1//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/AST/ASTContext.h"
10#include "clang/AST/ASTDiagnostic.h"
11#include "clang/AST/Attr.h"
12#include "clang/AST/CXXInheritance.h"
13#include "clang/AST/Decl.h"
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/VTableBuilder.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/Support/Format.h"
22#include "llvm/Support/MathExtras.h"
23
24using namespace clang;
25
26namespace {
27
28/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29/// For a class hierarchy like
30///
31/// class A { };
32/// class B : A { };
33/// class C : A, B { };
34///
35/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36/// instances, one for B and two for A.
37///
38/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39struct BaseSubobjectInfo {
40  /// Class - The class for this base info.
41  const CXXRecordDecl *Class;
42
43  /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44  bool IsVirtual;
45
46  /// Bases - Information about the base subobjects.
47  SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49  /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50  /// of this base info (if one exists).
51  BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53  // FIXME: Document.
54  const BaseSubobjectInfo *Derived;
55};
56
57/// Externally provided layout. Typically used when the AST source, such
58/// as DWARF, lacks all the information that was available at compile time, such
59/// as alignment attributes on fields and pragmas in effect.
60struct ExternalLayout {
61  ExternalLayout() : Size(0), Align(0) {}
62
63  /// Overall record size in bits.
64  uint64_t Size;
65
66  /// Overall record alignment in bits.
67  uint64_t Align;
68
69  /// Record field offsets in bits.
70  llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72  /// Direct, non-virtual base offsets.
73  llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75  /// Virtual base offsets.
76  llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78  /// Get the offset of the given field. The external source must provide
79  /// entries for all fields in the record.
80  uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81    assert(FieldOffsets.count(FD) &&
82           "Field does not have an external offset");
83    return FieldOffsets[FD];
84  }
85
86  bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87    auto Known = BaseOffsets.find(RD);
88    if (Known == BaseOffsets.end())
89      return false;
90    BaseOffset = Known->second;
91    return true;
92  }
93
94  bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95    auto Known = VirtualBaseOffsets.find(RD);
96    if (Known == VirtualBaseOffsets.end())
97      return false;
98    BaseOffset = Known->second;
99    return true;
100  }
101};
102
103/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104/// offsets while laying out a C++ class.
105class EmptySubobjectMap {
106  const ASTContext &Context;
107  uint64_t CharWidth;
108
109  /// Class - The class whose empty entries we're keeping track of.
110  const CXXRecordDecl *Class;
111
112  /// EmptyClassOffsets - A map from offsets to empty record decls.
113  typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114  typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115  EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117  /// MaxEmptyClassOffset - The highest offset known to contain an empty
118  /// base subobject.
119  CharUnits MaxEmptyClassOffset;
120
121  /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122  /// member subobject that is empty.
123  void ComputeEmptySubobjectSizes();
124
125  void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127  void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                 CharUnits Offset, bool PlacingEmptyBase);
129
130  void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                  const CXXRecordDecl *Class, CharUnits Offset,
132                                  bool PlacingOverlappingField);
133  void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134                                  bool PlacingOverlappingField);
135
136  /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137  /// subobjects beyond the given offset.
138  bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139    return Offset <= MaxEmptyClassOffset;
140  }
141
142  CharUnits
143  getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144    uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145    assert(FieldOffset % CharWidth == 0 &&
146           "Field offset not at char boundary!");
147
148    return Context.toCharUnitsFromBits(FieldOffset);
149  }
150
151protected:
152  bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153                                 CharUnits Offset) const;
154
155  bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156                                     CharUnits Offset);
157
158  bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159                                      const CXXRecordDecl *Class,
160                                      CharUnits Offset) const;
161  bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162                                      CharUnits Offset) const;
163
164public:
165  /// This holds the size of the largest empty subobject (either a base
166  /// or a member). Will be zero if the record being built doesn't contain
167  /// any empty classes.
168  CharUnits SizeOfLargestEmptySubobject;
169
170  EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171  : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172      ComputeEmptySubobjectSizes();
173  }
174
175  /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176  /// at the given offset.
177  /// Returns false if placing the record will result in two components
178  /// (direct or indirect) of the same type having the same offset.
179  bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180                            CharUnits Offset);
181
182  /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183  /// offset.
184  bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185};
186
187void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188  // Check the bases.
189  for (const CXXBaseSpecifier &Base : Class->bases()) {
190    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191
192    CharUnits EmptySize;
193    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194    if (BaseDecl->isEmpty()) {
195      // If the class decl is empty, get its size.
196      EmptySize = Layout.getSize();
197    } else {
198      // Otherwise, we get the largest empty subobject for the decl.
199      EmptySize = Layout.getSizeOfLargestEmptySubobject();
200    }
201
202    if (EmptySize > SizeOfLargestEmptySubobject)
203      SizeOfLargestEmptySubobject = EmptySize;
204  }
205
206  // Check the fields.
207  for (const FieldDecl *FD : Class->fields()) {
208    const RecordType *RT =
209        Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210
211    // We only care about record types.
212    if (!RT)
213      continue;
214
215    CharUnits EmptySize;
216    const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217    const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218    if (MemberDecl->isEmpty()) {
219      // If the class decl is empty, get its size.
220      EmptySize = Layout.getSize();
221    } else {
222      // Otherwise, we get the largest empty subobject for the decl.
223      EmptySize = Layout.getSizeOfLargestEmptySubobject();
224    }
225
226    if (EmptySize > SizeOfLargestEmptySubobject)
227      SizeOfLargestEmptySubobject = EmptySize;
228  }
229}
230
231bool
232EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233                                             CharUnits Offset) const {
234  // We only need to check empty bases.
235  if (!RD->isEmpty())
236    return true;
237
238  EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239  if (I == EmptyClassOffsets.end())
240    return true;
241
242  const ClassVectorTy &Classes = I->second;
243  if (!llvm::is_contained(Classes, RD))
244    return true;
245
246  // There is already an empty class of the same type at this offset.
247  return false;
248}
249
250void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251                                             CharUnits Offset) {
252  // We only care about empty bases.
253  if (!RD->isEmpty())
254    return;
255
256  // If we have empty structures inside a union, we can assign both
257  // the same offset. Just avoid pushing them twice in the list.
258  ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259  if (llvm::is_contained(Classes, RD))
260    return;
261
262  Classes.push_back(RD);
263
264  // Update the empty class offset.
265  if (Offset > MaxEmptyClassOffset)
266    MaxEmptyClassOffset = Offset;
267}
268
269bool
270EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271                                                 CharUnits Offset) {
272  // We don't have to keep looking past the maximum offset that's known to
273  // contain an empty class.
274  if (!AnyEmptySubobjectsBeyondOffset(Offset))
275    return true;
276
277  if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278    return false;
279
280  // Traverse all non-virtual bases.
281  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282  for (const BaseSubobjectInfo *Base : Info->Bases) {
283    if (Base->IsVirtual)
284      continue;
285
286    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287
288    if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289      return false;
290  }
291
292  if (Info->PrimaryVirtualBaseInfo) {
293    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294
295    if (Info == PrimaryVirtualBaseInfo->Derived) {
296      if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297        return false;
298    }
299  }
300
301  // Traverse all member variables.
302  unsigned FieldNo = 0;
303  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305    if (I->isBitField())
306      continue;
307
308    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310      return false;
311  }
312
313  return true;
314}
315
316void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317                                                  CharUnits Offset,
318                                                  bool PlacingEmptyBase) {
319  if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320    // We know that the only empty subobjects that can conflict with empty
321    // subobject of non-empty bases, are empty bases that can be placed at
322    // offset zero. Because of this, we only need to keep track of empty base
323    // subobjects with offsets less than the size of the largest empty
324    // subobject for our class.
325    return;
326  }
327
328  AddSubobjectAtOffset(Info->Class, Offset);
329
330  // Traverse all non-virtual bases.
331  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332  for (const BaseSubobjectInfo *Base : Info->Bases) {
333    if (Base->IsVirtual)
334      continue;
335
336    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337    UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338  }
339
340  if (Info->PrimaryVirtualBaseInfo) {
341    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342
343    if (Info == PrimaryVirtualBaseInfo->Derived)
344      UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345                                PlacingEmptyBase);
346  }
347
348  // Traverse all member variables.
349  unsigned FieldNo = 0;
350  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352    if (I->isBitField())
353      continue;
354
355    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356    UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357  }
358}
359
360bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361                                             CharUnits Offset) {
362  // If we know this class doesn't have any empty subobjects we don't need to
363  // bother checking.
364  if (SizeOfLargestEmptySubobject.isZero())
365    return true;
366
367  if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368    return false;
369
370  // We are able to place the base at this offset. Make sure to update the
371  // empty base subobject map.
372  UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373  return true;
374}
375
376bool
377EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378                                                  const CXXRecordDecl *Class,
379                                                  CharUnits Offset) const {
380  // We don't have to keep looking past the maximum offset that's known to
381  // contain an empty class.
382  if (!AnyEmptySubobjectsBeyondOffset(Offset))
383    return true;
384
385  if (!CanPlaceSubobjectAtOffset(RD, Offset))
386    return false;
387
388  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389
390  // Traverse all non-virtual bases.
391  for (const CXXBaseSpecifier &Base : RD->bases()) {
392    if (Base.isVirtual())
393      continue;
394
395    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396
397    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398    if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399      return false;
400  }
401
402  if (RD == Class) {
403    // This is the most derived class, traverse virtual bases as well.
404    for (const CXXBaseSpecifier &Base : RD->vbases()) {
405      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406
407      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408      if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409        return false;
410    }
411  }
412
413  // Traverse all member variables.
414  unsigned FieldNo = 0;
415  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416       I != E; ++I, ++FieldNo) {
417    if (I->isBitField())
418      continue;
419
420    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421
422    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423      return false;
424  }
425
426  return true;
427}
428
429bool
430EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431                                                  CharUnits Offset) const {
432  // We don't have to keep looking past the maximum offset that's known to
433  // contain an empty class.
434  if (!AnyEmptySubobjectsBeyondOffset(Offset))
435    return true;
436
437  QualType T = FD->getType();
438  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439    return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440
441  // If we have an array type we need to look at every element.
442  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443    QualType ElemTy = Context.getBaseElementType(AT);
444    const RecordType *RT = ElemTy->getAs<RecordType>();
445    if (!RT)
446      return true;
447
448    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450
451    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452    CharUnits ElementOffset = Offset;
453    for (uint64_t I = 0; I != NumElements; ++I) {
454      // We don't have to keep looking past the maximum offset that's known to
455      // contain an empty class.
456      if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457        return true;
458
459      if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460        return false;
461
462      ElementOffset += Layout.getSize();
463    }
464  }
465
466  return true;
467}
468
469bool
470EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471                                         CharUnits Offset) {
472  if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473    return false;
474
475  // We are able to place the member variable at this offset.
476  // Make sure to update the empty field subobject map.
477  UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478  return true;
479}
480
481void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482    const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483    bool PlacingOverlappingField) {
484  // We know that the only empty subobjects that can conflict with empty
485  // field subobjects are subobjects of empty bases and potentially-overlapping
486  // fields that can be placed at offset zero. Because of this, we only need to
487  // keep track of empty field subobjects with offsets less than the size of
488  // the largest empty subobject for our class.
489  //
490  // (Proof: we will only consider placing a subobject at offset zero or at
491  // >= the current dsize. The only cases where the earlier subobject can be
492  // placed beyond the end of dsize is if it's an empty base or a
493  // potentially-overlapping field.)
494  if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495    return;
496
497  AddSubobjectAtOffset(RD, Offset);
498
499  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500
501  // Traverse all non-virtual bases.
502  for (const CXXBaseSpecifier &Base : RD->bases()) {
503    if (Base.isVirtual())
504      continue;
505
506    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507
508    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509    UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510                               PlacingOverlappingField);
511  }
512
513  if (RD == Class) {
514    // This is the most derived class, traverse virtual bases as well.
515    for (const CXXBaseSpecifier &Base : RD->vbases()) {
516      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517
518      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519      UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520                                 PlacingOverlappingField);
521    }
522  }
523
524  // Traverse all member variables.
525  unsigned FieldNo = 0;
526  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527       I != E; ++I, ++FieldNo) {
528    if (I->isBitField())
529      continue;
530
531    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532
533    UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534  }
535}
536
537void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538    const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539  QualType T = FD->getType();
540  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541    UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542    return;
543  }
544
545  // If we have an array type we need to update every element.
546  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547    QualType ElemTy = Context.getBaseElementType(AT);
548    const RecordType *RT = ElemTy->getAs<RecordType>();
549    if (!RT)
550      return;
551
552    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554
555    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556    CharUnits ElementOffset = Offset;
557
558    for (uint64_t I = 0; I != NumElements; ++I) {
559      // We know that the only empty subobjects that can conflict with empty
560      // field subobjects are subobjects of empty bases that can be placed at
561      // offset zero. Because of this, we only need to keep track of empty field
562      // subobjects with offsets less than the size of the largest empty
563      // subobject for our class.
564      if (!PlacingOverlappingField &&
565          ElementOffset >= SizeOfLargestEmptySubobject)
566        return;
567
568      UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569                                 PlacingOverlappingField);
570      ElementOffset += Layout.getSize();
571    }
572  }
573}
574
575typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576
577class ItaniumRecordLayoutBuilder {
578protected:
579  // FIXME: Remove this and make the appropriate fields public.
580  friend class clang::ASTContext;
581
582  const ASTContext &Context;
583
584  EmptySubobjectMap *EmptySubobjects;
585
586  /// Size - The current size of the record layout.
587  uint64_t Size;
588
589  /// Alignment - The current alignment of the record layout.
590  CharUnits Alignment;
591
592  /// PreferredAlignment - The preferred alignment of the record layout.
593  CharUnits PreferredAlignment;
594
595  /// The alignment if attribute packed is not used.
596  CharUnits UnpackedAlignment;
597
598  /// \brief The maximum of the alignments of top-level members.
599  CharUnits UnadjustedAlignment;
600
601  SmallVector<uint64_t, 16> FieldOffsets;
602
603  /// Whether the external AST source has provided a layout for this
604  /// record.
605  unsigned UseExternalLayout : 1;
606
607  /// Whether we need to infer alignment, even when we have an
608  /// externally-provided layout.
609  unsigned InferAlignment : 1;
610
611  /// Packed - Whether the record is packed or not.
612  unsigned Packed : 1;
613
614  unsigned IsUnion : 1;
615
616  unsigned IsMac68kAlign : 1;
617
618  unsigned IsNaturalAlign : 1;
619
620  unsigned IsMsStruct : 1;
621
622  /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623  /// this contains the number of bits in the last unit that can be used for
624  /// an adjacent bitfield if necessary.  The unit in question is usually
625  /// a byte, but larger units are used if IsMsStruct.
626  unsigned char UnfilledBitsInLastUnit;
627
628  /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629  /// storage unit of the previous field if it was a bitfield.
630  unsigned char LastBitfieldStorageUnitSize;
631
632  /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633  /// #pragma pack.
634  CharUnits MaxFieldAlignment;
635
636  /// DataSize - The data size of the record being laid out.
637  uint64_t DataSize;
638
639  CharUnits NonVirtualSize;
640  CharUnits NonVirtualAlignment;
641  CharUnits PreferredNVAlignment;
642
643  /// If we've laid out a field but not included its tail padding in Size yet,
644  /// this is the size up to the end of that field.
645  CharUnits PaddedFieldSize;
646
647  /// PrimaryBase - the primary base class (if one exists) of the class
648  /// we're laying out.
649  const CXXRecordDecl *PrimaryBase;
650
651  /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652  /// out is virtual.
653  bool PrimaryBaseIsVirtual;
654
655  /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656  /// pointer, as opposed to inheriting one from a primary base class.
657  bool HasOwnVFPtr;
658
659  /// the flag of field offset changing due to packed attribute.
660  bool HasPackedField;
661
662  /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663  /// When there are OverlappingEmptyFields existing in the aggregate, the
664  /// flag shows if the following first non-empty or empty-but-non-overlapping
665  /// field has been handled, if any.
666  bool HandledFirstNonOverlappingEmptyField;
667
668  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
669
670  /// Bases - base classes and their offsets in the record.
671  BaseOffsetsMapTy Bases;
672
673  // VBases - virtual base classes and their offsets in the record.
674  ASTRecordLayout::VBaseOffsetsMapTy VBases;
675
676  /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677  /// primary base classes for some other direct or indirect base class.
678  CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
679
680  /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681  /// inheritance graph order. Used for determining the primary base class.
682  const CXXRecordDecl *FirstNearlyEmptyVBase;
683
684  /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685  /// avoid visiting virtual bases more than once.
686  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
687
688  /// Valid if UseExternalLayout is true.
689  ExternalLayout External;
690
691  ItaniumRecordLayoutBuilder(const ASTContext &Context,
692                             EmptySubobjectMap *EmptySubobjects)
693      : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694        Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695        UnpackedAlignment(CharUnits::One()),
696        UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697        InferAlignment(false), Packed(false), IsUnion(false),
698        IsMac68kAlign(false),
699        IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700        IsMsStruct(false), UnfilledBitsInLastUnit(0),
701        LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702        DataSize(0), NonVirtualSize(CharUnits::Zero()),
703        NonVirtualAlignment(CharUnits::One()),
704        PreferredNVAlignment(CharUnits::One()),
705        PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706        PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707        HandledFirstNonOverlappingEmptyField(false),
708        FirstNearlyEmptyVBase(nullptr) {}
709
710  void Layout(const RecordDecl *D);
711  void Layout(const CXXRecordDecl *D);
712  void Layout(const ObjCInterfaceDecl *D);
713
714  void LayoutFields(const RecordDecl *D);
715  void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716  void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717                          bool FieldPacked, const FieldDecl *D);
718  void LayoutBitField(const FieldDecl *D);
719
720  TargetCXXABI getCXXABI() const {
721    return Context.getTargetInfo().getCXXABI();
722  }
723
724  /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725  llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
726
727  typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728    BaseSubobjectInfoMapTy;
729
730  /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731  /// of the class we're laying out to their base subobject info.
732  BaseSubobjectInfoMapTy VirtualBaseInfo;
733
734  /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735  /// class we're laying out to their base subobject info.
736  BaseSubobjectInfoMapTy NonVirtualBaseInfo;
737
738  /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739  /// bases of the given class.
740  void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
741
742  /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743  /// single class and all of its base classes.
744  BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745                                              bool IsVirtual,
746                                              BaseSubobjectInfo *Derived);
747
748  /// DeterminePrimaryBase - Determine the primary base of the given class.
749  void DeterminePrimaryBase(const CXXRecordDecl *RD);
750
751  void SelectPrimaryVBase(const CXXRecordDecl *RD);
752
753  void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
754
755  /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756  /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757  void LayoutNonVirtualBases(const CXXRecordDecl *RD);
758
759  /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760  void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
761
762  void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763                                    CharUnits Offset);
764
765  /// LayoutVirtualBases - Lays out all the virtual bases.
766  void LayoutVirtualBases(const CXXRecordDecl *RD,
767                          const CXXRecordDecl *MostDerivedClass);
768
769  /// LayoutVirtualBase - Lays out a single virtual base.
770  void LayoutVirtualBase(const BaseSubobjectInfo *Base);
771
772  /// LayoutBase - Will lay out a base and return the offset where it was
773  /// placed, in chars.
774  CharUnits LayoutBase(const BaseSubobjectInfo *Base);
775
776  /// InitializeLayout - Initialize record layout for the given record decl.
777  void InitializeLayout(const Decl *D);
778
779  /// FinishLayout - Finalize record layout. Adjust record size based on the
780  /// alignment.
781  void FinishLayout(const NamedDecl *D);
782
783  void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784                       CharUnits PreferredAlignment);
785  void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786    UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
787  }
788  void UpdateAlignment(CharUnits NewAlignment) {
789    UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
790  }
791
792  /// Retrieve the externally-supplied field offset for the given
793  /// field.
794  ///
795  /// \param Field The field whose offset is being queried.
796  /// \param ComputedOffset The offset that we've computed for this field.
797  uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798                                     uint64_t ComputedOffset);
799
800  void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801                          uint64_t UnpackedOffset, unsigned UnpackedAlign,
802                          bool isPacked, const FieldDecl *D);
803
804  DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
805
806  CharUnits getSize() const {
807    assert(Size % Context.getCharWidth() == 0);
808    return Context.toCharUnitsFromBits(Size);
809  }
810  uint64_t getSizeInBits() const { return Size; }
811
812  void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813  void setSize(uint64_t NewSize) { Size = NewSize; }
814
815  CharUnits getAligment() const { return Alignment; }
816
817  CharUnits getDataSize() const {
818    assert(DataSize % Context.getCharWidth() == 0);
819    return Context.toCharUnitsFromBits(DataSize);
820  }
821  uint64_t getDataSizeInBits() const { return DataSize; }
822
823  void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824  void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
825
826  ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827  void operator=(const ItaniumRecordLayoutBuilder &) = delete;
828};
829} // end anonymous namespace
830
831void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832  for (const auto &I : RD->bases()) {
833    assert(!I.getType()->isDependentType() &&
834           "Cannot layout class with dependent bases.");
835
836    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
837
838    // Check if this is a nearly empty virtual base.
839    if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840      // If it's not an indirect primary base, then we've found our primary
841      // base.
842      if (!IndirectPrimaryBases.count(Base)) {
843        PrimaryBase = Base;
844        PrimaryBaseIsVirtual = true;
845        return;
846      }
847
848      // Is this the first nearly empty virtual base?
849      if (!FirstNearlyEmptyVBase)
850        FirstNearlyEmptyVBase = Base;
851    }
852
853    SelectPrimaryVBase(Base);
854    if (PrimaryBase)
855      return;
856  }
857}
858
859/// DeterminePrimaryBase - Determine the primary base of the given class.
860void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861  // If the class isn't dynamic, it won't have a primary base.
862  if (!RD->isDynamicClass())
863    return;
864
865  // Compute all the primary virtual bases for all of our direct and
866  // indirect bases, and record all their primary virtual base classes.
867  RD->getIndirectPrimaryBases(IndirectPrimaryBases);
868
869  // If the record has a dynamic base class, attempt to choose a primary base
870  // class. It is the first (in direct base class order) non-virtual dynamic
871  // base class, if one exists.
872  for (const auto &I : RD->bases()) {
873    // Ignore virtual bases.
874    if (I.isVirtual())
875      continue;
876
877    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
878
879    if (Base->isDynamicClass()) {
880      // We found it.
881      PrimaryBase = Base;
882      PrimaryBaseIsVirtual = false;
883      return;
884    }
885  }
886
887  // Under the Itanium ABI, if there is no non-virtual primary base class,
888  // try to compute the primary virtual base.  The primary virtual base is
889  // the first nearly empty virtual base that is not an indirect primary
890  // virtual base class, if one exists.
891  if (RD->getNumVBases() != 0) {
892    SelectPrimaryVBase(RD);
893    if (PrimaryBase)
894      return;
895  }
896
897  // Otherwise, it is the first indirect primary base class, if one exists.
898  if (FirstNearlyEmptyVBase) {
899    PrimaryBase = FirstNearlyEmptyVBase;
900    PrimaryBaseIsVirtual = true;
901    return;
902  }
903
904  assert(!PrimaryBase && "Should not get here with a primary base!");
905}
906
907BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908    const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909  BaseSubobjectInfo *Info;
910
911  if (IsVirtual) {
912    // Check if we already have info about this virtual base.
913    BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914    if (InfoSlot) {
915      assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916      return InfoSlot;
917    }
918
919    // We don't, create it.
920    InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921    Info = InfoSlot;
922  } else {
923    Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
924  }
925
926  Info->Class = RD;
927  Info->IsVirtual = IsVirtual;
928  Info->Derived = nullptr;
929  Info->PrimaryVirtualBaseInfo = nullptr;
930
931  const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932  BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
933
934  // Check if this base has a primary virtual base.
935  if (RD->getNumVBases()) {
936    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937    if (Layout.isPrimaryBaseVirtual()) {
938      // This base does have a primary virtual base.
939      PrimaryVirtualBase = Layout.getPrimaryBase();
940      assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
941
942      // Now check if we have base subobject info about this primary base.
943      PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
944
945      if (PrimaryVirtualBaseInfo) {
946        if (PrimaryVirtualBaseInfo->Derived) {
947          // We did have info about this primary base, and it turns out that it
948          // has already been claimed as a primary virtual base for another
949          // base.
950          PrimaryVirtualBase = nullptr;
951        } else {
952          // We can claim this base as our primary base.
953          Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954          PrimaryVirtualBaseInfo->Derived = Info;
955        }
956      }
957    }
958  }
959
960  // Now go through all direct bases.
961  for (const auto &I : RD->bases()) {
962    bool IsVirtual = I.isVirtual();
963
964    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
965
966    Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
967  }
968
969  if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970    // Traversing the bases must have created the base info for our primary
971    // virtual base.
972    PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973    assert(PrimaryVirtualBaseInfo &&
974           "Did not create a primary virtual base!");
975
976    // Claim the primary virtual base as our primary virtual base.
977    Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978    PrimaryVirtualBaseInfo->Derived = Info;
979  }
980
981  return Info;
982}
983
984void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985    const CXXRecordDecl *RD) {
986  for (const auto &I : RD->bases()) {
987    bool IsVirtual = I.isVirtual();
988
989    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
990
991    // Compute the base subobject info for this base.
992    BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993                                                       nullptr);
994
995    if (IsVirtual) {
996      // ComputeBaseInfo has already added this base for us.
997      assert(VirtualBaseInfo.count(BaseDecl) &&
998             "Did not add virtual base!");
999    } else {
1000      // Add the base info to the map of non-virtual bases.
1001      assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002             "Non-virtual base already exists!");
1003      NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1004    }
1005  }
1006}
1007
1008void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009    CharUnits UnpackedBaseAlign) {
1010  CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1011
1012  // The maximum field alignment overrides base align.
1013  if (!MaxFieldAlignment.isZero()) {
1014    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015    UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1016  }
1017
1018  // Round up the current record size to pointer alignment.
1019  setSize(getSize().alignTo(BaseAlign));
1020
1021  // Update the alignment.
1022  UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1023}
1024
1025void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026    const CXXRecordDecl *RD) {
1027  // Then, determine the primary base class.
1028  DeterminePrimaryBase(RD);
1029
1030  // Compute base subobject info.
1031  ComputeBaseSubobjectInfo(RD);
1032
1033  // If we have a primary base class, lay it out.
1034  if (PrimaryBase) {
1035    if (PrimaryBaseIsVirtual) {
1036      // If the primary virtual base was a primary virtual base of some other
1037      // base class we'll have to steal it.
1038      BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039      PrimaryBaseInfo->Derived = nullptr;
1040
1041      // We have a virtual primary base, insert it as an indirect primary base.
1042      IndirectPrimaryBases.insert(PrimaryBase);
1043
1044      assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045             "vbase already visited!");
1046      VisitedVirtualBases.insert(PrimaryBase);
1047
1048      LayoutVirtualBase(PrimaryBaseInfo);
1049    } else {
1050      BaseSubobjectInfo *PrimaryBaseInfo =
1051        NonVirtualBaseInfo.lookup(PrimaryBase);
1052      assert(PrimaryBaseInfo &&
1053             "Did not find base info for non-virtual primary base!");
1054
1055      LayoutNonVirtualBase(PrimaryBaseInfo);
1056    }
1057
1058  // If this class needs a vtable/vf-table and didn't get one from a
1059  // primary base, add it in now.
1060  } else if (RD->isDynamicClass()) {
1061    assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062    CharUnits PtrWidth = Context.toCharUnitsFromBits(
1063        Context.getTargetInfo().getPointerWidth(LangAS::Default));
1064    CharUnits PtrAlign = Context.toCharUnitsFromBits(
1065        Context.getTargetInfo().getPointerAlign(LangAS::Default));
1066    EnsureVTablePointerAlignment(PtrAlign);
1067    HasOwnVFPtr = true;
1068
1069    assert(!IsUnion && "Unions cannot be dynamic classes.");
1070    HandledFirstNonOverlappingEmptyField = true;
1071
1072    setSize(getSize() + PtrWidth);
1073    setDataSize(getSize());
1074  }
1075
1076  // Now lay out the non-virtual bases.
1077  for (const auto &I : RD->bases()) {
1078
1079    // Ignore virtual bases.
1080    if (I.isVirtual())
1081      continue;
1082
1083    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1084
1085    // Skip the primary base, because we've already laid it out.  The
1086    // !PrimaryBaseIsVirtual check is required because we might have a
1087    // non-virtual base of the same type as a primary virtual base.
1088    if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089      continue;
1090
1091    // Lay out the base.
1092    BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093    assert(BaseInfo && "Did not find base info for non-virtual base!");
1094
1095    LayoutNonVirtualBase(BaseInfo);
1096  }
1097}
1098
1099void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100    const BaseSubobjectInfo *Base) {
1101  // Layout the base.
1102  CharUnits Offset = LayoutBase(Base);
1103
1104  // Add its base class offset.
1105  assert(!Bases.count(Base->Class) && "base offset already exists!");
1106  Bases.insert(std::make_pair(Base->Class, Offset));
1107
1108  AddPrimaryVirtualBaseOffsets(Base, Offset);
1109}
1110
1111void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112    const BaseSubobjectInfo *Info, CharUnits Offset) {
1113  // This base isn't interesting, it has no virtual bases.
1114  if (!Info->Class->getNumVBases())
1115    return;
1116
1117  // First, check if we have a virtual primary base to add offsets for.
1118  if (Info->PrimaryVirtualBaseInfo) {
1119    assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120           "Primary virtual base is not virtual!");
1121    if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122      // Add the offset.
1123      assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124             "primary vbase offset already exists!");
1125      VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126                                   ASTRecordLayout::VBaseInfo(Offset, false)));
1127
1128      // Traverse the primary virtual base.
1129      AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1130    }
1131  }
1132
1133  // Now go through all direct non-virtual bases.
1134  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135  for (const BaseSubobjectInfo *Base : Info->Bases) {
1136    if (Base->IsVirtual)
1137      continue;
1138
1139    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140    AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1141  }
1142}
1143
1144void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145    const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146  const CXXRecordDecl *PrimaryBase;
1147  bool PrimaryBaseIsVirtual;
1148
1149  if (MostDerivedClass == RD) {
1150    PrimaryBase = this->PrimaryBase;
1151    PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152  } else {
1153    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154    PrimaryBase = Layout.getPrimaryBase();
1155    PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1156  }
1157
1158  for (const CXXBaseSpecifier &Base : RD->bases()) {
1159    assert(!Base.getType()->isDependentType() &&
1160           "Cannot layout class with dependent bases.");
1161
1162    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1163
1164    if (Base.isVirtual()) {
1165      if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166        bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1167
1168        // Only lay out the virtual base if it's not an indirect primary base.
1169        if (!IndirectPrimaryBase) {
1170          // Only visit virtual bases once.
1171          if (!VisitedVirtualBases.insert(BaseDecl).second)
1172            continue;
1173
1174          const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175          assert(BaseInfo && "Did not find virtual base info!");
1176          LayoutVirtualBase(BaseInfo);
1177        }
1178      }
1179    }
1180
1181    if (!BaseDecl->getNumVBases()) {
1182      // This base isn't interesting since it doesn't have any virtual bases.
1183      continue;
1184    }
1185
1186    LayoutVirtualBases(BaseDecl, MostDerivedClass);
1187  }
1188}
1189
1190void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191    const BaseSubobjectInfo *Base) {
1192  assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1193
1194  // Layout the base.
1195  CharUnits Offset = LayoutBase(Base);
1196
1197  // Add its base class offset.
1198  assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199  VBases.insert(std::make_pair(Base->Class,
1200                       ASTRecordLayout::VBaseInfo(Offset, false)));
1201
1202  AddPrimaryVirtualBaseOffsets(Base, Offset);
1203}
1204
1205CharUnits
1206ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207  assert(!IsUnion && "Unions cannot have base classes.");
1208
1209  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210  CharUnits Offset;
1211
1212  // Query the external layout to see if it provides an offset.
1213  bool HasExternalLayout = false;
1214  if (UseExternalLayout) {
1215    if (Base->IsVirtual)
1216      HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217    else
1218      HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1219  }
1220
1221  auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222    // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223    // Per GCC's documentation, it only applies to non-static data members.
1224    return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225                        LangOptions::ClangABI::Ver6) ||
1226                       Context.getTargetInfo().getTriple().isPS() ||
1227                       Context.getTargetInfo().getTriple().isOSAIX()))
1228               ? CharUnits::One()
1229               : UnpackedAlign;
1230  };
1231
1232  CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233  CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234  CharUnits BaseAlign =
1235      getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236  CharUnits PreferredBaseAlign =
1237      getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1238
1239  const bool DefaultsToAIXPowerAlignment =
1240      Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241  if (DefaultsToAIXPowerAlignment) {
1242    // AIX `power` alignment does not apply the preferred alignment for
1243    // non-union classes if the source of the alignment (the current base in
1244    // this context) follows introduction of the first subobject with
1245    // exclusively allocated space or zero-extent array.
1246    if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247      // By handling a base class that is not empty, we're handling the
1248      // "first (inherited) member".
1249      HandledFirstNonOverlappingEmptyField = true;
1250    } else if (!IsNaturalAlign) {
1251      UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252      PreferredBaseAlign = BaseAlign;
1253    }
1254  }
1255
1256  CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257                                  ? UnpackedBaseAlign
1258                                  : UnpackedPreferredBaseAlign;
1259  // If we have an empty base class, try to place it at offset 0.
1260  if (Base->Class->isEmpty() &&
1261      (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262      EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263    setSize(std::max(getSize(), Layout.getSize()));
1264    // On PS4/PS5, don't update the alignment, to preserve compatibility.
1265    if (!Context.getTargetInfo().getTriple().isPS())
1266      UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1267
1268    return CharUnits::Zero();
1269  }
1270
1271  // The maximum field alignment overrides the base align/(AIX-only) preferred
1272  // base align.
1273  if (!MaxFieldAlignment.isZero()) {
1274    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1275    PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1276    UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1277  }
1278
1279  CharUnits AlignTo =
1280      !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1281  if (!HasExternalLayout) {
1282    // Round up the current record size to the base's alignment boundary.
1283    Offset = getDataSize().alignTo(AlignTo);
1284
1285    // Try to place the base.
1286    while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1287      Offset += AlignTo;
1288  } else {
1289    bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1290    (void)Allowed;
1291    assert(Allowed && "Base subobject externally placed at overlapping offset");
1292
1293    if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1294      // The externally-supplied base offset is before the base offset we
1295      // computed. Assume that the structure is packed.
1296      Alignment = CharUnits::One();
1297      InferAlignment = false;
1298    }
1299  }
1300
1301  if (!Base->Class->isEmpty()) {
1302    // Update the data size.
1303    setDataSize(Offset + Layout.getNonVirtualSize());
1304
1305    setSize(std::max(getSize(), getDataSize()));
1306  } else
1307    setSize(std::max(getSize(), Offset + Layout.getSize()));
1308
1309  // Remember max struct/class alignment.
1310  UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1311
1312  return Offset;
1313}
1314
1315void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1316  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1317    IsUnion = RD->isUnion();
1318    IsMsStruct = RD->isMsStruct(Context);
1319  }
1320
1321  Packed = D->hasAttr<PackedAttr>();
1322
1323  // Honor the default struct packing maximum alignment flag.
1324  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1325    MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1326  }
1327
1328  // mac68k alignment supersedes maximum field alignment and attribute aligned,
1329  // and forces all structures to have 2-byte alignment. The IBM docs on it
1330  // allude to additional (more complicated) semantics, especially with regard
1331  // to bit-fields, but gcc appears not to follow that.
1332  if (D->hasAttr<AlignMac68kAttr>()) {
1333    assert(
1334        !D->hasAttr<AlignNaturalAttr>() &&
1335        "Having both mac68k and natural alignment on a decl is not allowed.");
1336    IsMac68kAlign = true;
1337    MaxFieldAlignment = CharUnits::fromQuantity(2);
1338    Alignment = CharUnits::fromQuantity(2);
1339    PreferredAlignment = CharUnits::fromQuantity(2);
1340  } else {
1341    if (D->hasAttr<AlignNaturalAttr>())
1342      IsNaturalAlign = true;
1343
1344    if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1345      MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1346
1347    if (unsigned MaxAlign = D->getMaxAlignment())
1348      UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1349  }
1350
1351  HandledFirstNonOverlappingEmptyField =
1352      !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1353
1354  // If there is an external AST source, ask it for the various offsets.
1355  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1356    if (ExternalASTSource *Source = Context.getExternalSource()) {
1357      UseExternalLayout = Source->layoutRecordType(
1358          RD, External.Size, External.Align, External.FieldOffsets,
1359          External.BaseOffsets, External.VirtualBaseOffsets);
1360
1361      // Update based on external alignment.
1362      if (UseExternalLayout) {
1363        if (External.Align > 0) {
1364          Alignment = Context.toCharUnitsFromBits(External.Align);
1365          PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1366        } else {
1367          // The external source didn't have alignment information; infer it.
1368          InferAlignment = true;
1369        }
1370      }
1371    }
1372}
1373
1374void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1375  InitializeLayout(D);
1376  LayoutFields(D);
1377
1378  // Finally, round the size of the total struct up to the alignment of the
1379  // struct itself.
1380  FinishLayout(D);
1381}
1382
1383void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1384  InitializeLayout(RD);
1385
1386  // Lay out the vtable and the non-virtual bases.
1387  LayoutNonVirtualBases(RD);
1388
1389  LayoutFields(RD);
1390
1391  NonVirtualSize = Context.toCharUnitsFromBits(
1392      llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1393  NonVirtualAlignment = Alignment;
1394  PreferredNVAlignment = PreferredAlignment;
1395
1396  // Lay out the virtual bases and add the primary virtual base offsets.
1397  LayoutVirtualBases(RD, RD);
1398
1399  // Finally, round the size of the total struct up to the alignment
1400  // of the struct itself.
1401  FinishLayout(RD);
1402
1403#ifndef NDEBUG
1404  // Check that we have base offsets for all bases.
1405  for (const CXXBaseSpecifier &Base : RD->bases()) {
1406    if (Base.isVirtual())
1407      continue;
1408
1409    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1410
1411    assert(Bases.count(BaseDecl) && "Did not find base offset!");
1412  }
1413
1414  // And all virtual bases.
1415  for (const CXXBaseSpecifier &Base : RD->vbases()) {
1416    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1417
1418    assert(VBases.count(BaseDecl) && "Did not find base offset!");
1419  }
1420#endif
1421}
1422
1423void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1424  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1425    const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1426
1427    UpdateAlignment(SL.getAlignment());
1428
1429    // We start laying out ivars not at the end of the superclass
1430    // structure, but at the next byte following the last field.
1431    setDataSize(SL.getDataSize());
1432    setSize(getDataSize());
1433  }
1434
1435  InitializeLayout(D);
1436  // Layout each ivar sequentially.
1437  for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1438       IVD = IVD->getNextIvar())
1439    LayoutField(IVD, false);
1440
1441  // Finally, round the size of the total struct up to the alignment of the
1442  // struct itself.
1443  FinishLayout(D);
1444}
1445
1446void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1447  // Layout each field, for now, just sequentially, respecting alignment.  In
1448  // the future, this will need to be tweakable by targets.
1449  bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1450  bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1451  for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1452    auto Next(I);
1453    ++Next;
1454    LayoutField(*I,
1455                InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1456  }
1457}
1458
1459// Rounds the specified size to have it a multiple of the char size.
1460static uint64_t
1461roundUpSizeToCharAlignment(uint64_t Size,
1462                           const ASTContext &Context) {
1463  uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1464  return llvm::alignTo(Size, CharAlignment);
1465}
1466
1467void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1468                                                    uint64_t StorageUnitSize,
1469                                                    bool FieldPacked,
1470                                                    const FieldDecl *D) {
1471  assert(Context.getLangOpts().CPlusPlus &&
1472         "Can only have wide bit-fields in C++!");
1473
1474  // Itanium C++ ABI 2.4:
1475  //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1476  //   sizeof(T')*8 <= n.
1477
1478  QualType IntegralPODTypes[] = {
1479    Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1480    Context.UnsignedLongTy, Context.UnsignedLongLongTy
1481  };
1482
1483  QualType Type;
1484  for (const QualType &QT : IntegralPODTypes) {
1485    uint64_t Size = Context.getTypeSize(QT);
1486
1487    if (Size > FieldSize)
1488      break;
1489
1490    Type = QT;
1491  }
1492  assert(!Type.isNull() && "Did not find a type!");
1493
1494  CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1495
1496  // We're not going to use any of the unfilled bits in the last byte.
1497  UnfilledBitsInLastUnit = 0;
1498  LastBitfieldStorageUnitSize = 0;
1499
1500  uint64_t FieldOffset;
1501  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1502
1503  if (IsUnion) {
1504    uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1505                                                           Context);
1506    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1507    FieldOffset = 0;
1508  } else {
1509    // The bitfield is allocated starting at the next offset aligned
1510    // appropriately for T', with length n bits.
1511    FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1512
1513    uint64_t NewSizeInBits = FieldOffset + FieldSize;
1514
1515    setDataSize(
1516        llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1517    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1518  }
1519
1520  // Place this field at the current location.
1521  FieldOffsets.push_back(FieldOffset);
1522
1523  CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1524                    Context.toBits(TypeAlign), FieldPacked, D);
1525
1526  // Update the size.
1527  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1528
1529  // Remember max struct/class alignment.
1530  UpdateAlignment(TypeAlign);
1531}
1532
1533static bool isAIXLayout(const ASTContext &Context) {
1534  return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1535}
1536
1537void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1538  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1539  uint64_t FieldSize = D->getBitWidthValue(Context);
1540  TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1541  uint64_t StorageUnitSize = FieldInfo.Width;
1542  unsigned FieldAlign = FieldInfo.Align;
1543  bool AlignIsRequired = FieldInfo.isAlignRequired();
1544
1545  // UnfilledBitsInLastUnit is the difference between the end of the
1546  // last allocated bitfield (i.e. the first bit offset available for
1547  // bitfields) and the end of the current data size in bits (i.e. the
1548  // first bit offset available for non-bitfields).  The current data
1549  // size in bits is always a multiple of the char size; additionally,
1550  // for ms_struct records it's also a multiple of the
1551  // LastBitfieldStorageUnitSize (if set).
1552
1553  // The struct-layout algorithm is dictated by the platform ABI,
1554  // which in principle could use almost any rules it likes.  In
1555  // practice, UNIXy targets tend to inherit the algorithm described
1556  // in the System V generic ABI.  The basic bitfield layout rule in
1557  // System V is to place bitfields at the next available bit offset
1558  // where the entire bitfield would fit in an aligned storage unit of
1559  // the declared type; it's okay if an earlier or later non-bitfield
1560  // is allocated in the same storage unit.  However, some targets
1561  // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1562  // require this storage unit to be aligned, and therefore always put
1563  // the bitfield at the next available bit offset.
1564
1565  // ms_struct basically requests a complete replacement of the
1566  // platform ABI's struct-layout algorithm, with the high-level goal
1567  // of duplicating MSVC's layout.  For non-bitfields, this follows
1568  // the standard algorithm.  The basic bitfield layout rule is to
1569  // allocate an entire unit of the bitfield's declared type
1570  // (e.g. 'unsigned long'), then parcel it up among successive
1571  // bitfields whose declared types have the same size, making a new
1572  // unit as soon as the last can no longer store the whole value.
1573  // Since it completely replaces the platform ABI's algorithm,
1574  // settings like !useBitFieldTypeAlignment() do not apply.
1575
1576  // A zero-width bitfield forces the use of a new storage unit for
1577  // later bitfields.  In general, this occurs by rounding up the
1578  // current size of the struct as if the algorithm were about to
1579  // place a non-bitfield of the field's formal type.  Usually this
1580  // does not change the alignment of the struct itself, but it does
1581  // on some targets (those that useZeroLengthBitfieldAlignment(),
1582  // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1583  // ignored unless they follow a non-zero-width bitfield.
1584
1585  // A field alignment restriction (e.g. from #pragma pack) or
1586  // specification (e.g. from __attribute__((aligned))) changes the
1587  // formal alignment of the field.  For System V, this alters the
1588  // required alignment of the notional storage unit that must contain
1589  // the bitfield.  For ms_struct, this only affects the placement of
1590  // new storage units.  In both cases, the effect of #pragma pack is
1591  // ignored on zero-width bitfields.
1592
1593  // On System V, a packed field (e.g. from #pragma pack or
1594  // __attribute__((packed))) always uses the next available bit
1595  // offset.
1596
1597  // In an ms_struct struct, the alignment of a fundamental type is
1598  // always equal to its size.  This is necessary in order to mimic
1599  // the i386 alignment rules on targets which might not fully align
1600  // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1601
1602  // First, some simple bookkeeping to perform for ms_struct structs.
1603  if (IsMsStruct) {
1604    // The field alignment for integer types is always the size.
1605    FieldAlign = StorageUnitSize;
1606
1607    // If the previous field was not a bitfield, or was a bitfield
1608    // with a different storage unit size, or if this field doesn't fit into
1609    // the current storage unit, we're done with that storage unit.
1610    if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1611        UnfilledBitsInLastUnit < FieldSize) {
1612      // Also, ignore zero-length bitfields after non-bitfields.
1613      if (!LastBitfieldStorageUnitSize && !FieldSize)
1614        FieldAlign = 1;
1615
1616      UnfilledBitsInLastUnit = 0;
1617      LastBitfieldStorageUnitSize = 0;
1618    }
1619  }
1620
1621  if (isAIXLayout(Context)) {
1622    if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1623      // On AIX, [bool, char, short] bitfields have the same alignment
1624      // as [unsigned].
1625      StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1626    } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1627               Context.getTargetInfo().getTriple().isArch32Bit() &&
1628               FieldSize <= 32) {
1629      // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1630      // long long bitfield has length no greater than 32 bits.
1631      StorageUnitSize = 32;
1632
1633      if (!AlignIsRequired)
1634        FieldAlign = 32;
1635    }
1636
1637    if (FieldAlign < StorageUnitSize) {
1638      // The bitfield alignment should always be greater than or equal to
1639      // bitcontainer size.
1640      FieldAlign = StorageUnitSize;
1641    }
1642  }
1643
1644  // If the field is wider than its declared type, it follows
1645  // different rules in all cases, except on AIX.
1646  // On AIX, wide bitfield follows the same rules as normal bitfield.
1647  if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1648    LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1649    return;
1650  }
1651
1652  // Compute the next available bit offset.
1653  uint64_t FieldOffset =
1654    IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1655
1656  // Handle targets that don't honor bitfield type alignment.
1657  if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1658    // Some such targets do honor it on zero-width bitfields.
1659    if (FieldSize == 0 &&
1660        Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1661      // Some targets don't honor leading zero-width bitfield.
1662      if (!IsUnion && FieldOffset == 0 &&
1663          !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1664        FieldAlign = 1;
1665      else {
1666        // The alignment to round up to is the max of the field's natural
1667        // alignment and a target-specific fixed value (sometimes zero).
1668        unsigned ZeroLengthBitfieldBoundary =
1669            Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1670        FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1671      }
1672    // If that doesn't apply, just ignore the field alignment.
1673    } else {
1674      FieldAlign = 1;
1675    }
1676  }
1677
1678  // Remember the alignment we would have used if the field were not packed.
1679  unsigned UnpackedFieldAlign = FieldAlign;
1680
1681  // Ignore the field alignment if the field is packed unless it has zero-size.
1682  if (!IsMsStruct && FieldPacked && FieldSize != 0)
1683    FieldAlign = 1;
1684
1685  // But, if there's an 'aligned' attribute on the field, honor that.
1686  unsigned ExplicitFieldAlign = D->getMaxAlignment();
1687  if (ExplicitFieldAlign) {
1688    FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1689    UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1690  }
1691
1692  // But, if there's a #pragma pack in play, that takes precedent over
1693  // even the 'aligned' attribute, for non-zero-width bitfields.
1694  unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1695  if (!MaxFieldAlignment.isZero() && FieldSize) {
1696    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1697    if (FieldPacked)
1698      FieldAlign = UnpackedFieldAlign;
1699    else
1700      FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1701  }
1702
1703  // But, ms_struct just ignores all of that in unions, even explicit
1704  // alignment attributes.
1705  if (IsMsStruct && IsUnion) {
1706    FieldAlign = UnpackedFieldAlign = 1;
1707  }
1708
1709  // For purposes of diagnostics, we're going to simultaneously
1710  // compute the field offsets that we would have used if we weren't
1711  // adding any alignment padding or if the field weren't packed.
1712  uint64_t UnpaddedFieldOffset = FieldOffset;
1713  uint64_t UnpackedFieldOffset = FieldOffset;
1714
1715  // Check if we need to add padding to fit the bitfield within an
1716  // allocation unit with the right size and alignment.  The rules are
1717  // somewhat different here for ms_struct structs.
1718  if (IsMsStruct) {
1719    // If it's not a zero-width bitfield, and we can fit the bitfield
1720    // into the active storage unit (and we haven't already decided to
1721    // start a new storage unit), just do so, regardless of any other
1722    // other consideration.  Otherwise, round up to the right alignment.
1723    if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1724      FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1725      UnpackedFieldOffset =
1726          llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1727      UnfilledBitsInLastUnit = 0;
1728    }
1729
1730  } else {
1731    // #pragma pack, with any value, suppresses the insertion of padding.
1732    bool AllowPadding = MaxFieldAlignment.isZero();
1733
1734    // Compute the real offset.
1735    if (FieldSize == 0 ||
1736        (AllowPadding &&
1737         (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1738      FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1739    } else if (ExplicitFieldAlign &&
1740               (MaxFieldAlignmentInBits == 0 ||
1741                ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1742               Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1743      // TODO: figure it out what needs to be done on targets that don't honor
1744      // bit-field type alignment like ARM APCS ABI.
1745      FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1746    }
1747
1748    // Repeat the computation for diagnostic purposes.
1749    if (FieldSize == 0 ||
1750        (AllowPadding &&
1751         (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1752             StorageUnitSize))
1753      UnpackedFieldOffset =
1754          llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1755    else if (ExplicitFieldAlign &&
1756             (MaxFieldAlignmentInBits == 0 ||
1757              ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1758             Context.getTargetInfo().useExplicitBitFieldAlignment())
1759      UnpackedFieldOffset =
1760          llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1761  }
1762
1763  // If we're using external layout, give the external layout a chance
1764  // to override this information.
1765  if (UseExternalLayout)
1766    FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1767
1768  // Okay, place the bitfield at the calculated offset.
1769  FieldOffsets.push_back(FieldOffset);
1770
1771  // Bookkeeping:
1772
1773  // Anonymous members don't affect the overall record alignment,
1774  // except on targets where they do.
1775  if (!IsMsStruct &&
1776      !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1777      !D->getIdentifier())
1778    FieldAlign = UnpackedFieldAlign = 1;
1779
1780  // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1781  // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1782  // if packed.
1783  if (isAIXLayout(Context) && !FieldSize) {
1784    if (FieldPacked)
1785      FieldAlign = 1;
1786    if (!MaxFieldAlignment.isZero()) {
1787      UnpackedFieldAlign =
1788          std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1789      FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1790    }
1791  }
1792
1793  // Diagnose differences in layout due to padding or packing.
1794  if (!UseExternalLayout)
1795    CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1796                      UnpackedFieldAlign, FieldPacked, D);
1797
1798  // Update DataSize to include the last byte containing (part of) the bitfield.
1799
1800  // For unions, this is just a max operation, as usual.
1801  if (IsUnion) {
1802    // For ms_struct, allocate the entire storage unit --- unless this
1803    // is a zero-width bitfield, in which case just use a size of 1.
1804    uint64_t RoundedFieldSize;
1805    if (IsMsStruct) {
1806      RoundedFieldSize = (FieldSize ? StorageUnitSize
1807                                    : Context.getTargetInfo().getCharWidth());
1808
1809      // Otherwise, allocate just the number of bytes required to store
1810      // the bitfield.
1811    } else {
1812      RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1813    }
1814    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1815
1816  // For non-zero-width bitfields in ms_struct structs, allocate a new
1817  // storage unit if necessary.
1818  } else if (IsMsStruct && FieldSize) {
1819    // We should have cleared UnfilledBitsInLastUnit in every case
1820    // where we changed storage units.
1821    if (!UnfilledBitsInLastUnit) {
1822      setDataSize(FieldOffset + StorageUnitSize);
1823      UnfilledBitsInLastUnit = StorageUnitSize;
1824    }
1825    UnfilledBitsInLastUnit -= FieldSize;
1826    LastBitfieldStorageUnitSize = StorageUnitSize;
1827
1828    // Otherwise, bump the data size up to include the bitfield,
1829    // including padding up to char alignment, and then remember how
1830    // bits we didn't use.
1831  } else {
1832    uint64_t NewSizeInBits = FieldOffset + FieldSize;
1833    uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1834    setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1835    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1836
1837    // The only time we can get here for an ms_struct is if this is a
1838    // zero-width bitfield, which doesn't count as anything for the
1839    // purposes of unfilled bits.
1840    LastBitfieldStorageUnitSize = 0;
1841  }
1842
1843  // Update the size.
1844  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1845
1846  // Remember max struct/class alignment.
1847  UnadjustedAlignment =
1848      std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1849  UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1850                  Context.toCharUnitsFromBits(UnpackedFieldAlign));
1851}
1852
1853void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1854                                             bool InsertExtraPadding) {
1855  auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1856  bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1857  bool IsOverlappingEmptyField =
1858      PotentiallyOverlapping && FieldClass->isEmpty();
1859
1860  CharUnits FieldOffset =
1861      (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1862
1863  const bool DefaultsToAIXPowerAlignment =
1864      Context.getTargetInfo().defaultsToAIXPowerAlignment();
1865  bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1866  if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1867    assert(FieldOffset == CharUnits::Zero() &&
1868           "The first non-overlapping empty field should have been handled.");
1869
1870    if (!IsOverlappingEmptyField) {
1871      FoundFirstNonOverlappingEmptyFieldForAIX = true;
1872
1873      // We're going to handle the "first member" based on
1874      // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1875      // invocation of this function; record it as handled for future
1876      // invocations (except for unions, because the current field does not
1877      // represent all "firsts").
1878      HandledFirstNonOverlappingEmptyField = !IsUnion;
1879    }
1880  }
1881
1882  if (D->isBitField()) {
1883    LayoutBitField(D);
1884    return;
1885  }
1886
1887  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1888  // Reset the unfilled bits.
1889  UnfilledBitsInLastUnit = 0;
1890  LastBitfieldStorageUnitSize = 0;
1891
1892  llvm::Triple Target = Context.getTargetInfo().getTriple();
1893
1894  AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1895  CharUnits FieldSize;
1896  CharUnits FieldAlign;
1897  // The amount of this class's dsize occupied by the field.
1898  // This is equal to FieldSize unless we're permitted to pack
1899  // into the field's tail padding.
1900  CharUnits EffectiveFieldSize;
1901
1902  auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1903    auto TI = Context.getTypeInfoInChars(D->getType());
1904    FieldAlign = TI.Align;
1905    // Flexible array members don't have any size, but they have to be
1906    // aligned appropriately for their element type.
1907    EffectiveFieldSize = FieldSize =
1908        IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1909    AlignRequirement = TI.AlignRequirement;
1910  };
1911
1912  if (D->getType()->isIncompleteArrayType()) {
1913    setDeclInfo(true /* IsIncompleteArrayType */);
1914  } else {
1915    setDeclInfo(false /* IsIncompleteArrayType */);
1916
1917    // A potentially-overlapping field occupies its dsize or nvsize, whichever
1918    // is larger.
1919    if (PotentiallyOverlapping) {
1920      const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1921      EffectiveFieldSize =
1922          std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1923    }
1924
1925    if (IsMsStruct) {
1926      // If MS bitfield layout is required, figure out what type is being
1927      // laid out and align the field to the width of that type.
1928
1929      // Resolve all typedefs down to their base type and round up the field
1930      // alignment if necessary.
1931      QualType T = Context.getBaseElementType(D->getType());
1932      if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1933        CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1934
1935        if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1936          assert(
1937              !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1938              "Non PowerOf2 size in MSVC mode");
1939          // Base types with sizes that aren't a power of two don't work
1940          // with the layout rules for MS structs. This isn't an issue in
1941          // MSVC itself since there are no such base data types there.
1942          // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1943          // Any structs involving that data type obviously can't be ABI
1944          // compatible with MSVC regardless of how it is laid out.
1945
1946          // Since ms_struct can be mass enabled (via a pragma or via the
1947          // -mms-bitfields command line parameter), this can trigger for
1948          // structs that don't actually need MSVC compatibility, so we
1949          // need to be able to sidestep the ms_struct layout for these types.
1950
1951          // Since the combination of -mms-bitfields together with structs
1952          // like max_align_t (which contains a long double) for mingw is
1953          // quite common (and GCC handles it silently), just handle it
1954          // silently there. For other targets that have ms_struct enabled
1955          // (most probably via a pragma or attribute), trigger a diagnostic
1956          // that defaults to an error.
1957          if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1958            Diag(D->getLocation(), diag::warn_npot_ms_struct);
1959        }
1960        if (TypeSize > FieldAlign &&
1961            llvm::isPowerOf2_64(TypeSize.getQuantity()))
1962          FieldAlign = TypeSize;
1963      }
1964    }
1965  }
1966
1967  bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() ||
1968                                 FieldClass->hasAttr<PackedAttr>() ||
1969                                 Context.getLangOpts().getClangABICompat() <=
1970                                     LangOptions::ClangABI::Ver15 ||
1971                                 Target.isPS() || Target.isOSDarwin() ||
1972                                 Target.isOSAIX())) ||
1973                     D->hasAttr<PackedAttr>();
1974
1975  // When used as part of a typedef, or together with a 'packed' attribute, the
1976  // 'aligned' attribute can be used to decrease alignment. In that case, it
1977  // overrides any computed alignment we have, and there is no need to upgrade
1978  // the alignment.
1979  auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] {
1980    // Enum alignment sources can be safely ignored here, because this only
1981    // helps decide whether we need the AIX alignment upgrade, which only
1982    // applies to floating-point types.
1983    return AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
1984           (AlignRequirement == AlignRequirementKind::RequiredByRecord &&
1985            FieldPacked);
1986  };
1987
1988  // The AIX `power` alignment rules apply the natural alignment of the
1989  // "first member" if it is of a floating-point data type (or is an aggregate
1990  // whose recursively "first" member or element is such a type). The alignment
1991  // associated with these types for subsequent members use an alignment value
1992  // where the floating-point data type is considered to have 4-byte alignment.
1993  //
1994  // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1995  // and zero-width bit-fields count as prior members; members of empty class
1996  // types marked `no_unique_address` are not considered to be prior members.
1997  CharUnits PreferredAlign = FieldAlign;
1998  if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() &&
1999      (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
2000    auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
2001      if (BTy->getKind() == BuiltinType::Double ||
2002          BTy->getKind() == BuiltinType::LongDouble) {
2003        assert(PreferredAlign == CharUnits::fromQuantity(4) &&
2004               "No need to upgrade the alignment value.");
2005        PreferredAlign = CharUnits::fromQuantity(8);
2006      }
2007    };
2008
2009    const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe();
2010    if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) {
2011      performBuiltinTypeAlignmentUpgrade(
2012          CTy->getElementType()->castAs<BuiltinType>());
2013    } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) {
2014      performBuiltinTypeAlignmentUpgrade(BTy);
2015    } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2016      const RecordDecl *RD = RT->getDecl();
2017      assert(RD && "Expected non-null RecordDecl.");
2018      const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
2019      PreferredAlign = FieldRecord.getPreferredAlignment();
2020    }
2021  }
2022
2023  // The align if the field is not packed. This is to check if the attribute
2024  // was unnecessary (-Wpacked).
2025  CharUnits UnpackedFieldAlign = FieldAlign;
2026  CharUnits PackedFieldAlign = CharUnits::One();
2027  CharUnits UnpackedFieldOffset = FieldOffset;
2028  CharUnits OriginalFieldAlign = UnpackedFieldAlign;
2029
2030  CharUnits MaxAlignmentInChars =
2031      Context.toCharUnitsFromBits(D->getMaxAlignment());
2032  PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars);
2033  PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2034  UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2035
2036  // The maximum field alignment overrides the aligned attribute.
2037  if (!MaxFieldAlignment.isZero()) {
2038    PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment);
2039    PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2040    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2041  }
2042
2043
2044  if (!FieldPacked)
2045    FieldAlign = UnpackedFieldAlign;
2046  if (DefaultsToAIXPowerAlignment)
2047    UnpackedFieldAlign = PreferredAlign;
2048  if (FieldPacked) {
2049    PreferredAlign = PackedFieldAlign;
2050    FieldAlign = PackedFieldAlign;
2051  }
2052
2053  CharUnits AlignTo =
2054      !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2055  // Round up the current record size to the field's alignment boundary.
2056  FieldOffset = FieldOffset.alignTo(AlignTo);
2057  UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2058
2059  if (UseExternalLayout) {
2060    FieldOffset = Context.toCharUnitsFromBits(
2061        updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2062
2063    if (!IsUnion && EmptySubobjects) {
2064      // Record the fact that we're placing a field at this offset.
2065      bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2066      (void)Allowed;
2067      assert(Allowed && "Externally-placed field cannot be placed here");
2068    }
2069  } else {
2070    if (!IsUnion && EmptySubobjects) {
2071      // Check if we can place the field at this offset.
2072      while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2073        // We couldn't place the field at the offset. Try again at a new offset.
2074        // We try offset 0 (for an empty field) and then dsize(C) onwards.
2075        if (FieldOffset == CharUnits::Zero() &&
2076            getDataSize() != CharUnits::Zero())
2077          FieldOffset = getDataSize().alignTo(AlignTo);
2078        else
2079          FieldOffset += AlignTo;
2080      }
2081    }
2082  }
2083
2084  // Place this field at the current location.
2085  FieldOffsets.push_back(Context.toBits(FieldOffset));
2086
2087  if (!UseExternalLayout)
2088    CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2089                      Context.toBits(UnpackedFieldOffset),
2090                      Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2091
2092  if (InsertExtraPadding) {
2093    CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2094    CharUnits ExtraSizeForAsan = ASanAlignment;
2095    if (FieldSize % ASanAlignment)
2096      ExtraSizeForAsan +=
2097          ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2098    EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2099  }
2100
2101  // Reserve space for this field.
2102  if (!IsOverlappingEmptyField) {
2103    uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2104    if (IsUnion)
2105      setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2106    else
2107      setDataSize(FieldOffset + EffectiveFieldSize);
2108
2109    PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2110    setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2111  } else {
2112    setSize(std::max(getSizeInBits(),
2113                     (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2114  }
2115
2116  // Remember max struct/class ABI-specified alignment.
2117  UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2118  UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2119
2120  // For checking the alignment of inner fields against
2121  // the alignment of its parent record.
2122  if (const RecordDecl *RD = D->getParent()) {
2123    // Check if packed attribute or pragma pack is present.
2124    if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero())
2125      if (FieldAlign < OriginalFieldAlign)
2126        if (D->getType()->isRecordType()) {
2127          // If the offset is a multiple of the alignment of
2128          // the type, raise the warning.
2129          // TODO: Takes no account the alignment of the outer struct
2130          if (FieldOffset % OriginalFieldAlign != 0)
2131            Diag(D->getLocation(), diag::warn_unaligned_access)
2132                << Context.getTypeDeclType(RD) << D->getName() << D->getType();
2133        }
2134  }
2135
2136  if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign)
2137    Diag(D->getLocation(), diag::warn_unpacked_field) << D;
2138}
2139
2140void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2141  // In C++, records cannot be of size 0.
2142  if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2143    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2144      // Compatibility with gcc requires a class (pod or non-pod)
2145      // which is not empty but of size 0; such as having fields of
2146      // array of zero-length, remains of Size 0
2147      if (RD->isEmpty())
2148        setSize(CharUnits::One());
2149    }
2150    else
2151      setSize(CharUnits::One());
2152  }
2153
2154  // If we have any remaining field tail padding, include that in the overall
2155  // size.
2156  setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2157
2158  // Finally, round the size of the record up to the alignment of the
2159  // record itself.
2160  uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2161  uint64_t UnpackedSizeInBits =
2162      llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2163
2164  uint64_t RoundedSize = llvm::alignTo(
2165      getSizeInBits(),
2166      Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2167                         ? Alignment
2168                         : PreferredAlignment));
2169
2170  if (UseExternalLayout) {
2171    // If we're inferring alignment, and the external size is smaller than
2172    // our size after we've rounded up to alignment, conservatively set the
2173    // alignment to 1.
2174    if (InferAlignment && External.Size < RoundedSize) {
2175      Alignment = CharUnits::One();
2176      PreferredAlignment = CharUnits::One();
2177      InferAlignment = false;
2178    }
2179    setSize(External.Size);
2180    return;
2181  }
2182
2183  // Set the size to the final size.
2184  setSize(RoundedSize);
2185
2186  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2187  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2188    // Warn if padding was introduced to the struct/class/union.
2189    if (getSizeInBits() > UnpaddedSize) {
2190      unsigned PadSize = getSizeInBits() - UnpaddedSize;
2191      bool InBits = true;
2192      if (PadSize % CharBitNum == 0) {
2193        PadSize = PadSize / CharBitNum;
2194        InBits = false;
2195      }
2196      Diag(RD->getLocation(), diag::warn_padded_struct_size)
2197          << Context.getTypeDeclType(RD)
2198          << PadSize
2199          << (InBits ? 1 : 0); // (byte|bit)
2200    }
2201
2202    // Warn if we packed it unnecessarily, when the unpacked alignment is not
2203    // greater than the one after packing, the size in bits doesn't change and
2204    // the offset of each field is identical.
2205    if (Packed && UnpackedAlignment <= Alignment &&
2206        UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2207      Diag(D->getLocation(), diag::warn_unnecessary_packed)
2208          << Context.getTypeDeclType(RD);
2209  }
2210}
2211
2212void ItaniumRecordLayoutBuilder::UpdateAlignment(
2213    CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2214    CharUnits PreferredNewAlignment) {
2215  // The alignment is not modified when using 'mac68k' alignment or when
2216  // we have an externally-supplied layout that also provides overall alignment.
2217  if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2218    return;
2219
2220  if (NewAlignment > Alignment) {
2221    assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2222           "Alignment not a power of 2");
2223    Alignment = NewAlignment;
2224  }
2225
2226  if (UnpackedNewAlignment > UnpackedAlignment) {
2227    assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2228           "Alignment not a power of 2");
2229    UnpackedAlignment = UnpackedNewAlignment;
2230  }
2231
2232  if (PreferredNewAlignment > PreferredAlignment) {
2233    assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2234           "Alignment not a power of 2");
2235    PreferredAlignment = PreferredNewAlignment;
2236  }
2237}
2238
2239uint64_t
2240ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2241                                                      uint64_t ComputedOffset) {
2242  uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2243
2244  if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2245    // The externally-supplied field offset is before the field offset we
2246    // computed. Assume that the structure is packed.
2247    Alignment = CharUnits::One();
2248    PreferredAlignment = CharUnits::One();
2249    InferAlignment = false;
2250  }
2251
2252  // Use the externally-supplied field offset.
2253  return ExternalFieldOffset;
2254}
2255
2256/// Get diagnostic %select index for tag kind for
2257/// field padding diagnostic message.
2258/// WARNING: Indexes apply to particular diagnostics only!
2259///
2260/// \returns diagnostic %select index.
2261static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2262  switch (Tag) {
2263  case TTK_Struct: return 0;
2264  case TTK_Interface: return 1;
2265  case TTK_Class: return 2;
2266  default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2267  }
2268}
2269
2270void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2271    uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2272    unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2273  // We let objc ivars without warning, objc interfaces generally are not used
2274  // for padding tricks.
2275  if (isa<ObjCIvarDecl>(D))
2276    return;
2277
2278  // Don't warn about structs created without a SourceLocation.  This can
2279  // be done by clients of the AST, such as codegen.
2280  if (D->getLocation().isInvalid())
2281    return;
2282
2283  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2284
2285  // Warn if padding was introduced to the struct/class.
2286  if (!IsUnion && Offset > UnpaddedOffset) {
2287    unsigned PadSize = Offset - UnpaddedOffset;
2288    bool InBits = true;
2289    if (PadSize % CharBitNum == 0) {
2290      PadSize = PadSize / CharBitNum;
2291      InBits = false;
2292    }
2293    if (D->getIdentifier())
2294      Diag(D->getLocation(), diag::warn_padded_struct_field)
2295          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2296          << Context.getTypeDeclType(D->getParent())
2297          << PadSize
2298          << (InBits ? 1 : 0) // (byte|bit)
2299          << D->getIdentifier();
2300    else
2301      Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2302          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2303          << Context.getTypeDeclType(D->getParent())
2304          << PadSize
2305          << (InBits ? 1 : 0); // (byte|bit)
2306 }
2307 if (isPacked && Offset != UnpackedOffset) {
2308   HasPackedField = true;
2309 }
2310}
2311
2312static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2313                                               const CXXRecordDecl *RD) {
2314  // If a class isn't polymorphic it doesn't have a key function.
2315  if (!RD->isPolymorphic())
2316    return nullptr;
2317
2318  // A class that is not externally visible doesn't have a key function. (Or
2319  // at least, there's no point to assigning a key function to such a class;
2320  // this doesn't affect the ABI.)
2321  if (!RD->isExternallyVisible())
2322    return nullptr;
2323
2324  // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2325  // Same behavior as GCC.
2326  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2327  if (TSK == TSK_ImplicitInstantiation ||
2328      TSK == TSK_ExplicitInstantiationDeclaration ||
2329      TSK == TSK_ExplicitInstantiationDefinition)
2330    return nullptr;
2331
2332  bool allowInlineFunctions =
2333    Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2334
2335  for (const CXXMethodDecl *MD : RD->methods()) {
2336    if (!MD->isVirtual())
2337      continue;
2338
2339    if (MD->isPure())
2340      continue;
2341
2342    // Ignore implicit member functions, they are always marked as inline, but
2343    // they don't have a body until they're defined.
2344    if (MD->isImplicit())
2345      continue;
2346
2347    if (MD->isInlineSpecified() || MD->isConstexpr())
2348      continue;
2349
2350    if (MD->hasInlineBody())
2351      continue;
2352
2353    // Ignore inline deleted or defaulted functions.
2354    if (!MD->isUserProvided())
2355      continue;
2356
2357    // In certain ABIs, ignore functions with out-of-line inline definitions.
2358    if (!allowInlineFunctions) {
2359      const FunctionDecl *Def;
2360      if (MD->hasBody(Def) && Def->isInlineSpecified())
2361        continue;
2362    }
2363
2364    if (Context.getLangOpts().CUDA) {
2365      // While compiler may see key method in this TU, during CUDA
2366      // compilation we should ignore methods that are not accessible
2367      // on this side of compilation.
2368      if (Context.getLangOpts().CUDAIsDevice) {
2369        // In device mode ignore methods without __device__ attribute.
2370        if (!MD->hasAttr<CUDADeviceAttr>())
2371          continue;
2372      } else {
2373        // In host mode ignore __device__-only methods.
2374        if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2375          continue;
2376      }
2377    }
2378
2379    // If the key function is dllimport but the class isn't, then the class has
2380    // no key function. The DLL that exports the key function won't export the
2381    // vtable in this case.
2382    if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2383        !Context.getTargetInfo().hasPS4DLLImportExport())
2384      return nullptr;
2385
2386    // We found it.
2387    return MD;
2388  }
2389
2390  return nullptr;
2391}
2392
2393DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2394                                                   unsigned DiagID) {
2395  return Context.getDiagnostics().Report(Loc, DiagID);
2396}
2397
2398/// Does the target C++ ABI require us to skip over the tail-padding
2399/// of the given class (considering it as a base class) when allocating
2400/// objects?
2401static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2402  switch (ABI.getTailPaddingUseRules()) {
2403  case TargetCXXABI::AlwaysUseTailPadding:
2404    return false;
2405
2406  case TargetCXXABI::UseTailPaddingUnlessPOD03:
2407    // FIXME: To the extent that this is meant to cover the Itanium ABI
2408    // rules, we should implement the restrictions about over-sized
2409    // bitfields:
2410    //
2411    // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2412    //   In general, a type is considered a POD for the purposes of
2413    //   layout if it is a POD type (in the sense of ISO C++
2414    //   [basic.types]). However, a POD-struct or POD-union (in the
2415    //   sense of ISO C++ [class]) with a bitfield member whose
2416    //   declared width is wider than the declared type of the
2417    //   bitfield is not a POD for the purpose of layout.  Similarly,
2418    //   an array type is not a POD for the purpose of layout if the
2419    //   element type of the array is not a POD for the purpose of
2420    //   layout.
2421    //
2422    //   Where references to the ISO C++ are made in this paragraph,
2423    //   the Technical Corrigendum 1 version of the standard is
2424    //   intended.
2425    return RD->isPOD();
2426
2427  case TargetCXXABI::UseTailPaddingUnlessPOD11:
2428    // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2429    // but with a lot of abstraction penalty stripped off.  This does
2430    // assume that these properties are set correctly even in C++98
2431    // mode; fortunately, that is true because we want to assign
2432    // consistently semantics to the type-traits intrinsics (or at
2433    // least as many of them as possible).
2434    return RD->isTrivial() && RD->isCXX11StandardLayout();
2435  }
2436
2437  llvm_unreachable("bad tail-padding use kind");
2438}
2439
2440static bool isMsLayout(const ASTContext &Context) {
2441  return Context.getTargetInfo().getCXXABI().isMicrosoft();
2442}
2443
2444// This section contains an implementation of struct layout that is, up to the
2445// included tests, compatible with cl.exe (2013).  The layout produced is
2446// significantly different than those produced by the Itanium ABI.  Here we note
2447// the most important differences.
2448//
2449// * The alignment of bitfields in unions is ignored when computing the
2450//   alignment of the union.
2451// * The existence of zero-width bitfield that occurs after anything other than
2452//   a non-zero length bitfield is ignored.
2453// * There is no explicit primary base for the purposes of layout.  All bases
2454//   with vfptrs are laid out first, followed by all bases without vfptrs.
2455// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2456//   function pointer) and a vbptr (virtual base pointer).  They can each be
2457//   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2458//   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2459//   placed after the lexicographically last non-virtual base.  This placement
2460//   is always before fields but can be in the middle of the non-virtual bases
2461//   due to the two-pass layout scheme for non-virtual-bases.
2462// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2463//   the virtual base and is used in conjunction with virtual overrides during
2464//   construction and destruction.  This is always a 4 byte value and is used as
2465//   an alternative to constructor vtables.
2466// * vtordisps are allocated in a block of memory with size and alignment equal
2467//   to the alignment of the completed structure (before applying __declspec(
2468//   align())).  The vtordisp always occur at the end of the allocation block,
2469//   immediately prior to the virtual base.
2470// * vfptrs are injected after all bases and fields have been laid out.  In
2471//   order to guarantee proper alignment of all fields, the vfptr injection
2472//   pushes all bases and fields back by the alignment imposed by those bases
2473//   and fields.  This can potentially add a significant amount of padding.
2474//   vfptrs are always injected at offset 0.
2475// * vbptrs are injected after all bases and fields have been laid out.  In
2476//   order to guarantee proper alignment of all fields, the vfptr injection
2477//   pushes all bases and fields back by the alignment imposed by those bases
2478//   and fields.  This can potentially add a significant amount of padding.
2479//   vbptrs are injected immediately after the last non-virtual base as
2480//   lexicographically ordered in the code.  If this site isn't pointer aligned
2481//   the vbptr is placed at the next properly aligned location.  Enough padding
2482//   is added to guarantee a fit.
2483// * The last zero sized non-virtual base can be placed at the end of the
2484//   struct (potentially aliasing another object), or may alias with the first
2485//   field, even if they are of the same type.
2486// * The last zero size virtual base may be placed at the end of the struct
2487//   potentially aliasing another object.
2488// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2489//   between bases or vbases with specific properties.  The criteria for
2490//   additional padding between two bases is that the first base is zero sized
2491//   or ends with a zero sized subobject and the second base is zero sized or
2492//   trails with a zero sized base or field (sharing of vfptrs can reorder the
2493//   layout of the so the leading base is not always the first one declared).
2494//   This rule does take into account fields that are not records, so padding
2495//   will occur even if the last field is, e.g. an int. The padding added for
2496//   bases is 1 byte.  The padding added between vbases depends on the alignment
2497//   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2498// * There is no concept of non-virtual alignment, non-virtual alignment and
2499//   alignment are always identical.
2500// * There is a distinction between alignment and required alignment.
2501//   __declspec(align) changes the required alignment of a struct.  This
2502//   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2503//   record inherits required alignment from all of its fields and bases.
2504// * __declspec(align) on bitfields has the effect of changing the bitfield's
2505//   alignment instead of its required alignment.  This is the only known way
2506//   to make the alignment of a struct bigger than 8.  Interestingly enough
2507//   this alignment is also immune to the effects of #pragma pack and can be
2508//   used to create structures with large alignment under #pragma pack.
2509//   However, because it does not impact required alignment, such a structure,
2510//   when used as a field or base, will not be aligned if #pragma pack is
2511//   still active at the time of use.
2512//
2513// Known incompatibilities:
2514// * all: #pragma pack between fields in a record
2515// * 2010 and back: If the last field in a record is a bitfield, every object
2516//   laid out after the record will have extra padding inserted before it.  The
2517//   extra padding will have size equal to the size of the storage class of the
2518//   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2519//   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2520//   sized bitfield.
2521// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2522//   greater due to __declspec(align()) then a second layout phase occurs after
2523//   The locations of the vf and vb pointers are known.  This layout phase
2524//   suffers from the "last field is a bitfield" bug in 2010 and results in
2525//   _every_ field getting padding put in front of it, potentially including the
2526//   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2527//   anything tries to read the vftbl.  The second layout phase also treats
2528//   bitfields as separate entities and gives them each storage rather than
2529//   packing them.  Additionally, because this phase appears to perform a
2530//   (an unstable) sort on the members before laying them out and because merged
2531//   bitfields have the same address, the bitfields end up in whatever order
2532//   the sort left them in, a behavior we could never hope to replicate.
2533
2534namespace {
2535struct MicrosoftRecordLayoutBuilder {
2536  struct ElementInfo {
2537    CharUnits Size;
2538    CharUnits Alignment;
2539  };
2540  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2541  MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2542private:
2543  MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2544  void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2545public:
2546  void layout(const RecordDecl *RD);
2547  void cxxLayout(const CXXRecordDecl *RD);
2548  /// Initializes size and alignment and honors some flags.
2549  void initializeLayout(const RecordDecl *RD);
2550  /// Initialized C++ layout, compute alignment and virtual alignment and
2551  /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2552  /// laid out.
2553  void initializeCXXLayout(const CXXRecordDecl *RD);
2554  void layoutNonVirtualBases(const CXXRecordDecl *RD);
2555  void layoutNonVirtualBase(const CXXRecordDecl *RD,
2556                            const CXXRecordDecl *BaseDecl,
2557                            const ASTRecordLayout &BaseLayout,
2558                            const ASTRecordLayout *&PreviousBaseLayout);
2559  void injectVFPtr(const CXXRecordDecl *RD);
2560  void injectVBPtr(const CXXRecordDecl *RD);
2561  /// Lays out the fields of the record.  Also rounds size up to
2562  /// alignment.
2563  void layoutFields(const RecordDecl *RD);
2564  void layoutField(const FieldDecl *FD);
2565  void layoutBitField(const FieldDecl *FD);
2566  /// Lays out a single zero-width bit-field in the record and handles
2567  /// special cases associated with zero-width bit-fields.
2568  void layoutZeroWidthBitField(const FieldDecl *FD);
2569  void layoutVirtualBases(const CXXRecordDecl *RD);
2570  void finalizeLayout(const RecordDecl *RD);
2571  /// Gets the size and alignment of a base taking pragma pack and
2572  /// __declspec(align) into account.
2573  ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2574  /// Gets the size and alignment of a field taking pragma  pack and
2575  /// __declspec(align) into account.  It also updates RequiredAlignment as a
2576  /// side effect because it is most convenient to do so here.
2577  ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2578  /// Places a field at an offset in CharUnits.
2579  void placeFieldAtOffset(CharUnits FieldOffset) {
2580    FieldOffsets.push_back(Context.toBits(FieldOffset));
2581  }
2582  /// Places a bitfield at a bit offset.
2583  void placeFieldAtBitOffset(uint64_t FieldOffset) {
2584    FieldOffsets.push_back(FieldOffset);
2585  }
2586  /// Compute the set of virtual bases for which vtordisps are required.
2587  void computeVtorDispSet(
2588      llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2589      const CXXRecordDecl *RD) const;
2590  const ASTContext &Context;
2591  /// The size of the record being laid out.
2592  CharUnits Size;
2593  /// The non-virtual size of the record layout.
2594  CharUnits NonVirtualSize;
2595  /// The data size of the record layout.
2596  CharUnits DataSize;
2597  /// The current alignment of the record layout.
2598  CharUnits Alignment;
2599  /// The maximum allowed field alignment. This is set by #pragma pack.
2600  CharUnits MaxFieldAlignment;
2601  /// The alignment that this record must obey.  This is imposed by
2602  /// __declspec(align()) on the record itself or one of its fields or bases.
2603  CharUnits RequiredAlignment;
2604  /// The size of the allocation of the currently active bitfield.
2605  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2606  /// is true.
2607  CharUnits CurrentBitfieldSize;
2608  /// Offset to the virtual base table pointer (if one exists).
2609  CharUnits VBPtrOffset;
2610  /// Minimum record size possible.
2611  CharUnits MinEmptyStructSize;
2612  /// The size and alignment info of a pointer.
2613  ElementInfo PointerInfo;
2614  /// The primary base class (if one exists).
2615  const CXXRecordDecl *PrimaryBase;
2616  /// The class we share our vb-pointer with.
2617  const CXXRecordDecl *SharedVBPtrBase;
2618  /// The collection of field offsets.
2619  SmallVector<uint64_t, 16> FieldOffsets;
2620  /// Base classes and their offsets in the record.
2621  BaseOffsetsMapTy Bases;
2622  /// virtual base classes and their offsets in the record.
2623  ASTRecordLayout::VBaseOffsetsMapTy VBases;
2624  /// The number of remaining bits in our last bitfield allocation.
2625  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2626  /// true.
2627  unsigned RemainingBitsInField;
2628  bool IsUnion : 1;
2629  /// True if the last field laid out was a bitfield and was not 0
2630  /// width.
2631  bool LastFieldIsNonZeroWidthBitfield : 1;
2632  /// True if the class has its own vftable pointer.
2633  bool HasOwnVFPtr : 1;
2634  /// True if the class has a vbtable pointer.
2635  bool HasVBPtr : 1;
2636  /// True if the last sub-object within the type is zero sized or the
2637  /// object itself is zero sized.  This *does not* count members that are not
2638  /// records.  Only used for MS-ABI.
2639  bool EndsWithZeroSizedObject : 1;
2640  /// True if this class is zero sized or first base is zero sized or
2641  /// has this property.  Only used for MS-ABI.
2642  bool LeadsWithZeroSizedBase : 1;
2643
2644  /// True if the external AST source provided a layout for this record.
2645  bool UseExternalLayout : 1;
2646
2647  /// The layout provided by the external AST source. Only active if
2648  /// UseExternalLayout is true.
2649  ExternalLayout External;
2650};
2651} // namespace
2652
2653MicrosoftRecordLayoutBuilder::ElementInfo
2654MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2655    const ASTRecordLayout &Layout) {
2656  ElementInfo Info;
2657  Info.Alignment = Layout.getAlignment();
2658  // Respect pragma pack.
2659  if (!MaxFieldAlignment.isZero())
2660    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2661  // Track zero-sized subobjects here where it's already available.
2662  EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2663  // Respect required alignment, this is necessary because we may have adjusted
2664  // the alignment in the case of pragma pack.  Note that the required alignment
2665  // doesn't actually apply to the struct alignment at this point.
2666  Alignment = std::max(Alignment, Info.Alignment);
2667  RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2668  Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2669  Info.Size = Layout.getNonVirtualSize();
2670  return Info;
2671}
2672
2673MicrosoftRecordLayoutBuilder::ElementInfo
2674MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2675    const FieldDecl *FD) {
2676  // Get the alignment of the field type's natural alignment, ignore any
2677  // alignment attributes.
2678  auto TInfo =
2679      Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2680  ElementInfo Info{TInfo.Width, TInfo.Align};
2681  // Respect align attributes on the field.
2682  CharUnits FieldRequiredAlignment =
2683      Context.toCharUnitsFromBits(FD->getMaxAlignment());
2684  // Respect align attributes on the type.
2685  if (Context.isAlignmentRequired(FD->getType()))
2686    FieldRequiredAlignment = std::max(
2687        Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2688  // Respect attributes applied to subobjects of the field.
2689  if (FD->isBitField())
2690    // For some reason __declspec align impacts alignment rather than required
2691    // alignment when it is applied to bitfields.
2692    Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2693  else {
2694    if (auto RT =
2695            FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2696      auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2697      EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2698      FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2699                                        Layout.getRequiredAlignment());
2700    }
2701    // Capture required alignment as a side-effect.
2702    RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2703  }
2704  // Respect pragma pack, attribute pack and declspec align
2705  if (!MaxFieldAlignment.isZero())
2706    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2707  if (FD->hasAttr<PackedAttr>())
2708    Info.Alignment = CharUnits::One();
2709  Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2710  return Info;
2711}
2712
2713void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2714  // For C record layout, zero-sized records always have size 4.
2715  MinEmptyStructSize = CharUnits::fromQuantity(4);
2716  initializeLayout(RD);
2717  layoutFields(RD);
2718  DataSize = Size = Size.alignTo(Alignment);
2719  RequiredAlignment = std::max(
2720      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2721  finalizeLayout(RD);
2722}
2723
2724void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2725  // The C++ standard says that empty structs have size 1.
2726  MinEmptyStructSize = CharUnits::One();
2727  initializeLayout(RD);
2728  initializeCXXLayout(RD);
2729  layoutNonVirtualBases(RD);
2730  layoutFields(RD);
2731  injectVBPtr(RD);
2732  injectVFPtr(RD);
2733  if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2734    Alignment = std::max(Alignment, PointerInfo.Alignment);
2735  auto RoundingAlignment = Alignment;
2736  if (!MaxFieldAlignment.isZero())
2737    RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2738  if (!UseExternalLayout)
2739    Size = Size.alignTo(RoundingAlignment);
2740  NonVirtualSize = Size;
2741  RequiredAlignment = std::max(
2742      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2743  layoutVirtualBases(RD);
2744  finalizeLayout(RD);
2745}
2746
2747void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2748  IsUnion = RD->isUnion();
2749  Size = CharUnits::Zero();
2750  Alignment = CharUnits::One();
2751  // In 64-bit mode we always perform an alignment step after laying out vbases.
2752  // In 32-bit mode we do not.  The check to see if we need to perform alignment
2753  // checks the RequiredAlignment field and performs alignment if it isn't 0.
2754  RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2755                          ? CharUnits::One()
2756                          : CharUnits::Zero();
2757  // Compute the maximum field alignment.
2758  MaxFieldAlignment = CharUnits::Zero();
2759  // Honor the default struct packing maximum alignment flag.
2760  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2761      MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2762  // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2763  // than the pointer size.
2764  if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2765    unsigned PackedAlignment = MFAA->getAlignment();
2766    if (PackedAlignment <=
2767        Context.getTargetInfo().getPointerWidth(LangAS::Default))
2768      MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2769  }
2770  // Packed attribute forces max field alignment to be 1.
2771  if (RD->hasAttr<PackedAttr>())
2772    MaxFieldAlignment = CharUnits::One();
2773
2774  // Try to respect the external layout if present.
2775  UseExternalLayout = false;
2776  if (ExternalASTSource *Source = Context.getExternalSource())
2777    UseExternalLayout = Source->layoutRecordType(
2778        RD, External.Size, External.Align, External.FieldOffsets,
2779        External.BaseOffsets, External.VirtualBaseOffsets);
2780}
2781
2782void
2783MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2784  EndsWithZeroSizedObject = false;
2785  LeadsWithZeroSizedBase = false;
2786  HasOwnVFPtr = false;
2787  HasVBPtr = false;
2788  PrimaryBase = nullptr;
2789  SharedVBPtrBase = nullptr;
2790  // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2791  // injection.
2792  PointerInfo.Size = Context.toCharUnitsFromBits(
2793      Context.getTargetInfo().getPointerWidth(LangAS::Default));
2794  PointerInfo.Alignment = Context.toCharUnitsFromBits(
2795      Context.getTargetInfo().getPointerAlign(LangAS::Default));
2796  // Respect pragma pack.
2797  if (!MaxFieldAlignment.isZero())
2798    PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2799}
2800
2801void
2802MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2803  // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2804  // out any bases that do not contain vfptrs.  We implement this as two passes
2805  // over the bases.  This approach guarantees that the primary base is laid out
2806  // first.  We use these passes to calculate some additional aggregated
2807  // information about the bases, such as required alignment and the presence of
2808  // zero sized members.
2809  const ASTRecordLayout *PreviousBaseLayout = nullptr;
2810  bool HasPolymorphicBaseClass = false;
2811  // Iterate through the bases and lay out the non-virtual ones.
2812  for (const CXXBaseSpecifier &Base : RD->bases()) {
2813    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2814    HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2815    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2816    // Mark and skip virtual bases.
2817    if (Base.isVirtual()) {
2818      HasVBPtr = true;
2819      continue;
2820    }
2821    // Check for a base to share a VBPtr with.
2822    if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2823      SharedVBPtrBase = BaseDecl;
2824      HasVBPtr = true;
2825    }
2826    // Only lay out bases with extendable VFPtrs on the first pass.
2827    if (!BaseLayout.hasExtendableVFPtr())
2828      continue;
2829    // If we don't have a primary base, this one qualifies.
2830    if (!PrimaryBase) {
2831      PrimaryBase = BaseDecl;
2832      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2833    }
2834    // Lay out the base.
2835    layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2836  }
2837  // Figure out if we need a fresh VFPtr for this class.
2838  if (RD->isPolymorphic()) {
2839    if (!HasPolymorphicBaseClass)
2840      // This class introduces polymorphism, so we need a vftable to store the
2841      // RTTI information.
2842      HasOwnVFPtr = true;
2843    else if (!PrimaryBase) {
2844      // We have a polymorphic base class but can't extend its vftable. Add a
2845      // new vfptr if we would use any vftable slots.
2846      for (CXXMethodDecl *M : RD->methods()) {
2847        if (MicrosoftVTableContext::hasVtableSlot(M) &&
2848            M->size_overridden_methods() == 0) {
2849          HasOwnVFPtr = true;
2850          break;
2851        }
2852      }
2853    }
2854  }
2855  // If we don't have a primary base then we have a leading object that could
2856  // itself lead with a zero-sized object, something we track.
2857  bool CheckLeadingLayout = !PrimaryBase;
2858  // Iterate through the bases and lay out the non-virtual ones.
2859  for (const CXXBaseSpecifier &Base : RD->bases()) {
2860    if (Base.isVirtual())
2861      continue;
2862    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2863    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2864    // Only lay out bases without extendable VFPtrs on the second pass.
2865    if (BaseLayout.hasExtendableVFPtr()) {
2866      VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2867      continue;
2868    }
2869    // If this is the first layout, check to see if it leads with a zero sized
2870    // object.  If it does, so do we.
2871    if (CheckLeadingLayout) {
2872      CheckLeadingLayout = false;
2873      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2874    }
2875    // Lay out the base.
2876    layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2877    VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2878  }
2879  // Set our VBPtroffset if we know it at this point.
2880  if (!HasVBPtr)
2881    VBPtrOffset = CharUnits::fromQuantity(-1);
2882  else if (SharedVBPtrBase) {
2883    const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2884    VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2885  }
2886}
2887
2888static bool recordUsesEBO(const RecordDecl *RD) {
2889  if (!isa<CXXRecordDecl>(RD))
2890    return false;
2891  if (RD->hasAttr<EmptyBasesAttr>())
2892    return true;
2893  if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2894    // TODO: Double check with the next version of MSVC.
2895    if (LVA->getVersion() <= LangOptions::MSVC2015)
2896      return false;
2897  // TODO: Some later version of MSVC will change the default behavior of the
2898  // compiler to enable EBO by default.  When this happens, we will need an
2899  // additional isCompatibleWithMSVC check.
2900  return false;
2901}
2902
2903void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2904    const CXXRecordDecl *RD,
2905    const CXXRecordDecl *BaseDecl,
2906    const ASTRecordLayout &BaseLayout,
2907    const ASTRecordLayout *&PreviousBaseLayout) {
2908  // Insert padding between two bases if the left first one is zero sized or
2909  // contains a zero sized subobject and the right is zero sized or one leads
2910  // with a zero sized base.
2911  bool MDCUsesEBO = recordUsesEBO(RD);
2912  if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2913      BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2914    Size++;
2915  ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2916  CharUnits BaseOffset;
2917
2918  // Respect the external AST source base offset, if present.
2919  bool FoundBase = false;
2920  if (UseExternalLayout) {
2921    FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2922    if (FoundBase) {
2923      assert(BaseOffset >= Size && "base offset already allocated");
2924      Size = BaseOffset;
2925    }
2926  }
2927
2928  if (!FoundBase) {
2929    if (MDCUsesEBO && BaseDecl->isEmpty()) {
2930      assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2931      BaseOffset = CharUnits::Zero();
2932    } else {
2933      // Otherwise, lay the base out at the end of the MDC.
2934      BaseOffset = Size = Size.alignTo(Info.Alignment);
2935    }
2936  }
2937  Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2938  Size += BaseLayout.getNonVirtualSize();
2939  PreviousBaseLayout = &BaseLayout;
2940}
2941
2942void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2943  LastFieldIsNonZeroWidthBitfield = false;
2944  for (const FieldDecl *Field : RD->fields())
2945    layoutField(Field);
2946}
2947
2948void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2949  if (FD->isBitField()) {
2950    layoutBitField(FD);
2951    return;
2952  }
2953  LastFieldIsNonZeroWidthBitfield = false;
2954  ElementInfo Info = getAdjustedElementInfo(FD);
2955  Alignment = std::max(Alignment, Info.Alignment);
2956  CharUnits FieldOffset;
2957  if (UseExternalLayout)
2958    FieldOffset =
2959        Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2960  else if (IsUnion)
2961    FieldOffset = CharUnits::Zero();
2962  else
2963    FieldOffset = Size.alignTo(Info.Alignment);
2964  placeFieldAtOffset(FieldOffset);
2965  Size = std::max(Size, FieldOffset + Info.Size);
2966}
2967
2968void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2969  unsigned Width = FD->getBitWidthValue(Context);
2970  if (Width == 0) {
2971    layoutZeroWidthBitField(FD);
2972    return;
2973  }
2974  ElementInfo Info = getAdjustedElementInfo(FD);
2975  // Clamp the bitfield to a containable size for the sake of being able
2976  // to lay them out.  Sema will throw an error.
2977  if (Width > Context.toBits(Info.Size))
2978    Width = Context.toBits(Info.Size);
2979  // Check to see if this bitfield fits into an existing allocation.  Note:
2980  // MSVC refuses to pack bitfields of formal types with different sizes
2981  // into the same allocation.
2982  if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2983      CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2984    placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2985    RemainingBitsInField -= Width;
2986    return;
2987  }
2988  LastFieldIsNonZeroWidthBitfield = true;
2989  CurrentBitfieldSize = Info.Size;
2990  if (UseExternalLayout) {
2991    auto FieldBitOffset = External.getExternalFieldOffset(FD);
2992    placeFieldAtBitOffset(FieldBitOffset);
2993    auto NewSize = Context.toCharUnitsFromBits(
2994        llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2995        Context.toBits(Info.Size));
2996    Size = std::max(Size, NewSize);
2997    Alignment = std::max(Alignment, Info.Alignment);
2998  } else if (IsUnion) {
2999    placeFieldAtOffset(CharUnits::Zero());
3000    Size = std::max(Size, Info.Size);
3001    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3002  } else {
3003    // Allocate a new block of memory and place the bitfield in it.
3004    CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3005    placeFieldAtOffset(FieldOffset);
3006    Size = FieldOffset + Info.Size;
3007    Alignment = std::max(Alignment, Info.Alignment);
3008    RemainingBitsInField = Context.toBits(Info.Size) - Width;
3009  }
3010}
3011
3012void
3013MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
3014  // Zero-width bitfields are ignored unless they follow a non-zero-width
3015  // bitfield.
3016  if (!LastFieldIsNonZeroWidthBitfield) {
3017    placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
3018    // TODO: Add a Sema warning that MS ignores alignment for zero
3019    // sized bitfields that occur after zero-size bitfields or non-bitfields.
3020    return;
3021  }
3022  LastFieldIsNonZeroWidthBitfield = false;
3023  ElementInfo Info = getAdjustedElementInfo(FD);
3024  if (IsUnion) {
3025    placeFieldAtOffset(CharUnits::Zero());
3026    Size = std::max(Size, Info.Size);
3027    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3028  } else {
3029    // Round up the current record size to the field's alignment boundary.
3030    CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3031    placeFieldAtOffset(FieldOffset);
3032    Size = FieldOffset;
3033    Alignment = std::max(Alignment, Info.Alignment);
3034  }
3035}
3036
3037void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
3038  if (!HasVBPtr || SharedVBPtrBase)
3039    return;
3040  // Inject the VBPointer at the injection site.
3041  CharUnits InjectionSite = VBPtrOffset;
3042  // But before we do, make sure it's properly aligned.
3043  VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
3044  // Determine where the first field should be laid out after the vbptr.
3045  CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
3046  // Shift everything after the vbptr down, unless we're using an external
3047  // layout.
3048  if (UseExternalLayout) {
3049    // It is possible that there were no fields or bases located after vbptr,
3050    // so the size was not adjusted before.
3051    if (Size < FieldStart)
3052      Size = FieldStart;
3053    return;
3054  }
3055  // Make sure that the amount we push the fields back by is a multiple of the
3056  // alignment.
3057  CharUnits Offset = (FieldStart - InjectionSite)
3058                         .alignTo(std::max(RequiredAlignment, Alignment));
3059  Size += Offset;
3060  for (uint64_t &FieldOffset : FieldOffsets)
3061    FieldOffset += Context.toBits(Offset);
3062  for (BaseOffsetsMapTy::value_type &Base : Bases)
3063    if (Base.second >= InjectionSite)
3064      Base.second += Offset;
3065}
3066
3067void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3068  if (!HasOwnVFPtr)
3069    return;
3070  // Make sure that the amount we push the struct back by is a multiple of the
3071  // alignment.
3072  CharUnits Offset =
3073      PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3074  // Push back the vbptr, but increase the size of the object and push back
3075  // regular fields by the offset only if not using external record layout.
3076  if (HasVBPtr)
3077    VBPtrOffset += Offset;
3078
3079  if (UseExternalLayout) {
3080    // The class may have size 0 and a vfptr (e.g. it's an interface class). The
3081    // size was not correctly set before in this case.
3082    if (Size.isZero())
3083      Size += Offset;
3084    return;
3085  }
3086
3087  Size += Offset;
3088
3089  // If we're using an external layout, the fields offsets have already
3090  // accounted for this adjustment.
3091  for (uint64_t &FieldOffset : FieldOffsets)
3092    FieldOffset += Context.toBits(Offset);
3093  for (BaseOffsetsMapTy::value_type &Base : Bases)
3094    Base.second += Offset;
3095}
3096
3097void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3098  if (!HasVBPtr)
3099    return;
3100  // Vtordisps are always 4 bytes (even in 64-bit mode)
3101  CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3102  CharUnits VtorDispAlignment = VtorDispSize;
3103  // vtordisps respect pragma pack.
3104  if (!MaxFieldAlignment.isZero())
3105    VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3106  // The alignment of the vtordisp is at least the required alignment of the
3107  // entire record.  This requirement may be present to support vtordisp
3108  // injection.
3109  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3110    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3111    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3112    RequiredAlignment =
3113        std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3114  }
3115  VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3116  // Compute the vtordisp set.
3117  llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3118  computeVtorDispSet(HasVtorDispSet, RD);
3119  // Iterate through the virtual bases and lay them out.
3120  const ASTRecordLayout *PreviousBaseLayout = nullptr;
3121  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3122    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3123    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3124    bool HasVtordisp = HasVtorDispSet.contains(BaseDecl);
3125    // Insert padding between two bases if the left first one is zero sized or
3126    // contains a zero sized subobject and the right is zero sized or one leads
3127    // with a zero sized base.  The padding between virtual bases is 4
3128    // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3129    // the required alignment, we don't know why.
3130    if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3131         BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3132        HasVtordisp) {
3133      Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3134      Alignment = std::max(VtorDispAlignment, Alignment);
3135    }
3136    // Insert the virtual base.
3137    ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3138    CharUnits BaseOffset;
3139
3140    // Respect the external AST source base offset, if present.
3141    if (UseExternalLayout) {
3142      if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3143        BaseOffset = Size;
3144    } else
3145      BaseOffset = Size.alignTo(Info.Alignment);
3146
3147    assert(BaseOffset >= Size && "base offset already allocated");
3148
3149    VBases.insert(std::make_pair(BaseDecl,
3150        ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3151    Size = BaseOffset + BaseLayout.getNonVirtualSize();
3152    PreviousBaseLayout = &BaseLayout;
3153  }
3154}
3155
3156void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3157  // Respect required alignment.  Note that in 32-bit mode Required alignment
3158  // may be 0 and cause size not to be updated.
3159  DataSize = Size;
3160  if (!RequiredAlignment.isZero()) {
3161    Alignment = std::max(Alignment, RequiredAlignment);
3162    auto RoundingAlignment = Alignment;
3163    if (!MaxFieldAlignment.isZero())
3164      RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3165    RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3166    Size = Size.alignTo(RoundingAlignment);
3167  }
3168  if (Size.isZero()) {
3169    if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3170      EndsWithZeroSizedObject = true;
3171      LeadsWithZeroSizedBase = true;
3172    }
3173    // Zero-sized structures have size equal to their alignment if a
3174    // __declspec(align) came into play.
3175    if (RequiredAlignment >= MinEmptyStructSize)
3176      Size = Alignment;
3177    else
3178      Size = MinEmptyStructSize;
3179  }
3180
3181  if (UseExternalLayout) {
3182    Size = Context.toCharUnitsFromBits(External.Size);
3183    if (External.Align)
3184      Alignment = Context.toCharUnitsFromBits(External.Align);
3185  }
3186}
3187
3188// Recursively walks the non-virtual bases of a class and determines if any of
3189// them are in the bases with overridden methods set.
3190static bool
3191RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3192                     BasesWithOverriddenMethods,
3193                 const CXXRecordDecl *RD) {
3194  if (BasesWithOverriddenMethods.count(RD))
3195    return true;
3196  // If any of a virtual bases non-virtual bases (recursively) requires a
3197  // vtordisp than so does this virtual base.
3198  for (const CXXBaseSpecifier &Base : RD->bases())
3199    if (!Base.isVirtual() &&
3200        RequiresVtordisp(BasesWithOverriddenMethods,
3201                         Base.getType()->getAsCXXRecordDecl()))
3202      return true;
3203  return false;
3204}
3205
3206void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3207    llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3208    const CXXRecordDecl *RD) const {
3209  // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3210  // vftables.
3211  if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3212    for (const CXXBaseSpecifier &Base : RD->vbases()) {
3213      const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3214      const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3215      if (Layout.hasExtendableVFPtr())
3216        HasVtordispSet.insert(BaseDecl);
3217    }
3218    return;
3219  }
3220
3221  // If any of our bases need a vtordisp for this type, so do we.  Check our
3222  // direct bases for vtordisp requirements.
3223  for (const CXXBaseSpecifier &Base : RD->bases()) {
3224    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3225    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3226    for (const auto &bi : Layout.getVBaseOffsetsMap())
3227      if (bi.second.hasVtorDisp())
3228        HasVtordispSet.insert(bi.first);
3229  }
3230  // We don't introduce any additional vtordisps if either:
3231  // * A user declared constructor or destructor aren't declared.
3232  // * #pragma vtordisp(0) or the /vd0 flag are in use.
3233  if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3234      RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3235    return;
3236  // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3237  // possible for a partially constructed object with virtual base overrides to
3238  // escape a non-trivial constructor.
3239  assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3240  // Compute a set of base classes which define methods we override.  A virtual
3241  // base in this set will require a vtordisp.  A virtual base that transitively
3242  // contains one of these bases as a non-virtual base will also require a
3243  // vtordisp.
3244  llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3245  llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3246  // Seed the working set with our non-destructor, non-pure virtual methods.
3247  for (const CXXMethodDecl *MD : RD->methods())
3248    if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3249        !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3250      Work.insert(MD);
3251  while (!Work.empty()) {
3252    const CXXMethodDecl *MD = *Work.begin();
3253    auto MethodRange = MD->overridden_methods();
3254    // If a virtual method has no-overrides it lives in its parent's vtable.
3255    if (MethodRange.begin() == MethodRange.end())
3256      BasesWithOverriddenMethods.insert(MD->getParent());
3257    else
3258      Work.insert(MethodRange.begin(), MethodRange.end());
3259    // We've finished processing this element, remove it from the working set.
3260    Work.erase(MD);
3261  }
3262  // For each of our virtual bases, check if it is in the set of overridden
3263  // bases or if it transitively contains a non-virtual base that is.
3264  for (const CXXBaseSpecifier &Base : RD->vbases()) {
3265    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3266    if (!HasVtordispSet.count(BaseDecl) &&
3267        RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3268      HasVtordispSet.insert(BaseDecl);
3269  }
3270}
3271
3272/// getASTRecordLayout - Get or compute information about the layout of the
3273/// specified record (struct/union/class), which indicates its size and field
3274/// position information.
3275const ASTRecordLayout &
3276ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3277  // These asserts test different things.  A record has a definition
3278  // as soon as we begin to parse the definition.  That definition is
3279  // not a complete definition (which is what isDefinition() tests)
3280  // until we *finish* parsing the definition.
3281
3282  if (D->hasExternalLexicalStorage() && !D->getDefinition())
3283    getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3284  // Complete the redecl chain (if necessary).
3285  (void)D->getMostRecentDecl();
3286
3287  D = D->getDefinition();
3288  assert(D && "Cannot get layout of forward declarations!");
3289  assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3290  assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3291
3292  // Look up this layout, if already laid out, return what we have.
3293  // Note that we can't save a reference to the entry because this function
3294  // is recursive.
3295  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3296  if (Entry) return *Entry;
3297
3298  const ASTRecordLayout *NewEntry = nullptr;
3299
3300  if (isMsLayout(*this)) {
3301    MicrosoftRecordLayoutBuilder Builder(*this);
3302    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3303      Builder.cxxLayout(RD);
3304      NewEntry = new (*this) ASTRecordLayout(
3305          *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3306          Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3307          Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3308          Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3309          Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3310          Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3311          Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3312          Builder.Bases, Builder.VBases);
3313    } else {
3314      Builder.layout(D);
3315      NewEntry = new (*this) ASTRecordLayout(
3316          *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3317          Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3318          Builder.FieldOffsets);
3319    }
3320  } else {
3321    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3322      EmptySubobjectMap EmptySubobjects(*this, RD);
3323      ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3324      Builder.Layout(RD);
3325
3326      // In certain situations, we are allowed to lay out objects in the
3327      // tail-padding of base classes.  This is ABI-dependent.
3328      // FIXME: this should be stored in the record layout.
3329      bool skipTailPadding =
3330          mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3331
3332      // FIXME: This should be done in FinalizeLayout.
3333      CharUnits DataSize =
3334          skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3335      CharUnits NonVirtualSize =
3336          skipTailPadding ? DataSize : Builder.NonVirtualSize;
3337      NewEntry = new (*this) ASTRecordLayout(
3338          *this, Builder.getSize(), Builder.Alignment,
3339          Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3340          /*RequiredAlignment : used by MS-ABI)*/
3341          Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3342          CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3343          NonVirtualSize, Builder.NonVirtualAlignment,
3344          Builder.PreferredNVAlignment,
3345          EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3346          Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3347          Builder.VBases);
3348    } else {
3349      ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3350      Builder.Layout(D);
3351
3352      NewEntry = new (*this) ASTRecordLayout(
3353          *this, Builder.getSize(), Builder.Alignment,
3354          Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3355          /*RequiredAlignment : used by MS-ABI)*/
3356          Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3357    }
3358  }
3359
3360  ASTRecordLayouts[D] = NewEntry;
3361
3362  if (getLangOpts().DumpRecordLayouts) {
3363    llvm::outs() << "\n*** Dumping AST Record Layout\n";
3364    DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3365  }
3366
3367  return *NewEntry;
3368}
3369
3370const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3371  if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3372    return nullptr;
3373
3374  assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3375  RD = RD->getDefinition();
3376
3377  // Beware:
3378  //  1) computing the key function might trigger deserialization, which might
3379  //     invalidate iterators into KeyFunctions
3380  //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3381  //     invalidate the LazyDeclPtr within the map itself
3382  LazyDeclPtr Entry = KeyFunctions[RD];
3383  const Decl *Result =
3384      Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3385
3386  // Store it back if it changed.
3387  if (Entry.isOffset() || Entry.isValid() != bool(Result))
3388    KeyFunctions[RD] = const_cast<Decl*>(Result);
3389
3390  return cast_or_null<CXXMethodDecl>(Result);
3391}
3392
3393void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3394  assert(Method == Method->getFirstDecl() &&
3395         "not working with method declaration from class definition");
3396
3397  // Look up the cache entry.  Since we're working with the first
3398  // declaration, its parent must be the class definition, which is
3399  // the correct key for the KeyFunctions hash.
3400  const auto &Map = KeyFunctions;
3401  auto I = Map.find(Method->getParent());
3402
3403  // If it's not cached, there's nothing to do.
3404  if (I == Map.end()) return;
3405
3406  // If it is cached, check whether it's the target method, and if so,
3407  // remove it from the cache. Note, the call to 'get' might invalidate
3408  // the iterator and the LazyDeclPtr object within the map.
3409  LazyDeclPtr Ptr = I->second;
3410  if (Ptr.get(getExternalSource()) == Method) {
3411    // FIXME: remember that we did this for module / chained PCH state?
3412    KeyFunctions.erase(Method->getParent());
3413  }
3414}
3415
3416static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3417  const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3418  return Layout.getFieldOffset(FD->getFieldIndex());
3419}
3420
3421uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3422  uint64_t OffsetInBits;
3423  if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3424    OffsetInBits = ::getFieldOffset(*this, FD);
3425  } else {
3426    const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3427
3428    OffsetInBits = 0;
3429    for (const NamedDecl *ND : IFD->chain())
3430      OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3431  }
3432
3433  return OffsetInBits;
3434}
3435
3436uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3437                                          const ObjCImplementationDecl *ID,
3438                                          const ObjCIvarDecl *Ivar) const {
3439  Ivar = Ivar->getCanonicalDecl();
3440  const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3441
3442  // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3443  // in here; it should never be necessary because that should be the lexical
3444  // decl context for the ivar.
3445
3446  // If we know have an implementation (and the ivar is in it) then
3447  // look up in the implementation layout.
3448  const ASTRecordLayout *RL;
3449  if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3450    RL = &getASTObjCImplementationLayout(ID);
3451  else
3452    RL = &getASTObjCInterfaceLayout(Container);
3453
3454  // Compute field index.
3455  //
3456  // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3457  // implemented. This should be fixed to get the information from the layout
3458  // directly.
3459  unsigned Index = 0;
3460
3461  for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3462       IVD; IVD = IVD->getNextIvar()) {
3463    if (Ivar == IVD)
3464      break;
3465    ++Index;
3466  }
3467  assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3468
3469  return RL->getFieldOffset(Index);
3470}
3471
3472/// getObjCLayout - Get or compute information about the layout of the
3473/// given interface.
3474///
3475/// \param Impl - If given, also include the layout of the interface's
3476/// implementation. This may differ by including synthesized ivars.
3477const ASTRecordLayout &
3478ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3479                          const ObjCImplementationDecl *Impl) const {
3480  // Retrieve the definition
3481  if (D->hasExternalLexicalStorage() && !D->getDefinition())
3482    getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3483  D = D->getDefinition();
3484  assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3485         "Invalid interface decl!");
3486
3487  // Look up this layout, if already laid out, return what we have.
3488  const ObjCContainerDecl *Key =
3489    Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3490  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3491    return *Entry;
3492
3493  // Add in synthesized ivar count if laying out an implementation.
3494  if (Impl) {
3495    unsigned SynthCount = CountNonClassIvars(D);
3496    // If there aren't any synthesized ivars then reuse the interface
3497    // entry. Note we can't cache this because we simply free all
3498    // entries later; however we shouldn't look up implementations
3499    // frequently.
3500    if (SynthCount == 0)
3501      return getObjCLayout(D, nullptr);
3502  }
3503
3504  ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3505  Builder.Layout(D);
3506
3507  const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3508      *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3509      Builder.UnadjustedAlignment,
3510      /*RequiredAlignment : used by MS-ABI)*/
3511      Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3512
3513  ObjCLayouts[Key] = NewEntry;
3514
3515  return *NewEntry;
3516}
3517
3518static void PrintOffset(raw_ostream &OS,
3519                        CharUnits Offset, unsigned IndentLevel) {
3520  OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3521  OS.indent(IndentLevel * 2);
3522}
3523
3524static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3525                                unsigned Begin, unsigned Width,
3526                                unsigned IndentLevel) {
3527  llvm::SmallString<10> Buffer;
3528  {
3529    llvm::raw_svector_ostream BufferOS(Buffer);
3530    BufferOS << Offset.getQuantity() << ':';
3531    if (Width == 0) {
3532      BufferOS << '-';
3533    } else {
3534      BufferOS << Begin << '-' << (Begin + Width - 1);
3535    }
3536  }
3537
3538  OS << llvm::right_justify(Buffer, 10) << " | ";
3539  OS.indent(IndentLevel * 2);
3540}
3541
3542static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3543  OS << "           | ";
3544  OS.indent(IndentLevel * 2);
3545}
3546
3547static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3548                             const ASTContext &C,
3549                             CharUnits Offset,
3550                             unsigned IndentLevel,
3551                             const char* Description,
3552                             bool PrintSizeInfo,
3553                             bool IncludeVirtualBases) {
3554  const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3555  auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3556
3557  PrintOffset(OS, Offset, IndentLevel);
3558  OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD));
3559  if (Description)
3560    OS << ' ' << Description;
3561  if (CXXRD && CXXRD->isEmpty())
3562    OS << " (empty)";
3563  OS << '\n';
3564
3565  IndentLevel++;
3566
3567  // Dump bases.
3568  if (CXXRD) {
3569    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3570    bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3571    bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3572
3573    // Vtable pointer.
3574    if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3575      PrintOffset(OS, Offset, IndentLevel);
3576      OS << '(' << *RD << " vtable pointer)\n";
3577    } else if (HasOwnVFPtr) {
3578      PrintOffset(OS, Offset, IndentLevel);
3579      // vfptr (for Microsoft C++ ABI)
3580      OS << '(' << *RD << " vftable pointer)\n";
3581    }
3582
3583    // Collect nvbases.
3584    SmallVector<const CXXRecordDecl *, 4> Bases;
3585    for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3586      assert(!Base.getType()->isDependentType() &&
3587             "Cannot layout class with dependent bases.");
3588      if (!Base.isVirtual())
3589        Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3590    }
3591
3592    // Sort nvbases by offset.
3593    llvm::stable_sort(
3594        Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3595          return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3596        });
3597
3598    // Dump (non-virtual) bases
3599    for (const CXXRecordDecl *Base : Bases) {
3600      CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3601      DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3602                       Base == PrimaryBase ? "(primary base)" : "(base)",
3603                       /*PrintSizeInfo=*/false,
3604                       /*IncludeVirtualBases=*/false);
3605    }
3606
3607    // vbptr (for Microsoft C++ ABI)
3608    if (HasOwnVBPtr) {
3609      PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3610      OS << '(' << *RD << " vbtable pointer)\n";
3611    }
3612  }
3613
3614  // Dump fields.
3615  uint64_t FieldNo = 0;
3616  for (RecordDecl::field_iterator I = RD->field_begin(),
3617         E = RD->field_end(); I != E; ++I, ++FieldNo) {
3618    const FieldDecl &Field = **I;
3619    uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3620    CharUnits FieldOffset =
3621      Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3622
3623    // Recursively dump fields of record type.
3624    if (auto RT = Field.getType()->getAs<RecordType>()) {
3625      DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3626                       Field.getName().data(),
3627                       /*PrintSizeInfo=*/false,
3628                       /*IncludeVirtualBases=*/true);
3629      continue;
3630    }
3631
3632    if (Field.isBitField()) {
3633      uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3634      unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3635      unsigned Width = Field.getBitWidthValue(C);
3636      PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3637    } else {
3638      PrintOffset(OS, FieldOffset, IndentLevel);
3639    }
3640    const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3641                                    ? Field.getType().getCanonicalType()
3642                                    : Field.getType();
3643    OS << FieldType << ' ' << Field << '\n';
3644  }
3645
3646  // Dump virtual bases.
3647  if (CXXRD && IncludeVirtualBases) {
3648    const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3649      Layout.getVBaseOffsetsMap();
3650
3651    for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3652      assert(Base.isVirtual() && "Found non-virtual class!");
3653      const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3654
3655      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3656
3657      if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3658        PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3659        OS << "(vtordisp for vbase " << *VBase << ")\n";
3660      }
3661
3662      DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3663                       VBase == Layout.getPrimaryBase() ?
3664                         "(primary virtual base)" : "(virtual base)",
3665                       /*PrintSizeInfo=*/false,
3666                       /*IncludeVirtualBases=*/false);
3667    }
3668  }
3669
3670  if (!PrintSizeInfo) return;
3671
3672  PrintIndentNoOffset(OS, IndentLevel - 1);
3673  OS << "[sizeof=" << Layout.getSize().getQuantity();
3674  if (CXXRD && !isMsLayout(C))
3675    OS << ", dsize=" << Layout.getDataSize().getQuantity();
3676  OS << ", align=" << Layout.getAlignment().getQuantity();
3677  if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3678    OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3679
3680  if (CXXRD) {
3681    OS << ",\n";
3682    PrintIndentNoOffset(OS, IndentLevel - 1);
3683    OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3684    OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3685    if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3686      OS << ", preferrednvalign="
3687         << Layout.getPreferredNVAlignment().getQuantity();
3688  }
3689  OS << "]\n";
3690}
3691
3692void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3693                                  bool Simple) const {
3694  if (!Simple) {
3695    ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3696                       /*PrintSizeInfo*/ true,
3697                       /*IncludeVirtualBases=*/true);
3698    return;
3699  }
3700
3701  // The "simple" format is designed to be parsed by the
3702  // layout-override testing code.  There shouldn't be any external
3703  // uses of this format --- when LLDB overrides a layout, it sets up
3704  // the data structures directly --- so feel free to adjust this as
3705  // you like as long as you also update the rudimentary parser for it
3706  // in libFrontend.
3707
3708  const ASTRecordLayout &Info = getASTRecordLayout(RD);
3709  OS << "Type: " << getTypeDeclType(RD) << "\n";
3710  OS << "\nLayout: ";
3711  OS << "<ASTRecordLayout\n";
3712  OS << "  Size:" << toBits(Info.getSize()) << "\n";
3713  if (!isMsLayout(*this))
3714    OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3715  OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3716  if (Target->defaultsToAIXPowerAlignment())
3717    OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3718       << "\n";
3719  OS << "  FieldOffsets: [";
3720  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3721    if (i)
3722      OS << ", ";
3723    OS << Info.getFieldOffset(i);
3724  }
3725  OS << "]>\n";
3726}
3727