1//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with C++ code generation of virtual tables.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Basic/CodeGenOptions.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "clang/CodeGen/ConstantInitBuilder.h"
22#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/Support/Format.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include <algorithm>
26#include <cstdio>
27
28using namespace clang;
29using namespace CodeGen;
30
31CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
32    : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
33
34llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
35                                              GlobalDecl GD) {
36  return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
37                                 /*DontDefer=*/true, /*IsThunk=*/true);
38}
39
40static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
41                               llvm::Function *ThunkFn, bool ForVTable,
42                               GlobalDecl GD) {
43  CGM.setFunctionLinkage(GD, ThunkFn);
44  CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
45                                  !Thunk.Return.isEmpty());
46
47  // Set the right visibility.
48  CGM.setGVProperties(ThunkFn, GD);
49
50  if (!CGM.getCXXABI().exportThunk()) {
51    ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
52    ThunkFn->setDSOLocal(true);
53  }
54
55  if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
56    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
57}
58
59#ifndef NDEBUG
60static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
61                    const ABIArgInfo &infoR, CanQualType typeR) {
62  return (infoL.getKind() == infoR.getKind() &&
63          (typeL == typeR ||
64           (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
65           (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
66}
67#endif
68
69static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
70                                      QualType ResultType, RValue RV,
71                                      const ThunkInfo &Thunk) {
72  // Emit the return adjustment.
73  bool NullCheckValue = !ResultType->isReferenceType();
74
75  llvm::BasicBlock *AdjustNull = nullptr;
76  llvm::BasicBlock *AdjustNotNull = nullptr;
77  llvm::BasicBlock *AdjustEnd = nullptr;
78
79  llvm::Value *ReturnValue = RV.getScalarVal();
80
81  if (NullCheckValue) {
82    AdjustNull = CGF.createBasicBlock("adjust.null");
83    AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
84    AdjustEnd = CGF.createBasicBlock("adjust.end");
85
86    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
87    CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
88    CGF.EmitBlock(AdjustNotNull);
89  }
90
91  auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
92  auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
93  ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(
94      CGF,
95      Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()),
96              ClassAlign),
97      Thunk.Return);
98
99  if (NullCheckValue) {
100    CGF.Builder.CreateBr(AdjustEnd);
101    CGF.EmitBlock(AdjustNull);
102    CGF.Builder.CreateBr(AdjustEnd);
103    CGF.EmitBlock(AdjustEnd);
104
105    llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
106    PHI->addIncoming(ReturnValue, AdjustNotNull);
107    PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
108                     AdjustNull);
109    ReturnValue = PHI;
110  }
111
112  return RValue::get(ReturnValue);
113}
114
115/// This function clones a function's DISubprogram node and enters it into
116/// a value map with the intent that the map can be utilized by the cloner
117/// to short-circuit Metadata node mapping.
118/// Furthermore, the function resolves any DILocalVariable nodes referenced
119/// by dbg.value intrinsics so they can be properly mapped during cloning.
120static void resolveTopLevelMetadata(llvm::Function *Fn,
121                                    llvm::ValueToValueMapTy &VMap) {
122  // Clone the DISubprogram node and put it into the Value map.
123  auto *DIS = Fn->getSubprogram();
124  if (!DIS)
125    return;
126  auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
127  VMap.MD()[DIS].reset(NewDIS);
128
129  // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
130  // they are referencing.
131  for (auto &BB : *Fn) {
132    for (auto &I : BB) {
133      if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
134        auto *DILocal = DII->getVariable();
135        if (!DILocal->isResolved())
136          DILocal->resolve();
137      }
138    }
139  }
140}
141
142// This function does roughly the same thing as GenerateThunk, but in a
143// very different way, so that va_start and va_end work correctly.
144// FIXME: This function assumes "this" is the first non-sret LLVM argument of
145//        a function, and that there is an alloca built in the entry block
146//        for all accesses to "this".
147// FIXME: This function assumes there is only one "ret" statement per function.
148// FIXME: Cloning isn't correct in the presence of indirect goto!
149// FIXME: This implementation of thunks bloats codesize by duplicating the
150//        function definition.  There are alternatives:
151//        1. Add some sort of stub support to LLVM for cases where we can
152//           do a this adjustment, then a sibcall.
153//        2. We could transform the definition to take a va_list instead of an
154//           actual variable argument list, then have the thunks (including a
155//           no-op thunk for the regular definition) call va_start/va_end.
156//           There's a bit of per-call overhead for this solution, but it's
157//           better for codesize if the definition is long.
158llvm::Function *
159CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
160                                      const CGFunctionInfo &FnInfo,
161                                      GlobalDecl GD, const ThunkInfo &Thunk) {
162  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
163  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
164  QualType ResultType = FPT->getReturnType();
165
166  // Get the original function
167  assert(FnInfo.isVariadic());
168  llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
169  llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
170  llvm::Function *BaseFn = cast<llvm::Function>(Callee);
171
172  // Cloning can't work if we don't have a definition. The Microsoft ABI may
173  // require thunks when a definition is not available. Emit an error in these
174  // cases.
175  if (!MD->isDefined()) {
176    CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
177    return Fn;
178  }
179  assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
180
181  // Clone to thunk.
182  llvm::ValueToValueMapTy VMap;
183
184  // We are cloning a function while some Metadata nodes are still unresolved.
185  // Ensure that the value mapper does not encounter any of them.
186  resolveTopLevelMetadata(BaseFn, VMap);
187  llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
188  Fn->replaceAllUsesWith(NewFn);
189  NewFn->takeName(Fn);
190  Fn->eraseFromParent();
191  Fn = NewFn;
192
193  // "Initialize" CGF (minimally).
194  CurFn = Fn;
195
196  // Get the "this" value
197  llvm::Function::arg_iterator AI = Fn->arg_begin();
198  if (CGM.ReturnTypeUsesSRet(FnInfo))
199    ++AI;
200
201  // Find the first store of "this", which will be to the alloca associated
202  // with "this".
203  Address ThisPtr =
204      Address(&*AI, ConvertTypeForMem(MD->getThisType()->getPointeeType()),
205              CGM.getClassPointerAlignment(MD->getParent()));
206  llvm::BasicBlock *EntryBB = &Fn->front();
207  llvm::BasicBlock::iterator ThisStore =
208      llvm::find_if(*EntryBB, [&](llvm::Instruction &I) {
209        return isa<llvm::StoreInst>(I) &&
210               I.getOperand(0) == ThisPtr.getPointer();
211      });
212  assert(ThisStore != EntryBB->end() &&
213         "Store of this should be in entry block?");
214  // Adjust "this", if necessary.
215  Builder.SetInsertPoint(&*ThisStore);
216  llvm::Value *AdjustedThisPtr =
217      CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
218  AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
219                                          ThisStore->getOperand(0)->getType());
220  ThisStore->setOperand(0, AdjustedThisPtr);
221
222  if (!Thunk.Return.isEmpty()) {
223    // Fix up the returned value, if necessary.
224    for (llvm::BasicBlock &BB : *Fn) {
225      llvm::Instruction *T = BB.getTerminator();
226      if (isa<llvm::ReturnInst>(T)) {
227        RValue RV = RValue::get(T->getOperand(0));
228        T->eraseFromParent();
229        Builder.SetInsertPoint(&BB);
230        RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
231        Builder.CreateRet(RV.getScalarVal());
232        break;
233      }
234    }
235  }
236
237  return Fn;
238}
239
240void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
241                                 const CGFunctionInfo &FnInfo,
242                                 bool IsUnprototyped) {
243  assert(!CurGD.getDecl() && "CurGD was already set!");
244  CurGD = GD;
245  CurFuncIsThunk = true;
246
247  // Build FunctionArgs.
248  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
249  QualType ThisType = MD->getThisType();
250  QualType ResultType;
251  if (IsUnprototyped)
252    ResultType = CGM.getContext().VoidTy;
253  else if (CGM.getCXXABI().HasThisReturn(GD))
254    ResultType = ThisType;
255  else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
256    ResultType = CGM.getContext().VoidPtrTy;
257  else
258    ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
259  FunctionArgList FunctionArgs;
260
261  // Create the implicit 'this' parameter declaration.
262  CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
263
264  // Add the rest of the parameters, if we have a prototype to work with.
265  if (!IsUnprototyped) {
266    FunctionArgs.append(MD->param_begin(), MD->param_end());
267
268    if (isa<CXXDestructorDecl>(MD))
269      CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
270                                                FunctionArgs);
271  }
272
273  // Start defining the function.
274  auto NL = ApplyDebugLocation::CreateEmpty(*this);
275  StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
276                MD->getLocation());
277  // Create a scope with an artificial location for the body of this function.
278  auto AL = ApplyDebugLocation::CreateArtificial(*this);
279
280  // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
281  CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
282  CXXThisValue = CXXABIThisValue;
283  CurCodeDecl = MD;
284  CurFuncDecl = MD;
285}
286
287void CodeGenFunction::FinishThunk() {
288  // Clear these to restore the invariants expected by
289  // StartFunction/FinishFunction.
290  CurCodeDecl = nullptr;
291  CurFuncDecl = nullptr;
292
293  FinishFunction();
294}
295
296void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
297                                                const ThunkInfo *Thunk,
298                                                bool IsUnprototyped) {
299  assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
300         "Please use a new CGF for this thunk");
301  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
302
303  // Adjust the 'this' pointer if necessary
304  llvm::Value *AdjustedThisPtr =
305    Thunk ? CGM.getCXXABI().performThisAdjustment(
306                          *this, LoadCXXThisAddress(), Thunk->This)
307          : LoadCXXThis();
308
309  // If perfect forwarding is required a variadic method, a method using
310  // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
311  // thunk requires a return adjustment, since that is impossible with musttail.
312  if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
313    if (Thunk && !Thunk->Return.isEmpty()) {
314      if (IsUnprototyped)
315        CGM.ErrorUnsupported(
316            MD, "return-adjusting thunk with incomplete parameter type");
317      else if (CurFnInfo->isVariadic())
318        llvm_unreachable("shouldn't try to emit musttail return-adjusting "
319                         "thunks for variadic functions");
320      else
321        CGM.ErrorUnsupported(
322            MD, "non-trivial argument copy for return-adjusting thunk");
323    }
324    EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
325    return;
326  }
327
328  // Start building CallArgs.
329  CallArgList CallArgs;
330  QualType ThisType = MD->getThisType();
331  CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
332
333  if (isa<CXXDestructorDecl>(MD))
334    CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
335
336#ifndef NDEBUG
337  unsigned PrefixArgs = CallArgs.size() - 1;
338#endif
339  // Add the rest of the arguments.
340  for (const ParmVarDecl *PD : MD->parameters())
341    EmitDelegateCallArg(CallArgs, PD, SourceLocation());
342
343  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
344
345#ifndef NDEBUG
346  const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
347      CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
348  assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
349         CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
350         CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
351  assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
352         similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
353                 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
354  assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
355  for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
356    assert(similar(CallFnInfo.arg_begin()[i].info,
357                   CallFnInfo.arg_begin()[i].type,
358                   CurFnInfo->arg_begin()[i].info,
359                   CurFnInfo->arg_begin()[i].type));
360#endif
361
362  // Determine whether we have a return value slot to use.
363  QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
364                            ? ThisType
365                            : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
366                                  ? CGM.getContext().VoidPtrTy
367                                  : FPT->getReturnType();
368  ReturnValueSlot Slot;
369  if (!ResultType->isVoidType() &&
370      (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
371       hasAggregateEvaluationKind(ResultType)))
372    Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
373                           /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
374
375  // Now emit our call.
376  llvm::CallBase *CallOrInvoke;
377  RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
378                       CallArgs, &CallOrInvoke);
379
380  // Consider return adjustment if we have ThunkInfo.
381  if (Thunk && !Thunk->Return.isEmpty())
382    RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
383  else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
384    Call->setTailCallKind(llvm::CallInst::TCK_Tail);
385
386  // Emit return.
387  if (!ResultType->isVoidType() && Slot.isNull())
388    CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
389
390  // Disable the final ARC autorelease.
391  AutoreleaseResult = false;
392
393  FinishThunk();
394}
395
396void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
397                                        llvm::Value *AdjustedThisPtr,
398                                        llvm::FunctionCallee Callee) {
399  // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
400  // to translate AST arguments into LLVM IR arguments.  For thunks, we know
401  // that the caller prototype more or less matches the callee prototype with
402  // the exception of 'this'.
403  SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args()));
404
405  // Set the adjusted 'this' pointer.
406  const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
407  if (ThisAI.isDirect()) {
408    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
409    int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
410    llvm::Type *ThisType = Args[ThisArgNo]->getType();
411    if (ThisType != AdjustedThisPtr->getType())
412      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
413    Args[ThisArgNo] = AdjustedThisPtr;
414  } else {
415    assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
416    Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
417    llvm::Type *ThisType = ThisAddr.getElementType();
418    if (ThisType != AdjustedThisPtr->getType())
419      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
420    Builder.CreateStore(AdjustedThisPtr, ThisAddr);
421  }
422
423  // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
424  // don't actually want to run them.
425  llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
426  Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
427
428  // Apply the standard set of call attributes.
429  unsigned CallingConv;
430  llvm::AttributeList Attrs;
431  CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
432                             Attrs, CallingConv, /*AttrOnCallSite=*/true,
433                             /*IsThunk=*/false);
434  Call->setAttributes(Attrs);
435  Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
436
437  if (Call->getType()->isVoidTy())
438    Builder.CreateRetVoid();
439  else
440    Builder.CreateRet(Call);
441
442  // Finish the function to maintain CodeGenFunction invariants.
443  // FIXME: Don't emit unreachable code.
444  EmitBlock(createBasicBlock());
445
446  FinishThunk();
447}
448
449void CodeGenFunction::generateThunk(llvm::Function *Fn,
450                                    const CGFunctionInfo &FnInfo, GlobalDecl GD,
451                                    const ThunkInfo &Thunk,
452                                    bool IsUnprototyped) {
453  StartThunk(Fn, GD, FnInfo, IsUnprototyped);
454  // Create a scope with an artificial location for the body of this function.
455  auto AL = ApplyDebugLocation::CreateArtificial(*this);
456
457  // Get our callee. Use a placeholder type if this method is unprototyped so
458  // that CodeGenModule doesn't try to set attributes.
459  llvm::Type *Ty;
460  if (IsUnprototyped)
461    Ty = llvm::StructType::get(getLLVMContext());
462  else
463    Ty = CGM.getTypes().GetFunctionType(FnInfo);
464
465  llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
466
467  // Fix up the function type for an unprototyped musttail call.
468  if (IsUnprototyped)
469    Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
470
471  // Make the call and return the result.
472  EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
473                            &Thunk, IsUnprototyped);
474}
475
476static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
477                                  bool IsUnprototyped, bool ForVTable) {
478  // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
479  // provide thunks for us.
480  if (CGM.getTarget().getCXXABI().isMicrosoft())
481    return true;
482
483  // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
484  // definitions of the main method. Therefore, emitting thunks with the vtable
485  // is purely an optimization. Emit the thunk if optimizations are enabled and
486  // all of the parameter types are complete.
487  if (ForVTable)
488    return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
489
490  // Always emit thunks along with the method definition.
491  return true;
492}
493
494llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
495                                               const ThunkInfo &TI,
496                                               bool ForVTable) {
497  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
498
499  // First, get a declaration. Compute the mangled name. Don't worry about
500  // getting the function prototype right, since we may only need this
501  // declaration to fill in a vtable slot.
502  SmallString<256> Name;
503  MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
504  llvm::raw_svector_ostream Out(Name);
505  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
506    MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
507  else
508    MCtx.mangleThunk(MD, TI, Out);
509  llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
510  llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
511
512  // If we don't need to emit a definition, return this declaration as is.
513  bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
514      MD->getType()->castAs<FunctionType>());
515  if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
516    return Thunk;
517
518  // Arrange a function prototype appropriate for a function definition. In some
519  // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
520  const CGFunctionInfo &FnInfo =
521      IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
522                     : CGM.getTypes().arrangeGlobalDeclaration(GD);
523  llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
524
525  // If the type of the underlying GlobalValue is wrong, we'll have to replace
526  // it. It should be a declaration.
527  llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
528  if (ThunkFn->getFunctionType() != ThunkFnTy) {
529    llvm::GlobalValue *OldThunkFn = ThunkFn;
530
531    assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
532
533    // Remove the name from the old thunk function and get a new thunk.
534    OldThunkFn->setName(StringRef());
535    ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
536                                     Name.str(), &CGM.getModule());
537    CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
538
539    // If needed, replace the old thunk with a bitcast.
540    if (!OldThunkFn->use_empty()) {
541      llvm::Constant *NewPtrForOldDecl =
542          llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
543      OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
544    }
545
546    // Remove the old thunk.
547    OldThunkFn->eraseFromParent();
548  }
549
550  bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
551  bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
552
553  if (!ThunkFn->isDeclaration()) {
554    if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
555      // There is already a thunk emitted for this function, do nothing.
556      return ThunkFn;
557    }
558
559    setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
560    return ThunkFn;
561  }
562
563  // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
564  // that the return type is meaningless. These thunks can be used to call
565  // functions with differing return types, and the caller is required to cast
566  // the prototype appropriately to extract the correct value.
567  if (IsUnprototyped)
568    ThunkFn->addFnAttr("thunk");
569
570  CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
571
572  // Thunks for variadic methods are special because in general variadic
573  // arguments cannot be perfectly forwarded. In the general case, clang
574  // implements such thunks by cloning the original function body. However, for
575  // thunks with no return adjustment on targets that support musttail, we can
576  // use musttail to perfectly forward the variadic arguments.
577  bool ShouldCloneVarArgs = false;
578  if (!IsUnprototyped && ThunkFn->isVarArg()) {
579    ShouldCloneVarArgs = true;
580    if (TI.Return.isEmpty()) {
581      switch (CGM.getTriple().getArch()) {
582      case llvm::Triple::x86_64:
583      case llvm::Triple::x86:
584      case llvm::Triple::aarch64:
585        ShouldCloneVarArgs = false;
586        break;
587      default:
588        break;
589      }
590    }
591  }
592
593  if (ShouldCloneVarArgs) {
594    if (UseAvailableExternallyLinkage)
595      return ThunkFn;
596    ThunkFn =
597        CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
598  } else {
599    // Normal thunk body generation.
600    CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
601  }
602
603  setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
604  return ThunkFn;
605}
606
607void CodeGenVTables::EmitThunks(GlobalDecl GD) {
608  const CXXMethodDecl *MD =
609    cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
610
611  // We don't need to generate thunks for the base destructor.
612  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
613    return;
614
615  const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
616      VTContext->getThunkInfo(GD);
617
618  if (!ThunkInfoVector)
619    return;
620
621  for (const ThunkInfo& Thunk : *ThunkInfoVector)
622    maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
623}
624
625void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
626                                          llvm::Constant *component,
627                                          unsigned vtableAddressPoint,
628                                          bool vtableHasLocalLinkage,
629                                          bool isCompleteDtor) const {
630  // No need to get the offset of a nullptr.
631  if (component->isNullValue())
632    return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));
633
634  auto *globalVal =
635      cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
636  llvm::Module &module = CGM.getModule();
637
638  // We don't want to copy the linkage of the vtable exactly because we still
639  // want the stub/proxy to be emitted for properly calculating the offset.
640  // Examples where there would be no symbol emitted are available_externally
641  // and private linkages.
642  auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage
643                                           : llvm::GlobalValue::ExternalLinkage;
644
645  llvm::Constant *target;
646  if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
647    target = llvm::DSOLocalEquivalent::get(func);
648  } else {
649    llvm::SmallString<16> rttiProxyName(globalVal->getName());
650    rttiProxyName.append(".rtti_proxy");
651
652    // The RTTI component may not always be emitted in the same linkage unit as
653    // the vtable. As a general case, we can make a dso_local proxy to the RTTI
654    // that points to the actual RTTI struct somewhere. This will result in a
655    // GOTPCREL relocation when taking the relative offset to the proxy.
656    llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
657    if (!proxy) {
658      proxy = new llvm::GlobalVariable(module, globalVal->getType(),
659                                       /*isConstant=*/true, stubLinkage,
660                                       globalVal, rttiProxyName);
661      proxy->setDSOLocal(true);
662      proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
663      if (!proxy->hasLocalLinkage()) {
664        proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
665        proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
666      }
667      // Do not instrument the rtti proxies with hwasan to avoid a duplicate
668      // symbol error. Aliases generated by hwasan will retain the same namebut
669      // the addresses they are set to may have different tags from different
670      // compilation units. We don't run into this without hwasan because the
671      // proxies are in comdat groups, but those aren't propagated to the alias.
672      RemoveHwasanMetadata(proxy);
673    }
674    target = proxy;
675  }
676
677  builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
678                                      /*position=*/vtableAddressPoint);
679}
680
681static bool UseRelativeLayout(const CodeGenModule &CGM) {
682  return CGM.getTarget().getCXXABI().isItaniumFamily() &&
683         CGM.getItaniumVTableContext().isRelativeLayout();
684}
685
686bool CodeGenVTables::useRelativeLayout() const {
687  return UseRelativeLayout(CGM);
688}
689
690llvm::Type *CodeGenModule::getVTableComponentType() const {
691  if (UseRelativeLayout(*this))
692    return Int32Ty;
693  return Int8PtrTy;
694}
695
696llvm::Type *CodeGenVTables::getVTableComponentType() const {
697  return CGM.getVTableComponentType();
698}
699
700static void AddPointerLayoutOffset(const CodeGenModule &CGM,
701                                   ConstantArrayBuilder &builder,
702                                   CharUnits offset) {
703  builder.add(llvm::ConstantExpr::getIntToPtr(
704      llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
705      CGM.Int8PtrTy));
706}
707
708static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
709                                    ConstantArrayBuilder &builder,
710                                    CharUnits offset) {
711  builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
712}
713
714void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
715                                        const VTableLayout &layout,
716                                        unsigned componentIndex,
717                                        llvm::Constant *rtti,
718                                        unsigned &nextVTableThunkIndex,
719                                        unsigned vtableAddressPoint,
720                                        bool vtableHasLocalLinkage) {
721  auto &component = layout.vtable_components()[componentIndex];
722
723  auto addOffsetConstant =
724      useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;
725
726  switch (component.getKind()) {
727  case VTableComponent::CK_VCallOffset:
728    return addOffsetConstant(CGM, builder, component.getVCallOffset());
729
730  case VTableComponent::CK_VBaseOffset:
731    return addOffsetConstant(CGM, builder, component.getVBaseOffset());
732
733  case VTableComponent::CK_OffsetToTop:
734    return addOffsetConstant(CGM, builder, component.getOffsetToTop());
735
736  case VTableComponent::CK_RTTI:
737    if (useRelativeLayout())
738      return addRelativeComponent(builder, rtti, vtableAddressPoint,
739                                  vtableHasLocalLinkage,
740                                  /*isCompleteDtor=*/false);
741    else
742      return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));
743
744  case VTableComponent::CK_FunctionPointer:
745  case VTableComponent::CK_CompleteDtorPointer:
746  case VTableComponent::CK_DeletingDtorPointer: {
747    GlobalDecl GD = component.getGlobalDecl();
748
749    if (CGM.getLangOpts().CUDA) {
750      // Emit NULL for methods we can't codegen on this
751      // side. Otherwise we'd end up with vtable with unresolved
752      // references.
753      const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
754      // OK on device side: functions w/ __device__ attribute
755      // OK on host side: anything except __device__-only functions.
756      bool CanEmitMethod =
757          CGM.getLangOpts().CUDAIsDevice
758              ? MD->hasAttr<CUDADeviceAttr>()
759              : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
760      if (!CanEmitMethod)
761        return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy));
762      // Method is acceptable, continue processing as usual.
763    }
764
765    auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
766      // FIXME(PR43094): When merging comdat groups, lld can select a local
767      // symbol as the signature symbol even though it cannot be accessed
768      // outside that symbol's TU. The relative vtables ABI would make
769      // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
770      // depending on link order, the comdat groups could resolve to the one
771      // with the local symbol. As a temporary solution, fill these components
772      // with zero. We shouldn't be calling these in the first place anyway.
773      if (useRelativeLayout())
774        return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
775
776      // For NVPTX devices in OpenMP emit special functon as null pointers,
777      // otherwise linking ends up with unresolved references.
778      if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice &&
779          CGM.getTriple().isNVPTX())
780        return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
781      llvm::FunctionType *fnTy =
782          llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
783      llvm::Constant *fn = cast<llvm::Constant>(
784          CGM.CreateRuntimeFunction(fnTy, name).getCallee());
785      if (auto f = dyn_cast<llvm::Function>(fn))
786        f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
787      return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
788    };
789
790    llvm::Constant *fnPtr;
791
792    // Pure virtual member functions.
793    if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
794      if (!PureVirtualFn)
795        PureVirtualFn =
796            getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
797      fnPtr = PureVirtualFn;
798
799    // Deleted virtual member functions.
800    } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
801      if (!DeletedVirtualFn)
802        DeletedVirtualFn =
803            getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
804      fnPtr = DeletedVirtualFn;
805
806    // Thunks.
807    } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
808               layout.vtable_thunks()[nextVTableThunkIndex].first ==
809                   componentIndex) {
810      auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
811
812      nextVTableThunkIndex++;
813      fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
814
815    // Otherwise we can use the method definition directly.
816    } else {
817      llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
818      fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
819    }
820
821    if (useRelativeLayout()) {
822      return addRelativeComponent(
823          builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
824          component.getKind() == VTableComponent::CK_CompleteDtorPointer);
825    } else
826      return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy));
827  }
828
829  case VTableComponent::CK_UnusedFunctionPointer:
830    if (useRelativeLayout())
831      return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
832    else
833      return builder.addNullPointer(CGM.Int8PtrTy);
834  }
835
836  llvm_unreachable("Unexpected vtable component kind");
837}
838
839llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
840  SmallVector<llvm::Type *, 4> tys;
841  llvm::Type *componentType = getVTableComponentType();
842  for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
843    tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));
844
845  return llvm::StructType::get(CGM.getLLVMContext(), tys);
846}
847
848void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
849                                             const VTableLayout &layout,
850                                             llvm::Constant *rtti,
851                                             bool vtableHasLocalLinkage) {
852  llvm::Type *componentType = getVTableComponentType();
853
854  const auto &addressPoints = layout.getAddressPointIndices();
855  unsigned nextVTableThunkIndex = 0;
856  for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
857       vtableIndex != endIndex; ++vtableIndex) {
858    auto vtableElem = builder.beginArray(componentType);
859
860    size_t vtableStart = layout.getVTableOffset(vtableIndex);
861    size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
862    for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
863         ++componentIndex) {
864      addVTableComponent(vtableElem, layout, componentIndex, rtti,
865                         nextVTableThunkIndex, addressPoints[vtableIndex],
866                         vtableHasLocalLinkage);
867    }
868    vtableElem.finishAndAddTo(builder);
869  }
870}
871
872llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
873    const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
874    llvm::GlobalVariable::LinkageTypes Linkage,
875    VTableAddressPointsMapTy &AddressPoints) {
876  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
877    DI->completeClassData(Base.getBase());
878
879  std::unique_ptr<VTableLayout> VTLayout(
880      getItaniumVTableContext().createConstructionVTableLayout(
881          Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
882
883  // Add the address points.
884  AddressPoints = VTLayout->getAddressPoints();
885
886  // Get the mangled construction vtable name.
887  SmallString<256> OutName;
888  llvm::raw_svector_ostream Out(OutName);
889  cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
890      .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
891                           Base.getBase(), Out);
892  SmallString<256> Name(OutName);
893
894  bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
895  bool VTableAliasExists =
896      UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
897  if (VTableAliasExists) {
898    // We previously made the vtable hidden and changed its name.
899    Name.append(".local");
900  }
901
902  llvm::Type *VTType = getVTableType(*VTLayout);
903
904  // Construction vtable symbols are not part of the Itanium ABI, so we cannot
905  // guarantee that they actually will be available externally. Instead, when
906  // emitting an available_externally VTT, we provide references to an internal
907  // linkage construction vtable. The ABI only requires complete-object vtables
908  // to be the same for all instances of a type, not construction vtables.
909  if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
910    Linkage = llvm::GlobalVariable::InternalLinkage;
911
912  llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType);
913
914  // Create the variable that will hold the construction vtable.
915  llvm::GlobalVariable *VTable =
916      CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
917
918  // V-tables are always unnamed_addr.
919  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
920
921  llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
922      CGM.getContext().getTagDeclType(Base.getBase()));
923
924  // Create and set the initializer.
925  ConstantInitBuilder builder(CGM);
926  auto components = builder.beginStruct();
927  createVTableInitializer(components, *VTLayout, RTTI,
928                          VTable->hasLocalLinkage());
929  components.finishAndSetAsInitializer(VTable);
930
931  // Set properties only after the initializer has been set to ensure that the
932  // GV is treated as definition and not declaration.
933  assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
934  CGM.setGVProperties(VTable, RD);
935
936  CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
937
938  if (UsingRelativeLayout) {
939    RemoveHwasanMetadata(VTable);
940    if (!VTable->isDSOLocal())
941      GenerateRelativeVTableAlias(VTable, OutName);
942  }
943
944  return VTable;
945}
946
947// Ensure this vtable is not instrumented by hwasan. That is, a global alias is
948// not generated for it. This is mainly used by the relative-vtables ABI where
949// vtables instead contain 32-bit offsets between the vtable and function
950// pointers. Hwasan is disabled for these vtables for now because the tag in a
951// vtable pointer may fail the overflow check when resolving 32-bit PLT
952// relocations. A future alternative for this would be finding which usages of
953// the vtable can continue to use the untagged hwasan value without any loss of
954// value in hwasan.
955void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const {
956  if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) {
957    llvm::GlobalValue::SanitizerMetadata Meta;
958    if (GV->hasSanitizerMetadata())
959      Meta = GV->getSanitizerMetadata();
960    Meta.NoHWAddress = true;
961    GV->setSanitizerMetadata(Meta);
962  }
963}
964
965// If the VTable is not dso_local, then we will not be able to indicate that
966// the VTable does not need a relocation and move into rodata. A frequent
967// time this can occur is for classes that should be made public from a DSO
968// (like in libc++). For cases like these, we can make the vtable hidden or
969// private and create a public alias with the same visibility and linkage as
970// the original vtable type.
971void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
972                                                 llvm::StringRef AliasNameRef) {
973  assert(getItaniumVTableContext().isRelativeLayout() &&
974         "Can only use this if the relative vtable ABI is used");
975  assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
976                                  "not guaranteed to be dso_local");
977
978  // If the vtable is available_externally, we shouldn't (or need to) generate
979  // an alias for it in the first place since the vtable won't actually by
980  // emitted in this compilation unit.
981  if (VTable->hasAvailableExternallyLinkage())
982    return;
983
984  // Create a new string in the event the alias is already the name of the
985  // vtable. Using the reference directly could lead to use of an inititialized
986  // value in the module's StringMap.
987  llvm::SmallString<256> AliasName(AliasNameRef);
988  VTable->setName(AliasName + ".local");
989
990  auto Linkage = VTable->getLinkage();
991  assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
992         "Invalid vtable alias linkage");
993
994  llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
995  if (!VTableAlias) {
996    VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
997                                            VTable->getAddressSpace(), Linkage,
998                                            AliasName, &CGM.getModule());
999  } else {
1000    assert(VTableAlias->getValueType() == VTable->getValueType());
1001    assert(VTableAlias->getLinkage() == Linkage);
1002  }
1003  VTableAlias->setVisibility(VTable->getVisibility());
1004  VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());
1005
1006  // Both of these imply dso_local for the vtable.
1007  if (!VTable->hasComdat()) {
1008    // If this is in a comdat, then we shouldn't make the linkage private due to
1009    // an issue in lld where private symbols can be used as the key symbol when
1010    // choosing the prevelant group. This leads to "relocation refers to a
1011    // symbol in a discarded section".
1012    VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
1013  } else {
1014    // We should at least make this hidden since we don't want to expose it.
1015    VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
1016  }
1017
1018  VTableAlias->setAliasee(VTable);
1019}
1020
1021static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
1022                                                const CXXRecordDecl *RD) {
1023  return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1024         CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
1025}
1026
1027/// Compute the required linkage of the vtable for the given class.
1028///
1029/// Note that we only call this at the end of the translation unit.
1030llvm::GlobalVariable::LinkageTypes
1031CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1032  if (!RD->isExternallyVisible())
1033    return llvm::GlobalVariable::InternalLinkage;
1034
1035  // We're at the end of the translation unit, so the current key
1036  // function is fully correct.
1037  const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
1038  if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
1039    // If this class has a key function, use that to determine the
1040    // linkage of the vtable.
1041    const FunctionDecl *def = nullptr;
1042    if (keyFunction->hasBody(def))
1043      keyFunction = cast<CXXMethodDecl>(def);
1044
1045    switch (keyFunction->getTemplateSpecializationKind()) {
1046      case TSK_Undeclared:
1047      case TSK_ExplicitSpecialization:
1048        assert((def || CodeGenOpts.OptimizationLevel > 0 ||
1049                CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
1050               "Shouldn't query vtable linkage without key function, "
1051               "optimizations, or debug info");
1052        if (!def && CodeGenOpts.OptimizationLevel > 0)
1053          return llvm::GlobalVariable::AvailableExternallyLinkage;
1054
1055        if (keyFunction->isInlined())
1056          return !Context.getLangOpts().AppleKext ?
1057                   llvm::GlobalVariable::LinkOnceODRLinkage :
1058                   llvm::Function::InternalLinkage;
1059
1060        return llvm::GlobalVariable::ExternalLinkage;
1061
1062      case TSK_ImplicitInstantiation:
1063        return !Context.getLangOpts().AppleKext ?
1064                 llvm::GlobalVariable::LinkOnceODRLinkage :
1065                 llvm::Function::InternalLinkage;
1066
1067      case TSK_ExplicitInstantiationDefinition:
1068        return !Context.getLangOpts().AppleKext ?
1069                 llvm::GlobalVariable::WeakODRLinkage :
1070                 llvm::Function::InternalLinkage;
1071
1072      case TSK_ExplicitInstantiationDeclaration:
1073        llvm_unreachable("Should not have been asked to emit this");
1074    }
1075  }
1076
1077  // -fapple-kext mode does not support weak linkage, so we must use
1078  // internal linkage.
1079  if (Context.getLangOpts().AppleKext)
1080    return llvm::Function::InternalLinkage;
1081
1082  llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
1083      llvm::GlobalValue::LinkOnceODRLinkage;
1084  llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
1085      llvm::GlobalValue::WeakODRLinkage;
1086  if (RD->hasAttr<DLLExportAttr>()) {
1087    // Cannot discard exported vtables.
1088    DiscardableODRLinkage = NonDiscardableODRLinkage;
1089  } else if (RD->hasAttr<DLLImportAttr>()) {
1090    // Imported vtables are available externally.
1091    DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1092    NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1093  }
1094
1095  switch (RD->getTemplateSpecializationKind()) {
1096    case TSK_Undeclared:
1097    case TSK_ExplicitSpecialization:
1098    case TSK_ImplicitInstantiation:
1099      return DiscardableODRLinkage;
1100
1101    case TSK_ExplicitInstantiationDeclaration:
1102      // Explicit instantiations in MSVC do not provide vtables, so we must emit
1103      // our own.
1104      if (getTarget().getCXXABI().isMicrosoft())
1105        return DiscardableODRLinkage;
1106      return shouldEmitAvailableExternallyVTable(*this, RD)
1107                 ? llvm::GlobalVariable::AvailableExternallyLinkage
1108                 : llvm::GlobalVariable::ExternalLinkage;
1109
1110    case TSK_ExplicitInstantiationDefinition:
1111      return NonDiscardableODRLinkage;
1112  }
1113
1114  llvm_unreachable("Invalid TemplateSpecializationKind!");
1115}
1116
1117/// This is a callback from Sema to tell us that a particular vtable is
1118/// required to be emitted in this translation unit.
1119///
1120/// This is only called for vtables that _must_ be emitted (mainly due to key
1121/// functions).  For weak vtables, CodeGen tracks when they are needed and
1122/// emits them as-needed.
1123void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
1124  VTables.GenerateClassData(theClass);
1125}
1126
1127void
1128CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
1129  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
1130    DI->completeClassData(RD);
1131
1132  if (RD->getNumVBases())
1133    CGM.getCXXABI().emitVirtualInheritanceTables(RD);
1134
1135  CGM.getCXXABI().emitVTableDefinitions(*this, RD);
1136}
1137
1138/// At this point in the translation unit, does it appear that can we
1139/// rely on the vtable being defined elsewhere in the program?
1140///
1141/// The response is really only definitive when called at the end of
1142/// the translation unit.
1143///
1144/// The only semantic restriction here is that the object file should
1145/// not contain a vtable definition when that vtable is defined
1146/// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
1147/// vtables when unnecessary.
1148bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
1149  assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
1150
1151  // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
1152  // emit them even if there is an explicit template instantiation.
1153  if (CGM.getTarget().getCXXABI().isMicrosoft())
1154    return false;
1155
1156  // If we have an explicit instantiation declaration (and not a
1157  // definition), the vtable is defined elsewhere.
1158  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1159  if (TSK == TSK_ExplicitInstantiationDeclaration)
1160    return true;
1161
1162  // Otherwise, if the class is an instantiated template, the
1163  // vtable must be defined here.
1164  if (TSK == TSK_ImplicitInstantiation ||
1165      TSK == TSK_ExplicitInstantiationDefinition)
1166    return false;
1167
1168  // Otherwise, if the class doesn't have a key function (possibly
1169  // anymore), the vtable must be defined here.
1170  const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
1171  if (!keyFunction)
1172    return false;
1173
1174  // Otherwise, if we don't have a definition of the key function, the
1175  // vtable must be defined somewhere else.
1176  return !keyFunction->hasBody();
1177}
1178
1179/// Given that we're currently at the end of the translation unit, and
1180/// we've emitted a reference to the vtable for this class, should
1181/// we define that vtable?
1182static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
1183                                                   const CXXRecordDecl *RD) {
1184  // If vtable is internal then it has to be done.
1185  if (!CGM.getVTables().isVTableExternal(RD))
1186    return true;
1187
1188  // If it's external then maybe we will need it as available_externally.
1189  return shouldEmitAvailableExternallyVTable(CGM, RD);
1190}
1191
1192/// Given that at some point we emitted a reference to one or more
1193/// vtables, and that we are now at the end of the translation unit,
1194/// decide whether we should emit them.
1195void CodeGenModule::EmitDeferredVTables() {
1196#ifndef NDEBUG
1197  // Remember the size of DeferredVTables, because we're going to assume
1198  // that this entire operation doesn't modify it.
1199  size_t savedSize = DeferredVTables.size();
1200#endif
1201
1202  for (const CXXRecordDecl *RD : DeferredVTables)
1203    if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
1204      VTables.GenerateClassData(RD);
1205    else if (shouldOpportunisticallyEmitVTables())
1206      OpportunisticVTables.push_back(RD);
1207
1208  assert(savedSize == DeferredVTables.size() &&
1209         "deferred extra vtables during vtable emission?");
1210  DeferredVTables.clear();
1211}
1212
1213bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) {
1214  if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
1215    return true;
1216
1217  if (!getCodeGenOpts().LTOVisibilityPublicStd)
1218    return false;
1219
1220  const DeclContext *DC = RD;
1221  while (true) {
1222    auto *D = cast<Decl>(DC);
1223    DC = DC->getParent();
1224    if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
1225      if (auto *ND = dyn_cast<NamespaceDecl>(D))
1226        if (const IdentifierInfo *II = ND->getIdentifier())
1227          if (II->isStr("std") || II->isStr("stdext"))
1228            return true;
1229      break;
1230    }
1231  }
1232
1233  return false;
1234}
1235
1236bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
1237  LinkageInfo LV = RD->getLinkageAndVisibility();
1238  if (!isExternallyVisible(LV.getLinkage()))
1239    return true;
1240
1241  if (getTriple().isOSBinFormatCOFF()) {
1242    if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
1243      return false;
1244  } else {
1245    if (LV.getVisibility() != HiddenVisibility)
1246      return false;
1247  }
1248
1249  return !AlwaysHasLTOVisibilityPublic(RD);
1250}
1251
1252llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(
1253    const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) {
1254  // If we have already visited this RD (which means this is a recursive call
1255  // since the initial call should have an empty Visited set), return the max
1256  // visibility. The recursive calls below compute the min between the result
1257  // of the recursive call and the current TypeVis, so returning the max here
1258  // ensures that it will have no effect on the current TypeVis.
1259  if (!Visited.insert(RD).second)
1260    return llvm::GlobalObject::VCallVisibilityTranslationUnit;
1261
1262  LinkageInfo LV = RD->getLinkageAndVisibility();
1263  llvm::GlobalObject::VCallVisibility TypeVis;
1264  if (!isExternallyVisible(LV.getLinkage()))
1265    TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
1266  else if (HasHiddenLTOVisibility(RD))
1267    TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
1268  else
1269    TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
1270
1271  for (auto B : RD->bases())
1272    if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1273      TypeVis = std::min(
1274          TypeVis,
1275          GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1276
1277  for (auto B : RD->vbases())
1278    if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1279      TypeVis = std::min(
1280          TypeVis,
1281          GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1282
1283  return TypeVis;
1284}
1285
1286void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
1287                                           llvm::GlobalVariable *VTable,
1288                                           const VTableLayout &VTLayout) {
1289  if (!getCodeGenOpts().LTOUnit)
1290    return;
1291
1292  CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType());
1293
1294  typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
1295  std::vector<AddressPoint> AddressPoints;
1296  for (auto &&AP : VTLayout.getAddressPoints())
1297    AddressPoints.push_back(std::make_pair(
1298        AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
1299                                AP.second.AddressPointIndex));
1300
1301  // Sort the address points for determinism.
1302  llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
1303                                   const AddressPoint &AP2) {
1304    if (&AP1 == &AP2)
1305      return false;
1306
1307    std::string S1;
1308    llvm::raw_string_ostream O1(S1);
1309    getCXXABI().getMangleContext().mangleTypeName(
1310        QualType(AP1.first->getTypeForDecl(), 0), O1);
1311    O1.flush();
1312
1313    std::string S2;
1314    llvm::raw_string_ostream O2(S2);
1315    getCXXABI().getMangleContext().mangleTypeName(
1316        QualType(AP2.first->getTypeForDecl(), 0), O2);
1317    O2.flush();
1318
1319    if (S1 < S2)
1320      return true;
1321    if (S1 != S2)
1322      return false;
1323
1324    return AP1.second < AP2.second;
1325  });
1326
1327  ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
1328  for (auto AP : AddressPoints) {
1329    // Create type metadata for the address point.
1330    AddVTableTypeMetadata(VTable, ComponentWidth * AP.second, AP.first);
1331
1332    // The class associated with each address point could also potentially be
1333    // used for indirect calls via a member function pointer, so we need to
1334    // annotate the address of each function pointer with the appropriate member
1335    // function pointer type.
1336    for (unsigned I = 0; I != Comps.size(); ++I) {
1337      if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
1338        continue;
1339      llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
1340          Context.getMemberPointerType(
1341              Comps[I].getFunctionDecl()->getType(),
1342              Context.getRecordType(AP.first).getTypePtr()));
1343      VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD);
1344    }
1345  }
1346
1347  if (getCodeGenOpts().VirtualFunctionElimination ||
1348      getCodeGenOpts().WholeProgramVTables) {
1349    llvm::DenseSet<const CXXRecordDecl *> Visited;
1350    llvm::GlobalObject::VCallVisibility TypeVis =
1351        GetVCallVisibilityLevel(RD, Visited);
1352    if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1353      VTable->setVCallVisibilityMetadata(TypeVis);
1354  }
1355}
1356