  if (Stmt *Body = FD->getBody())
1396    BodyRange = Body->getSourceRange();
1397  else
1398    BodyRange = FD->getLocation();
1399  CurEHLocation = BodyRange.getEnd();
1400
1401  // Use the location of the start of the function to determine where
1402  // the function definition is located. By default use the location
1403  // of the declaration as the location for the subprogram. A function
1404  // may lack a declaration in the source code if it is created by code
1405  // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1406  SourceLocation Loc = FD->getLocation();
1407
1408  // If this is a function specialization then use the pattern body
1409  // as the location for the function.
1410  if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1411    if (SpecDecl->hasBody(SpecDecl))
1412      Loc = SpecDecl->getLocation();
1413
1414  Stmt *Body = FD->getBody();
1415
1416  if (Body) {
1417    // Coroutines always emit lifetime markers.
1418    if (isa<CoroutineBodyStmt>(Body))
1419      ShouldEmitLifetimeMarkers = true;
1420
1421    // Initialize helper which will detect jumps which can cause invalid
1422    // lifetime markers.
1423    if (ShouldEmitLifetimeMarkers)
1424      Bypasses.Init(Body);
1425  }
1426
1427  // Emit the standard function prologue.
1428  StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1429
1430  // Save parameters for coroutine function.
1431  if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1432    llvm::append_range(FnArgs, FD->parameters());
1433
1434  // Generate the body of the function.
1435  PGO.assignRegionCounters(GD, CurFn);
1436  if (isa<CXXDestructorDecl>(FD))
1437    EmitDestructorBody(Args);
1438  else if (isa<CXXConstructorDecl>(FD))
1439    EmitConstructorBody(Args);
1440  else if (getLangOpts().CUDA &&
1441           !getLangOpts().CUDAIsDevice &&
1442           FD->hasAttr<CUDAGlobalAttr>())
1443    CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1444  else if (isa<CXXMethodDecl>(FD) &&
1445           cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1446    // The lambda static invoker function is special, because it forwards or
1447    // clones the body of the function call operator (but is actually static).
1448    EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1449  } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1450             (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1451              cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1452    // Implicit copy-assignment gets the same special treatment as implicit
1453    // copy-constructors.
1454    emitImplicitAssignmentOperatorBody(Args);
1455  } else if (Body) {
1456    EmitFunctionBody(Body);
1457  } else
1458    llvm_unreachable("no definition for emitted function");
1459
1460  // C++11 [stmt.return]p2:
1461  //   Flowing off the end of a function [...] results in undefined behavior in
1462  //   a value-returning function.
1463  // C11 6.9.1p12:
1464  //   If the '}' that terminates a function is reached, and the value of the
1465  //   function call is used by the caller, the behavior is undefined.
1466  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1467      !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1468    bool ShouldEmitUnreachable =
1469        CGM.getCodeGenOpts().StrictReturn ||
1470        !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1471    if (SanOpts.has(SanitizerKind::Return)) {
1472      SanitizerScope SanScope(this);
1473      llvm::Value *IsFalse = Builder.getFalse();
1474      EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1475                SanitizerHandler::MissingReturn,
1476                EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1477    } else if (ShouldEmitUnreachable) {
1478      if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1479        EmitTrapCall(llvm::Intrinsic::trap);
1480    }
1481    if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1482      Builder.CreateUnreachable();
1483      Builder.ClearInsertionPoint();
1484    }
1485  }
1486
1487  // Emit the standard function epilogue.
1488  FinishFunction(BodyRange.getEnd());
1489
1490  // If we haven't marked the function nothrow through other means, do
1491  // a quick pass now to see if we can.
1492  if (!CurFn->doesNotThrow())
1493    TryMarkNoThrow(CurFn);
1494}
1495
1496/// ContainsLabel - Return true if the statement contains a label in it.  If
1497/// this statement is not executed normally, it not containing a label means
1498/// that we can just remove the code.
1499bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1500  // Null statement, not a label!
1501  if (!S) return false;
1502
1503  // If this is a label, we have to emit the code, consider something like:
1504  // if (0) {  ...  foo:  bar(); }  goto foo;
1505  //
1506  // TODO: If anyone cared, we could track __label__'s, since we know that you
1507  // can't jump to one from outside their declared region.
1508  if (isa<LabelStmt>(S))
1509    return true;
1510
1511  // If this is a case/default statement, and we haven't seen a switch, we have
1512  // to emit the code.
1513  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1514    return true;
1515
1516  // If this is a switch statement, we want to ignore cases below it.
1517  if (isa<SwitchStmt>(S))
1518    IgnoreCaseStmts = true;
1519
1520  // Scan subexpressions for verboten labels.
1521  for (const Stmt *SubStmt : S->children())
1522    if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1523      return true;
1524
1525  return false;
1526}
1527
1528/// containsBreak - Return true if the statement contains a break out of it.
1529/// If the statement (recursively) contains a switch or loop with a break
1530/// inside of it, this is fine.
1531bool CodeGenFunction::containsBreak(const Stmt *S) {
1532  // Null statement, not a label!
1533  if (!S) return false;
1534
1535  // If this is a switch or loop that defines its own break scope, then we can
1536  // include it and anything inside of it.
1537  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1538      isa<ForStmt>(S))
1539    return false;
1540
1541  if (isa<BreakStmt>(S))
1542    return true;
1543
1544  // Scan subexpressions for verboten breaks.
1545  for (const Stmt *SubStmt : S->children())
1546    if (containsBreak(SubStmt))
1547      return true;
1548
1549  return false;
1550}
1551
1552bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1553  if (!S) return false;
1554
1555  // Some statement kinds add a scope and thus never add a decl to the current
1556  // scope. Note, this list is longer than the list of statements that might
1557  // have an unscoped decl nested within them, but this way is conservatively
1558  // correct even if more statement kinds are added.
1559  if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1560      isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1561      isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1562      isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1563    return false;
1564
1565  if (isa<DeclStmt>(S))
1566    return true;
1567
1568  for (const Stmt *SubStmt : S->children())
1569    if (mightAddDeclToScope(SubStmt))
1570      return true;
1571
1572  return false;
1573}
1574
1575/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1576/// to a constant, or if it does but contains a label, return false.  If it
1577/// constant folds return true and set the boolean result in Result.
1578bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1579                                                   bool &ResultBool,
1580                                                   bool AllowLabels) {
1581  llvm::APSInt ResultInt;
1582  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1583    return false;
1584
1585  ResultBool = ResultInt.getBoolValue();
1586  return true;
1587}
1588
1589/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1590/// to a constant, or if it does but contains a label, return false.  If it
1591/// constant folds return true and set the folded value.
1592bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1593                                                   llvm::APSInt &ResultInt,
1594                                                   bool AllowLabels) {
1595  // FIXME: Rename and handle conversion of other evaluatable things
1596  // to bool.
1597  Expr::EvalResult Result;
1598  if (!Cond->EvaluateAsInt(Result, getContext()))
1599    return false;  // Not foldable, not integer or not fully evaluatable.
1600
1601  llvm::APSInt Int = Result.Val.getInt();
1602  if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1603    return false;  // Contains a label.
1604
1605  ResultInt = Int;
1606  return true;
1607}
1608
1609/// Determine whether the given condition is an instrumentable condition
1610/// (i.e. no "&&" or "||").
1611bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1612  // Bypass simplistic logical-NOT operator before determining whether the
1613  // condition contains any other logical operator.
1614  if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1615    if (UnOp->getOpcode() == UO_LNot)
1616      C = UnOp->getSubExpr();
1617
1618  const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1619  return (!BOp || !BOp->isLogicalOp());
1620}
1621
1622/// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1623/// increments a profile counter based on the semantics of the given logical
1624/// operator opcode.  This is used to instrument branch condition coverage for
1625/// logical operators.
1626void CodeGenFunction::EmitBranchToCounterBlock(
1627    const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1628    llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1629    Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1630  // If not instrumenting, just emit a branch.
1631  bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1632  if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1633    return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1634
1635  llvm::BasicBlock *ThenBlock = nullptr;
1636  llvm::BasicBlock *ElseBlock = nullptr;
1637  llvm::BasicBlock *NextBlock = nullptr;
1638
1639  // Create the block we'll use to increment the appropriate counter.
1640  llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1641
1642  // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1643  // means we need to evaluate the condition and increment the counter on TRUE:
1644  //
1645  // if (Cond)
1646  //   goto CounterIncrBlock;
1647  // else
1648  //   goto FalseBlock;
1649  //
1650  // CounterIncrBlock:
1651  //   Counter++;
1652  //   goto TrueBlock;
1653
1654  if (LOp == BO_LAnd) {
1655    ThenBlock = CounterIncrBlock;
1656    ElseBlock = FalseBlock;
1657    NextBlock = TrueBlock;
1658  }
1659
1660  // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1661  // we need to evaluate the condition and increment the counter on FALSE:
1662  //
1663  // if (Cond)
1664  //   goto TrueBlock;
1665  // else
1666  //   goto CounterIncrBlock;
1667  //
1668  // CounterIncrBlock:
1669  //   Counter++;
1670  //   goto FalseBlock;
1671
1672  else if (LOp == BO_LOr) {
1673    ThenBlock = TrueBlock;
1674    ElseBlock = CounterIncrBlock;
1675    NextBlock = FalseBlock;
1676  } else {
1677    llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1678  }
1679
1680  // Emit Branch based on condition.
1681  EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1682
1683  // Emit the block containing the counter increment(s).
1684  EmitBlock(CounterIncrBlock);
1685
1686  // Increment corresponding counter; if index not provided, use Cond as index.
1687  incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1688
1689  // Go to the next block.
1690  EmitBranch(NextBlock);
1691}
1692
1693/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1694/// statement) to the specified blocks.  Based on the condition, this might try
1695/// to simplify the codegen of the conditional based on the branch.
1696/// \param LH The value of the likelihood attribute on the True branch.
1697void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1698                                           llvm::BasicBlock *TrueBlock,
1699                                           llvm::BasicBlock *FalseBlock,
1700                                           uint64_t TrueCount,
1701                                           Stmt::Likelihood LH) {
1702  Cond = Cond->IgnoreParens();
1703
1704  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1705
1706    // Handle X && Y in a condition.
1707    if (CondBOp->getOpcode() == BO_LAnd) {
1708      // If we have "1 && X", simplify the code.  "0 && X" would have constant
1709      // folded if the case was simple enough.
1710      bool ConstantBool = false;
1711      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1712          ConstantBool) {
1713        // br(1 && X) -> br(X).
1714        incrementProfileCounter(CondBOp);
1715        return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1716                                        FalseBlock, TrueCount, LH);
1717      }
1718
1719      // If we have "X && 1", simplify the code to use an uncond branch.
1720      // "X && 0" would have been constant folded to 0.
1721      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1722          ConstantBool) {
1723        // br(X && 1) -> br(X).
1724        return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1725                                        FalseBlock, TrueCount, LH, CondBOp);
1726      }
1727
1728      // Emit the LHS as a conditional.  If the LHS conditional is false, we
1729      // want to jump to the FalseBlock.
1730      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1731      // The counter tells us how often we evaluate RHS, and all of TrueCount
1732      // can be propagated to that branch.
1733      uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1734
1735      ConditionalEvaluation eval(*this);
1736      {
1737        ApplyDebugLocation DL(*this, Cond);
1738        // Propagate the likelihood attribute like __builtin_expect
1739        // __builtin_expect(X && Y, 1) -> X and Y are likely
1740        // __builtin_expect(X && Y, 0) -> only Y is unlikely
1741        EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1742                             LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1743        EmitBlock(LHSTrue);
1744      }
1745
1746      incrementProfileCounter(CondBOp);
1747      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1748
1749      // Any temporaries created here are conditional.
1750      eval.begin(*this);
1751      EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1752                               FalseBlock, TrueCount, LH);
1753      eval.end(*this);
1754
1755      return;
1756    }
1757
1758    if (CondBOp->getOpcode() == BO_LOr) {
1759      // If we have "0 || X", simplify the code.  "1 || X" would have constant
1760      // folded if the case was simple enough.
1761      bool ConstantBool = false;
1762      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1763          !ConstantBool) {
1764        // br(0 || X) -> br(X).
1765        incrementProfileCounter(CondBOp);
1766        return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1767                                        FalseBlock, TrueCount, LH);
1768      }
1769
1770      // If we have "X || 0", simplify the code to use an uncond branch.
1771      // "X || 1" would have been constant folded to 1.
1772      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1773          !ConstantBool) {
1774        // br(X || 0) -> br(X).
1775        return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1776                                        FalseBlock, TrueCount, LH, CondBOp);
1777      }
1778
1779      // Emit the LHS as a conditional.  If the LHS conditional is true, we
1780      // want to jump to the TrueBlock.
1781      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1782      // We have the count for entry to the RHS and for the whole expression
1783      // being true, so we can divy up True count between the short circuit and
1784      // the RHS.
1785      uint64_t LHSCount =
1786          getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1787      uint64_t RHSCount = TrueCount - LHSCount;
1788
1789      ConditionalEvaluation eval(*this);
1790      {
1791        // Propagate the likelihood attribute like __builtin_expect
1792        // __builtin_expect(X || Y, 1) -> only Y is likely
1793        // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1794        ApplyDebugLocation DL(*this, Cond);
1795        EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1796                             LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1797        EmitBlock(LHSFalse);
1798      }
1799
1800      incrementProfileCounter(CondBOp);
1801      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1802
1803      // Any temporaries created here are conditional.
1804      eval.begin(*this);
1805      EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1806                               RHSCount, LH);
1807
1808      eval.end(*this);
1809
1810      return;
1811    }
1812  }
1813
1814  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1815    // br(!x, t, f) -> br(x, f, t)
1816    if (CondUOp->getOpcode() == UO_LNot) {
1817      // Negate the count.
1818      uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1819      // The values of the enum are chosen to make this negation possible.
1820      LH = static_cast<Stmt::Likelihood>(-LH);
1821      // Negate the condition and swap the destination blocks.
1822      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1823                                  FalseCount, LH);
1824    }
1825  }
1826
1827  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1828    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1829    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1830    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1831
1832    // The ConditionalOperator itself has no likelihood information for its
1833    // true and false branches. This matches the behavior of __builtin_expect.
1834    ConditionalEvaluation cond(*this);
1835    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1836                         getProfileCount(CondOp), Stmt::LH_None);
1837
1838    // When computing PGO branch weights, we only know the overall count for
1839    // the true block. This code is essentially doing tail duplication of the
1840    // naive code-gen, introducing new edges for which counts are not
1841    // available. Divide the counts proportionally between the LHS and RHS of
1842    // the conditional operator.
1843    uint64_t LHSScaledTrueCount = 0;
1844    if (TrueCount) {
1845      double LHSRatio =
1846          getProfileCount(CondOp) / (double)getCurrentProfileCount();
1847      LHSScaledTrueCount = TrueCount * LHSRatio;
1848    }
1849
1850    cond.begin(*this);
1851    EmitBlock(LHSBlock);
1852    incrementProfileCounter(CondOp);
1853    {
1854      ApplyDebugLocation DL(*this, Cond);
1855      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1856                           LHSScaledTrueCount, LH);
1857    }
1858    cond.end(*this);
1859
1860    cond.begin(*this);
1861    EmitBlock(RHSBlock);
1862    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1863                         TrueCount - LHSScaledTrueCount, LH);
1864    cond.end(*this);
1865
1866    return;
1867  }
1868
1869  if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1870    // Conditional operator handling can give us a throw expression as a
1871    // condition for a case like:
1872    //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1873    // Fold this to:
1874    //   br(c, throw x, br(y, t, f))
1875    EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1876    return;
1877  }
1878
1879  // Emit the code with the fully general case.
1880  llvm::Value *CondV;
1881  {
1882    ApplyDebugLocation DL(*this, Cond);
1883    CondV = EvaluateExprAsBool(Cond);
1884  }
1885
1886  llvm::MDNode *Weights = nullptr;
1887  llvm::MDNode *Unpredictable = nullptr;
1888
1889  // If the branch has a condition wrapped by __builtin_unpredictable,
1890  // create metadata that specifies that the branch is unpredictable.
1891  // Don't bother if not optimizing because that metadata would not be used.
1892  auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1893  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1894    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1895    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1896      llvm::MDBuilder MDHelper(getLLVMContext());
1897      Unpredictable = MDHelper.createUnpredictable();
1898    }
1899  }
1900
1901  // If there is a Likelihood knowledge for the cond, lower it.
1902  // Note that if not optimizing this won't emit anything.
1903  llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1904  if (CondV != NewCondV)
1905    CondV = NewCondV;
1906  else {
1907    // Otherwise, lower profile counts. Note that we do this even at -O0.
1908    uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1909    Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1910  }
1911
1912  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1913}
1914
1915/// ErrorUnsupported - Print out an error that codegen doesn't support the
1916/// specified stmt yet.
1917void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1918  CGM.ErrorUnsupported(S, Type);
1919}
1920
1921/// emitNonZeroVLAInit - Emit the "zero" initialization of a
1922/// variable-length array whose elements have a non-zero bit-pattern.
1923///
1924/// \param baseType the inner-most element type of the array
1925/// \param src - a char* pointing to the bit-pattern for a single
1926/// base element of the array
1927/// \param sizeInChars - the total size of the VLA, in chars
1928static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1929                               Address dest, Address src,
1930                               llvm::Value *sizeInChars) {
1931  CGBuilderTy &Builder = CGF.Builder;
1932
1933  CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1934  llvm::Value *baseSizeInChars
1935    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1936
1937  Address begin =
1938    Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1939  llvm::Value *end = Builder.CreateInBoundsGEP(
1940      begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1941
1942  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1943  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1944  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1945
1946  // Make a loop over the VLA.  C99 guarantees that the VLA element
1947  // count must be nonzero.
1948  CGF.EmitBlock(loopBB);
1949
1950  llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1951  cur->addIncoming(begin.getPointer(), originBB);
1952
1953  CharUnits curAlign =
1954    dest.getAlignment().alignmentOfArrayElement(baseSize);
1955
1956  // memcpy the individual element bit-pattern.
1957  Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1958                       /*volatile*/ false);
1959
1960  // Go to the next element.
1961  llvm::Value *next =
1962    Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1963
1964  // Leave if that's the end of the VLA.
1965  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1966  Builder.CreateCondBr(done, contBB, loopBB);
1967  cur->addIncoming(next, loopBB);
1968
1969  CGF.EmitBlock(contBB);
1970}
1971
1972void
1973CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1974  // Ignore empty classes in C++.
1975  if (getLangOpts().CPlusPlus) {
1976    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1977      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1978        return;
1979    }
1980  }
1981
1982  // Cast the dest ptr to the appropriate i8 pointer type.
1983  if (DestPtr.getElementType() != Int8Ty)
1984    DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1985
1986  // Get size and alignment info for this aggregate.
1987  CharUnits size = getContext().getTypeSizeInChars(Ty);
1988
1989  llvm::Value *SizeVal;
1990  const VariableArrayType *vla;
1991
1992  // Don't bother emitting a zero-byte memset.
1993  if (size.isZero()) {
1994    // But note that getTypeInfo returns 0 for a VLA.
1995    if (const VariableArrayType *vlaType =
1996          dyn_cast_or_null<VariableArrayType>(
1997                                          getContext().getAsArrayType(Ty))) {
1998      auto VlaSize = getVLASize(vlaType);
1999      SizeVal = VlaSize.NumElts;
2000      CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2001      if (!eltSize.isOne())
2002        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2003      vla = vlaType;
2004    } else {
2005      return;
2006    }
2007  } else {
2008    SizeVal = CGM.getSize(size);
2009    vla = nullptr;
2010  }
2011
2012  // If the type contains a pointer to data member we can't memset it to zero.
2013  // Instead, create a null constant and copy it to the destination.
2014  // TODO: there are other patterns besides zero that we can usefully memset,
2015  // like -1, which happens to be the pattern used by member-pointers.
2016  if (!CGM.getTypes().isZeroInitializable(Ty)) {
2017    // For a VLA, emit a single element, then splat that over the VLA.
2018    if (vla) Ty = getContext().getBaseElementType(vla);
2019
2020    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2021
2022    llvm::GlobalVariable *NullVariable =
2023      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2024                               /*isConstant=*/true,
2025                               llvm::GlobalVariable::PrivateLinkage,
2026                               NullConstant, Twine());
2027    CharUnits NullAlign = DestPtr.getAlignment();
2028    NullVariable->setAlignment(NullAlign.getAsAlign());
2029    Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2030                   Builder.getInt8Ty(), NullAlign);
2031
2032    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2033
2034    // Get and call the appropriate llvm.memcpy overload.
2035    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2036    return;
2037  }
2038
2039  // Otherwise, just memset the whole thing to zero.  This is legal
2040  // because in LLVM, all default initializers (other than the ones we just
2041  // handled above) are guaranteed to have a bit pattern of all zeros.
2042  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2043}
2044
2045llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2046  // Make sure that there is a block for the indirect goto.
2047  if (!IndirectBranch)
2048    GetIndirectGotoBlock();
2049
2050  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2051
2052  // Make sure the indirect branch includes all of the address-taken blocks.
2053  IndirectBranch->addDestination(BB);
2054  return llvm::BlockAddress::get(CurFn, BB);
2055}
2056
2057llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2058  // If we already made the indirect branch for indirect goto, return its block.
2059  if (IndirectBranch) return IndirectBranch->getParent();
2060
2061  CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2062
2063  // Create the PHI node that indirect gotos will add entries to.
2064  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2065                                              "indirect.goto.dest");
2066
2067  // Create the indirect branch instruction.
2068  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2069  return IndirectBranch->getParent();
2070}
2071
2072/// Computes the length of an array in elements, as well as the base
2073/// element type and a properly-typed first element pointer.
2074llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2075                                              QualType &baseType,
2076                                              Address &addr) {
2077  const ArrayType *arrayType = origArrayType;
2078
2079  // If it's a VLA, we have to load the stored size.  Note that
2080  // this is the size of the VLA in bytes, not its size in elements.
2081  llvm::Value *numVLAElements = nullptr;
2082  if (isa<VariableArrayType>(arrayType)) {
2083    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2084
2085    // Walk into all VLAs.  This doesn't require changes to addr,
2086    // which has type T* where T is the first non-VLA element type.
2087    do {
2088      QualType elementType = arrayType->getElementType();
2089      arrayType = getContext().getAsArrayType(elementType);
2090
2091      // If we only have VLA components, 'addr' requires no adjustment.
2092      if (!arrayType) {
2093        baseType = elementType;
2094        return numVLAElements;
2095      }
2096    } while (isa<VariableArrayType>(arrayType));
2097
2098    // We get out here only if we find a constant array type
2099    // inside the VLA.
2100  }
2101
2102  // We have some number of constant-length arrays, so addr should
2103  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2104  // down to the first element of addr.
2105  SmallVector<llvm::Value*, 8> gepIndices;
2106
2107  // GEP down to the array type.
2108  llvm::ConstantInt *zero = Builder.getInt32(0);
2109  gepIndices.push_back(zero);
2110
2111  uint64_t countFromCLAs = 1;
2112  QualType eltType;
2113
2114  llvm::ArrayType *llvmArrayType =
2115    dyn_cast<llvm::ArrayType>(addr.getElementType());
2116  while (llvmArrayType) {
2117    assert(isa<ConstantArrayType>(arrayType));
2118    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2119             == llvmArrayType->getNumElements());
2120
2121    gepIndices.push_back(zero);
2122    countFromCLAs *= llvmArrayType->getNumElements();
2123    eltType = arrayType->getElementType();
2124
2125    llvmArrayType =
2126      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2127    arrayType = getContext().getAsArrayType(arrayType->getElementType());
2128    assert((!llvmArrayType || arrayType) &&
2129           "LLVM and Clang types are out-of-synch");
2130  }
2131
2132  if (arrayType) {
2133    // From this point onwards, the Clang array type has been emitted
2134    // as some other type (probably a packed struct). Compute the array
2135    // size, and just emit the 'begin' expression as a bitcast.
2136    while (arrayType) {
2137      countFromCLAs *=
2138          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2139      eltType = arrayType->getElementType();
2140      arrayType = getContext().getAsArrayType(eltType);
2141    }
2142
2143    llvm::Type *baseType = ConvertType(eltType);
2144    addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2145  } else {
2146    // Create the actual GEP.
2147    addr = Address(Builder.CreateInBoundsGEP(
2148        addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2149        ConvertTypeForMem(eltType),
2150        addr.getAlignment());
2151  }
2152
2153  baseType = eltType;
2154
2155  llvm::Value *numElements
2156    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2157
2158  // If we had any VLA dimensions, factor them in.
2159  if (numVLAElements)
2160    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2161
2162  return numElements;
2163}
2164
2165CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2166  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2167  assert(vla && "type was not a variable array type!");
2168  return getVLASize(vla);
2169}
2170
2171CodeGenFunction::VlaSizePair
2172CodeGenFunction::getVLASize(const VariableArrayType *type) {
2173  // The number of elements so far; always size_t.
2174  llvm::Value *numElements = nullptr;
2175
2176  QualType elementType;
2177  do {
2178    elementType = type->getElementType();
2179    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2180    assert(vlaSize && "no size for VLA!");
2181    assert(vlaSize->getType() == SizeTy);
2182
2183    if (!numElements) {
2184      numElements = vlaSize;
2185    } else {
2186      // It's undefined behavior if this wraps around, so mark it that way.
2187      // FIXME: Teach -fsanitize=undefined to trap this.
2188      numElements = Builder.CreateNUWMul(numElements, vlaSize);
2189    }
2190  } while ((type = getContext().getAsVariableArrayType(elementType)));
2191
2192  return { numElements, elementType };
2193}
2194
2195CodeGenFunction::VlaSizePair
2196CodeGenFunction::getVLAElements1D(QualType type) {
2197  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2198  assert(vla && "type was not a variable array type!");
2199  return getVLAElements1D(vla);
2200}
2201
2202CodeGenFunction::VlaSizePair
2203CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2204  llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2205  assert(VlaSize && "no size for VLA!");
2206  assert(VlaSize->getType() == SizeTy);
2207  return { VlaSize, Vla->getElementType() };
2208}
2209
2210void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2211  assert(type->isVariablyModifiedType() &&
2212         "Must pass variably modified type to EmitVLASizes!");
2213
2214  EnsureInsertPoint();
2215
2216  // We're going to walk down into the type and look for VLA
2217  // expressions.
2218  do {
2219    assert(type->isVariablyModifiedType());
2220
2221    const Type *ty = type.getTypePtr();
2222    switch (ty->getTypeClass()) {
2223
2224#define TYPE(Class, Base)
2225#define ABSTRACT_TYPE(Class, Base)
2226#define NON_CANONICAL_TYPE(Class, Base)
2227#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2228#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2229#include "clang/AST/TypeNodes.inc"
2230      llvm_unreachable("unexpected dependent type!");
2231
2232    // These types are never variably-modified.
2233    case Type::Builtin:
2234    case Type::Complex:
2235    case Type::Vector:
2236    case Type::ExtVector:
2237    case Type::ConstantMatrix:
2238    case Type::Record:
2239    case Type::Enum:
2240    case Type::Using:
2241    case Type::TemplateSpecialization:
2242    case Type::ObjCTypeParam:
2243    case Type::ObjCObject:
2244    case Type::ObjCInterface:
2245    case Type::ObjCObjectPointer:
2246    case Type::BitInt:
2247      llvm_unreachable("type class is never variably-modified!");
2248
2249    case Type::Elaborated:
2250      type = cast<ElaboratedType>(ty)->getNamedType();
2251      break;
2252
2253    case Type::Adjusted:
2254      type = cast<AdjustedType>(ty)->getAdjustedType();
2255      break;
2256
2257    case Type::Decayed:
2258      type = cast<DecayedType>(ty)->getPointeeType();
2259      break;
2260
2261    case Type::Pointer:
2262      type = cast<PointerType>(ty)->getPointeeType();
2263      break;
2264
2265    case Type::BlockPointer:
2266      type = cast<BlockPointerType>(ty)->getPointeeType();
2267      break;
2268
2269    case Type::LValueReference:
2270    case Type::RValueReference:
2271      type = cast<ReferenceType>(ty)->getPointeeType();
2272      break;
2273
2274    case Type::MemberPointer:
2275      type = cast<MemberPointerType>(ty)->getPointeeType();
2276      break;
2277
2278    case Type::ConstantArray:
2279    case Type::IncompleteArray:
2280      // Losing element qualification here is fine.
2281      type = cast<ArrayType>(ty)->getElementType();
2282      break;
2283
2284    case Type::VariableArray: {
2285      // Losing element qualification here is fine.
2286      const VariableArrayType *vat = cast<VariableArrayType>(ty);
2287
2288      // Unknown size indication requires no size computation.
2289      // Otherwise, evaluate and record it.
2290      if (const Expr *sizeExpr = vat->getSizeExpr()) {
2291        // It's possible that we might have emitted this already,
2292        // e.g. with a typedef and a pointer to it.
2293        llvm::Value *&entry = VLASizeMap[sizeExpr];
2294        if (!entry) {
2295          llvm::Value *size = EmitScalarExpr(sizeExpr);
2296
2297          // C11 6.7.6.2p5:
2298          //   If the size is an expression that is not an integer constant
2299          //   expression [...] each time it is evaluated it shall have a value
2300          //   greater than zero.
2301          if (SanOpts.has(SanitizerKind::VLABound)) {
2302            SanitizerScope SanScope(this);
2303            llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2304            clang::QualType SEType = sizeExpr->getType();
2305            llvm::Value *CheckCondition =
2306                SEType->isSignedIntegerType()
2307                    ? Builder.CreateICmpSGT(size, Zero)
2308                    : Builder.CreateICmpUGT(size, Zero);
2309            llvm::Constant *StaticArgs[] = {
2310                EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2311                EmitCheckTypeDescriptor(SEType)};
2312            EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2313                      SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2314          }
2315
2316          // Always zexting here would be wrong if it weren't
2317          // undefined behavior to have a negative bound.
2318          // FIXME: What about when size's type is larger than size_t?
2319          entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2320        }
2321      }
2322      type = vat->getElementType();
2323      break;
2324    }
2325
2326    case Type::FunctionProto:
2327    case Type::FunctionNoProto:
2328      type = cast<FunctionType>(ty)->getReturnType();
2329      break;
2330
2331    case Type::Paren:
2332    case Type::TypeOf:
2333    case Type::UnaryTransform:
2334    case Type::Attributed:
2335    case Type::BTFTagAttributed:
2336    case Type::SubstTemplateTypeParm:
2337    case Type::MacroQualified:
2338      // Keep walking after single level desugaring.
2339      type = type.getSingleStepDesugaredType(getContext());
2340      break;
2341
2342    case Type::Typedef:
2343    case Type::Decltype:
2344    case Type::Auto:
2345    case Type::DeducedTemplateSpecialization:
2346      // Stop walking: nothing to do.
2347      return;
2348
2349    case Type::TypeOfExpr:
2350      // Stop walking: emit typeof expression.
2351      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2352      return;
2353
2354    case Type::Atomic:
2355      type = cast<AtomicType>(ty)->getValueType();
2356      break;
2357
2358    case Type::Pipe:
2359      type = cast<PipeType>(ty)->getElementType();
2360      break;
2361    }
2362  } while (type->isVariablyModifiedType());
2363}
2364
2365Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2366  if (getContext().getBuiltinVaListType()->isArrayType())
2367    return EmitPointerWithAlignment(E);
2368  return EmitLValue(E).getAddress(*this);
2369}
2370
2371Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2372  return EmitLValue(E).getAddress(*this);
2373}
2374
2375void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2376                                              const APValue &Init) {
2377  assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2378  if (CGDebugInfo *Dbg = getDebugInfo())
2379    if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2380      Dbg->EmitGlobalVariable(E->getDecl(), Init);
2381}
2382
2383CodeGenFunction::PeepholeProtection
2384CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2385  // At the moment, the only aggressive peephole we do in IR gen
2386  // is trunc(zext) folding, but if we add more, we can easily
2387  // extend this protection.
2388
2389  if (!rvalue.isScalar()) return PeepholeProtection();
2390  llvm::Value *value = rvalue.getScalarVal();
2391  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2392
2393  // Just make an extra bitcast.
2394  assert(HaveInsertPoint());
2395  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2396                                                  Builder.GetInsertBlock());
2397
2398  PeepholeProtection protection;
2399  protection.Inst = inst;
2400  return protection;
2401}
2402
2403void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2404  if (!protection.Inst) return;
2405
2406  // In theory, we could try to duplicate the peepholes now, but whatever.
2407  protection.Inst->eraseFromParent();
2408}
2409
2410void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2411                                              QualType Ty, SourceLocation Loc,
2412                                              SourceLocation AssumptionLoc,
2413                                              llvm::Value *Alignment,
2414                                              llvm::Value *OffsetValue) {
2415  if (Alignment->getType() != IntPtrTy)
2416    Alignment =
2417        Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2418  if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2419    OffsetValue =
2420        Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2421  llvm::Value *TheCheck = nullptr;
2422  if (SanOpts.has(SanitizerKind::Alignment)) {
2423    llvm::Value *PtrIntValue =
2424        Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2425
2426    if (OffsetValue) {
2427      bool IsOffsetZero = false;
2428      if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2429        IsOffsetZero = CI->isZero();
2430
2431      if (!IsOffsetZero)
2432        PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2433    }
2434
2435    llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2436    llvm::Value *Mask =
2437        Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2438    llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2439    TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2440  }
2441  llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2442      CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2443
2444  if (!SanOpts.has(SanitizerKind::Alignment))
2445    return;
2446  emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2447                               OffsetValue, TheCheck, Assumption);
2448}
2449
2450void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2451                                              const Expr *E,
2452                                              SourceLocation AssumptionLoc,
2453                                              llvm::Value *Alignment,
2454                                              llvm::Value *OffsetValue) {
2455  QualType Ty = E->getType();
2456  SourceLocation Loc = E->getExprLoc();
2457
2458  emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2459                          OffsetValue);
2460}
2461
2462llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2463                                                 llvm::Value *AnnotatedVal,
2464                                                 StringRef AnnotationStr,
2465                                                 SourceLocation Location,
2466                                                 const AnnotateAttr *Attr) {
2467  SmallVector<llvm::Value *, 5> Args = {
2468      AnnotatedVal,
2469      Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr),
2470                            ConstGlobalsPtrTy),
2471      Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location),
2472                            ConstGlobalsPtrTy),
2473      CGM.EmitAnnotationLineNo(Location),
2474  };
2475  if (Attr)
2476    Args.push_back(CGM.EmitAnnotationArgs(Attr));
2477  return Builder.CreateCall(AnnotationFn, Args);
2478}
2479
2480void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2481  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2482  // FIXME We create a new bitcast for every annotation because that's what
2483  // llvm-gcc was doing.
2484  unsigned AS = V->getType()->getPointerAddressSpace();
2485  llvm::Type *I8PtrTy = Builder.getInt8PtrTy(AS);
2486  for (const auto *I : D->specific_attrs<AnnotateAttr>())
2487    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2488                                        {I8PtrTy, CGM.ConstGlobalsPtrTy}),
2489                       Builder.CreateBitCast(V, I8PtrTy, V->getName()),
2490                       I->getAnnotation(), D->getLocation(), I);
2491}
2492
2493Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2494                                              Address Addr) {
2495  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2496  llvm::Value *V = Addr.getPointer();
2497  llvm::Type *VTy = V->getType();
2498  auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2499  unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2500  llvm::PointerType *IntrinTy =
2501      llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2502  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2503                                       {IntrinTy, CGM.ConstGlobalsPtrTy});
2504
2505  for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2506    // FIXME Always emit the cast inst so we can differentiate between
2507    // annotation on the first field of a struct and annotation on the struct
2508    // itself.
2509    if (VTy != IntrinTy)
2510      V = Builder.CreateBitCast(V, IntrinTy);
2511    V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2512    V = Builder.CreateBitCast(V, VTy);
2513  }
2514
2515  return Address(V, Addr.getElementType(), Addr.getAlignment());
2516}
2517
2518CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2519
2520CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2521    : CGF(CGF) {
2522  assert(!CGF->IsSanitizerScope);
2523  CGF->IsSanitizerScope = true;
2524}
2525
2526CodeGenFunction::SanitizerScope::~SanitizerScope() {
2527  CGF->IsSanitizerScope = false;
2528}
2529
2530void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2531                                   const llvm::Twine &Name,
2532                                   llvm::BasicBlock *BB,
2533                                   llvm::BasicBlock::iterator InsertPt) const {
2534  LoopStack.InsertHelper(I);
2535  if (IsSanitizerScope)
2536    CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2537}
2538
2539void CGBuilderInserter::InsertHelper(
2540    llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2541    llvm::BasicBlock::iterator InsertPt) const {
2542  llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2543  if (CGF)
2544    CGF->InsertHelper(I, Name, BB, InsertPt);
2545}
2546
2547// Emits an error if we don't have a valid set of target features for the
2548// called function.
2549void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2550                                          const FunctionDecl *TargetDecl) {
2551  return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2552}
2553
2554// Emits an error if we don't have a valid set of target features for the
2555// called function.
2556void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2557                                          const FunctionDecl *TargetDecl) {
2558  // Early exit if this is an indirect call.
2559  if (!TargetDecl)
2560    return;
2561
2562  // Get the current enclosing function if it exists. If it doesn't
2563  // we can't check the target features anyhow.
2564  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2565  if (!FD)
2566    return;
2567
2568  // Grab the required features for the call. For a builtin this is listed in
2569  // the td file with the default cpu, for an always_inline function this is any
2570  // listed cpu and any listed features.
2571  unsigned BuiltinID = TargetDecl->getBuiltinID();
2572  std::string MissingFeature;
2573  llvm::StringMap<bool> CallerFeatureMap;
2574  CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2575  if (BuiltinID) {
2576    StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2577    if (!Builtin::evaluateRequiredTargetFeatures(
2578        FeatureList, CallerFeatureMap)) {
2579      CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2580          << TargetDecl->getDeclName()
2581          << FeatureList;
2582    }
2583  } else if (!TargetDecl->isMultiVersion() &&
2584             TargetDecl->hasAttr<TargetAttr>()) {
2585    // Get the required features for the callee.
2586
2587    const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2588    ParsedTargetAttr ParsedAttr =
2589        CGM.getContext().filterFunctionTargetAttrs(TD);
2590
2591    SmallVector<StringRef, 1> ReqFeatures;
2592    llvm::StringMap<bool> CalleeFeatureMap;
2593    CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2594
2595    for (const auto &F : ParsedAttr.Features) {
2596      if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2597        ReqFeatures.push_back(StringRef(F).substr(1));
2598    }
2599
2600    for (const auto &F : CalleeFeatureMap) {
2601      // Only positive features are "required".
2602      if (F.getValue())
2603        ReqFeatures.push_back(F.getKey());
2604    }
2605    if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2606      if (!CallerFeatureMap.lookup(Feature)) {
2607        MissingFeature = Feature.str();
2608        return false;
2609      }
2610      return true;
2611    }))
2612      CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2613          << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2614  }
2615}
2616
2617void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2618  if (!CGM.getCodeGenOpts().SanitizeStats)
2619    return;
2620
2621  llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2622  IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2623  CGM.getSanStats().create(IRB, SSK);
2624}
2625
2626void CodeGenFunction::EmitKCFIOperandBundle(
2627    const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2628  const FunctionProtoType *FP =
2629      Callee.getAbstractInfo().getCalleeFunctionProtoType();
2630  if (FP)
2631    Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2632}
2633
2634llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2635    const MultiVersionResolverOption &RO) {
2636  llvm::SmallVector<StringRef, 8> CondFeatures;
2637  for (const StringRef &Feature : RO.Conditions.Features) {
2638    // Form condition for features which are not yet enabled in target
2639    if (!getContext().getTargetInfo().hasFeature(Feature))
2640      CondFeatures.push_back(Feature);
2641  }
2642  if (!CondFeatures.empty()) {
2643    return EmitAArch64CpuSupports(CondFeatures);
2644  }
2645  return nullptr;
2646}
2647
2648llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2649    const MultiVersionResolverOption &RO) {
2650  llvm::Value *Condition = nullptr;
2651
2652  if (!RO.Conditions.Architecture.empty())
2653    Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2654
2655  if (!RO.Conditions.Features.empty()) {
2656    llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2657    Condition =
2658        Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2659  }
2660  return Condition;
2661}
2662
2663static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2664                                             llvm::Function *Resolver,
2665                                             CGBuilderTy &Builder,
2666                                             llvm::Function *FuncToReturn,
2667                                             bool SupportsIFunc) {
2668  if (SupportsIFunc) {
2669    Builder.CreateRet(FuncToReturn);
2670    return;
2671  }
2672
2673  llvm::SmallVector<llvm::Value *, 10> Args(
2674      llvm::make_pointer_range(Resolver->args()));
2675
2676  llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2677  Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2678
2679  if (Resolver->getReturnType()->isVoidTy())
2680    Builder.CreateRetVoid();
2681  else
2682    Builder.CreateRet(Result);
2683}
2684
2685void CodeGenFunction::EmitMultiVersionResolver(
2686    llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2687
2688  llvm::Triple::ArchType ArchType =
2689      getContext().getTargetInfo().getTriple().getArch();
2690
2691  switch (ArchType) {
2692  case llvm::Triple::x86:
2693  case llvm::Triple::x86_64:
2694    EmitX86MultiVersionResolver(Resolver, Options);
2695    return;
2696  case llvm::Triple::aarch64:
2697    EmitAArch64MultiVersionResolver(Resolver, Options);
2698    return;
2699
2700  default:
2701    assert(false && "Only implemented for x86 and AArch64 targets");
2702  }
2703}
2704
2705void CodeGenFunction::EmitAArch64MultiVersionResolver(
2706    llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2707  assert(!Options.empty() && "No multiversion resolver options found");
2708  assert(Options.back().Conditions.Features.size() == 0 &&
2709         "Default case must be last");
2710  bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2711  assert(SupportsIFunc &&
2712         "Multiversion resolver requires target IFUNC support");
2713  bool AArch64CpuInitialized = false;
2714  llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2715
2716  for (const MultiVersionResolverOption &RO : Options) {
2717    Builder.SetInsertPoint(CurBlock);
2718    llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2719
2720    // The 'default' or 'all features enabled' case.
2721    if (!Condition) {
2722      CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2723                                       SupportsIFunc);
2724      return;
2725    }
2726
2727    if (!AArch64CpuInitialized) {
2728      Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2729      EmitAArch64CpuInit();
2730      AArch64CpuInitialized = true;
2731      Builder.SetInsertPoint(CurBlock);
2732    }
2733
2734    llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2735    CGBuilderTy RetBuilder(*this, RetBlock);
2736    CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2737                                     SupportsIFunc);
2738    CurBlock = createBasicBlock("resolver_else", Resolver);
2739    Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2740  }
2741
2742  // If no default, emit an unreachable.
2743  Builder.SetInsertPoint(CurBlock);
2744  llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2745  TrapCall->setDoesNotReturn();
2746  TrapCall->setDoesNotThrow();
2747  Builder.CreateUnreachable();
2748  Builder.ClearInsertionPoint();
2749}
2750
2751void CodeGenFunction::EmitX86MultiVersionResolver(
2752    llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2753
2754  bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2755
2756  // Main function's basic block.
2757  llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2758  Builder.SetInsertPoint(CurBlock);
2759  EmitX86CpuInit();
2760
2761  for (const MultiVersionResolverOption &RO : Options) {
2762    Builder.SetInsertPoint(CurBlock);
2763    llvm::Value *Condition = FormX86ResolverCondition(RO);
2764
2765    // The 'default' or 'generic' case.
2766    if (!Condition) {
2767      assert(&RO == Options.end() - 1 &&
2768             "Default or Generic case must be last");
2769      CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2770                                       SupportsIFunc);
2771      return;
2772    }
2773
2774    llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2775    CGBuilderTy RetBuilder(*this, RetBlock);
2776    CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2777                                     SupportsIFunc);
2778    CurBlock = createBasicBlock("resolver_else", Resolver);
2779    Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2780  }
2781
2782  // If no generic/default, emit an unreachable.
2783  Builder.SetInsertPoint(CurBlock);
2784  llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2785  TrapCall->setDoesNotReturn();
2786  TrapCall->setDoesNotThrow();
2787  Builder.CreateUnreachable();
2788  Builder.ClearInsertionPoint();
2789}
2790
2791// Loc - where the diagnostic will point, where in the source code this
2792//  alignment has failed.
2793// SecondaryLoc - if present (will be present if sufficiently different from
2794//  Loc), the diagnostic will additionally point a "Note:" to this location.
2795//  It should be the location where the __attribute__((assume_aligned))
2796//  was written e.g.
2797void CodeGenFunction::emitAlignmentAssumptionCheck(
2798    llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2799    SourceLocation SecondaryLoc, llvm::Value *Alignment,
2800    llvm::Value *OffsetValue, llvm::Value *TheCheck,
2801    llvm::Instruction *Assumption) {
2802  assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2803         cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2804             llvm::Intrinsic::getDeclaration(
2805                 Builder.GetInsertBlock()->getParent()->getParent(),
2806                 llvm::Intrinsic::assume) &&
2807         "Assumption should be a call to llvm.assume().");
2808  assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2809         "Assumption should be the last instruction of the basic block, "
2810         "since the basic block is still being generated.");
2811
2812  if (!SanOpts.has(SanitizerKind::Alignment))
2813    return;
2814
2815  // Don't check pointers to volatile data. The behavior here is implementation-
2816  // defined.
2817  if (Ty->getPointeeType().isVolatileQualified())
2818    return;
2819
2820  // We need to temorairly remove the assumption so we can insert the
2821  // sanitizer check before it, else the check will be dropped by optimizations.
2822  Assumption->removeFromParent();
2823
2824  {
2825    SanitizerScope SanScope(this);
2826
2827    if (!OffsetValue)
2828      OffsetValue = Builder.getInt1(false); // no offset.
2829
2830    llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2831                                    EmitCheckSourceLocation(SecondaryLoc),
2832                                    EmitCheckTypeDescriptor(Ty)};
2833    llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2834                                  EmitCheckValue(Alignment),
2835                                  EmitCheckValue(OffsetValue)};
2836    EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2837              SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2838  }
2839
2840  // We are now in the (new, empty) "cont" basic block.
2841  // Reintroduce the assumption.
2842  Builder.Insert(Assumption);
2843  // FIXME: Assumption still has it's original basic block as it's Parent.
2844}
2845
2846llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2847  if (CGDebugInfo *DI = getDebugInfo())
2848    return DI->SourceLocToDebugLoc(Location);
2849
2850  return llvm::DebugLoc();
2851}
2852
2853llvm::Value *
2854CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2855                                                      Stmt::Likelihood LH) {
2856  switch (LH) {
2857  case Stmt::LH_None:
2858    return Cond;
2859  case Stmt::LH_Likely:
2860  case Stmt::LH_Unlikely:
2861    // Don't generate llvm.expect on -O0 as the backend won't use it for
2862    // anything.
2863    if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2864      return Cond;
2865    llvm::Type *CondTy = Cond->getType();
2866    assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2867    llvm::Function *FnExpect =
2868        CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2869    llvm::Value *ExpectedValueOfCond =
2870        llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2871    return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2872                              Cond->getName() + ".expval");
2873  }
2874  llvm_unreachable("Unknown Likelihood");
2875}
2876
2877llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2878                                                    unsigned NumElementsDst,
2879                                                    const llvm::Twine &Name) {
2880  auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2881  unsigned NumElementsSrc = SrcTy->getNumElements();
2882  if (NumElementsSrc == NumElementsDst)
2883    return SrcVec;
2884
2885  std::vector<int> ShuffleMask(NumElementsDst, -1);
2886  for (unsigned MaskIdx = 0;
2887       MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2888    ShuffleMask[MaskIdx] = MaskIdx;
2889
2890  return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2891}
2892