1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/ComputeDependence.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/DependenceFlags.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/IgnoreExpr.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CharInfo.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Lexer.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
43const Expr *Expr::getBestDynamicClassTypeExpr() const {
44  const Expr *E = this;
45  while (true) {
46    E = E->IgnoreParenBaseCasts();
47
48    // Follow the RHS of a comma operator.
49    if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50      if (BO->getOpcode() == BO_Comma) {
51        E = BO->getRHS();
52        continue;
53      }
54    }
55
56    // Step into initializer for materialized temporaries.
57    if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58      E = MTE->getSubExpr();
59      continue;
60    }
61
62    break;
63  }
64
65  return E;
66}
67
68const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69  const Expr *E = getBestDynamicClassTypeExpr();
70  QualType DerivedType = E->getType();
71  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72    DerivedType = PTy->getPointeeType();
73
74  if (DerivedType->isDependentType())
75    return nullptr;
76
77  const RecordType *Ty = DerivedType->castAs<RecordType>();
78  Decl *D = Ty->getDecl();
79  return cast<CXXRecordDecl>(D);
80}
81
82const Expr *Expr::skipRValueSubobjectAdjustments(
83    SmallVectorImpl<const Expr *> &CommaLHSs,
84    SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85  const Expr *E = this;
86  while (true) {
87    E = E->IgnoreParens();
88
89    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
90      if ((CE->getCastKind() == CK_DerivedToBase ||
91           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92          E->getType()->isRecordType()) {
93        E = CE->getSubExpr();
94        auto *Derived =
95            cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
96        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
97        continue;
98      }
99
100      if (CE->getCastKind() == CK_NoOp) {
101        E = CE->getSubExpr();
102        continue;
103      }
104    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
105      if (!ME->isArrow()) {
106        assert(ME->getBase()->getType()->isRecordType());
107        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
108          if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109            E = ME->getBase();
110            Adjustments.push_back(SubobjectAdjustment(Field));
111            continue;
112          }
113        }
114      }
115    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
116      if (BO->getOpcode() == BO_PtrMemD) {
117        assert(BO->getRHS()->isPRValue());
118        E = BO->getLHS();
119        const MemberPointerType *MPT =
120          BO->getRHS()->getType()->getAs<MemberPointerType>();
121        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
122        continue;
123      }
124      if (BO->getOpcode() == BO_Comma) {
125        CommaLHSs.push_back(BO->getLHS());
126        E = BO->getRHS();
127        continue;
128      }
129    }
130
131    // Nothing changed.
132    break;
133  }
134  return E;
135}
136
137bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
138  const Expr *E = IgnoreParens();
139
140  // If this value has _Bool type, it is obvious 0/1.
141  if (E->getType()->isBooleanType()) return true;
142  // If this is a non-scalar-integer type, we don't care enough to try.
143  if (!E->getType()->isIntegralOrEnumerationType()) return false;
144
145  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
146    switch (UO->getOpcode()) {
147    case UO_Plus:
148      return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
149    case UO_LNot:
150      return true;
151    default:
152      return false;
153    }
154  }
155
156  // Only look through implicit casts.  If the user writes
157  // '(int) (a && b)' treat it as an arbitrary int.
158  // FIXME: Should we look through any cast expression in !Semantic mode?
159  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
160    return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
161
162  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
163    switch (BO->getOpcode()) {
164    default: return false;
165    case BO_LT:   // Relational operators.
166    case BO_GT:
167    case BO_LE:
168    case BO_GE:
169    case BO_EQ:   // Equality operators.
170    case BO_NE:
171    case BO_LAnd: // AND operator.
172    case BO_LOr:  // Logical OR operator.
173      return true;
174
175    case BO_And:  // Bitwise AND operator.
176    case BO_Xor:  // Bitwise XOR operator.
177    case BO_Or:   // Bitwise OR operator.
178      // Handle things like (x==2)|(y==12).
179      return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
180             BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
181
182    case BO_Comma:
183    case BO_Assign:
184      return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
185    }
186  }
187
188  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
189    return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
190           CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
191
192  if (isa<ObjCBoolLiteralExpr>(E))
193    return true;
194
195  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
196    return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
197
198  if (const FieldDecl *FD = E->getSourceBitField())
199    if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
200        !FD->getBitWidth()->isValueDependent() &&
201        FD->getBitWidthValue(FD->getASTContext()) == 1)
202      return true;
203
204  return false;
205}
206
207bool Expr::isFlexibleArrayMemberLike(
208    ASTContext &Context,
209    LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
210    bool IgnoreTemplateOrMacroSubstitution) const {
211
212  // For compatibility with existing code, we treat arrays of length 0 or
213  // 1 as flexible array members.
214  const auto *CAT = Context.getAsConstantArrayType(getType());
215  if (CAT) {
216    llvm::APInt Size = CAT->getSize();
217
218    using FAMKind = LangOptions::StrictFlexArraysLevelKind;
219
220    if (StrictFlexArraysLevel == FAMKind::IncompleteOnly)
221      return false;
222
223    // GCC extension, only allowed to represent a FAM.
224    if (Size == 0)
225      return true;
226
227    if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1))
228      return false;
229
230    if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2))
231      return false;
232  } else if (!Context.getAsIncompleteArrayType(getType()))
233    return false;
234
235  const Expr *E = IgnoreParens();
236
237  const NamedDecl *ND = nullptr;
238  if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
239    ND = DRE->getDecl();
240  else if (const auto *ME = dyn_cast<MemberExpr>(E))
241    ND = ME->getMemberDecl();
242  else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
243    return IRE->getDecl()->getNextIvar() == nullptr;
244
245  if (!ND)
246    return false;
247
248  // A flexible array member must be the last member in the class.
249  // FIXME: If the base type of the member expr is not FD->getParent(),
250  // this should not be treated as a flexible array member access.
251  if (const auto *FD = dyn_cast<FieldDecl>(ND)) {
252    // GCC treats an array memeber of a union as an FAM if the size is one or
253    // zero.
254    if (CAT) {
255      llvm::APInt Size = CAT->getSize();
256      if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne()))
257        return true;
258    }
259
260    // Don't consider sizes resulting from macro expansions or template argument
261    // substitution to form C89 tail-padded arrays.
262    if (IgnoreTemplateOrMacroSubstitution) {
263      TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
264      while (TInfo) {
265        TypeLoc TL = TInfo->getTypeLoc();
266        // Look through typedefs.
267        if (TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>()) {
268          const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
269          TInfo = TDL->getTypeSourceInfo();
270          continue;
271        }
272        if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
273          const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
274          if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
275            return false;
276        }
277        break;
278      }
279    }
280
281    RecordDecl::field_iterator FI(
282        DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
283    return ++FI == FD->getParent()->field_end();
284  }
285
286  return false;
287}
288
289const ValueDecl *
290Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
291  Expr::EvalResult Eval;
292
293  if (EvaluateAsConstantExpr(Eval, Context)) {
294    APValue &Value = Eval.Val;
295
296    if (Value.isMemberPointer())
297      return Value.getMemberPointerDecl();
298
299    if (Value.isLValue() && Value.getLValueOffset().isZero())
300      return Value.getLValueBase().dyn_cast<const ValueDecl *>();
301  }
302
303  return nullptr;
304}
305
306// Amusing macro metaprogramming hack: check whether a class provides
307// a more specific implementation of getExprLoc().
308//
309// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
310namespace {
311  /// This implementation is used when a class provides a custom
312  /// implementation of getExprLoc.
313  template <class E, class T>
314  SourceLocation getExprLocImpl(const Expr *expr,
315                                SourceLocation (T::*v)() const) {
316    return static_cast<const E*>(expr)->getExprLoc();
317  }
318
319  /// This implementation is used when a class doesn't provide
320  /// a custom implementation of getExprLoc.  Overload resolution
321  /// should pick it over the implementation above because it's
322  /// more specialized according to function template partial ordering.
323  template <class E>
324  SourceLocation getExprLocImpl(const Expr *expr,
325                                SourceLocation (Expr::*v)() const) {
326    return static_cast<const E *>(expr)->getBeginLoc();
327  }
328}
329
330SourceLocation Expr::getExprLoc() const {
331  switch (getStmtClass()) {
332  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
333#define ABSTRACT_STMT(type)
334#define STMT(type, base) \
335  case Stmt::type##Class: break;
336#define EXPR(type, base) \
337  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
338#include "clang/AST/StmtNodes.inc"
339  }
340  llvm_unreachable("unknown expression kind");
341}
342
343//===----------------------------------------------------------------------===//
344// Primary Expressions.
345//===----------------------------------------------------------------------===//
346
347static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
348  assert((Kind == ConstantExpr::RSK_APValue ||
349          Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
350         "Invalid StorageKind Value");
351  (void)Kind;
352}
353
354ConstantExpr::ResultStorageKind
355ConstantExpr::getStorageKind(const APValue &Value) {
356  switch (Value.getKind()) {
357  case APValue::None:
358  case APValue::Indeterminate:
359    return ConstantExpr::RSK_None;
360  case APValue::Int:
361    if (!Value.getInt().needsCleanup())
362      return ConstantExpr::RSK_Int64;
363    [[fallthrough]];
364  default:
365    return ConstantExpr::RSK_APValue;
366  }
367}
368
369ConstantExpr::ResultStorageKind
370ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
371  if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
372    return ConstantExpr::RSK_Int64;
373  return ConstantExpr::RSK_APValue;
374}
375
376ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
377                           bool IsImmediateInvocation)
378    : FullExpr(ConstantExprClass, SubExpr) {
379  ConstantExprBits.ResultKind = StorageKind;
380  ConstantExprBits.APValueKind = APValue::None;
381  ConstantExprBits.IsUnsigned = false;
382  ConstantExprBits.BitWidth = 0;
383  ConstantExprBits.HasCleanup = false;
384  ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
385
386  if (StorageKind == ConstantExpr::RSK_APValue)
387    ::new (getTrailingObjects<APValue>()) APValue();
388}
389
390ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
391                                   ResultStorageKind StorageKind,
392                                   bool IsImmediateInvocation) {
393  assert(!isa<ConstantExpr>(E));
394  AssertResultStorageKind(StorageKind);
395
396  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
397      StorageKind == ConstantExpr::RSK_APValue,
398      StorageKind == ConstantExpr::RSK_Int64);
399  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
400  return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
401}
402
403ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
404                                   const APValue &Result) {
405  ResultStorageKind StorageKind = getStorageKind(Result);
406  ConstantExpr *Self = Create(Context, E, StorageKind);
407  Self->SetResult(Result, Context);
408  return Self;
409}
410
411ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
412    : FullExpr(ConstantExprClass, Empty) {
413  ConstantExprBits.ResultKind = StorageKind;
414
415  if (StorageKind == ConstantExpr::RSK_APValue)
416    ::new (getTrailingObjects<APValue>()) APValue();
417}
418
419ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
420                                        ResultStorageKind StorageKind) {
421  AssertResultStorageKind(StorageKind);
422
423  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
424      StorageKind == ConstantExpr::RSK_APValue,
425      StorageKind == ConstantExpr::RSK_Int64);
426  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
427  return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
428}
429
430void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
431  assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
432         "Invalid storage for this value kind");
433  ConstantExprBits.APValueKind = Value.getKind();
434  switch (ConstantExprBits.ResultKind) {
435  case RSK_None:
436    return;
437  case RSK_Int64:
438    Int64Result() = *Value.getInt().getRawData();
439    ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
440    ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
441    return;
442  case RSK_APValue:
443    if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
444      ConstantExprBits.HasCleanup = true;
445      Context.addDestruction(&APValueResult());
446    }
447    APValueResult() = std::move(Value);
448    return;
449  }
450  llvm_unreachable("Invalid ResultKind Bits");
451}
452
453llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
454  switch (ConstantExprBits.ResultKind) {
455  case ConstantExpr::RSK_APValue:
456    return APValueResult().getInt();
457  case ConstantExpr::RSK_Int64:
458    return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
459                        ConstantExprBits.IsUnsigned);
460  default:
461    llvm_unreachable("invalid Accessor");
462  }
463}
464
465APValue ConstantExpr::getAPValueResult() const {
466
467  switch (ConstantExprBits.ResultKind) {
468  case ConstantExpr::RSK_APValue:
469    return APValueResult();
470  case ConstantExpr::RSK_Int64:
471    return APValue(
472        llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
473                     ConstantExprBits.IsUnsigned));
474  case ConstantExpr::RSK_None:
475    if (ConstantExprBits.APValueKind == APValue::Indeterminate)
476      return APValue::IndeterminateValue();
477    return APValue();
478  }
479  llvm_unreachable("invalid ResultKind");
480}
481
482DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
483                         bool RefersToEnclosingVariableOrCapture, QualType T,
484                         ExprValueKind VK, SourceLocation L,
485                         const DeclarationNameLoc &LocInfo,
486                         NonOdrUseReason NOUR)
487    : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
488  DeclRefExprBits.HasQualifier = false;
489  DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
490  DeclRefExprBits.HasFoundDecl = false;
491  DeclRefExprBits.HadMultipleCandidates = false;
492  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
493      RefersToEnclosingVariableOrCapture;
494  DeclRefExprBits.NonOdrUseReason = NOUR;
495  DeclRefExprBits.Loc = L;
496  setDependence(computeDependence(this, Ctx));
497}
498
499DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
500                         NestedNameSpecifierLoc QualifierLoc,
501                         SourceLocation TemplateKWLoc, ValueDecl *D,
502                         bool RefersToEnclosingVariableOrCapture,
503                         const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
504                         const TemplateArgumentListInfo *TemplateArgs,
505                         QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
506    : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
507      DNLoc(NameInfo.getInfo()) {
508  DeclRefExprBits.Loc = NameInfo.getLoc();
509  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
510  if (QualifierLoc)
511    new (getTrailingObjects<NestedNameSpecifierLoc>())
512        NestedNameSpecifierLoc(QualifierLoc);
513  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
514  if (FoundD)
515    *getTrailingObjects<NamedDecl *>() = FoundD;
516  DeclRefExprBits.HasTemplateKWAndArgsInfo
517    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
518  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
519      RefersToEnclosingVariableOrCapture;
520  DeclRefExprBits.NonOdrUseReason = NOUR;
521  if (TemplateArgs) {
522    auto Deps = TemplateArgumentDependence::None;
523    getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
524        TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
525        Deps);
526    assert(!(Deps & TemplateArgumentDependence::Dependent) &&
527           "built a DeclRefExpr with dependent template args");
528  } else if (TemplateKWLoc.isValid()) {
529    getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
530        TemplateKWLoc);
531  }
532  DeclRefExprBits.HadMultipleCandidates = 0;
533  setDependence(computeDependence(this, Ctx));
534}
535
536DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
537                                 NestedNameSpecifierLoc QualifierLoc,
538                                 SourceLocation TemplateKWLoc, ValueDecl *D,
539                                 bool RefersToEnclosingVariableOrCapture,
540                                 SourceLocation NameLoc, QualType T,
541                                 ExprValueKind VK, NamedDecl *FoundD,
542                                 const TemplateArgumentListInfo *TemplateArgs,
543                                 NonOdrUseReason NOUR) {
544  return Create(Context, QualifierLoc, TemplateKWLoc, D,
545                RefersToEnclosingVariableOrCapture,
546                DeclarationNameInfo(D->getDeclName(), NameLoc),
547                T, VK, FoundD, TemplateArgs, NOUR);
548}
549
550DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
551                                 NestedNameSpecifierLoc QualifierLoc,
552                                 SourceLocation TemplateKWLoc, ValueDecl *D,
553                                 bool RefersToEnclosingVariableOrCapture,
554                                 const DeclarationNameInfo &NameInfo,
555                                 QualType T, ExprValueKind VK,
556                                 NamedDecl *FoundD,
557                                 const TemplateArgumentListInfo *TemplateArgs,
558                                 NonOdrUseReason NOUR) {
559  // Filter out cases where the found Decl is the same as the value refenenced.
560  if (D == FoundD)
561    FoundD = nullptr;
562
563  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
564  std::size_t Size =
565      totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
566                       ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
567          QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
568          HasTemplateKWAndArgsInfo ? 1 : 0,
569          TemplateArgs ? TemplateArgs->size() : 0);
570
571  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
572  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
573                               RefersToEnclosingVariableOrCapture, NameInfo,
574                               FoundD, TemplateArgs, T, VK, NOUR);
575}
576
577DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
578                                      bool HasQualifier,
579                                      bool HasFoundDecl,
580                                      bool HasTemplateKWAndArgsInfo,
581                                      unsigned NumTemplateArgs) {
582  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
583  std::size_t Size =
584      totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
585                       ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
586          HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
587          NumTemplateArgs);
588  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
589  return new (Mem) DeclRefExpr(EmptyShell());
590}
591
592void DeclRefExpr::setDecl(ValueDecl *NewD) {
593  D = NewD;
594  if (getType()->isUndeducedType())
595    setType(NewD->getType());
596  setDependence(computeDependence(this, NewD->getASTContext()));
597}
598
599SourceLocation DeclRefExpr::getBeginLoc() const {
600  if (hasQualifier())
601    return getQualifierLoc().getBeginLoc();
602  return getNameInfo().getBeginLoc();
603}
604SourceLocation DeclRefExpr::getEndLoc() const {
605  if (hasExplicitTemplateArgs())
606    return getRAngleLoc();
607  return getNameInfo().getEndLoc();
608}
609
610SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
611                                                   SourceLocation LParen,
612                                                   SourceLocation RParen,
613                                                   QualType ResultTy,
614                                                   TypeSourceInfo *TSI)
615    : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
616      OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
617  setTypeSourceInfo(TSI);
618  setDependence(computeDependence(this));
619}
620
621SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
622                                                   QualType ResultTy)
623    : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
624
625SYCLUniqueStableNameExpr *
626SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
627                                 SourceLocation LParen, SourceLocation RParen,
628                                 TypeSourceInfo *TSI) {
629  QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
630  return new (Ctx)
631      SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
632}
633
634SYCLUniqueStableNameExpr *
635SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
636  QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
637  return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
638}
639
640std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
641  return SYCLUniqueStableNameExpr::ComputeName(Context,
642                                               getTypeSourceInfo()->getType());
643}
644
645std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
646                                                  QualType Ty) {
647  auto MangleCallback = [](ASTContext &Ctx,
648                           const NamedDecl *ND) -> std::optional<unsigned> {
649    if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
650      return RD->getDeviceLambdaManglingNumber();
651    return std::nullopt;
652  };
653
654  std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
655      Context, Context.getDiagnostics(), MangleCallback)};
656
657  std::string Buffer;
658  Buffer.reserve(128);
659  llvm::raw_string_ostream Out(Buffer);
660  Ctx->mangleTypeName(Ty, Out);
661
662  return Out.str();
663}
664
665PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
666                               StringLiteral *SL)
667    : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
668  PredefinedExprBits.Kind = IK;
669  assert((getIdentKind() == IK) &&
670         "IdentKind do not fit in PredefinedExprBitfields!");
671  bool HasFunctionName = SL != nullptr;
672  PredefinedExprBits.HasFunctionName = HasFunctionName;
673  PredefinedExprBits.Loc = L;
674  if (HasFunctionName)
675    setFunctionName(SL);
676  setDependence(computeDependence(this));
677}
678
679PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
680    : Expr(PredefinedExprClass, Empty) {
681  PredefinedExprBits.HasFunctionName = HasFunctionName;
682}
683
684PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
685                                       QualType FNTy, IdentKind IK,
686                                       StringLiteral *SL) {
687  bool HasFunctionName = SL != nullptr;
688  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
689                           alignof(PredefinedExpr));
690  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
691}
692
693PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
694                                            bool HasFunctionName) {
695  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
696                           alignof(PredefinedExpr));
697  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
698}
699
700StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
701  switch (IK) {
702  case Func:
703    return "__func__";
704  case Function:
705    return "__FUNCTION__";
706  case FuncDName:
707    return "__FUNCDNAME__";
708  case LFunction:
709    return "L__FUNCTION__";
710  case PrettyFunction:
711    return "__PRETTY_FUNCTION__";
712  case FuncSig:
713    return "__FUNCSIG__";
714  case LFuncSig:
715    return "L__FUNCSIG__";
716  case PrettyFunctionNoVirtual:
717    break;
718  }
719  llvm_unreachable("Unknown ident kind for PredefinedExpr");
720}
721
722// FIXME: Maybe this should use DeclPrinter with a special "print predefined
723// expr" policy instead.
724std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
725  ASTContext &Context = CurrentDecl->getASTContext();
726
727  if (IK == PredefinedExpr::FuncDName) {
728    if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
729      std::unique_ptr<MangleContext> MC;
730      MC.reset(Context.createMangleContext());
731
732      if (MC->shouldMangleDeclName(ND)) {
733        SmallString<256> Buffer;
734        llvm::raw_svector_ostream Out(Buffer);
735        GlobalDecl GD;
736        if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
737          GD = GlobalDecl(CD, Ctor_Base);
738        else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
739          GD = GlobalDecl(DD, Dtor_Base);
740        else if (ND->hasAttr<CUDAGlobalAttr>())
741          GD = GlobalDecl(cast<FunctionDecl>(ND));
742        else
743          GD = GlobalDecl(ND);
744        MC->mangleName(GD, Out);
745
746        if (!Buffer.empty() && Buffer.front() == '\01')
747          return std::string(Buffer.substr(1));
748        return std::string(Buffer.str());
749      }
750      return std::string(ND->getIdentifier()->getName());
751    }
752    return "";
753  }
754  if (isa<BlockDecl>(CurrentDecl)) {
755    // For blocks we only emit something if it is enclosed in a function
756    // For top-level block we'd like to include the name of variable, but we
757    // don't have it at this point.
758    auto DC = CurrentDecl->getDeclContext();
759    if (DC->isFileContext())
760      return "";
761
762    SmallString<256> Buffer;
763    llvm::raw_svector_ostream Out(Buffer);
764    if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
765      // For nested blocks, propagate up to the parent.
766      Out << ComputeName(IK, DCBlock);
767    else if (auto *DCDecl = dyn_cast<Decl>(DC))
768      Out << ComputeName(IK, DCDecl) << "_block_invoke";
769    return std::string(Out.str());
770  }
771  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
772    if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
773        IK != FuncSig && IK != LFuncSig)
774      return FD->getNameAsString();
775
776    SmallString<256> Name;
777    llvm::raw_svector_ostream Out(Name);
778
779    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
780      if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
781        Out << "virtual ";
782      if (MD->isStatic())
783        Out << "static ";
784    }
785
786    PrintingPolicy Policy(Context.getLangOpts());
787    std::string Proto;
788    llvm::raw_string_ostream POut(Proto);
789
790    const FunctionDecl *Decl = FD;
791    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
792      Decl = Pattern;
793    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
794    const FunctionProtoType *FT = nullptr;
795    if (FD->hasWrittenPrototype())
796      FT = dyn_cast<FunctionProtoType>(AFT);
797
798    if (IK == FuncSig || IK == LFuncSig) {
799      switch (AFT->getCallConv()) {
800      case CC_C: POut << "__cdecl "; break;
801      case CC_X86StdCall: POut << "__stdcall "; break;
802      case CC_X86FastCall: POut << "__fastcall "; break;
803      case CC_X86ThisCall: POut << "__thiscall "; break;
804      case CC_X86VectorCall: POut << "__vectorcall "; break;
805      case CC_X86RegCall: POut << "__regcall "; break;
806      // Only bother printing the conventions that MSVC knows about.
807      default: break;
808      }
809    }
810
811    FD->printQualifiedName(POut, Policy);
812
813    POut << "(";
814    if (FT) {
815      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
816        if (i) POut << ", ";
817        POut << Decl->getParamDecl(i)->getType().stream(Policy);
818      }
819
820      if (FT->isVariadic()) {
821        if (FD->getNumParams()) POut << ", ";
822        POut << "...";
823      } else if ((IK == FuncSig || IK == LFuncSig ||
824                  !Context.getLangOpts().CPlusPlus) &&
825                 !Decl->getNumParams()) {
826        POut << "void";
827      }
828    }
829    POut << ")";
830
831    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
832      assert(FT && "We must have a written prototype in this case.");
833      if (FT->isConst())
834        POut << " const";
835      if (FT->isVolatile())
836        POut << " volatile";
837      RefQualifierKind Ref = MD->getRefQualifier();
838      if (Ref == RQ_LValue)
839        POut << " &";
840      else if (Ref == RQ_RValue)
841        POut << " &&";
842    }
843
844    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
845    SpecsTy Specs;
846    const DeclContext *Ctx = FD->getDeclContext();
847    while (Ctx && isa<NamedDecl>(Ctx)) {
848      const ClassTemplateSpecializationDecl *Spec
849                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
850      if (Spec && !Spec->isExplicitSpecialization())
851        Specs.push_back(Spec);
852      Ctx = Ctx->getParent();
853    }
854
855    std::string TemplateParams;
856    llvm::raw_string_ostream TOut(TemplateParams);
857    for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
858      const TemplateParameterList *Params =
859          D->getSpecializedTemplate()->getTemplateParameters();
860      const TemplateArgumentList &Args = D->getTemplateArgs();
861      assert(Params->size() == Args.size());
862      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
863        StringRef Param = Params->getParam(i)->getName();
864        if (Param.empty()) continue;
865        TOut << Param << " = ";
866        Args.get(i).print(Policy, TOut,
867                          TemplateParameterList::shouldIncludeTypeForArgument(
868                              Policy, Params, i));
869        TOut << ", ";
870      }
871    }
872
873    FunctionTemplateSpecializationInfo *FSI
874                                          = FD->getTemplateSpecializationInfo();
875    if (FSI && !FSI->isExplicitSpecialization()) {
876      const TemplateParameterList* Params
877                                  = FSI->getTemplate()->getTemplateParameters();
878      const TemplateArgumentList* Args = FSI->TemplateArguments;
879      assert(Params->size() == Args->size());
880      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
881        StringRef Param = Params->getParam(i)->getName();
882        if (Param.empty()) continue;
883        TOut << Param << " = ";
884        Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
885        TOut << ", ";
886      }
887    }
888
889    TOut.flush();
890    if (!TemplateParams.empty()) {
891      // remove the trailing comma and space
892      TemplateParams.resize(TemplateParams.size() - 2);
893      POut << " [" << TemplateParams << "]";
894    }
895
896    POut.flush();
897
898    // Print "auto" for all deduced return types. This includes C++1y return
899    // type deduction and lambdas. For trailing return types resolve the
900    // decltype expression. Otherwise print the real type when this is
901    // not a constructor or destructor.
902    if (isa<CXXMethodDecl>(FD) &&
903         cast<CXXMethodDecl>(FD)->getParent()->isLambda())
904      Proto = "auto " + Proto;
905    else if (FT && FT->getReturnType()->getAs<DecltypeType>())
906      FT->getReturnType()
907          ->getAs<DecltypeType>()
908          ->getUnderlyingType()
909          .getAsStringInternal(Proto, Policy);
910    else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
911      AFT->getReturnType().getAsStringInternal(Proto, Policy);
912
913    Out << Proto;
914
915    return std::string(Name);
916  }
917  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
918    for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
919      // Skip to its enclosing function or method, but not its enclosing
920      // CapturedDecl.
921      if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
922        const Decl *D = Decl::castFromDeclContext(DC);
923        return ComputeName(IK, D);
924      }
925    llvm_unreachable("CapturedDecl not inside a function or method");
926  }
927  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
928    SmallString<256> Name;
929    llvm::raw_svector_ostream Out(Name);
930    Out << (MD->isInstanceMethod() ? '-' : '+');
931    Out << '[';
932
933    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
934    // a null check to avoid a crash.
935    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
936      Out << *ID;
937
938    if (const ObjCCategoryImplDecl *CID =
939        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
940      Out << '(' << *CID << ')';
941
942    Out <<  ' ';
943    MD->getSelector().print(Out);
944    Out <<  ']';
945
946    return std::string(Name);
947  }
948  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
949    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
950    return "top level";
951  }
952  return "";
953}
954
955void APNumericStorage::setIntValue(const ASTContext &C,
956                                   const llvm::APInt &Val) {
957  if (hasAllocation())
958    C.Deallocate(pVal);
959
960  BitWidth = Val.getBitWidth();
961  unsigned NumWords = Val.getNumWords();
962  const uint64_t* Words = Val.getRawData();
963  if (NumWords > 1) {
964    pVal = new (C) uint64_t[NumWords];
965    std::copy(Words, Words + NumWords, pVal);
966  } else if (NumWords == 1)
967    VAL = Words[0];
968  else
969    VAL = 0;
970}
971
972IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
973                               QualType type, SourceLocation l)
974    : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
975  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
976  assert(V.getBitWidth() == C.getIntWidth(type) &&
977         "Integer type is not the correct size for constant.");
978  setValue(C, V);
979  setDependence(ExprDependence::None);
980}
981
982IntegerLiteral *
983IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
984                       QualType type, SourceLocation l) {
985  return new (C) IntegerLiteral(C, V, type, l);
986}
987
988IntegerLiteral *
989IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
990  return new (C) IntegerLiteral(Empty);
991}
992
993FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
994                                     QualType type, SourceLocation l,
995                                     unsigned Scale)
996    : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
997      Scale(Scale) {
998  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
999  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
1000         "Fixed point type is not the correct size for constant.");
1001  setValue(C, V);
1002  setDependence(ExprDependence::None);
1003}
1004
1005FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
1006                                                       const llvm::APInt &V,
1007                                                       QualType type,
1008                                                       SourceLocation l,
1009                                                       unsigned Scale) {
1010  return new (C) FixedPointLiteral(C, V, type, l, Scale);
1011}
1012
1013FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1014                                             EmptyShell Empty) {
1015  return new (C) FixedPointLiteral(Empty);
1016}
1017
1018std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1019  // Currently the longest decimal number that can be printed is the max for an
1020  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1021  // which is 43 characters.
1022  SmallString<64> S;
1023  FixedPointValueToString(
1024      S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
1025  return std::string(S.str());
1026}
1027
1028void CharacterLiteral::print(unsigned Val, CharacterKind Kind,
1029                             raw_ostream &OS) {
1030  switch (Kind) {
1031  case CharacterLiteral::Ascii:
1032    break; // no prefix.
1033  case CharacterLiteral::Wide:
1034    OS << 'L';
1035    break;
1036  case CharacterLiteral::UTF8:
1037    OS << "u8";
1038    break;
1039  case CharacterLiteral::UTF16:
1040    OS << 'u';
1041    break;
1042  case CharacterLiteral::UTF32:
1043    OS << 'U';
1044    break;
1045  }
1046
1047  StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1048  if (!Escaped.empty()) {
1049    OS << "'" << Escaped << "'";
1050  } else {
1051    // A character literal might be sign-extended, which
1052    // would result in an invalid \U escape sequence.
1053    // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1054    // are not correctly handled.
1055    if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
1056      Val &= 0xFFu;
1057    if (Val < 256 && isPrintable((unsigned char)Val))
1058      OS << "'" << (char)Val << "'";
1059    else if (Val < 256)
1060      OS << "'\\x" << llvm::format("%02x", Val) << "'";
1061    else if (Val <= 0xFFFF)
1062      OS << "'\\u" << llvm::format("%04x", Val) << "'";
1063    else
1064      OS << "'\\U" << llvm::format("%08x", Val) << "'";
1065  }
1066}
1067
1068FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1069                                 bool isexact, QualType Type, SourceLocation L)
1070    : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1071  setSemantics(V.getSemantics());
1072  FloatingLiteralBits.IsExact = isexact;
1073  setValue(C, V);
1074  setDependence(ExprDependence::None);
1075}
1076
1077FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1078  : Expr(FloatingLiteralClass, Empty) {
1079  setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1080  FloatingLiteralBits.IsExact = false;
1081}
1082
1083FloatingLiteral *
1084FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1085                        bool isexact, QualType Type, SourceLocation L) {
1086  return new (C) FloatingLiteral(C, V, isexact, Type, L);
1087}
1088
1089FloatingLiteral *
1090FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1091  return new (C) FloatingLiteral(C, Empty);
1092}
1093
1094/// getValueAsApproximateDouble - This returns the value as an inaccurate
1095/// double.  Note that this may cause loss of precision, but is useful for
1096/// debugging dumps, etc.
1097double FloatingLiteral::getValueAsApproximateDouble() const {
1098  llvm::APFloat V = getValue();
1099  bool ignored;
1100  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1101            &ignored);
1102  return V.convertToDouble();
1103}
1104
1105unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1106                                         StringKind SK) {
1107  unsigned CharByteWidth = 0;
1108  switch (SK) {
1109  case Ordinary:
1110  case UTF8:
1111    CharByteWidth = Target.getCharWidth();
1112    break;
1113  case Wide:
1114    CharByteWidth = Target.getWCharWidth();
1115    break;
1116  case UTF16:
1117    CharByteWidth = Target.getChar16Width();
1118    break;
1119  case UTF32:
1120    CharByteWidth = Target.getChar32Width();
1121    break;
1122  }
1123  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1124  CharByteWidth /= 8;
1125  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1126         "The only supported character byte widths are 1,2 and 4!");
1127  return CharByteWidth;
1128}
1129
1130StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1131                             StringKind Kind, bool Pascal, QualType Ty,
1132                             const SourceLocation *Loc,
1133                             unsigned NumConcatenated)
1134    : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1135  assert(Ctx.getAsConstantArrayType(Ty) &&
1136         "StringLiteral must be of constant array type!");
1137  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1138  unsigned ByteLength = Str.size();
1139  assert((ByteLength % CharByteWidth == 0) &&
1140         "The size of the data must be a multiple of CharByteWidth!");
1141
1142  // Avoid the expensive division. The compiler should be able to figure it
1143  // out by itself. However as of clang 7, even with the appropriate
1144  // llvm_unreachable added just here, it is not able to do so.
1145  unsigned Length;
1146  switch (CharByteWidth) {
1147  case 1:
1148    Length = ByteLength;
1149    break;
1150  case 2:
1151    Length = ByteLength / 2;
1152    break;
1153  case 4:
1154    Length = ByteLength / 4;
1155    break;
1156  default:
1157    llvm_unreachable("Unsupported character width!");
1158  }
1159
1160  StringLiteralBits.Kind = Kind;
1161  StringLiteralBits.CharByteWidth = CharByteWidth;
1162  StringLiteralBits.IsPascal = Pascal;
1163  StringLiteralBits.NumConcatenated = NumConcatenated;
1164  *getTrailingObjects<unsigned>() = Length;
1165
1166  // Initialize the trailing array of SourceLocation.
1167  // This is safe since SourceLocation is POD-like.
1168  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1169              NumConcatenated * sizeof(SourceLocation));
1170
1171  // Initialize the trailing array of char holding the string data.
1172  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1173
1174  setDependence(ExprDependence::None);
1175}
1176
1177StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1178                             unsigned Length, unsigned CharByteWidth)
1179    : Expr(StringLiteralClass, Empty) {
1180  StringLiteralBits.CharByteWidth = CharByteWidth;
1181  StringLiteralBits.NumConcatenated = NumConcatenated;
1182  *getTrailingObjects<unsigned>() = Length;
1183}
1184
1185StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1186                                     StringKind Kind, bool Pascal, QualType Ty,
1187                                     const SourceLocation *Loc,
1188                                     unsigned NumConcatenated) {
1189  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1190                               1, NumConcatenated, Str.size()),
1191                           alignof(StringLiteral));
1192  return new (Mem)
1193      StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1194}
1195
1196StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1197                                          unsigned NumConcatenated,
1198                                          unsigned Length,
1199                                          unsigned CharByteWidth) {
1200  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1201                               1, NumConcatenated, Length * CharByteWidth),
1202                           alignof(StringLiteral));
1203  return new (Mem)
1204      StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1205}
1206
1207void StringLiteral::outputString(raw_ostream &OS) const {
1208  switch (getKind()) {
1209  case Ordinary:
1210    break; // no prefix.
1211  case Wide:  OS << 'L'; break;
1212  case UTF8:  OS << "u8"; break;
1213  case UTF16: OS << 'u'; break;
1214  case UTF32: OS << 'U'; break;
1215  }
1216  OS << '"';
1217  static const char Hex[] = "0123456789ABCDEF";
1218
1219  unsigned LastSlashX = getLength();
1220  for (unsigned I = 0, N = getLength(); I != N; ++I) {
1221    uint32_t Char = getCodeUnit(I);
1222    StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1223    if (Escaped.empty()) {
1224      // FIXME: Convert UTF-8 back to codepoints before rendering.
1225
1226      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1227      // Leave invalid surrogates alone; we'll use \x for those.
1228      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1229          Char <= 0xdbff) {
1230        uint32_t Trail = getCodeUnit(I + 1);
1231        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1232          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1233          ++I;
1234        }
1235      }
1236
1237      if (Char > 0xff) {
1238        // If this is a wide string, output characters over 0xff using \x
1239        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1240        // codepoint: use \x escapes for invalid codepoints.
1241        if (getKind() == Wide ||
1242            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1243          // FIXME: Is this the best way to print wchar_t?
1244          OS << "\\x";
1245          int Shift = 28;
1246          while ((Char >> Shift) == 0)
1247            Shift -= 4;
1248          for (/**/; Shift >= 0; Shift -= 4)
1249            OS << Hex[(Char >> Shift) & 15];
1250          LastSlashX = I;
1251          continue;
1252        }
1253
1254        if (Char > 0xffff)
1255          OS << "\\U00"
1256             << Hex[(Char >> 20) & 15]
1257             << Hex[(Char >> 16) & 15];
1258        else
1259          OS << "\\u";
1260        OS << Hex[(Char >> 12) & 15]
1261           << Hex[(Char >>  8) & 15]
1262           << Hex[(Char >>  4) & 15]
1263           << Hex[(Char >>  0) & 15];
1264        continue;
1265      }
1266
1267      // If we used \x... for the previous character, and this character is a
1268      // hexadecimal digit, prevent it being slurped as part of the \x.
1269      if (LastSlashX + 1 == I) {
1270        switch (Char) {
1271          case '0': case '1': case '2': case '3': case '4':
1272          case '5': case '6': case '7': case '8': case '9':
1273          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1274          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1275            OS << "\"\"";
1276        }
1277      }
1278
1279      assert(Char <= 0xff &&
1280             "Characters above 0xff should already have been handled.");
1281
1282      if (isPrintable(Char))
1283        OS << (char)Char;
1284      else  // Output anything hard as an octal escape.
1285        OS << '\\'
1286           << (char)('0' + ((Char >> 6) & 7))
1287           << (char)('0' + ((Char >> 3) & 7))
1288           << (char)('0' + ((Char >> 0) & 7));
1289    } else {
1290      // Handle some common non-printable cases to make dumps prettier.
1291      OS << Escaped;
1292    }
1293  }
1294  OS << '"';
1295}
1296
1297/// getLocationOfByte - Return a source location that points to the specified
1298/// byte of this string literal.
1299///
1300/// Strings are amazingly complex.  They can be formed from multiple tokens and
1301/// can have escape sequences in them in addition to the usual trigraph and
1302/// escaped newline business.  This routine handles this complexity.
1303///
1304/// The *StartToken sets the first token to be searched in this function and
1305/// the *StartTokenByteOffset is the byte offset of the first token. Before
1306/// returning, it updates the *StartToken to the TokNo of the token being found
1307/// and sets *StartTokenByteOffset to the byte offset of the token in the
1308/// string.
1309/// Using these two parameters can reduce the time complexity from O(n^2) to
1310/// O(n) if one wants to get the location of byte for all the tokens in a
1311/// string.
1312///
1313SourceLocation
1314StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1315                                 const LangOptions &Features,
1316                                 const TargetInfo &Target, unsigned *StartToken,
1317                                 unsigned *StartTokenByteOffset) const {
1318  assert((getKind() == StringLiteral::Ordinary ||
1319          getKind() == StringLiteral::UTF8) &&
1320         "Only narrow string literals are currently supported");
1321
1322  // Loop over all of the tokens in this string until we find the one that
1323  // contains the byte we're looking for.
1324  unsigned TokNo = 0;
1325  unsigned StringOffset = 0;
1326  if (StartToken)
1327    TokNo = *StartToken;
1328  if (StartTokenByteOffset) {
1329    StringOffset = *StartTokenByteOffset;
1330    ByteNo -= StringOffset;
1331  }
1332  while (true) {
1333    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1334    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1335
1336    // Get the spelling of the string so that we can get the data that makes up
1337    // the string literal, not the identifier for the macro it is potentially
1338    // expanded through.
1339    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1340
1341    // Re-lex the token to get its length and original spelling.
1342    std::pair<FileID, unsigned> LocInfo =
1343        SM.getDecomposedLoc(StrTokSpellingLoc);
1344    bool Invalid = false;
1345    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1346    if (Invalid) {
1347      if (StartTokenByteOffset != nullptr)
1348        *StartTokenByteOffset = StringOffset;
1349      if (StartToken != nullptr)
1350        *StartToken = TokNo;
1351      return StrTokSpellingLoc;
1352    }
1353
1354    const char *StrData = Buffer.data()+LocInfo.second;
1355
1356    // Create a lexer starting at the beginning of this token.
1357    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1358                   Buffer.begin(), StrData, Buffer.end());
1359    Token TheTok;
1360    TheLexer.LexFromRawLexer(TheTok);
1361
1362    // Use the StringLiteralParser to compute the length of the string in bytes.
1363    StringLiteralParser SLP(TheTok, SM, Features, Target);
1364    unsigned TokNumBytes = SLP.GetStringLength();
1365
1366    // If the byte is in this token, return the location of the byte.
1367    if (ByteNo < TokNumBytes ||
1368        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1369      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1370
1371      // Now that we know the offset of the token in the spelling, use the
1372      // preprocessor to get the offset in the original source.
1373      if (StartTokenByteOffset != nullptr)
1374        *StartTokenByteOffset = StringOffset;
1375      if (StartToken != nullptr)
1376        *StartToken = TokNo;
1377      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1378    }
1379
1380    // Move to the next string token.
1381    StringOffset += TokNumBytes;
1382    ++TokNo;
1383    ByteNo -= TokNumBytes;
1384  }
1385}
1386
1387/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1388/// corresponds to, e.g. "sizeof" or "[pre]++".
1389StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1390  switch (Op) {
1391#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1392#include "clang/AST/OperationKinds.def"
1393  }
1394  llvm_unreachable("Unknown unary operator");
1395}
1396
1397UnaryOperatorKind
1398UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1399  switch (OO) {
1400  default: llvm_unreachable("No unary operator for overloaded function");
1401  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1402  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1403  case OO_Amp:        return UO_AddrOf;
1404  case OO_Star:       return UO_Deref;
1405  case OO_Plus:       return UO_Plus;
1406  case OO_Minus:      return UO_Minus;
1407  case OO_Tilde:      return UO_Not;
1408  case OO_Exclaim:    return UO_LNot;
1409  case OO_Coawait:    return UO_Coawait;
1410  }
1411}
1412
1413OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1414  switch (Opc) {
1415  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1416  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1417  case UO_AddrOf: return OO_Amp;
1418  case UO_Deref: return OO_Star;
1419  case UO_Plus: return OO_Plus;
1420  case UO_Minus: return OO_Minus;
1421  case UO_Not: return OO_Tilde;
1422  case UO_LNot: return OO_Exclaim;
1423  case UO_Coawait: return OO_Coawait;
1424  default: return OO_None;
1425  }
1426}
1427
1428
1429//===----------------------------------------------------------------------===//
1430// Postfix Operators.
1431//===----------------------------------------------------------------------===//
1432
1433CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1434                   ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1435                   SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1436                   unsigned MinNumArgs, ADLCallKind UsesADL)
1437    : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1438  NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1439  unsigned NumPreArgs = PreArgs.size();
1440  CallExprBits.NumPreArgs = NumPreArgs;
1441  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1442
1443  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1444  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1445  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1446         "OffsetToTrailingObjects overflow!");
1447
1448  CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1449
1450  setCallee(Fn);
1451  for (unsigned I = 0; I != NumPreArgs; ++I)
1452    setPreArg(I, PreArgs[I]);
1453  for (unsigned I = 0; I != Args.size(); ++I)
1454    setArg(I, Args[I]);
1455  for (unsigned I = Args.size(); I != NumArgs; ++I)
1456    setArg(I, nullptr);
1457
1458  this->computeDependence();
1459
1460  CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1461  if (hasStoredFPFeatures())
1462    setStoredFPFeatures(FPFeatures);
1463}
1464
1465CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1466                   bool HasFPFeatures, EmptyShell Empty)
1467    : Expr(SC, Empty), NumArgs(NumArgs) {
1468  CallExprBits.NumPreArgs = NumPreArgs;
1469  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1470
1471  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1472  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1473  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1474         "OffsetToTrailingObjects overflow!");
1475  CallExprBits.HasFPFeatures = HasFPFeatures;
1476}
1477
1478CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1479                           ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1480                           SourceLocation RParenLoc,
1481                           FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1482                           ADLCallKind UsesADL) {
1483  unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1484  unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1485      /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1486  void *Mem =
1487      Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1488  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1489                            RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1490}
1491
1492CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1493                                    ExprValueKind VK, SourceLocation RParenLoc,
1494                                    ADLCallKind UsesADL) {
1495  assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1496         "Misaligned memory in CallExpr::CreateTemporary!");
1497  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1498                            VK, RParenLoc, FPOptionsOverride(),
1499                            /*MinNumArgs=*/0, UsesADL);
1500}
1501
1502CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1503                                bool HasFPFeatures, EmptyShell Empty) {
1504  unsigned SizeOfTrailingObjects =
1505      CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1506  void *Mem =
1507      Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1508  return new (Mem)
1509      CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1510}
1511
1512unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1513  switch (SC) {
1514  case CallExprClass:
1515    return sizeof(CallExpr);
1516  case CXXOperatorCallExprClass:
1517    return sizeof(CXXOperatorCallExpr);
1518  case CXXMemberCallExprClass:
1519    return sizeof(CXXMemberCallExpr);
1520  case UserDefinedLiteralClass:
1521    return sizeof(UserDefinedLiteral);
1522  case CUDAKernelCallExprClass:
1523    return sizeof(CUDAKernelCallExpr);
1524  default:
1525    llvm_unreachable("unexpected class deriving from CallExpr!");
1526  }
1527}
1528
1529Decl *Expr::getReferencedDeclOfCallee() {
1530  Expr *CEE = IgnoreParenImpCasts();
1531
1532  while (SubstNonTypeTemplateParmExpr *NTTP =
1533             dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1534    CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1535  }
1536
1537  // If we're calling a dereference, look at the pointer instead.
1538  while (true) {
1539    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1540      if (BO->isPtrMemOp()) {
1541        CEE = BO->getRHS()->IgnoreParenImpCasts();
1542        continue;
1543      }
1544    } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1545      if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1546          UO->getOpcode() == UO_Plus) {
1547        CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1548        continue;
1549      }
1550    }
1551    break;
1552  }
1553
1554  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1555    return DRE->getDecl();
1556  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1557    return ME->getMemberDecl();
1558  if (auto *BE = dyn_cast<BlockExpr>(CEE))
1559    return BE->getBlockDecl();
1560
1561  return nullptr;
1562}
1563
1564/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1565unsigned CallExpr::getBuiltinCallee() const {
1566  auto *FDecl = getDirectCallee();
1567  return FDecl ? FDecl->getBuiltinID() : 0;
1568}
1569
1570bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1571  if (unsigned BI = getBuiltinCallee())
1572    return Ctx.BuiltinInfo.isUnevaluated(BI);
1573  return false;
1574}
1575
1576QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1577  const Expr *Callee = getCallee();
1578  QualType CalleeType = Callee->getType();
1579  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1580    CalleeType = FnTypePtr->getPointeeType();
1581  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1582    CalleeType = BPT->getPointeeType();
1583  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1584    if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1585      return Ctx.VoidTy;
1586
1587    if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1588      return Ctx.DependentTy;
1589
1590    // This should never be overloaded and so should never return null.
1591    CalleeType = Expr::findBoundMemberType(Callee);
1592    assert(!CalleeType.isNull());
1593  } else if (CalleeType->isDependentType() ||
1594             CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1595    return Ctx.DependentTy;
1596  }
1597
1598  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1599  return FnType->getReturnType();
1600}
1601
1602const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1603  // If the return type is a struct, union, or enum that is marked nodiscard,
1604  // then return the return type attribute.
1605  if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1606    if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1607      return A;
1608
1609  for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1610       TD = TD->desugar()->getAs<TypedefType>())
1611    if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1612      return A;
1613
1614  // Otherwise, see if the callee is marked nodiscard and return that attribute
1615  // instead.
1616  const Decl *D = getCalleeDecl();
1617  return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1618}
1619
1620SourceLocation CallExpr::getBeginLoc() const {
1621  if (isa<CXXOperatorCallExpr>(this))
1622    return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1623
1624  SourceLocation begin = getCallee()->getBeginLoc();
1625  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1626    begin = getArg(0)->getBeginLoc();
1627  return begin;
1628}
1629SourceLocation CallExpr::getEndLoc() const {
1630  if (isa<CXXOperatorCallExpr>(this))
1631    return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1632
1633  SourceLocation end = getRParenLoc();
1634  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1635    end = getArg(getNumArgs() - 1)->getEndLoc();
1636  return end;
1637}
1638
1639OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1640                                   SourceLocation OperatorLoc,
1641                                   TypeSourceInfo *tsi,
1642                                   ArrayRef<OffsetOfNode> comps,
1643                                   ArrayRef<Expr*> exprs,
1644                                   SourceLocation RParenLoc) {
1645  void *Mem = C.Allocate(
1646      totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1647
1648  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1649                                RParenLoc);
1650}
1651
1652OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1653                                        unsigned numComps, unsigned numExprs) {
1654  void *Mem =
1655      C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1656  return new (Mem) OffsetOfExpr(numComps, numExprs);
1657}
1658
1659OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1660                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1661                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1662                           SourceLocation RParenLoc)
1663    : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1664      OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1665      NumComps(comps.size()), NumExprs(exprs.size()) {
1666  for (unsigned i = 0; i != comps.size(); ++i)
1667    setComponent(i, comps[i]);
1668  for (unsigned i = 0; i != exprs.size(); ++i)
1669    setIndexExpr(i, exprs[i]);
1670
1671  setDependence(computeDependence(this));
1672}
1673
1674IdentifierInfo *OffsetOfNode::getFieldName() const {
1675  assert(getKind() == Field || getKind() == Identifier);
1676  if (getKind() == Field)
1677    return getField()->getIdentifier();
1678
1679  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1680}
1681
1682UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1683    UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1684    SourceLocation op, SourceLocation rp)
1685    : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1686      OpLoc(op), RParenLoc(rp) {
1687  assert(ExprKind <= UETT_Last && "invalid enum value!");
1688  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1689  assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1690         "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1691  UnaryExprOrTypeTraitExprBits.IsType = false;
1692  Argument.Ex = E;
1693  setDependence(computeDependence(this));
1694}
1695
1696MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1697                       ValueDecl *MemberDecl,
1698                       const DeclarationNameInfo &NameInfo, QualType T,
1699                       ExprValueKind VK, ExprObjectKind OK,
1700                       NonOdrUseReason NOUR)
1701    : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1702      MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1703  assert(!NameInfo.getName() ||
1704         MemberDecl->getDeclName() == NameInfo.getName());
1705  MemberExprBits.IsArrow = IsArrow;
1706  MemberExprBits.HasQualifierOrFoundDecl = false;
1707  MemberExprBits.HasTemplateKWAndArgsInfo = false;
1708  MemberExprBits.HadMultipleCandidates = false;
1709  MemberExprBits.NonOdrUseReason = NOUR;
1710  MemberExprBits.OperatorLoc = OperatorLoc;
1711  setDependence(computeDependence(this));
1712}
1713
1714MemberExpr *MemberExpr::Create(
1715    const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1716    NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1717    ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1718    DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1719    QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1720  bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1721                        FoundDecl.getAccess() != MemberDecl->getAccess();
1722  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1723  std::size_t Size =
1724      totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1725                       TemplateArgumentLoc>(
1726          HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1727          TemplateArgs ? TemplateArgs->size() : 0);
1728
1729  void *Mem = C.Allocate(Size, alignof(MemberExpr));
1730  MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1731                                       NameInfo, T, VK, OK, NOUR);
1732
1733  // FIXME: remove remaining dependence computation to computeDependence().
1734  auto Deps = E->getDependence();
1735  if (HasQualOrFound) {
1736    // FIXME: Wrong. We should be looking at the member declaration we found.
1737    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1738      Deps |= ExprDependence::TypeValueInstantiation;
1739    else if (QualifierLoc &&
1740             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1741      Deps |= ExprDependence::Instantiation;
1742
1743    E->MemberExprBits.HasQualifierOrFoundDecl = true;
1744
1745    MemberExprNameQualifier *NQ =
1746        E->getTrailingObjects<MemberExprNameQualifier>();
1747    NQ->QualifierLoc = QualifierLoc;
1748    NQ->FoundDecl = FoundDecl;
1749  }
1750
1751  E->MemberExprBits.HasTemplateKWAndArgsInfo =
1752      TemplateArgs || TemplateKWLoc.isValid();
1753
1754  if (TemplateArgs) {
1755    auto TemplateArgDeps = TemplateArgumentDependence::None;
1756    E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1757        TemplateKWLoc, *TemplateArgs,
1758        E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1759    if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1760      Deps |= ExprDependence::Instantiation;
1761  } else if (TemplateKWLoc.isValid()) {
1762    E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1763        TemplateKWLoc);
1764  }
1765  E->setDependence(Deps);
1766
1767  return E;
1768}
1769
1770MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1771                                    bool HasQualifier, bool HasFoundDecl,
1772                                    bool HasTemplateKWAndArgsInfo,
1773                                    unsigned NumTemplateArgs) {
1774  assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1775         "template args but no template arg info?");
1776  bool HasQualOrFound = HasQualifier || HasFoundDecl;
1777  std::size_t Size =
1778      totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1779                       TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1780                                            HasTemplateKWAndArgsInfo ? 1 : 0,
1781                                            NumTemplateArgs);
1782  void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1783  return new (Mem) MemberExpr(EmptyShell());
1784}
1785
1786void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1787  MemberDecl = NewD;
1788  if (getType()->isUndeducedType())
1789    setType(NewD->getType());
1790  setDependence(computeDependence(this));
1791}
1792
1793SourceLocation MemberExpr::getBeginLoc() const {
1794  if (isImplicitAccess()) {
1795    if (hasQualifier())
1796      return getQualifierLoc().getBeginLoc();
1797    return MemberLoc;
1798  }
1799
1800  // FIXME: We don't want this to happen. Rather, we should be able to
1801  // detect all kinds of implicit accesses more cleanly.
1802  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1803  if (BaseStartLoc.isValid())
1804    return BaseStartLoc;
1805  return MemberLoc;
1806}
1807SourceLocation MemberExpr::getEndLoc() const {
1808  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1809  if (hasExplicitTemplateArgs())
1810    EndLoc = getRAngleLoc();
1811  else if (EndLoc.isInvalid())
1812    EndLoc = getBase()->getEndLoc();
1813  return EndLoc;
1814}
1815
1816bool CastExpr::CastConsistency() const {
1817  switch (getCastKind()) {
1818  case CK_DerivedToBase:
1819  case CK_UncheckedDerivedToBase:
1820  case CK_DerivedToBaseMemberPointer:
1821  case CK_BaseToDerived:
1822  case CK_BaseToDerivedMemberPointer:
1823    assert(!path_empty() && "Cast kind should have a base path!");
1824    break;
1825
1826  case CK_CPointerToObjCPointerCast:
1827    assert(getType()->isObjCObjectPointerType());
1828    assert(getSubExpr()->getType()->isPointerType());
1829    goto CheckNoBasePath;
1830
1831  case CK_BlockPointerToObjCPointerCast:
1832    assert(getType()->isObjCObjectPointerType());
1833    assert(getSubExpr()->getType()->isBlockPointerType());
1834    goto CheckNoBasePath;
1835
1836  case CK_ReinterpretMemberPointer:
1837    assert(getType()->isMemberPointerType());
1838    assert(getSubExpr()->getType()->isMemberPointerType());
1839    goto CheckNoBasePath;
1840
1841  case CK_BitCast:
1842    // Arbitrary casts to C pointer types count as bitcasts.
1843    // Otherwise, we should only have block and ObjC pointer casts
1844    // here if they stay within the type kind.
1845    if (!getType()->isPointerType()) {
1846      assert(getType()->isObjCObjectPointerType() ==
1847             getSubExpr()->getType()->isObjCObjectPointerType());
1848      assert(getType()->isBlockPointerType() ==
1849             getSubExpr()->getType()->isBlockPointerType());
1850    }
1851    goto CheckNoBasePath;
1852
1853  case CK_AnyPointerToBlockPointerCast:
1854    assert(getType()->isBlockPointerType());
1855    assert(getSubExpr()->getType()->isAnyPointerType() &&
1856           !getSubExpr()->getType()->isBlockPointerType());
1857    goto CheckNoBasePath;
1858
1859  case CK_CopyAndAutoreleaseBlockObject:
1860    assert(getType()->isBlockPointerType());
1861    assert(getSubExpr()->getType()->isBlockPointerType());
1862    goto CheckNoBasePath;
1863
1864  case CK_FunctionToPointerDecay:
1865    assert(getType()->isPointerType());
1866    assert(getSubExpr()->getType()->isFunctionType());
1867    goto CheckNoBasePath;
1868
1869  case CK_AddressSpaceConversion: {
1870    auto Ty = getType();
1871    auto SETy = getSubExpr()->getType();
1872    assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1873    if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1874      Ty = Ty->getPointeeType();
1875      SETy = SETy->getPointeeType();
1876    }
1877    assert((Ty->isDependentType() || SETy->isDependentType()) ||
1878           (!Ty.isNull() && !SETy.isNull() &&
1879            Ty.getAddressSpace() != SETy.getAddressSpace()));
1880    goto CheckNoBasePath;
1881  }
1882  // These should not have an inheritance path.
1883  case CK_Dynamic:
1884  case CK_ToUnion:
1885  case CK_ArrayToPointerDecay:
1886  case CK_NullToMemberPointer:
1887  case CK_NullToPointer:
1888  case CK_ConstructorConversion:
1889  case CK_IntegralToPointer:
1890  case CK_PointerToIntegral:
1891  case CK_ToVoid:
1892  case CK_VectorSplat:
1893  case CK_IntegralCast:
1894  case CK_BooleanToSignedIntegral:
1895  case CK_IntegralToFloating:
1896  case CK_FloatingToIntegral:
1897  case CK_FloatingCast:
1898  case CK_ObjCObjectLValueCast:
1899  case CK_FloatingRealToComplex:
1900  case CK_FloatingComplexToReal:
1901  case CK_FloatingComplexCast:
1902  case CK_FloatingComplexToIntegralComplex:
1903  case CK_IntegralRealToComplex:
1904  case CK_IntegralComplexToReal:
1905  case CK_IntegralComplexCast:
1906  case CK_IntegralComplexToFloatingComplex:
1907  case CK_ARCProduceObject:
1908  case CK_ARCConsumeObject:
1909  case CK_ARCReclaimReturnedObject:
1910  case CK_ARCExtendBlockObject:
1911  case CK_ZeroToOCLOpaqueType:
1912  case CK_IntToOCLSampler:
1913  case CK_FloatingToFixedPoint:
1914  case CK_FixedPointToFloating:
1915  case CK_FixedPointCast:
1916  case CK_FixedPointToIntegral:
1917  case CK_IntegralToFixedPoint:
1918  case CK_MatrixCast:
1919    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1920    goto CheckNoBasePath;
1921
1922  case CK_Dependent:
1923  case CK_LValueToRValue:
1924  case CK_NoOp:
1925  case CK_AtomicToNonAtomic:
1926  case CK_NonAtomicToAtomic:
1927  case CK_PointerToBoolean:
1928  case CK_IntegralToBoolean:
1929  case CK_FloatingToBoolean:
1930  case CK_MemberPointerToBoolean:
1931  case CK_FloatingComplexToBoolean:
1932  case CK_IntegralComplexToBoolean:
1933  case CK_LValueBitCast:            // -> bool&
1934  case CK_LValueToRValueBitCast:
1935  case CK_UserDefinedConversion:    // operator bool()
1936  case CK_BuiltinFnToFnPtr:
1937  case CK_FixedPointToBoolean:
1938  CheckNoBasePath:
1939    assert(path_empty() && "Cast kind should not have a base path!");
1940    break;
1941  }
1942  return true;
1943}
1944
1945const char *CastExpr::getCastKindName(CastKind CK) {
1946  switch (CK) {
1947#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1948#include "clang/AST/OperationKinds.def"
1949  }
1950  llvm_unreachable("Unhandled cast kind!");
1951}
1952
1953namespace {
1954// Skip over implicit nodes produced as part of semantic analysis.
1955// Designed for use with IgnoreExprNodes.
1956Expr *ignoreImplicitSemaNodes(Expr *E) {
1957  if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1958    return Materialize->getSubExpr();
1959
1960  if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1961    return Binder->getSubExpr();
1962
1963  if (auto *Full = dyn_cast<FullExpr>(E))
1964    return Full->getSubExpr();
1965
1966  if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E);
1967      CPLIE && CPLIE->getInitExprs().size() == 1)
1968    return CPLIE->getInitExprs()[0];
1969
1970  return E;
1971}
1972} // namespace
1973
1974Expr *CastExpr::getSubExprAsWritten() {
1975  const Expr *SubExpr = nullptr;
1976
1977  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1978    SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1979
1980    // Conversions by constructor and conversion functions have a
1981    // subexpression describing the call; strip it off.
1982    if (E->getCastKind() == CK_ConstructorConversion) {
1983      SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
1984                                ignoreImplicitSemaNodes);
1985    } else if (E->getCastKind() == CK_UserDefinedConversion) {
1986      assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&
1987             "Unexpected SubExpr for CK_UserDefinedConversion.");
1988      if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1989        SubExpr = MCE->getImplicitObjectArgument();
1990    }
1991  }
1992
1993  return const_cast<Expr *>(SubExpr);
1994}
1995
1996NamedDecl *CastExpr::getConversionFunction() const {
1997  const Expr *SubExpr = nullptr;
1998
1999  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
2000    SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
2001
2002    if (E->getCastKind() == CK_ConstructorConversion)
2003      return cast<CXXConstructExpr>(SubExpr)->getConstructor();
2004
2005    if (E->getCastKind() == CK_UserDefinedConversion) {
2006      if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2007        return MCE->getMethodDecl();
2008    }
2009  }
2010
2011  return nullptr;
2012}
2013
2014CXXBaseSpecifier **CastExpr::path_buffer() {
2015  switch (getStmtClass()) {
2016#define ABSTRACT_STMT(x)
2017#define CASTEXPR(Type, Base)                                                   \
2018  case Stmt::Type##Class:                                                      \
2019    return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2020#define STMT(Type, Base)
2021#include "clang/AST/StmtNodes.inc"
2022  default:
2023    llvm_unreachable("non-cast expressions not possible here");
2024  }
2025}
2026
2027const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2028                                                        QualType opType) {
2029  auto RD = unionType->castAs<RecordType>()->getDecl();
2030  return getTargetFieldForToUnionCast(RD, opType);
2031}
2032
2033const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2034                                                        QualType OpType) {
2035  auto &Ctx = RD->getASTContext();
2036  RecordDecl::field_iterator Field, FieldEnd;
2037  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2038       Field != FieldEnd; ++Field) {
2039    if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2040        !Field->isUnnamedBitfield()) {
2041      return *Field;
2042    }
2043  }
2044  return nullptr;
2045}
2046
2047FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2048  assert(hasStoredFPFeatures());
2049  switch (getStmtClass()) {
2050  case ImplicitCastExprClass:
2051    return static_cast<ImplicitCastExpr *>(this)
2052        ->getTrailingObjects<FPOptionsOverride>();
2053  case CStyleCastExprClass:
2054    return static_cast<CStyleCastExpr *>(this)
2055        ->getTrailingObjects<FPOptionsOverride>();
2056  case CXXFunctionalCastExprClass:
2057    return static_cast<CXXFunctionalCastExpr *>(this)
2058        ->getTrailingObjects<FPOptionsOverride>();
2059  case CXXStaticCastExprClass:
2060    return static_cast<CXXStaticCastExpr *>(this)
2061        ->getTrailingObjects<FPOptionsOverride>();
2062  default:
2063    llvm_unreachable("Cast does not have FPFeatures");
2064  }
2065}
2066
2067ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2068                                           CastKind Kind, Expr *Operand,
2069                                           const CXXCastPath *BasePath,
2070                                           ExprValueKind VK,
2071                                           FPOptionsOverride FPO) {
2072  unsigned PathSize = (BasePath ? BasePath->size() : 0);
2073  void *Buffer =
2074      C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2075          PathSize, FPO.requiresTrailingStorage()));
2076  // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2077  // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2078  assert((Kind != CK_LValueToRValue ||
2079          !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2080         "invalid type for lvalue-to-rvalue conversion");
2081  ImplicitCastExpr *E =
2082      new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2083  if (PathSize)
2084    std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2085                              E->getTrailingObjects<CXXBaseSpecifier *>());
2086  return E;
2087}
2088
2089ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2090                                                unsigned PathSize,
2091                                                bool HasFPFeatures) {
2092  void *Buffer =
2093      C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2094          PathSize, HasFPFeatures));
2095  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2096}
2097
2098CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2099                                       ExprValueKind VK, CastKind K, Expr *Op,
2100                                       const CXXCastPath *BasePath,
2101                                       FPOptionsOverride FPO,
2102                                       TypeSourceInfo *WrittenTy,
2103                                       SourceLocation L, SourceLocation R) {
2104  unsigned PathSize = (BasePath ? BasePath->size() : 0);
2105  void *Buffer =
2106      C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2107          PathSize, FPO.requiresTrailingStorage()));
2108  CStyleCastExpr *E =
2109      new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2110  if (PathSize)
2111    std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2112                              E->getTrailingObjects<CXXBaseSpecifier *>());
2113  return E;
2114}
2115
2116CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2117                                            unsigned PathSize,
2118                                            bool HasFPFeatures) {
2119  void *Buffer =
2120      C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2121          PathSize, HasFPFeatures));
2122  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2123}
2124
2125/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2126/// corresponds to, e.g. "<<=".
2127StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2128  switch (Op) {
2129#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2130#include "clang/AST/OperationKinds.def"
2131  }
2132  llvm_unreachable("Invalid OpCode!");
2133}
2134
2135BinaryOperatorKind
2136BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2137  switch (OO) {
2138  default: llvm_unreachable("Not an overloadable binary operator");
2139  case OO_Plus: return BO_Add;
2140  case OO_Minus: return BO_Sub;
2141  case OO_Star: return BO_Mul;
2142  case OO_Slash: return BO_Div;
2143  case OO_Percent: return BO_Rem;
2144  case OO_Caret: return BO_Xor;
2145  case OO_Amp: return BO_And;
2146  case OO_Pipe: return BO_Or;
2147  case OO_Equal: return BO_Assign;
2148  case OO_Spaceship: return BO_Cmp;
2149  case OO_Less: return BO_LT;
2150  case OO_Greater: return BO_GT;
2151  case OO_PlusEqual: return BO_AddAssign;
2152  case OO_MinusEqual: return BO_SubAssign;
2153  case OO_StarEqual: return BO_MulAssign;
2154  case OO_SlashEqual: return BO_DivAssign;
2155  case OO_PercentEqual: return BO_RemAssign;
2156  case OO_CaretEqual: return BO_XorAssign;
2157  case OO_AmpEqual: return BO_AndAssign;
2158  case OO_PipeEqual: return BO_OrAssign;
2159  case OO_LessLess: return BO_Shl;
2160  case OO_GreaterGreater: return BO_Shr;
2161  case OO_LessLessEqual: return BO_ShlAssign;
2162  case OO_GreaterGreaterEqual: return BO_ShrAssign;
2163  case OO_EqualEqual: return BO_EQ;
2164  case OO_ExclaimEqual: return BO_NE;
2165  case OO_LessEqual: return BO_LE;
2166  case OO_GreaterEqual: return BO_GE;
2167  case OO_AmpAmp: return BO_LAnd;
2168  case OO_PipePipe: return BO_LOr;
2169  case OO_Comma: return BO_Comma;
2170  case OO_ArrowStar: return BO_PtrMemI;
2171  }
2172}
2173
2174OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2175  static const OverloadedOperatorKind OverOps[] = {
2176    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2177    OO_Star, OO_Slash, OO_Percent,
2178    OO_Plus, OO_Minus,
2179    OO_LessLess, OO_GreaterGreater,
2180    OO_Spaceship,
2181    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2182    OO_EqualEqual, OO_ExclaimEqual,
2183    OO_Amp,
2184    OO_Caret,
2185    OO_Pipe,
2186    OO_AmpAmp,
2187    OO_PipePipe,
2188    OO_Equal, OO_StarEqual,
2189    OO_SlashEqual, OO_PercentEqual,
2190    OO_PlusEqual, OO_MinusEqual,
2191    OO_LessLessEqual, OO_GreaterGreaterEqual,
2192    OO_AmpEqual, OO_CaretEqual,
2193    OO_PipeEqual,
2194    OO_Comma
2195  };
2196  return OverOps[Opc];
2197}
2198
2199bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2200                                                      Opcode Opc,
2201                                                      Expr *LHS, Expr *RHS) {
2202  if (Opc != BO_Add)
2203    return false;
2204
2205  // Check that we have one pointer and one integer operand.
2206  Expr *PExp;
2207  if (LHS->getType()->isPointerType()) {
2208    if (!RHS->getType()->isIntegerType())
2209      return false;
2210    PExp = LHS;
2211  } else if (RHS->getType()->isPointerType()) {
2212    if (!LHS->getType()->isIntegerType())
2213      return false;
2214    PExp = RHS;
2215  } else {
2216    return false;
2217  }
2218
2219  // Check that the pointer is a nullptr.
2220  if (!PExp->IgnoreParenCasts()
2221          ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2222    return false;
2223
2224  // Check that the pointee type is char-sized.
2225  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2226  if (!PTy || !PTy->getPointeeType()->isCharType())
2227    return false;
2228
2229  return true;
2230}
2231
2232SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2233                             QualType ResultTy, SourceLocation BLoc,
2234                             SourceLocation RParenLoc,
2235                             DeclContext *ParentContext)
2236    : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2237      BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2238  SourceLocExprBits.Kind = Kind;
2239  setDependence(ExprDependence::None);
2240}
2241
2242StringRef SourceLocExpr::getBuiltinStr() const {
2243  switch (getIdentKind()) {
2244  case File:
2245    return "__builtin_FILE";
2246  case Function:
2247    return "__builtin_FUNCTION";
2248  case Line:
2249    return "__builtin_LINE";
2250  case Column:
2251    return "__builtin_COLUMN";
2252  case SourceLocStruct:
2253    return "__builtin_source_location";
2254  }
2255  llvm_unreachable("unexpected IdentKind!");
2256}
2257
2258APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2259                                         const Expr *DefaultExpr) const {
2260  SourceLocation Loc;
2261  const DeclContext *Context;
2262
2263  std::tie(Loc,
2264           Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2265    if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2266      return {DIE->getUsedLocation(), DIE->getUsedContext()};
2267    if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2268      return {DAE->getUsedLocation(), DAE->getUsedContext()};
2269    return {this->getLocation(), this->getParentContext()};
2270  }();
2271
2272  PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2273      Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2274
2275  auto MakeStringLiteral = [&](StringRef Tmp) {
2276    using LValuePathEntry = APValue::LValuePathEntry;
2277    StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2278    // Decay the string to a pointer to the first character.
2279    LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2280    return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2281  };
2282
2283  switch (getIdentKind()) {
2284  case SourceLocExpr::File: {
2285    SmallString<256> Path(PLoc.getFilename());
2286    clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2287                                                 Ctx.getTargetInfo());
2288    return MakeStringLiteral(Path);
2289  }
2290  case SourceLocExpr::Function: {
2291    const auto *CurDecl = dyn_cast<Decl>(Context);
2292    return MakeStringLiteral(
2293        CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2294                : std::string(""));
2295  }
2296  case SourceLocExpr::Line:
2297  case SourceLocExpr::Column: {
2298    llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2299                        /*isUnsigned=*/true);
2300    IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2301                                                   : PLoc.getColumn();
2302    return APValue(IntVal);
2303  }
2304  case SourceLocExpr::SourceLocStruct: {
2305    // Fill in a std::source_location::__impl structure, by creating an
2306    // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2307    // that.
2308    const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2309    assert(ImplDecl);
2310
2311    // Construct an APValue for the __impl struct, and get or create a Decl
2312    // corresponding to that. Note that we've already verified that the shape of
2313    // the ImplDecl type is as expected.
2314
2315    APValue Value(APValue::UninitStruct(), 0, 4);
2316    for (FieldDecl *F : ImplDecl->fields()) {
2317      StringRef Name = F->getName();
2318      if (Name == "_M_file_name") {
2319        SmallString<256> Path(PLoc.getFilename());
2320        clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2321                                                     Ctx.getTargetInfo());
2322        Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2323      } else if (Name == "_M_function_name") {
2324        // Note: this emits the PrettyFunction name -- different than what
2325        // __builtin_FUNCTION() above returns!
2326        const auto *CurDecl = dyn_cast<Decl>(Context);
2327        Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2328            CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2329                ? StringRef(PredefinedExpr::ComputeName(
2330                      PredefinedExpr::PrettyFunction, CurDecl))
2331                : "");
2332      } else if (Name == "_M_line") {
2333        QualType Ty = F->getType();
2334        llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2335                            Ty->hasUnsignedIntegerRepresentation());
2336        IntVal = PLoc.getLine();
2337        Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2338      } else if (Name == "_M_column") {
2339        QualType Ty = F->getType();
2340        llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2341                            Ty->hasUnsignedIntegerRepresentation());
2342        IntVal = PLoc.getColumn();
2343        Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2344      }
2345    }
2346
2347    UnnamedGlobalConstantDecl *GV =
2348        Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2349
2350    return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2351                   false);
2352  }
2353  }
2354  llvm_unreachable("unhandled case");
2355}
2356
2357InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2358                           ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2359    : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2360      InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2361      RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2362  sawArrayRangeDesignator(false);
2363  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2364
2365  setDependence(computeDependence(this));
2366}
2367
2368void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2369  if (NumInits > InitExprs.size())
2370    InitExprs.reserve(C, NumInits);
2371}
2372
2373void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2374  InitExprs.resize(C, NumInits, nullptr);
2375}
2376
2377Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2378  if (Init >= InitExprs.size()) {
2379    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2380    setInit(Init, expr);
2381    return nullptr;
2382  }
2383
2384  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2385  setInit(Init, expr);
2386  return Result;
2387}
2388
2389void InitListExpr::setArrayFiller(Expr *filler) {
2390  assert(!hasArrayFiller() && "Filler already set!");
2391  ArrayFillerOrUnionFieldInit = filler;
2392  // Fill out any "holes" in the array due to designated initializers.
2393  Expr **inits = getInits();
2394  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2395    if (inits[i] == nullptr)
2396      inits[i] = filler;
2397}
2398
2399bool InitListExpr::isStringLiteralInit() const {
2400  if (getNumInits() != 1)
2401    return false;
2402  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2403  if (!AT || !AT->getElementType()->isIntegerType())
2404    return false;
2405  // It is possible for getInit() to return null.
2406  const Expr *Init = getInit(0);
2407  if (!Init)
2408    return false;
2409  Init = Init->IgnoreParenImpCasts();
2410  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2411}
2412
2413bool InitListExpr::isTransparent() const {
2414  assert(isSemanticForm() && "syntactic form never semantically transparent");
2415
2416  // A glvalue InitListExpr is always just sugar.
2417  if (isGLValue()) {
2418    assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2419    return true;
2420  }
2421
2422  // Otherwise, we're sugar if and only if we have exactly one initializer that
2423  // is of the same type.
2424  if (getNumInits() != 1 || !getInit(0))
2425    return false;
2426
2427  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2428  // transparent struct copy.
2429  if (!getInit(0)->isPRValue() && getType()->isRecordType())
2430    return false;
2431
2432  return getType().getCanonicalType() ==
2433         getInit(0)->getType().getCanonicalType();
2434}
2435
2436bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2437  assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2438
2439  if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2440    return false;
2441  }
2442
2443  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2444  return Lit && Lit->getValue() == 0;
2445}
2446
2447SourceLocation InitListExpr::getBeginLoc() const {
2448  if (InitListExpr *SyntacticForm = getSyntacticForm())
2449    return SyntacticForm->getBeginLoc();
2450  SourceLocation Beg = LBraceLoc;
2451  if (Beg.isInvalid()) {
2452    // Find the first non-null initializer.
2453    for (InitExprsTy::const_iterator I = InitExprs.begin(),
2454                                     E = InitExprs.end();
2455      I != E; ++I) {
2456      if (Stmt *S = *I) {
2457        Beg = S->getBeginLoc();
2458        break;
2459      }
2460    }
2461  }
2462  return Beg;
2463}
2464
2465SourceLocation InitListExpr::getEndLoc() const {
2466  if (InitListExpr *SyntacticForm = getSyntacticForm())
2467    return SyntacticForm->getEndLoc();
2468  SourceLocation End = RBraceLoc;
2469  if (End.isInvalid()) {
2470    // Find the first non-null initializer from the end.
2471    for (Stmt *S : llvm::reverse(InitExprs)) {
2472      if (S) {
2473        End = S->getEndLoc();
2474        break;
2475      }
2476    }
2477  }
2478  return End;
2479}
2480
2481/// getFunctionType - Return the underlying function type for this block.
2482///
2483const FunctionProtoType *BlockExpr::getFunctionType() const {
2484  // The block pointer is never sugared, but the function type might be.
2485  return cast<BlockPointerType>(getType())
2486           ->getPointeeType()->castAs<FunctionProtoType>();
2487}
2488
2489SourceLocation BlockExpr::getCaretLocation() const {
2490  return TheBlock->getCaretLocation();
2491}
2492const Stmt *BlockExpr::getBody() const {
2493  return TheBlock->getBody();
2494}
2495Stmt *BlockExpr::getBody() {
2496  return TheBlock->getBody();
2497}
2498
2499
2500//===----------------------------------------------------------------------===//
2501// Generic Expression Routines
2502//===----------------------------------------------------------------------===//
2503
2504bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2505  // In C++11, discarded-value expressions of a certain form are special,
2506  // according to [expr]p10:
2507  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2508  //   expression is a glvalue of volatile-qualified type and it has
2509  //   one of the following forms:
2510  if (!isGLValue() || !getType().isVolatileQualified())
2511    return false;
2512
2513  const Expr *E = IgnoreParens();
2514
2515  //   - id-expression (5.1.1),
2516  if (isa<DeclRefExpr>(E))
2517    return true;
2518
2519  //   - subscripting (5.2.1),
2520  if (isa<ArraySubscriptExpr>(E))
2521    return true;
2522
2523  //   - class member access (5.2.5),
2524  if (isa<MemberExpr>(E))
2525    return true;
2526
2527  //   - indirection (5.3.1),
2528  if (auto *UO = dyn_cast<UnaryOperator>(E))
2529    if (UO->getOpcode() == UO_Deref)
2530      return true;
2531
2532  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2533    //   - pointer-to-member operation (5.5),
2534    if (BO->isPtrMemOp())
2535      return true;
2536
2537    //   - comma expression (5.18) where the right operand is one of the above.
2538    if (BO->getOpcode() == BO_Comma)
2539      return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2540  }
2541
2542  //   - conditional expression (5.16) where both the second and the third
2543  //     operands are one of the above, or
2544  if (auto *CO = dyn_cast<ConditionalOperator>(E))
2545    return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2546           CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2547  // The related edge case of "*x ?: *x".
2548  if (auto *BCO =
2549          dyn_cast<BinaryConditionalOperator>(E)) {
2550    if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2551      return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2552             BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2553  }
2554
2555  // Objective-C++ extensions to the rule.
2556  if (isa<ObjCIvarRefExpr>(E))
2557    return true;
2558  if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2559    if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2560      return true;
2561  }
2562
2563  return false;
2564}
2565
2566/// isUnusedResultAWarning - Return true if this immediate expression should
2567/// be warned about if the result is unused.  If so, fill in Loc and Ranges
2568/// with location to warn on and the source range[s] to report with the
2569/// warning.
2570bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2571                                  SourceRange &R1, SourceRange &R2,
2572                                  ASTContext &Ctx) const {
2573  // Don't warn if the expr is type dependent. The type could end up
2574  // instantiating to void.
2575  if (isTypeDependent())
2576    return false;
2577
2578  switch (getStmtClass()) {
2579  default:
2580    if (getType()->isVoidType())
2581      return false;
2582    WarnE = this;
2583    Loc = getExprLoc();
2584    R1 = getSourceRange();
2585    return true;
2586  case ParenExprClass:
2587    return cast<ParenExpr>(this)->getSubExpr()->
2588      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2589  case GenericSelectionExprClass:
2590    return cast<GenericSelectionExpr>(this)->getResultExpr()->
2591      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2592  case CoawaitExprClass:
2593  case CoyieldExprClass:
2594    return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2595      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2596  case ChooseExprClass:
2597    return cast<ChooseExpr>(this)->getChosenSubExpr()->
2598      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2599  case UnaryOperatorClass: {
2600    const UnaryOperator *UO = cast<UnaryOperator>(this);
2601
2602    switch (UO->getOpcode()) {
2603    case UO_Plus:
2604    case UO_Minus:
2605    case UO_AddrOf:
2606    case UO_Not:
2607    case UO_LNot:
2608    case UO_Deref:
2609      break;
2610    case UO_Coawait:
2611      // This is just the 'operator co_await' call inside the guts of a
2612      // dependent co_await call.
2613    case UO_PostInc:
2614    case UO_PostDec:
2615    case UO_PreInc:
2616    case UO_PreDec:                 // ++/--
2617      return false;  // Not a warning.
2618    case UO_Real:
2619    case UO_Imag:
2620      // accessing a piece of a volatile complex is a side-effect.
2621      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2622          .isVolatileQualified())
2623        return false;
2624      break;
2625    case UO_Extension:
2626      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2627    }
2628    WarnE = this;
2629    Loc = UO->getOperatorLoc();
2630    R1 = UO->getSubExpr()->getSourceRange();
2631    return true;
2632  }
2633  case BinaryOperatorClass: {
2634    const BinaryOperator *BO = cast<BinaryOperator>(this);
2635    switch (BO->getOpcode()) {
2636      default:
2637        break;
2638      // Consider the RHS of comma for side effects. LHS was checked by
2639      // Sema::CheckCommaOperands.
2640      case BO_Comma:
2641        // ((foo = <blah>), 0) is an idiom for hiding the result (and
2642        // lvalue-ness) of an assignment written in a macro.
2643        if (IntegerLiteral *IE =
2644              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2645          if (IE->getValue() == 0)
2646            return false;
2647        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2648      // Consider '||', '&&' to have side effects if the LHS or RHS does.
2649      case BO_LAnd:
2650      case BO_LOr:
2651        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2652            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2653          return false;
2654        break;
2655    }
2656    if (BO->isAssignmentOp())
2657      return false;
2658    WarnE = this;
2659    Loc = BO->getOperatorLoc();
2660    R1 = BO->getLHS()->getSourceRange();
2661    R2 = BO->getRHS()->getSourceRange();
2662    return true;
2663  }
2664  case CompoundAssignOperatorClass:
2665  case VAArgExprClass:
2666  case AtomicExprClass:
2667    return false;
2668
2669  case ConditionalOperatorClass: {
2670    // If only one of the LHS or RHS is a warning, the operator might
2671    // be being used for control flow. Only warn if both the LHS and
2672    // RHS are warnings.
2673    const auto *Exp = cast<ConditionalOperator>(this);
2674    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2675           Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2676  }
2677  case BinaryConditionalOperatorClass: {
2678    const auto *Exp = cast<BinaryConditionalOperator>(this);
2679    return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2680  }
2681
2682  case MemberExprClass:
2683    WarnE = this;
2684    Loc = cast<MemberExpr>(this)->getMemberLoc();
2685    R1 = SourceRange(Loc, Loc);
2686    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2687    return true;
2688
2689  case ArraySubscriptExprClass:
2690    WarnE = this;
2691    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2692    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2693    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2694    return true;
2695
2696  case CXXOperatorCallExprClass: {
2697    // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2698    // overloads as there is no reasonable way to define these such that they
2699    // have non-trivial, desirable side-effects. See the -Wunused-comparison
2700    // warning: operators == and != are commonly typo'ed, and so warning on them
2701    // provides additional value as well. If this list is updated,
2702    // DiagnoseUnusedComparison should be as well.
2703    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2704    switch (Op->getOperator()) {
2705    default:
2706      break;
2707    case OO_EqualEqual:
2708    case OO_ExclaimEqual:
2709    case OO_Less:
2710    case OO_Greater:
2711    case OO_GreaterEqual:
2712    case OO_LessEqual:
2713      if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2714          Op->getCallReturnType(Ctx)->isVoidType())
2715        break;
2716      WarnE = this;
2717      Loc = Op->getOperatorLoc();
2718      R1 = Op->getSourceRange();
2719      return true;
2720    }
2721
2722    // Fallthrough for generic call handling.
2723    [[fallthrough]];
2724  }
2725  case CallExprClass:
2726  case CXXMemberCallExprClass:
2727  case UserDefinedLiteralClass: {
2728    // If this is a direct call, get the callee.
2729    const CallExpr *CE = cast<CallExpr>(this);
2730    if (const Decl *FD = CE->getCalleeDecl()) {
2731      // If the callee has attribute pure, const, or warn_unused_result, warn
2732      // about it. void foo() { strlen("bar"); } should warn.
2733      //
2734      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2735      // updated to match for QoI.
2736      if (CE->hasUnusedResultAttr(Ctx) ||
2737          FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2738        WarnE = this;
2739        Loc = CE->getCallee()->getBeginLoc();
2740        R1 = CE->getCallee()->getSourceRange();
2741
2742        if (unsigned NumArgs = CE->getNumArgs())
2743          R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2744                           CE->getArg(NumArgs - 1)->getEndLoc());
2745        return true;
2746      }
2747    }
2748    return false;
2749  }
2750
2751  // If we don't know precisely what we're looking at, let's not warn.
2752  case UnresolvedLookupExprClass:
2753  case CXXUnresolvedConstructExprClass:
2754  case RecoveryExprClass:
2755    return false;
2756
2757  case CXXTemporaryObjectExprClass:
2758  case CXXConstructExprClass: {
2759    if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2760      const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2761      if (Type->hasAttr<WarnUnusedAttr>() ||
2762          (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2763        WarnE = this;
2764        Loc = getBeginLoc();
2765        R1 = getSourceRange();
2766        return true;
2767      }
2768    }
2769
2770    const auto *CE = cast<CXXConstructExpr>(this);
2771    if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2772      const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2773      if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2774        WarnE = this;
2775        Loc = getBeginLoc();
2776        R1 = getSourceRange();
2777
2778        if (unsigned NumArgs = CE->getNumArgs())
2779          R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2780                           CE->getArg(NumArgs - 1)->getEndLoc());
2781        return true;
2782      }
2783    }
2784
2785    return false;
2786  }
2787
2788  case ObjCMessageExprClass: {
2789    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2790    if (Ctx.getLangOpts().ObjCAutoRefCount &&
2791        ME->isInstanceMessage() &&
2792        !ME->getType()->isVoidType() &&
2793        ME->getMethodFamily() == OMF_init) {
2794      WarnE = this;
2795      Loc = getExprLoc();
2796      R1 = ME->getSourceRange();
2797      return true;
2798    }
2799
2800    if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2801      if (MD->hasAttr<WarnUnusedResultAttr>()) {
2802        WarnE = this;
2803        Loc = getExprLoc();
2804        return true;
2805      }
2806
2807    return false;
2808  }
2809
2810  case ObjCPropertyRefExprClass:
2811  case ObjCSubscriptRefExprClass:
2812    WarnE = this;
2813    Loc = getExprLoc();
2814    R1 = getSourceRange();
2815    return true;
2816
2817  case PseudoObjectExprClass: {
2818    const auto *POE = cast<PseudoObjectExpr>(this);
2819
2820    // For some syntactic forms, we should always warn.
2821    if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2822            POE->getSyntacticForm())) {
2823      WarnE = this;
2824      Loc = getExprLoc();
2825      R1 = getSourceRange();
2826      return true;
2827    }
2828
2829    // For others, we should never warn.
2830    if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2831      if (BO->isAssignmentOp())
2832        return false;
2833    if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2834      if (UO->isIncrementDecrementOp())
2835        return false;
2836
2837    // Otherwise, warn if the result expression would warn.
2838    const Expr *Result = POE->getResultExpr();
2839    return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2840  }
2841
2842  case StmtExprClass: {
2843    // Statement exprs don't logically have side effects themselves, but are
2844    // sometimes used in macros in ways that give them a type that is unused.
2845    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2846    // however, if the result of the stmt expr is dead, we don't want to emit a
2847    // warning.
2848    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2849    if (!CS->body_empty()) {
2850      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2851        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2852      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2853        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2854          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2855    }
2856
2857    if (getType()->isVoidType())
2858      return false;
2859    WarnE = this;
2860    Loc = cast<StmtExpr>(this)->getLParenLoc();
2861    R1 = getSourceRange();
2862    return true;
2863  }
2864  case CXXFunctionalCastExprClass:
2865  case CStyleCastExprClass: {
2866    // Ignore an explicit cast to void, except in C++98 if the operand is a
2867    // volatile glvalue for which we would trigger an implicit read in any
2868    // other language mode. (Such an implicit read always happens as part of
2869    // the lvalue conversion in C, and happens in C++ for expressions of all
2870    // forms where it seems likely the user intended to trigger a volatile
2871    // load.)
2872    const CastExpr *CE = cast<CastExpr>(this);
2873    const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2874    if (CE->getCastKind() == CK_ToVoid) {
2875      if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2876          SubE->isReadIfDiscardedInCPlusPlus11()) {
2877        // Suppress the "unused value" warning for idiomatic usage of
2878        // '(void)var;' used to suppress "unused variable" warnings.
2879        if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2880          if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2881            if (!VD->isExternallyVisible())
2882              return false;
2883
2884        // The lvalue-to-rvalue conversion would have no effect for an array.
2885        // It's implausible that the programmer expected this to result in a
2886        // volatile array load, so don't warn.
2887        if (SubE->getType()->isArrayType())
2888          return false;
2889
2890        return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2891      }
2892      return false;
2893    }
2894
2895    // If this is a cast to a constructor conversion, check the operand.
2896    // Otherwise, the result of the cast is unused.
2897    if (CE->getCastKind() == CK_ConstructorConversion)
2898      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2899    if (CE->getCastKind() == CK_Dependent)
2900      return false;
2901
2902    WarnE = this;
2903    if (const CXXFunctionalCastExpr *CXXCE =
2904            dyn_cast<CXXFunctionalCastExpr>(this)) {
2905      Loc = CXXCE->getBeginLoc();
2906      R1 = CXXCE->getSubExpr()->getSourceRange();
2907    } else {
2908      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2909      Loc = CStyleCE->getLParenLoc();
2910      R1 = CStyleCE->getSubExpr()->getSourceRange();
2911    }
2912    return true;
2913  }
2914  case ImplicitCastExprClass: {
2915    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2916
2917    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2918    if (ICE->getCastKind() == CK_LValueToRValue &&
2919        ICE->getSubExpr()->getType().isVolatileQualified())
2920      return false;
2921
2922    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2923  }
2924  case CXXDefaultArgExprClass:
2925    return (cast<CXXDefaultArgExpr>(this)
2926            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2927  case CXXDefaultInitExprClass:
2928    return (cast<CXXDefaultInitExpr>(this)
2929            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2930
2931  case CXXNewExprClass:
2932    // FIXME: In theory, there might be new expressions that don't have side
2933    // effects (e.g. a placement new with an uninitialized POD).
2934  case CXXDeleteExprClass:
2935    return false;
2936  case MaterializeTemporaryExprClass:
2937    return cast<MaterializeTemporaryExpr>(this)
2938        ->getSubExpr()
2939        ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2940  case CXXBindTemporaryExprClass:
2941    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2942               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2943  case ExprWithCleanupsClass:
2944    return cast<ExprWithCleanups>(this)->getSubExpr()
2945               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2946  }
2947}
2948
2949/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2950/// returns true, if it is; false otherwise.
2951bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2952  const Expr *E = IgnoreParens();
2953  switch (E->getStmtClass()) {
2954  default:
2955    return false;
2956  case ObjCIvarRefExprClass:
2957    return true;
2958  case Expr::UnaryOperatorClass:
2959    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2960  case ImplicitCastExprClass:
2961    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2962  case MaterializeTemporaryExprClass:
2963    return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2964        Ctx);
2965  case CStyleCastExprClass:
2966    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2967  case DeclRefExprClass: {
2968    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2969
2970    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2971      if (VD->hasGlobalStorage())
2972        return true;
2973      QualType T = VD->getType();
2974      // dereferencing to a  pointer is always a gc'able candidate,
2975      // unless it is __weak.
2976      return T->isPointerType() &&
2977             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2978    }
2979    return false;
2980  }
2981  case MemberExprClass: {
2982    const MemberExpr *M = cast<MemberExpr>(E);
2983    return M->getBase()->isOBJCGCCandidate(Ctx);
2984  }
2985  case ArraySubscriptExprClass:
2986    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2987  }
2988}
2989
2990bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2991  if (isTypeDependent())
2992    return false;
2993  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2994}
2995
2996QualType Expr::findBoundMemberType(const Expr *expr) {
2997  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2998
2999  // Bound member expressions are always one of these possibilities:
3000  //   x->m      x.m      x->*y      x.*y
3001  // (possibly parenthesized)
3002
3003  expr = expr->IgnoreParens();
3004  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
3005    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3006    return mem->getMemberDecl()->getType();
3007  }
3008
3009  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3010    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3011                      ->getPointeeType();
3012    assert(type->isFunctionType());
3013    return type;
3014  }
3015
3016  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3017  return QualType();
3018}
3019
3020Expr *Expr::IgnoreImpCasts() {
3021  return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
3022}
3023
3024Expr *Expr::IgnoreCasts() {
3025  return IgnoreExprNodes(this, IgnoreCastsSingleStep);
3026}
3027
3028Expr *Expr::IgnoreImplicit() {
3029  return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
3030}
3031
3032Expr *Expr::IgnoreImplicitAsWritten() {
3033  return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
3034}
3035
3036Expr *Expr::IgnoreParens() {
3037  return IgnoreExprNodes(this, IgnoreParensSingleStep);
3038}
3039
3040Expr *Expr::IgnoreParenImpCasts() {
3041  return IgnoreExprNodes(this, IgnoreParensSingleStep,
3042                         IgnoreImplicitCastsExtraSingleStep);
3043}
3044
3045Expr *Expr::IgnoreParenCasts() {
3046  return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
3047}
3048
3049Expr *Expr::IgnoreConversionOperatorSingleStep() {
3050  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3051    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
3052      return MCE->getImplicitObjectArgument();
3053  }
3054  return this;
3055}
3056
3057Expr *Expr::IgnoreParenLValueCasts() {
3058  return IgnoreExprNodes(this, IgnoreParensSingleStep,
3059                         IgnoreLValueCastsSingleStep);
3060}
3061
3062Expr *Expr::IgnoreParenBaseCasts() {
3063  return IgnoreExprNodes(this, IgnoreParensSingleStep,
3064                         IgnoreBaseCastsSingleStep);
3065}
3066
3067Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3068  auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3069    if (auto *CE = dyn_cast<CastExpr>(E)) {
3070      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3071      // ptr<->int casts of the same width. We also ignore all identity casts.
3072      Expr *SubExpr = CE->getSubExpr();
3073      bool IsIdentityCast =
3074          Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3075      bool IsSameWidthCast = (E->getType()->isPointerType() ||
3076                              E->getType()->isIntegralType(Ctx)) &&
3077                             (SubExpr->getType()->isPointerType() ||
3078                              SubExpr->getType()->isIntegralType(Ctx)) &&
3079                             (Ctx.getTypeSize(E->getType()) ==
3080                              Ctx.getTypeSize(SubExpr->getType()));
3081
3082      if (IsIdentityCast || IsSameWidthCast)
3083        return SubExpr;
3084    } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3085      return NTTP->getReplacement();
3086
3087    return E;
3088  };
3089  return IgnoreExprNodes(this, IgnoreParensSingleStep,
3090                         IgnoreNoopCastsSingleStep);
3091}
3092
3093Expr *Expr::IgnoreUnlessSpelledInSource() {
3094  auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3095    if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3096      auto *SE = Cast->getSubExpr();
3097      if (SE->getSourceRange() == E->getSourceRange())
3098        return SE;
3099    }
3100
3101    if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3102      auto NumArgs = C->getNumArgs();
3103      if (NumArgs == 1 ||
3104          (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3105        Expr *A = C->getArg(0);
3106        if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3107          return A;
3108      }
3109    }
3110    return E;
3111  };
3112  auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3113    if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3114      Expr *ExprNode = C->getImplicitObjectArgument();
3115      if (ExprNode->getSourceRange() == E->getSourceRange()) {
3116        return ExprNode;
3117      }
3118      if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3119        if (PE->getSourceRange() == C->getSourceRange()) {
3120          return cast<Expr>(PE);
3121        }
3122      }
3123      ExprNode = ExprNode->IgnoreParenImpCasts();
3124      if (ExprNode->getSourceRange() == E->getSourceRange())
3125        return ExprNode;
3126    }
3127    return E;
3128  };
3129  return IgnoreExprNodes(
3130      this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3131      IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3132      IgnoreImplicitMemberCallSingleStep);
3133}
3134
3135bool Expr::isDefaultArgument() const {
3136  const Expr *E = this;
3137  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3138    E = M->getSubExpr();
3139
3140  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3141    E = ICE->getSubExprAsWritten();
3142
3143  return isa<CXXDefaultArgExpr>(E);
3144}
3145
3146/// Skip over any no-op casts and any temporary-binding
3147/// expressions.
3148static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3149  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3150    E = M->getSubExpr();
3151
3152  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3153    if (ICE->getCastKind() == CK_NoOp)
3154      E = ICE->getSubExpr();
3155    else
3156      break;
3157  }
3158
3159  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3160    E = BE->getSubExpr();
3161
3162  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3163    if (ICE->getCastKind() == CK_NoOp)
3164      E = ICE->getSubExpr();
3165    else
3166      break;
3167  }
3168
3169  return E->IgnoreParens();
3170}
3171
3172/// isTemporaryObject - Determines if this expression produces a
3173/// temporary of the given class type.
3174bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3175  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3176    return false;
3177
3178  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3179
3180  // Temporaries are by definition pr-values of class type.
3181  if (!E->Classify(C).isPRValue()) {
3182    // In this context, property reference is a message call and is pr-value.
3183    if (!isa<ObjCPropertyRefExpr>(E))
3184      return false;
3185  }
3186
3187  // Black-list a few cases which yield pr-values of class type that don't
3188  // refer to temporaries of that type:
3189
3190  // - implicit derived-to-base conversions
3191  if (isa<ImplicitCastExpr>(E)) {
3192    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3193    case CK_DerivedToBase:
3194    case CK_UncheckedDerivedToBase:
3195      return false;
3196    default:
3197      break;
3198    }
3199  }
3200
3201  // - member expressions (all)
3202  if (isa<MemberExpr>(E))
3203    return false;
3204
3205  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3206    if (BO->isPtrMemOp())
3207      return false;
3208
3209  // - opaque values (all)
3210  if (isa<OpaqueValueExpr>(E))
3211    return false;
3212
3213  return true;
3214}
3215
3216bool Expr::isImplicitCXXThis() const {
3217  const Expr *E = this;
3218
3219  // Strip away parentheses and casts we don't care about.
3220  while (true) {
3221    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3222      E = Paren->getSubExpr();
3223      continue;
3224    }
3225
3226    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3227      if (ICE->getCastKind() == CK_NoOp ||
3228          ICE->getCastKind() == CK_LValueToRValue ||
3229          ICE->getCastKind() == CK_DerivedToBase ||
3230          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3231        E = ICE->getSubExpr();
3232        continue;
3233      }
3234    }
3235
3236    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3237      if (UnOp->getOpcode() == UO_Extension) {
3238        E = UnOp->getSubExpr();
3239        continue;
3240      }
3241    }
3242
3243    if (const MaterializeTemporaryExpr *M
3244                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
3245      E = M->getSubExpr();
3246      continue;
3247    }
3248
3249    break;
3250  }
3251
3252  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3253    return This->isImplicit();
3254
3255  return false;
3256}
3257
3258/// hasAnyTypeDependentArguments - Determines if any of the expressions
3259/// in Exprs is type-dependent.
3260bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3261  for (unsigned I = 0; I < Exprs.size(); ++I)
3262    if (Exprs[I]->isTypeDependent())
3263      return true;
3264
3265  return false;
3266}
3267
3268bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3269                                 const Expr **Culprit) const {
3270  assert(!isValueDependent() &&
3271         "Expression evaluator can't be called on a dependent expression.");
3272
3273  // This function is attempting whether an expression is an initializer
3274  // which can be evaluated at compile-time. It very closely parallels
3275  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3276  // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3277  // to isEvaluatable most of the time.
3278  //
3279  // If we ever capture reference-binding directly in the AST, we can
3280  // kill the second parameter.
3281
3282  if (IsForRef) {
3283    EvalResult Result;
3284    if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3285      return true;
3286    if (Culprit)
3287      *Culprit = this;
3288    return false;
3289  }
3290
3291  switch (getStmtClass()) {
3292  default: break;
3293  case Stmt::ExprWithCleanupsClass:
3294    return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3295        Ctx, IsForRef, Culprit);
3296  case StringLiteralClass:
3297  case ObjCEncodeExprClass:
3298    return true;
3299  case CXXTemporaryObjectExprClass:
3300  case CXXConstructExprClass: {
3301    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3302
3303    if (CE->getConstructor()->isTrivial() &&
3304        CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3305      // Trivial default constructor
3306      if (!CE->getNumArgs()) return true;
3307
3308      // Trivial copy constructor
3309      assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3310      return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3311    }
3312
3313    break;
3314  }
3315  case ConstantExprClass: {
3316    // FIXME: We should be able to return "true" here, but it can lead to extra
3317    // error messages. E.g. in Sema/array-init.c.
3318    const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3319    return Exp->isConstantInitializer(Ctx, false, Culprit);
3320  }
3321  case CompoundLiteralExprClass: {
3322    // This handles gcc's extension that allows global initializers like
3323    // "struct x {int x;} x = (struct x) {};".
3324    // FIXME: This accepts other cases it shouldn't!
3325    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3326    return Exp->isConstantInitializer(Ctx, false, Culprit);
3327  }
3328  case DesignatedInitUpdateExprClass: {
3329    const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3330    return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3331           DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3332  }
3333  case InitListExprClass: {
3334    const InitListExpr *ILE = cast<InitListExpr>(this);
3335    assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3336    if (ILE->getType()->isArrayType()) {
3337      unsigned numInits = ILE->getNumInits();
3338      for (unsigned i = 0; i < numInits; i++) {
3339        if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3340          return false;
3341      }
3342      return true;
3343    }
3344
3345    if (ILE->getType()->isRecordType()) {
3346      unsigned ElementNo = 0;
3347      RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3348      for (const auto *Field : RD->fields()) {
3349        // If this is a union, skip all the fields that aren't being initialized.
3350        if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3351          continue;
3352
3353        // Don't emit anonymous bitfields, they just affect layout.
3354        if (Field->isUnnamedBitfield())
3355          continue;
3356
3357        if (ElementNo < ILE->getNumInits()) {
3358          const Expr *Elt = ILE->getInit(ElementNo++);
3359          if (Field->isBitField()) {
3360            // Bitfields have to evaluate to an integer.
3361            EvalResult Result;
3362            if (!Elt->EvaluateAsInt(Result, Ctx)) {
3363              if (Culprit)
3364                *Culprit = Elt;
3365              return false;
3366            }
3367          } else {
3368            bool RefType = Field->getType()->isReferenceType();
3369            if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3370              return false;
3371          }
3372        }
3373      }
3374      return true;
3375    }
3376
3377    break;
3378  }
3379  case ImplicitValueInitExprClass:
3380  case NoInitExprClass:
3381    return true;
3382  case ParenExprClass:
3383    return cast<ParenExpr>(this)->getSubExpr()
3384      ->isConstantInitializer(Ctx, IsForRef, Culprit);
3385  case GenericSelectionExprClass:
3386    return cast<GenericSelectionExpr>(this)->getResultExpr()
3387      ->isConstantInitializer(Ctx, IsForRef, Culprit);
3388  case ChooseExprClass:
3389    if (cast<ChooseExpr>(this)->isConditionDependent()) {
3390      if (Culprit)
3391        *Culprit = this;
3392      return false;
3393    }
3394    return cast<ChooseExpr>(this)->getChosenSubExpr()
3395      ->isConstantInitializer(Ctx, IsForRef, Culprit);
3396  case UnaryOperatorClass: {
3397    const UnaryOperator* Exp = cast<UnaryOperator>(this);
3398    if (Exp->getOpcode() == UO_Extension)
3399      return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3400    break;
3401  }
3402  case CXXFunctionalCastExprClass:
3403  case CXXStaticCastExprClass:
3404  case ImplicitCastExprClass:
3405  case CStyleCastExprClass:
3406  case ObjCBridgedCastExprClass:
3407  case CXXDynamicCastExprClass:
3408  case CXXReinterpretCastExprClass:
3409  case CXXAddrspaceCastExprClass:
3410  case CXXConstCastExprClass: {
3411    const CastExpr *CE = cast<CastExpr>(this);
3412
3413    // Handle misc casts we want to ignore.
3414    if (CE->getCastKind() == CK_NoOp ||
3415        CE->getCastKind() == CK_LValueToRValue ||
3416        CE->getCastKind() == CK_ToUnion ||
3417        CE->getCastKind() == CK_ConstructorConversion ||
3418        CE->getCastKind() == CK_NonAtomicToAtomic ||
3419        CE->getCastKind() == CK_AtomicToNonAtomic ||
3420        CE->getCastKind() == CK_IntToOCLSampler)
3421      return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3422
3423    break;
3424  }
3425  case MaterializeTemporaryExprClass:
3426    return cast<MaterializeTemporaryExpr>(this)
3427        ->getSubExpr()
3428        ->isConstantInitializer(Ctx, false, Culprit);
3429
3430  case SubstNonTypeTemplateParmExprClass:
3431    return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3432      ->isConstantInitializer(Ctx, false, Culprit);
3433  case CXXDefaultArgExprClass:
3434    return cast<CXXDefaultArgExpr>(this)->getExpr()
3435      ->isConstantInitializer(Ctx, false, Culprit);
3436  case CXXDefaultInitExprClass:
3437    return cast<CXXDefaultInitExpr>(this)->getExpr()
3438      ->isConstantInitializer(Ctx, false, Culprit);
3439  }
3440  // Allow certain forms of UB in constant initializers: signed integer
3441  // overflow and floating-point division by zero. We'll give a warning on
3442  // these, but they're common enough that we have to accept them.
3443  if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3444    return true;
3445  if (Culprit)
3446    *Culprit = this;
3447  return false;
3448}
3449
3450bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3451  unsigned BuiltinID = getBuiltinCallee();
3452  if (BuiltinID != Builtin::BI__assume &&
3453      BuiltinID != Builtin::BI__builtin_assume)
3454    return false;
3455
3456  const Expr* Arg = getArg(0);
3457  bool ArgVal;
3458  return !Arg->isValueDependent() &&
3459         Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3460}
3461
3462bool CallExpr::isCallToStdMove() const {
3463  return getBuiltinCallee() == Builtin::BImove;
3464}
3465
3466namespace {
3467  /// Look for any side effects within a Stmt.
3468  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3469    typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3470    const bool IncludePossibleEffects;
3471    bool HasSideEffects;
3472
3473  public:
3474    explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3475      : Inherited(Context),
3476        IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3477
3478    bool hasSideEffects() const { return HasSideEffects; }
3479
3480    void VisitDecl(const Decl *D) {
3481      if (!D)
3482        return;
3483
3484      // We assume the caller checks subexpressions (eg, the initializer, VLA
3485      // bounds) for side-effects on our behalf.
3486      if (auto *VD = dyn_cast<VarDecl>(D)) {
3487        // Registering a destructor is a side-effect.
3488        if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3489            VD->needsDestruction(Context))
3490          HasSideEffects = true;
3491      }
3492    }
3493
3494    void VisitDeclStmt(const DeclStmt *DS) {
3495      for (auto *D : DS->decls())
3496        VisitDecl(D);
3497      Inherited::VisitDeclStmt(DS);
3498    }
3499
3500    void VisitExpr(const Expr *E) {
3501      if (!HasSideEffects &&
3502          E->HasSideEffects(Context, IncludePossibleEffects))
3503        HasSideEffects = true;
3504    }
3505  };
3506}
3507
3508bool Expr::HasSideEffects(const ASTContext &Ctx,
3509                          bool IncludePossibleEffects) const {
3510  // In circumstances where we care about definite side effects instead of
3511  // potential side effects, we want to ignore expressions that are part of a
3512  // macro expansion as a potential side effect.
3513  if (!IncludePossibleEffects && getExprLoc().isMacroID())
3514    return false;
3515
3516  switch (getStmtClass()) {
3517  case NoStmtClass:
3518  #define ABSTRACT_STMT(Type)
3519  #define STMT(Type, Base) case Type##Class:
3520  #define EXPR(Type, Base)
3521  #include "clang/AST/StmtNodes.inc"
3522    llvm_unreachable("unexpected Expr kind");
3523
3524  case DependentScopeDeclRefExprClass:
3525  case CXXUnresolvedConstructExprClass:
3526  case CXXDependentScopeMemberExprClass:
3527  case UnresolvedLookupExprClass:
3528  case UnresolvedMemberExprClass:
3529  case PackExpansionExprClass:
3530  case SubstNonTypeTemplateParmPackExprClass:
3531  case FunctionParmPackExprClass:
3532  case TypoExprClass:
3533  case RecoveryExprClass:
3534  case CXXFoldExprClass:
3535    // Make a conservative assumption for dependent nodes.
3536    return IncludePossibleEffects;
3537
3538  case DeclRefExprClass:
3539  case ObjCIvarRefExprClass:
3540  case PredefinedExprClass:
3541  case IntegerLiteralClass:
3542  case FixedPointLiteralClass:
3543  case FloatingLiteralClass:
3544  case ImaginaryLiteralClass:
3545  case StringLiteralClass:
3546  case CharacterLiteralClass:
3547  case OffsetOfExprClass:
3548  case ImplicitValueInitExprClass:
3549  case UnaryExprOrTypeTraitExprClass:
3550  case AddrLabelExprClass:
3551  case GNUNullExprClass:
3552  case ArrayInitIndexExprClass:
3553  case NoInitExprClass:
3554  case CXXBoolLiteralExprClass:
3555  case CXXNullPtrLiteralExprClass:
3556  case CXXThisExprClass:
3557  case CXXScalarValueInitExprClass:
3558  case TypeTraitExprClass:
3559  case ArrayTypeTraitExprClass:
3560  case ExpressionTraitExprClass:
3561  case CXXNoexceptExprClass:
3562  case SizeOfPackExprClass:
3563  case ObjCStringLiteralClass:
3564  case ObjCEncodeExprClass:
3565  case ObjCBoolLiteralExprClass:
3566  case ObjCAvailabilityCheckExprClass:
3567  case CXXUuidofExprClass:
3568  case OpaqueValueExprClass:
3569  case SourceLocExprClass:
3570  case ConceptSpecializationExprClass:
3571  case RequiresExprClass:
3572  case SYCLUniqueStableNameExprClass:
3573    // These never have a side-effect.
3574    return false;
3575
3576  case ConstantExprClass:
3577    // FIXME: Move this into the "return false;" block above.
3578    return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3579        Ctx, IncludePossibleEffects);
3580
3581  case CallExprClass:
3582  case CXXOperatorCallExprClass:
3583  case CXXMemberCallExprClass:
3584  case CUDAKernelCallExprClass:
3585  case UserDefinedLiteralClass: {
3586    // We don't know a call definitely has side effects, except for calls
3587    // to pure/const functions that definitely don't.
3588    // If the call itself is considered side-effect free, check the operands.
3589    const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3590    bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3591    if (IsPure || !IncludePossibleEffects)
3592      break;
3593    return true;
3594  }
3595
3596  case BlockExprClass:
3597  case CXXBindTemporaryExprClass:
3598    if (!IncludePossibleEffects)
3599      break;
3600    return true;
3601
3602  case MSPropertyRefExprClass:
3603  case MSPropertySubscriptExprClass:
3604  case CompoundAssignOperatorClass:
3605  case VAArgExprClass:
3606  case AtomicExprClass:
3607  case CXXThrowExprClass:
3608  case CXXNewExprClass:
3609  case CXXDeleteExprClass:
3610  case CoawaitExprClass:
3611  case DependentCoawaitExprClass:
3612  case CoyieldExprClass:
3613    // These always have a side-effect.
3614    return true;
3615
3616  case StmtExprClass: {
3617    // StmtExprs have a side-effect if any substatement does.
3618    SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3619    Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3620    return Finder.hasSideEffects();
3621  }
3622
3623  case ExprWithCleanupsClass:
3624    if (IncludePossibleEffects)
3625      if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3626        return true;
3627    break;
3628
3629  case ParenExprClass:
3630  case ArraySubscriptExprClass:
3631  case MatrixSubscriptExprClass:
3632  case OMPArraySectionExprClass:
3633  case OMPArrayShapingExprClass:
3634  case OMPIteratorExprClass:
3635  case MemberExprClass:
3636  case ConditionalOperatorClass:
3637  case BinaryConditionalOperatorClass:
3638  case CompoundLiteralExprClass:
3639  case ExtVectorElementExprClass:
3640  case DesignatedInitExprClass:
3641  case DesignatedInitUpdateExprClass:
3642  case ArrayInitLoopExprClass:
3643  case ParenListExprClass:
3644  case CXXPseudoDestructorExprClass:
3645  case CXXRewrittenBinaryOperatorClass:
3646  case CXXStdInitializerListExprClass:
3647  case SubstNonTypeTemplateParmExprClass:
3648  case MaterializeTemporaryExprClass:
3649  case ShuffleVectorExprClass:
3650  case ConvertVectorExprClass:
3651  case AsTypeExprClass:
3652  case CXXParenListInitExprClass:
3653    // These have a side-effect if any subexpression does.
3654    break;
3655
3656  case UnaryOperatorClass:
3657    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3658      return true;
3659    break;
3660
3661  case BinaryOperatorClass:
3662    if (cast<BinaryOperator>(this)->isAssignmentOp())
3663      return true;
3664    break;
3665
3666  case InitListExprClass:
3667    // FIXME: The children for an InitListExpr doesn't include the array filler.
3668    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3669      if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3670        return true;
3671    break;
3672
3673  case GenericSelectionExprClass:
3674    return cast<GenericSelectionExpr>(this)->getResultExpr()->
3675        HasSideEffects(Ctx, IncludePossibleEffects);
3676
3677  case ChooseExprClass:
3678    return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3679        Ctx, IncludePossibleEffects);
3680
3681  case CXXDefaultArgExprClass:
3682    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3683        Ctx, IncludePossibleEffects);
3684
3685  case CXXDefaultInitExprClass: {
3686    const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3687    if (const Expr *E = FD->getInClassInitializer())
3688      return E->HasSideEffects(Ctx, IncludePossibleEffects);
3689    // If we've not yet parsed the initializer, assume it has side-effects.
3690    return true;
3691  }
3692
3693  case CXXDynamicCastExprClass: {
3694    // A dynamic_cast expression has side-effects if it can throw.
3695    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3696    if (DCE->getTypeAsWritten()->isReferenceType() &&
3697        DCE->getCastKind() == CK_Dynamic)
3698      return true;
3699    }
3700    [[fallthrough]];
3701  case ImplicitCastExprClass:
3702  case CStyleCastExprClass:
3703  case CXXStaticCastExprClass:
3704  case CXXReinterpretCastExprClass:
3705  case CXXConstCastExprClass:
3706  case CXXAddrspaceCastExprClass:
3707  case CXXFunctionalCastExprClass:
3708  case BuiltinBitCastExprClass: {
3709    // While volatile reads are side-effecting in both C and C++, we treat them
3710    // as having possible (not definite) side-effects. This allows idiomatic
3711    // code to behave without warning, such as sizeof(*v) for a volatile-
3712    // qualified pointer.
3713    if (!IncludePossibleEffects)
3714      break;
3715
3716    const CastExpr *CE = cast<CastExpr>(this);
3717    if (CE->getCastKind() == CK_LValueToRValue &&
3718        CE->getSubExpr()->getType().isVolatileQualified())
3719      return true;
3720    break;
3721  }
3722
3723  case CXXTypeidExprClass:
3724    // typeid might throw if its subexpression is potentially-evaluated, so has
3725    // side-effects in that case whether or not its subexpression does.
3726    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3727
3728  case CXXConstructExprClass:
3729  case CXXTemporaryObjectExprClass: {
3730    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3731    if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3732      return true;
3733    // A trivial constructor does not add any side-effects of its own. Just look
3734    // at its arguments.
3735    break;
3736  }
3737
3738  case CXXInheritedCtorInitExprClass: {
3739    const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3740    if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3741      return true;
3742    break;
3743  }
3744
3745  case LambdaExprClass: {
3746    const LambdaExpr *LE = cast<LambdaExpr>(this);
3747    for (Expr *E : LE->capture_inits())
3748      if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3749        return true;
3750    return false;
3751  }
3752
3753  case PseudoObjectExprClass: {
3754    // Only look for side-effects in the semantic form, and look past
3755    // OpaqueValueExpr bindings in that form.
3756    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3757    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3758                                                    E = PO->semantics_end();
3759         I != E; ++I) {
3760      const Expr *Subexpr = *I;
3761      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3762        Subexpr = OVE->getSourceExpr();
3763      if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3764        return true;
3765    }
3766    return false;
3767  }
3768
3769  case ObjCBoxedExprClass:
3770  case ObjCArrayLiteralClass:
3771  case ObjCDictionaryLiteralClass:
3772  case ObjCSelectorExprClass:
3773  case ObjCProtocolExprClass:
3774  case ObjCIsaExprClass:
3775  case ObjCIndirectCopyRestoreExprClass:
3776  case ObjCSubscriptRefExprClass:
3777  case ObjCBridgedCastExprClass:
3778  case ObjCMessageExprClass:
3779  case ObjCPropertyRefExprClass:
3780  // FIXME: Classify these cases better.
3781    if (IncludePossibleEffects)
3782      return true;
3783    break;
3784  }
3785
3786  // Recurse to children.
3787  for (const Stmt *SubStmt : children())
3788    if (SubStmt &&
3789        cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3790      return true;
3791
3792  return false;
3793}
3794
3795FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3796  if (auto Call = dyn_cast<CallExpr>(this))
3797    return Call->getFPFeaturesInEffect(LO);
3798  if (auto UO = dyn_cast<UnaryOperator>(this))
3799    return UO->getFPFeaturesInEffect(LO);
3800  if (auto BO = dyn_cast<BinaryOperator>(this))
3801    return BO->getFPFeaturesInEffect(LO);
3802  if (auto Cast = dyn_cast<CastExpr>(this))
3803    return Cast->getFPFeaturesInEffect(LO);
3804  return FPOptions::defaultWithoutTrailingStorage(LO);
3805}
3806
3807namespace {
3808  /// Look for a call to a non-trivial function within an expression.
3809  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3810  {
3811    typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3812
3813    bool NonTrivial;
3814
3815  public:
3816    explicit NonTrivialCallFinder(const ASTContext &Context)
3817      : Inherited(Context), NonTrivial(false) { }
3818
3819    bool hasNonTrivialCall() const { return NonTrivial; }
3820
3821    void VisitCallExpr(const CallExpr *E) {
3822      if (const CXXMethodDecl *Method
3823          = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3824        if (Method->isTrivial()) {
3825          // Recurse to children of the call.
3826          Inherited::VisitStmt(E);
3827          return;
3828        }
3829      }
3830
3831      NonTrivial = true;
3832    }
3833
3834    void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3835      if (E->getConstructor()->isTrivial()) {
3836        // Recurse to children of the call.
3837        Inherited::VisitStmt(E);
3838        return;
3839      }
3840
3841      NonTrivial = true;
3842    }
3843
3844    void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3845      if (E->getTemporary()->getDestructor()->isTrivial()) {
3846        Inherited::VisitStmt(E);
3847        return;
3848      }
3849
3850      NonTrivial = true;
3851    }
3852  };
3853}
3854
3855bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3856  NonTrivialCallFinder Finder(Ctx);
3857  Finder.Visit(this);
3858  return Finder.hasNonTrivialCall();
3859}
3860
3861/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3862/// pointer constant or not, as well as the specific kind of constant detected.
3863/// Null pointer constants can be integer constant expressions with the
3864/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3865/// (a GNU extension).
3866Expr::NullPointerConstantKind
3867Expr::isNullPointerConstant(ASTContext &Ctx,
3868                            NullPointerConstantValueDependence NPC) const {
3869  if (isValueDependent() &&
3870      (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3871    // Error-dependent expr should never be a null pointer.
3872    if (containsErrors())
3873      return NPCK_NotNull;
3874    switch (NPC) {
3875    case NPC_NeverValueDependent:
3876      llvm_unreachable("Unexpected value dependent expression!");
3877    case NPC_ValueDependentIsNull:
3878      if (isTypeDependent() || getType()->isIntegralType(Ctx))
3879        return NPCK_ZeroExpression;
3880      else
3881        return NPCK_NotNull;
3882
3883    case NPC_ValueDependentIsNotNull:
3884      return NPCK_NotNull;
3885    }
3886  }
3887
3888  // Strip off a cast to void*, if it exists. Except in C++.
3889  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3890    if (!Ctx.getLangOpts().CPlusPlus) {
3891      // Check that it is a cast to void*.
3892      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3893        QualType Pointee = PT->getPointeeType();
3894        Qualifiers Qs = Pointee.getQualifiers();
3895        // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3896        // has non-default address space it is not treated as nullptr.
3897        // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3898        // since it cannot be assigned to a pointer to constant address space.
3899        if (Ctx.getLangOpts().OpenCL &&
3900            Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3901          Qs.removeAddressSpace();
3902
3903        if (Pointee->isVoidType() && Qs.empty() && // to void*
3904            CE->getSubExpr()->getType()->isIntegerType()) // from int
3905          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3906      }
3907    }
3908  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3909    // Ignore the ImplicitCastExpr type entirely.
3910    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3911  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3912    // Accept ((void*)0) as a null pointer constant, as many other
3913    // implementations do.
3914    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3915  } else if (const GenericSelectionExpr *GE =
3916               dyn_cast<GenericSelectionExpr>(this)) {
3917    if (GE->isResultDependent())
3918      return NPCK_NotNull;
3919    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3920  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3921    if (CE->isConditionDependent())
3922      return NPCK_NotNull;
3923    return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3924  } else if (const CXXDefaultArgExpr *DefaultArg
3925               = dyn_cast<CXXDefaultArgExpr>(this)) {
3926    // See through default argument expressions.
3927    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3928  } else if (const CXXDefaultInitExpr *DefaultInit
3929               = dyn_cast<CXXDefaultInitExpr>(this)) {
3930    // See through default initializer expressions.
3931    return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3932  } else if (isa<GNUNullExpr>(this)) {
3933    // The GNU __null extension is always a null pointer constant.
3934    return NPCK_GNUNull;
3935  } else if (const MaterializeTemporaryExpr *M
3936                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
3937    return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3938  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3939    if (const Expr *Source = OVE->getSourceExpr())
3940      return Source->isNullPointerConstant(Ctx, NPC);
3941  }
3942
3943  // If the expression has no type information, it cannot be a null pointer
3944  // constant.
3945  if (getType().isNull())
3946    return NPCK_NotNull;
3947
3948  // C++11/C2x nullptr_t is always a null pointer constant.
3949  if (getType()->isNullPtrType())
3950    return NPCK_CXX11_nullptr;
3951
3952  if (const RecordType *UT = getType()->getAsUnionType())
3953    if (!Ctx.getLangOpts().CPlusPlus11 &&
3954        UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3955      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3956        const Expr *InitExpr = CLE->getInitializer();
3957        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3958          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3959      }
3960  // This expression must be an integer type.
3961  if (!getType()->isIntegerType() ||
3962      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3963    return NPCK_NotNull;
3964
3965  if (Ctx.getLangOpts().CPlusPlus11) {
3966    // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3967    // value zero or a prvalue of type std::nullptr_t.
3968    // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3969    const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3970    if (Lit && !Lit->getValue())
3971      return NPCK_ZeroLiteral;
3972    if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3973      return NPCK_NotNull;
3974  } else {
3975    // If we have an integer constant expression, we need to *evaluate* it and
3976    // test for the value 0.
3977    if (!isIntegerConstantExpr(Ctx))
3978      return NPCK_NotNull;
3979  }
3980
3981  if (EvaluateKnownConstInt(Ctx) != 0)
3982    return NPCK_NotNull;
3983
3984  if (isa<IntegerLiteral>(this))
3985    return NPCK_ZeroLiteral;
3986  return NPCK_ZeroExpression;
3987}
3988
3989/// If this expression is an l-value for an Objective C
3990/// property, find the underlying property reference expression.
3991const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3992  const Expr *E = this;
3993  while (true) {
3994    assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
3995           "expression is not a property reference");
3996    E = E->IgnoreParenCasts();
3997    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3998      if (BO->getOpcode() == BO_Comma) {
3999        E = BO->getRHS();
4000        continue;
4001      }
4002    }
4003
4004    break;
4005  }
4006
4007  return cast<ObjCPropertyRefExpr>(E);
4008}
4009
4010bool Expr::isObjCSelfExpr() const {
4011  const Expr *E = IgnoreParenImpCasts();
4012
4013  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4014  if (!DRE)
4015    return false;
4016
4017  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4018  if (!Param)
4019    return false;
4020
4021  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4022  if (!M)
4023    return false;
4024
4025  return M->getSelfDecl() == Param;
4026}
4027
4028FieldDecl *Expr::getSourceBitField() {
4029  Expr *E = this->IgnoreParens();
4030
4031  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4032    if (ICE->getCastKind() == CK_LValueToRValue ||
4033        (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4034      E = ICE->getSubExpr()->IgnoreParens();
4035    else
4036      break;
4037  }
4038
4039  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4040    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4041      if (Field->isBitField())
4042        return Field;
4043
4044  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4045    FieldDecl *Ivar = IvarRef->getDecl();
4046    if (Ivar->isBitField())
4047      return Ivar;
4048  }
4049
4050  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4051    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4052      if (Field->isBitField())
4053        return Field;
4054
4055    if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4056      if (Expr *E = BD->getBinding())
4057        return E->getSourceBitField();
4058  }
4059
4060  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4061    if (BinOp->isAssignmentOp() && BinOp->getLHS())
4062      return BinOp->getLHS()->getSourceBitField();
4063
4064    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4065      return BinOp->getRHS()->getSourceBitField();
4066  }
4067
4068  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4069    if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4070      return UnOp->getSubExpr()->getSourceBitField();
4071
4072  return nullptr;
4073}
4074
4075bool Expr::refersToVectorElement() const {
4076  // FIXME: Why do we not just look at the ObjectKind here?
4077  const Expr *E = this->IgnoreParens();
4078
4079  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4080    if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4081      E = ICE->getSubExpr()->IgnoreParens();
4082    else
4083      break;
4084  }
4085
4086  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4087    return ASE->getBase()->getType()->isVectorType();
4088
4089  if (isa<ExtVectorElementExpr>(E))
4090    return true;
4091
4092  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4093    if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4094      if (auto *E = BD->getBinding())
4095        return E->refersToVectorElement();
4096
4097  return false;
4098}
4099
4100bool Expr::refersToGlobalRegisterVar() const {
4101  const Expr *E = this->IgnoreParenImpCasts();
4102
4103  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4104    if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4105      if (VD->getStorageClass() == SC_Register &&
4106          VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4107        return true;
4108
4109  return false;
4110}
4111
4112bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4113  E1 = E1->IgnoreParens();
4114  E2 = E2->IgnoreParens();
4115
4116  if (E1->getStmtClass() != E2->getStmtClass())
4117    return false;
4118
4119  switch (E1->getStmtClass()) {
4120    default:
4121      return false;
4122    case CXXThisExprClass:
4123      return true;
4124    case DeclRefExprClass: {
4125      // DeclRefExpr without an ImplicitCastExpr can happen for integral
4126      // template parameters.
4127      const auto *DRE1 = cast<DeclRefExpr>(E1);
4128      const auto *DRE2 = cast<DeclRefExpr>(E2);
4129      return DRE1->isPRValue() && DRE2->isPRValue() &&
4130             DRE1->getDecl() == DRE2->getDecl();
4131    }
4132    case ImplicitCastExprClass: {
4133      // Peel off implicit casts.
4134      while (true) {
4135        const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4136        const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4137        if (!ICE1 || !ICE2)
4138          return false;
4139        if (ICE1->getCastKind() != ICE2->getCastKind())
4140          return false;
4141        E1 = ICE1->getSubExpr()->IgnoreParens();
4142        E2 = ICE2->getSubExpr()->IgnoreParens();
4143        // The final cast must be one of these types.
4144        if (ICE1->getCastKind() == CK_LValueToRValue ||
4145            ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4146            ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4147          break;
4148        }
4149      }
4150
4151      const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4152      const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4153      if (DRE1 && DRE2)
4154        return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4155
4156      const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4157      const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4158      if (Ivar1 && Ivar2) {
4159        return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4160               declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4161      }
4162
4163      const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4164      const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4165      if (Array1 && Array2) {
4166        if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4167          return false;
4168
4169        auto Idx1 = Array1->getIdx();
4170        auto Idx2 = Array2->getIdx();
4171        const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4172        const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4173        if (Integer1 && Integer2) {
4174          if (!llvm::APInt::isSameValue(Integer1->getValue(),
4175                                        Integer2->getValue()))
4176            return false;
4177        } else {
4178          if (!isSameComparisonOperand(Idx1, Idx2))
4179            return false;
4180        }
4181
4182        return true;
4183      }
4184
4185      // Walk the MemberExpr chain.
4186      while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4187        const auto *ME1 = cast<MemberExpr>(E1);
4188        const auto *ME2 = cast<MemberExpr>(E2);
4189        if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4190          return false;
4191        if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4192          if (D->isStaticDataMember())
4193            return true;
4194        E1 = ME1->getBase()->IgnoreParenImpCasts();
4195        E2 = ME2->getBase()->IgnoreParenImpCasts();
4196      }
4197
4198      if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4199        return true;
4200
4201      // A static member variable can end the MemberExpr chain with either
4202      // a MemberExpr or a DeclRefExpr.
4203      auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4204        if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4205          return DRE->getDecl();
4206        if (const auto *ME = dyn_cast<MemberExpr>(E))
4207          return ME->getMemberDecl();
4208        return nullptr;
4209      };
4210
4211      const ValueDecl *VD1 = getAnyDecl(E1);
4212      const ValueDecl *VD2 = getAnyDecl(E2);
4213      return declaresSameEntity(VD1, VD2);
4214    }
4215  }
4216}
4217
4218/// isArrow - Return true if the base expression is a pointer to vector,
4219/// return false if the base expression is a vector.
4220bool ExtVectorElementExpr::isArrow() const {
4221  return getBase()->getType()->isPointerType();
4222}
4223
4224unsigned ExtVectorElementExpr::getNumElements() const {
4225  if (const VectorType *VT = getType()->getAs<VectorType>())
4226    return VT->getNumElements();
4227  return 1;
4228}
4229
4230/// containsDuplicateElements - Return true if any element access is repeated.
4231bool ExtVectorElementExpr::containsDuplicateElements() const {
4232  // FIXME: Refactor this code to an accessor on the AST node which returns the
4233  // "type" of component access, and share with code below and in Sema.
4234  StringRef Comp = Accessor->getName();
4235
4236  // Halving swizzles do not contain duplicate elements.
4237  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4238    return false;
4239
4240  // Advance past s-char prefix on hex swizzles.
4241  if (Comp[0] == 's' || Comp[0] == 'S')
4242    Comp = Comp.substr(1);
4243
4244  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4245    if (Comp.substr(i + 1).contains(Comp[i]))
4246        return true;
4247
4248  return false;
4249}
4250
4251/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4252void ExtVectorElementExpr::getEncodedElementAccess(
4253    SmallVectorImpl<uint32_t> &Elts) const {
4254  StringRef Comp = Accessor->getName();
4255  bool isNumericAccessor = false;
4256  if (Comp[0] == 's' || Comp[0] == 'S') {
4257    Comp = Comp.substr(1);
4258    isNumericAccessor = true;
4259  }
4260
4261  bool isHi =   Comp == "hi";
4262  bool isLo =   Comp == "lo";
4263  bool isEven = Comp == "even";
4264  bool isOdd  = Comp == "odd";
4265
4266  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4267    uint64_t Index;
4268
4269    if (isHi)
4270      Index = e + i;
4271    else if (isLo)
4272      Index = i;
4273    else if (isEven)
4274      Index = 2 * i;
4275    else if (isOdd)
4276      Index = 2 * i + 1;
4277    else
4278      Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4279
4280    Elts.push_back(Index);
4281  }
4282}
4283
4284ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4285                                     QualType Type, SourceLocation BLoc,
4286                                     SourceLocation RP)
4287    : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4288      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4289  SubExprs = new (C) Stmt*[args.size()];
4290  for (unsigned i = 0; i != args.size(); i++)
4291    SubExprs[i] = args[i];
4292
4293  setDependence(computeDependence(this));
4294}
4295
4296void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4297  if (SubExprs) C.Deallocate(SubExprs);
4298
4299  this->NumExprs = Exprs.size();
4300  SubExprs = new (C) Stmt*[NumExprs];
4301  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4302}
4303
4304GenericSelectionExpr::GenericSelectionExpr(
4305    const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4306    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4307    SourceLocation DefaultLoc, SourceLocation RParenLoc,
4308    bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4309    : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4310           AssocExprs[ResultIndex]->getValueKind(),
4311           AssocExprs[ResultIndex]->getObjectKind()),
4312      NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4313      DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4314  assert(AssocTypes.size() == AssocExprs.size() &&
4315         "Must have the same number of association expressions"
4316         " and TypeSourceInfo!");
4317  assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4318
4319  GenericSelectionExprBits.GenericLoc = GenericLoc;
4320  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4321  std::copy(AssocExprs.begin(), AssocExprs.end(),
4322            getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4323  std::copy(AssocTypes.begin(), AssocTypes.end(),
4324            getTrailingObjects<TypeSourceInfo *>());
4325
4326  setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4327}
4328
4329GenericSelectionExpr::GenericSelectionExpr(
4330    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4331    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4332    SourceLocation DefaultLoc, SourceLocation RParenLoc,
4333    bool ContainsUnexpandedParameterPack)
4334    : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4335           OK_Ordinary),
4336      NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4337      DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4338  assert(AssocTypes.size() == AssocExprs.size() &&
4339         "Must have the same number of association expressions"
4340         " and TypeSourceInfo!");
4341
4342  GenericSelectionExprBits.GenericLoc = GenericLoc;
4343  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4344  std::copy(AssocExprs.begin(), AssocExprs.end(),
4345            getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4346  std::copy(AssocTypes.begin(), AssocTypes.end(),
4347            getTrailingObjects<TypeSourceInfo *>());
4348
4349  setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4350}
4351
4352GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4353    : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4354
4355GenericSelectionExpr *GenericSelectionExpr::Create(
4356    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4357    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4358    SourceLocation DefaultLoc, SourceLocation RParenLoc,
4359    bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4360  unsigned NumAssocs = AssocExprs.size();
4361  void *Mem = Context.Allocate(
4362      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4363      alignof(GenericSelectionExpr));
4364  return new (Mem) GenericSelectionExpr(
4365      Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4366      RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4367}
4368
4369GenericSelectionExpr *GenericSelectionExpr::Create(
4370    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4371    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4372    SourceLocation DefaultLoc, SourceLocation RParenLoc,
4373    bool ContainsUnexpandedParameterPack) {
4374  unsigned NumAssocs = AssocExprs.size();
4375  void *Mem = Context.Allocate(
4376      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4377      alignof(GenericSelectionExpr));
4378  return new (Mem) GenericSelectionExpr(
4379      Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4380      RParenLoc, ContainsUnexpandedParameterPack);
4381}
4382
4383GenericSelectionExpr *
4384GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4385                                  unsigned NumAssocs) {
4386  void *Mem = Context.Allocate(
4387      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4388      alignof(GenericSelectionExpr));
4389  return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4390}
4391
4392//===----------------------------------------------------------------------===//
4393//  DesignatedInitExpr
4394//===----------------------------------------------------------------------===//
4395
4396IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4397  assert(Kind == FieldDesignator && "Only valid on a field designator");
4398  if (Field.NameOrField & 0x01)
4399    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4400  return getField()->getIdentifier();
4401}
4402
4403DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4404                                       llvm::ArrayRef<Designator> Designators,
4405                                       SourceLocation EqualOrColonLoc,
4406                                       bool GNUSyntax,
4407                                       ArrayRef<Expr *> IndexExprs, Expr *Init)
4408    : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4409           Init->getObjectKind()),
4410      EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4411      NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4412  this->Designators = new (C) Designator[NumDesignators];
4413
4414  // Record the initializer itself.
4415  child_iterator Child = child_begin();
4416  *Child++ = Init;
4417
4418  // Copy the designators and their subexpressions, computing
4419  // value-dependence along the way.
4420  unsigned IndexIdx = 0;
4421  for (unsigned I = 0; I != NumDesignators; ++I) {
4422    this->Designators[I] = Designators[I];
4423    if (this->Designators[I].isArrayDesignator()) {
4424      // Copy the index expressions into permanent storage.
4425      *Child++ = IndexExprs[IndexIdx++];
4426    } else if (this->Designators[I].isArrayRangeDesignator()) {
4427      // Copy the start/end expressions into permanent storage.
4428      *Child++ = IndexExprs[IndexIdx++];
4429      *Child++ = IndexExprs[IndexIdx++];
4430    }
4431  }
4432
4433  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4434  setDependence(computeDependence(this));
4435}
4436
4437DesignatedInitExpr *
4438DesignatedInitExpr::Create(const ASTContext &C,
4439                           llvm::ArrayRef<Designator> Designators,
4440                           ArrayRef<Expr*> IndexExprs,
4441                           SourceLocation ColonOrEqualLoc,
4442                           bool UsesColonSyntax, Expr *Init) {
4443  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4444                         alignof(DesignatedInitExpr));
4445  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4446                                      ColonOrEqualLoc, UsesColonSyntax,
4447                                      IndexExprs, Init);
4448}
4449
4450DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4451                                                    unsigned NumIndexExprs) {
4452  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4453                         alignof(DesignatedInitExpr));
4454  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4455}
4456
4457void DesignatedInitExpr::setDesignators(const ASTContext &C,
4458                                        const Designator *Desigs,
4459                                        unsigned NumDesigs) {
4460  Designators = new (C) Designator[NumDesigs];
4461  NumDesignators = NumDesigs;
4462  for (unsigned I = 0; I != NumDesigs; ++I)
4463    Designators[I] = Desigs[I];
4464}
4465
4466SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4467  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4468  if (size() == 1)
4469    return DIE->getDesignator(0)->getSourceRange();
4470  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4471                     DIE->getDesignator(size() - 1)->getEndLoc());
4472}
4473
4474SourceLocation DesignatedInitExpr::getBeginLoc() const {
4475  SourceLocation StartLoc;
4476  auto *DIE = const_cast<DesignatedInitExpr *>(this);
4477  Designator &First = *DIE->getDesignator(0);
4478  if (First.isFieldDesignator())
4479    StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4480  else
4481    StartLoc = First.ArrayOrRange.LBracketLoc;
4482  return StartLoc;
4483}
4484
4485SourceLocation DesignatedInitExpr::getEndLoc() const {
4486  return getInit()->getEndLoc();
4487}
4488
4489Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4490  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4491  return getSubExpr(D.ArrayOrRange.Index + 1);
4492}
4493
4494Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4495  assert(D.Kind == Designator::ArrayRangeDesignator &&
4496         "Requires array range designator");
4497  return getSubExpr(D.ArrayOrRange.Index + 1);
4498}
4499
4500Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4501  assert(D.Kind == Designator::ArrayRangeDesignator &&
4502         "Requires array range designator");
4503  return getSubExpr(D.ArrayOrRange.Index + 2);
4504}
4505
4506/// Replaces the designator at index @p Idx with the series
4507/// of designators in [First, Last).
4508void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4509                                          const Designator *First,
4510                                          const Designator *Last) {
4511  unsigned NumNewDesignators = Last - First;
4512  if (NumNewDesignators == 0) {
4513    std::copy_backward(Designators + Idx + 1,
4514                       Designators + NumDesignators,
4515                       Designators + Idx);
4516    --NumNewDesignators;
4517    return;
4518  }
4519  if (NumNewDesignators == 1) {
4520    Designators[Idx] = *First;
4521    return;
4522  }
4523
4524  Designator *NewDesignators
4525    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4526  std::copy(Designators, Designators + Idx, NewDesignators);
4527  std::copy(First, Last, NewDesignators + Idx);
4528  std::copy(Designators + Idx + 1, Designators + NumDesignators,
4529            NewDesignators + Idx + NumNewDesignators);
4530  Designators = NewDesignators;
4531  NumDesignators = NumDesignators - 1 + NumNewDesignators;
4532}
4533
4534DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4535                                                   SourceLocation lBraceLoc,
4536                                                   Expr *baseExpr,
4537                                                   SourceLocation rBraceLoc)
4538    : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4539           OK_Ordinary) {
4540  BaseAndUpdaterExprs[0] = baseExpr;
4541
4542  InitListExpr *ILE =
4543      new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4544  ILE->setType(baseExpr->getType());
4545  BaseAndUpdaterExprs[1] = ILE;
4546
4547  // FIXME: this is wrong, set it correctly.
4548  setDependence(ExprDependence::None);
4549}
4550
4551SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4552  return getBase()->getBeginLoc();
4553}
4554
4555SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4556  return getBase()->getEndLoc();
4557}
4558
4559ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4560                             SourceLocation RParenLoc)
4561    : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4562      LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4563  ParenListExprBits.NumExprs = Exprs.size();
4564
4565  for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4566    getTrailingObjects<Stmt *>()[I] = Exprs[I];
4567  setDependence(computeDependence(this));
4568}
4569
4570ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4571    : Expr(ParenListExprClass, Empty) {
4572  ParenListExprBits.NumExprs = NumExprs;
4573}
4574
4575ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4576                                     SourceLocation LParenLoc,
4577                                     ArrayRef<Expr *> Exprs,
4578                                     SourceLocation RParenLoc) {
4579  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4580                           alignof(ParenListExpr));
4581  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4582}
4583
4584ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4585                                          unsigned NumExprs) {
4586  void *Mem =
4587      Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4588  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4589}
4590
4591BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4592                               Opcode opc, QualType ResTy, ExprValueKind VK,
4593                               ExprObjectKind OK, SourceLocation opLoc,
4594                               FPOptionsOverride FPFeatures)
4595    : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4596  BinaryOperatorBits.Opc = opc;
4597  assert(!isCompoundAssignmentOp() &&
4598         "Use CompoundAssignOperator for compound assignments");
4599  BinaryOperatorBits.OpLoc = opLoc;
4600  SubExprs[LHS] = lhs;
4601  SubExprs[RHS] = rhs;
4602  BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4603  if (hasStoredFPFeatures())
4604    setStoredFPFeatures(FPFeatures);
4605  setDependence(computeDependence(this));
4606}
4607
4608BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4609                               Opcode opc, QualType ResTy, ExprValueKind VK,
4610                               ExprObjectKind OK, SourceLocation opLoc,
4611                               FPOptionsOverride FPFeatures, bool dead2)
4612    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4613  BinaryOperatorBits.Opc = opc;
4614  assert(isCompoundAssignmentOp() &&
4615         "Use CompoundAssignOperator for compound assignments");
4616  BinaryOperatorBits.OpLoc = opLoc;
4617  SubExprs[LHS] = lhs;
4618  SubExprs[RHS] = rhs;
4619  BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4620  if (hasStoredFPFeatures())
4621    setStoredFPFeatures(FPFeatures);
4622  setDependence(computeDependence(this));
4623}
4624
4625BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4626                                            bool HasFPFeatures) {
4627  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4628  void *Mem =
4629      C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4630  return new (Mem) BinaryOperator(EmptyShell());
4631}
4632
4633BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4634                                       Expr *rhs, Opcode opc, QualType ResTy,
4635                                       ExprValueKind VK, ExprObjectKind OK,
4636                                       SourceLocation opLoc,
4637                                       FPOptionsOverride FPFeatures) {
4638  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4639  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4640  void *Mem =
4641      C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4642  return new (Mem)
4643      BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4644}
4645
4646CompoundAssignOperator *
4647CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4648  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4649  void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4650                         alignof(CompoundAssignOperator));
4651  return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4652}
4653
4654CompoundAssignOperator *
4655CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4656                               Opcode opc, QualType ResTy, ExprValueKind VK,
4657                               ExprObjectKind OK, SourceLocation opLoc,
4658                               FPOptionsOverride FPFeatures,
4659                               QualType CompLHSType, QualType CompResultType) {
4660  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4661  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4662  void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4663                         alignof(CompoundAssignOperator));
4664  return new (Mem)
4665      CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4666                             CompLHSType, CompResultType);
4667}
4668
4669UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4670                                          bool hasFPFeatures) {
4671  void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4672                         alignof(UnaryOperator));
4673  return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4674}
4675
4676UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4677                             QualType type, ExprValueKind VK, ExprObjectKind OK,
4678                             SourceLocation l, bool CanOverflow,
4679                             FPOptionsOverride FPFeatures)
4680    : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4681  UnaryOperatorBits.Opc = opc;
4682  UnaryOperatorBits.CanOverflow = CanOverflow;
4683  UnaryOperatorBits.Loc = l;
4684  UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4685  if (hasStoredFPFeatures())
4686    setStoredFPFeatures(FPFeatures);
4687  setDependence(computeDependence(this, Ctx));
4688}
4689
4690UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4691                                     Opcode opc, QualType type,
4692                                     ExprValueKind VK, ExprObjectKind OK,
4693                                     SourceLocation l, bool CanOverflow,
4694                                     FPOptionsOverride FPFeatures) {
4695  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4696  unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4697  void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4698  return new (Mem)
4699      UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4700}
4701
4702const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4703  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4704    e = ewc->getSubExpr();
4705  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4706    e = m->getSubExpr();
4707  e = cast<CXXConstructExpr>(e)->getArg(0);
4708  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4709    e = ice->getSubExpr();
4710  return cast<OpaqueValueExpr>(e);
4711}
4712
4713PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4714                                           EmptyShell sh,
4715                                           unsigned numSemanticExprs) {
4716  void *buffer =
4717      Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4718                       alignof(PseudoObjectExpr));
4719  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4720}
4721
4722PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4723  : Expr(PseudoObjectExprClass, shell) {
4724  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4725}
4726
4727PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4728                                           ArrayRef<Expr*> semantics,
4729                                           unsigned resultIndex) {
4730  assert(syntax && "no syntactic expression!");
4731  assert(semantics.size() && "no semantic expressions!");
4732
4733  QualType type;
4734  ExprValueKind VK;
4735  if (resultIndex == NoResult) {
4736    type = C.VoidTy;
4737    VK = VK_PRValue;
4738  } else {
4739    assert(resultIndex < semantics.size());
4740    type = semantics[resultIndex]->getType();
4741    VK = semantics[resultIndex]->getValueKind();
4742    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4743  }
4744
4745  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4746                            alignof(PseudoObjectExpr));
4747  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4748                                      resultIndex);
4749}
4750
4751PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4752                                   Expr *syntax, ArrayRef<Expr *> semantics,
4753                                   unsigned resultIndex)
4754    : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4755  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4756  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4757
4758  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4759    Expr *E = (i == 0 ? syntax : semantics[i-1]);
4760    getSubExprsBuffer()[i] = E;
4761
4762    if (isa<OpaqueValueExpr>(E))
4763      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4764             "opaque-value semantic expressions for pseudo-object "
4765             "operations must have sources");
4766  }
4767
4768  setDependence(computeDependence(this));
4769}
4770
4771//===----------------------------------------------------------------------===//
4772//  Child Iterators for iterating over subexpressions/substatements
4773//===----------------------------------------------------------------------===//
4774
4775// UnaryExprOrTypeTraitExpr
4776Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4777  const_child_range CCR =
4778      const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4779  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4780}
4781
4782Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4783  // If this is of a type and the type is a VLA type (and not a typedef), the
4784  // size expression of the VLA needs to be treated as an executable expression.
4785  // Why isn't this weirdness documented better in StmtIterator?
4786  if (isArgumentType()) {
4787    if (const VariableArrayType *T =
4788            dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4789      return const_child_range(const_child_iterator(T), const_child_iterator());
4790    return const_child_range(const_child_iterator(), const_child_iterator());
4791  }
4792  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4793}
4794
4795AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4796                       AtomicOp op, SourceLocation RP)
4797    : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4798      NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4799  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4800  for (unsigned i = 0; i != args.size(); i++)
4801    SubExprs[i] = args[i];
4802  setDependence(computeDependence(this));
4803}
4804
4805unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4806  switch (Op) {
4807  case AO__c11_atomic_init:
4808  case AO__opencl_atomic_init:
4809  case AO__c11_atomic_load:
4810  case AO__atomic_load_n:
4811    return 2;
4812
4813  case AO__opencl_atomic_load:
4814  case AO__hip_atomic_load:
4815  case AO__c11_atomic_store:
4816  case AO__c11_atomic_exchange:
4817  case AO__atomic_load:
4818  case AO__atomic_store:
4819  case AO__atomic_store_n:
4820  case AO__atomic_exchange_n:
4821  case AO__c11_atomic_fetch_add:
4822  case AO__c11_atomic_fetch_sub:
4823  case AO__c11_atomic_fetch_and:
4824  case AO__c11_atomic_fetch_or:
4825  case AO__c11_atomic_fetch_xor:
4826  case AO__c11_atomic_fetch_nand:
4827  case AO__c11_atomic_fetch_max:
4828  case AO__c11_atomic_fetch_min:
4829  case AO__atomic_fetch_add:
4830  case AO__atomic_fetch_sub:
4831  case AO__atomic_fetch_and:
4832  case AO__atomic_fetch_or:
4833  case AO__atomic_fetch_xor:
4834  case AO__atomic_fetch_nand:
4835  case AO__atomic_add_fetch:
4836  case AO__atomic_sub_fetch:
4837  case AO__atomic_and_fetch:
4838  case AO__atomic_or_fetch:
4839  case AO__atomic_xor_fetch:
4840  case AO__atomic_nand_fetch:
4841  case AO__atomic_min_fetch:
4842  case AO__atomic_max_fetch:
4843  case AO__atomic_fetch_min:
4844  case AO__atomic_fetch_max:
4845    return 3;
4846
4847  case AO__hip_atomic_exchange:
4848  case AO__hip_atomic_fetch_add:
4849  case AO__hip_atomic_fetch_and:
4850  case AO__hip_atomic_fetch_or:
4851  case AO__hip_atomic_fetch_xor:
4852  case AO__hip_atomic_fetch_min:
4853  case AO__hip_atomic_fetch_max:
4854  case AO__opencl_atomic_store:
4855  case AO__hip_atomic_store:
4856  case AO__opencl_atomic_exchange:
4857  case AO__opencl_atomic_fetch_add:
4858  case AO__opencl_atomic_fetch_sub:
4859  case AO__opencl_atomic_fetch_and:
4860  case AO__opencl_atomic_fetch_or:
4861  case AO__opencl_atomic_fetch_xor:
4862  case AO__opencl_atomic_fetch_min:
4863  case AO__opencl_atomic_fetch_max:
4864  case AO__atomic_exchange:
4865    return 4;
4866
4867  case AO__c11_atomic_compare_exchange_strong:
4868  case AO__c11_atomic_compare_exchange_weak:
4869    return 5;
4870  case AO__hip_atomic_compare_exchange_strong:
4871  case AO__opencl_atomic_compare_exchange_strong:
4872  case AO__opencl_atomic_compare_exchange_weak:
4873  case AO__hip_atomic_compare_exchange_weak:
4874  case AO__atomic_compare_exchange:
4875  case AO__atomic_compare_exchange_n:
4876    return 6;
4877  }
4878  llvm_unreachable("unknown atomic op");
4879}
4880
4881QualType AtomicExpr::getValueType() const {
4882  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4883  if (auto AT = T->getAs<AtomicType>())
4884    return AT->getValueType();
4885  return T;
4886}
4887
4888QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4889  unsigned ArraySectionCount = 0;
4890  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4891    Base = OASE->getBase();
4892    ++ArraySectionCount;
4893  }
4894  while (auto *ASE =
4895             dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4896    Base = ASE->getBase();
4897    ++ArraySectionCount;
4898  }
4899  Base = Base->IgnoreParenImpCasts();
4900  auto OriginalTy = Base->getType();
4901  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4902    if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4903      OriginalTy = PVD->getOriginalType().getNonReferenceType();
4904
4905  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4906    if (OriginalTy->isAnyPointerType())
4907      OriginalTy = OriginalTy->getPointeeType();
4908    else {
4909      assert (OriginalTy->isArrayType());
4910      OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4911    }
4912  }
4913  return OriginalTy;
4914}
4915
4916RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4917                           SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4918    : Expr(RecoveryExprClass, T.getNonReferenceType(),
4919           T->isDependentType() ? VK_LValue : getValueKindForType(T),
4920           OK_Ordinary),
4921      BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4922  assert(!T.isNull());
4923  assert(!llvm::is_contained(SubExprs, nullptr));
4924
4925  llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4926  setDependence(computeDependence(this));
4927}
4928
4929RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4930                                   SourceLocation BeginLoc,
4931                                   SourceLocation EndLoc,
4932                                   ArrayRef<Expr *> SubExprs) {
4933  void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4934                           alignof(RecoveryExpr));
4935  return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4936}
4937
4938RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4939  void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4940                           alignof(RecoveryExpr));
4941  return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4942}
4943
4944void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4945  assert(
4946      NumDims == Dims.size() &&
4947      "Preallocated number of dimensions is different from the provided one.");
4948  llvm::copy(Dims, getTrailingObjects<Expr *>());
4949}
4950
4951void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4952  assert(
4953      NumDims == BR.size() &&
4954      "Preallocated number of dimensions is different from the provided one.");
4955  llvm::copy(BR, getTrailingObjects<SourceRange>());
4956}
4957
4958OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4959                                         SourceLocation L, SourceLocation R,
4960                                         ArrayRef<Expr *> Dims)
4961    : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4962      RPLoc(R), NumDims(Dims.size()) {
4963  setBase(Op);
4964  setDimensions(Dims);
4965  setDependence(computeDependence(this));
4966}
4967
4968OMPArrayShapingExpr *
4969OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4970                            SourceLocation L, SourceLocation R,
4971                            ArrayRef<Expr *> Dims,
4972                            ArrayRef<SourceRange> BracketRanges) {
4973  assert(Dims.size() == BracketRanges.size() &&
4974         "Different number of dimensions and brackets ranges.");
4975  void *Mem = Context.Allocate(
4976      totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4977      alignof(OMPArrayShapingExpr));
4978  auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4979  E->setBracketsRanges(BracketRanges);
4980  return E;
4981}
4982
4983OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4984                                                      unsigned NumDims) {
4985  void *Mem = Context.Allocate(
4986      totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4987      alignof(OMPArrayShapingExpr));
4988  return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4989}
4990
4991void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4992  assert(I < NumIterators &&
4993         "Idx is greater or equal the number of iterators definitions.");
4994  getTrailingObjects<Decl *>()[I] = D;
4995}
4996
4997void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4998  assert(I < NumIterators &&
4999         "Idx is greater or equal the number of iterators definitions.");
5000  getTrailingObjects<
5001      SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5002                        static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5003}
5004
5005void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5006                                       SourceLocation ColonLoc, Expr *End,
5007                                       SourceLocation SecondColonLoc,
5008                                       Expr *Step) {
5009  assert(I < NumIterators &&
5010         "Idx is greater or equal the number of iterators definitions.");
5011  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5012                               static_cast<int>(RangeExprOffset::Begin)] =
5013      Begin;
5014  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5015                               static_cast<int>(RangeExprOffset::End)] = End;
5016  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5017                               static_cast<int>(RangeExprOffset::Step)] = Step;
5018  getTrailingObjects<
5019      SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5020                        static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5021      ColonLoc;
5022  getTrailingObjects<
5023      SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5024                        static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5025      SecondColonLoc;
5026}
5027
5028Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5029  return getTrailingObjects<Decl *>()[I];
5030}
5031
5032OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5033  IteratorRange Res;
5034  Res.Begin =
5035      getTrailingObjects<Expr *>()[I * static_cast<int>(
5036                                           RangeExprOffset::Total) +
5037                                   static_cast<int>(RangeExprOffset::Begin)];
5038  Res.End =
5039      getTrailingObjects<Expr *>()[I * static_cast<int>(
5040                                           RangeExprOffset::Total) +
5041                                   static_cast<int>(RangeExprOffset::End)];
5042  Res.Step =
5043      getTrailingObjects<Expr *>()[I * static_cast<int>(
5044                                           RangeExprOffset::Total) +
5045                                   static_cast<int>(RangeExprOffset::Step)];
5046  return Res;
5047}
5048
5049SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5050  return getTrailingObjects<
5051      SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5052                        static_cast<int>(RangeLocOffset::AssignLoc)];
5053}
5054
5055SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5056  return getTrailingObjects<
5057      SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5058                        static_cast<int>(RangeLocOffset::FirstColonLoc)];
5059}
5060
5061SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5062  return getTrailingObjects<
5063      SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5064                        static_cast<int>(RangeLocOffset::SecondColonLoc)];
5065}
5066
5067void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5068  getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5069}
5070
5071OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5072  return getTrailingObjects<OMPIteratorHelperData>()[I];
5073}
5074
5075const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5076  return getTrailingObjects<OMPIteratorHelperData>()[I];
5077}
5078
5079OMPIteratorExpr::OMPIteratorExpr(
5080    QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5081    SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5082    ArrayRef<OMPIteratorHelperData> Helpers)
5083    : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5084      IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5085      NumIterators(Data.size()) {
5086  for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5087    const IteratorDefinition &D = Data[I];
5088    setIteratorDeclaration(I, D.IteratorDecl);
5089    setAssignmentLoc(I, D.AssignmentLoc);
5090    setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5091                     D.SecondColonLoc, D.Range.Step);
5092    setHelper(I, Helpers[I]);
5093  }
5094  setDependence(computeDependence(this));
5095}
5096
5097OMPIteratorExpr *
5098OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5099                        SourceLocation IteratorKwLoc, SourceLocation L,
5100                        SourceLocation R,
5101                        ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5102                        ArrayRef<OMPIteratorHelperData> Helpers) {
5103  assert(Data.size() == Helpers.size() &&
5104         "Data and helpers must have the same size.");
5105  void *Mem = Context.Allocate(
5106      totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5107          Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5108          Data.size() * static_cast<int>(RangeLocOffset::Total),
5109          Helpers.size()),
5110      alignof(OMPIteratorExpr));
5111  return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5112}
5113
5114OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5115                                              unsigned NumIterators) {
5116  void *Mem = Context.Allocate(
5117      totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5118          NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5119          NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5120      alignof(OMPIteratorExpr));
5121  return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5122}
5123