1/* An expandable hash tables datatype.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3   Free Software Foundation, Inc.
4   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB.  If
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* This package implements basic hash table functionality.  It is possible
23   to search for an entry, create an entry and destroy an entry.
24
25   Elements in the table are generic pointers.
26
27   The size of the table is not fixed; if the occupancy of the table
28   grows too high the hash table will be expanded.
29
30   The abstract data implementation is based on generalized Algorithm D
31   from Knuth's book "The art of computer programming".  Hash table is
32   expanded by creation of new hash table and transferring elements from
33   the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
56
57#include <stdio.h>
58
59#include "libiberty.h"
60#include "ansidecl.h"
61#include "hashtab.h"
62
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
67static unsigned int higher_prime_index (unsigned long);
68static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69static hashval_t htab_mod (hashval_t, htab_t);
70static hashval_t htab_mod_m2 (hashval_t, htab_t);
71static hashval_t hash_pointer (const void *);
72static int eq_pointer (const void *, const void *);
73static int htab_expand (htab_t);
74static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
75
76/* At some point, we could make these be NULL, and modify the
77   hash-table routines to handle NULL specially; that would avoid
78   function-call overhead for the common case of hashing pointers.  */
79htab_hash htab_hash_pointer = hash_pointer;
80htab_eq htab_eq_pointer = eq_pointer;
81
82/* Table of primes and multiplicative inverses.
83
84   Note that these are not minimally reduced inverses.  Unlike when generating
85   code to divide by a constant, we want to be able to use the same algorithm
86   all the time.  All of these inverses (are implied to) have bit 32 set.
87
88   For the record, here's the function that computed the table; it's a
89   vastly simplified version of the function of the same name from gcc.  */
90
91#if 0
92unsigned int
93ceil_log2 (unsigned int x)
94{
95  int i;
96  for (i = 31; i >= 0 ; --i)
97    if (x > (1u << i))
98      return i+1;
99  abort ();
100}
101
102unsigned int
103choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104{
105  unsigned long long mhigh;
106  double nx;
107  int lgup, post_shift;
108  int pow, pow2;
109  int n = 32, precision = 32;
110
111  lgup = ceil_log2 (d);
112  pow = n + lgup;
113  pow2 = n + lgup - precision;
114
115  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116  mhigh = nx / d;
117
118  *shiftp = lgup - 1;
119  *mlp = mhigh;
120  return mhigh >> 32;
121}
122#endif
123
124struct prime_ent
125{
126  hashval_t prime;
127  hashval_t inv;
128  hashval_t inv_m2;	/* inverse of prime-2 */
129  hashval_t shift;
130};
131
132static struct prime_ent const prime_tab[] = {
133  {          7, 0x24924925, 0x9999999b, 2 },
134  {         13, 0x3b13b13c, 0x745d1747, 3 },
135  {         31, 0x08421085, 0x1a7b9612, 4 },
136  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
137  {        127, 0x02040811, 0x0624dd30, 6 },
138  {        251, 0x05197f7e, 0x073260a5, 7 },
139  {        509, 0x01824366, 0x02864fc8, 8 },
140  {       1021, 0x00c0906d, 0x014191f7, 9 },
141  {       2039, 0x0121456f, 0x0161e69e, 10 },
142  {       4093, 0x00300902, 0x00501908, 11 },
143  {       8191, 0x00080041, 0x00180241, 12 },
144  {      16381, 0x000c0091, 0x00140191, 13 },
145  {      32749, 0x002605a5, 0x002a06e6, 14 },
146  {      65521, 0x000f00e2, 0x00110122, 15 },
147  {     131071, 0x00008001, 0x00018003, 16 },
148  {     262139, 0x00014002, 0x0001c004, 17 },
149  {     524287, 0x00002001, 0x00006001, 18 },
150  {    1048573, 0x00003001, 0x00005001, 19 },
151  {    2097143, 0x00004801, 0x00005801, 20 },
152  {    4194301, 0x00000c01, 0x00001401, 21 },
153  {    8388593, 0x00001e01, 0x00002201, 22 },
154  {   16777213, 0x00000301, 0x00000501, 23 },
155  {   33554393, 0x00001381, 0x00001481, 24 },
156  {   67108859, 0x00000141, 0x000001c1, 25 },
157  {  134217689, 0x000004e1, 0x00000521, 26 },
158  {  268435399, 0x00000391, 0x000003b1, 27 },
159  {  536870909, 0x00000019, 0x00000029, 28 },
160  { 1073741789, 0x0000008d, 0x00000095, 29 },
161  { 2147483647, 0x00000003, 0x00000007, 30 },
162  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
163  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164};
165
166/* The following function returns an index into the above table of the
167   nearest prime number which is greater than N, and near a power of two. */
168
169static unsigned int
170higher_prime_index (unsigned long n)
171{
172  unsigned int low = 0;
173  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
174
175  while (low != high)
176    {
177      unsigned int mid = low + (high - low) / 2;
178      if (n > prime_tab[mid].prime)
179	low = mid + 1;
180      else
181	high = mid;
182    }
183
184  /* If we've run out of primes, abort.  */
185  if (n > prime_tab[low].prime)
186    {
187      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188      abort ();
189    }
190
191  return low;
192}
193
194/* Returns a hash code for P.  */
195
196static hashval_t
197hash_pointer (const PTR p)
198{
199  return (hashval_t) ((long)p >> 3);
200}
201
202/* Returns non-zero if P1 and P2 are equal.  */
203
204static int
205eq_pointer (const PTR p1, const PTR p2)
206{
207  return p1 == p2;
208}
209
210
211/* The parens around the function names in the next two definitions
212   are essential in order to prevent macro expansions of the name.
213   The bodies, however, are expanded as expected, so they are not
214   recursive definitions.  */
215
216/* Return the current size of given hash table.  */
217
218#define htab_size(htab)  ((htab)->size)
219
220size_t
221(htab_size) (htab_t htab)
222{
223  return htab_size (htab);
224}
225
226/* Return the current number of elements in given hash table. */
227
228#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
229
230size_t
231(htab_elements) (htab_t htab)
232{
233  return htab_elements (htab);
234}
235
236/* Return X % Y.  */
237
238static inline hashval_t
239htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
240{
241  /* The multiplicative inverses computed above are for 32-bit types, and
242     requires that we be able to compute a highpart multiply.  */
243#ifdef UNSIGNED_64BIT_TYPE
244  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245  if (sizeof (hashval_t) * CHAR_BIT <= 32)
246    {
247      hashval_t t1, t2, t3, t4, q, r;
248
249      t1 = ((ull)x * inv) >> 32;
250      t2 = x - t1;
251      t3 = t2 >> 1;
252      t4 = t1 + t3;
253      q  = t4 >> shift;
254      r  = x - (q * y);
255
256      return r;
257    }
258#endif
259
260  /* Otherwise just use the native division routines.  */
261  return x % y;
262}
263
264/* Compute the primary hash for HASH given HTAB's current size.  */
265
266static inline hashval_t
267htab_mod (hashval_t hash, htab_t htab)
268{
269  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
271}
272
273/* Compute the secondary hash for HASH given HTAB's current size.  */
274
275static inline hashval_t
276htab_mod_m2 (hashval_t hash, htab_t htab)
277{
278  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
280}
281
282/* This function creates table with length slightly longer than given
283   source length.  Created hash table is initiated as empty (all the
284   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
285   created hash table, or NULL if memory allocation fails.  */
286
287htab_t
288htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
290{
291  htab_t result;
292  unsigned int size_prime_index;
293
294  size_prime_index = higher_prime_index (size);
295  size = prime_tab[size_prime_index].prime;
296
297  result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
298  if (result == NULL)
299    return NULL;
300  result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
301  if (result->entries == NULL)
302    {
303      if (free_f != NULL)
304	(*free_f) (result);
305      return NULL;
306    }
307  result->size = size;
308  result->size_prime_index = size_prime_index;
309  result->hash_f = hash_f;
310  result->eq_f = eq_f;
311  result->del_f = del_f;
312  result->alloc_f = alloc_f;
313  result->free_f = free_f;
314  return result;
315}
316
317/* As above, but use the variants of alloc_f and free_f which accept
318   an extra argument.  */
319
320htab_t
321htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322                      htab_del del_f, void *alloc_arg,
323                      htab_alloc_with_arg alloc_f,
324		      htab_free_with_arg free_f)
325{
326  htab_t result;
327  unsigned int size_prime_index;
328
329  size_prime_index = higher_prime_index (size);
330  size = prime_tab[size_prime_index].prime;
331
332  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333  if (result == NULL)
334    return NULL;
335  result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336  if (result->entries == NULL)
337    {
338      if (free_f != NULL)
339	(*free_f) (alloc_arg, result);
340      return NULL;
341    }
342  result->size = size;
343  result->size_prime_index = size_prime_index;
344  result->hash_f = hash_f;
345  result->eq_f = eq_f;
346  result->del_f = del_f;
347  result->alloc_arg = alloc_arg;
348  result->alloc_with_arg_f = alloc_f;
349  result->free_with_arg_f = free_f;
350  return result;
351}
352
353/* Update the function pointers and allocation parameter in the htab_t.  */
354
355void
356htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357                       htab_del del_f, PTR alloc_arg,
358                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
359{
360  htab->hash_f = hash_f;
361  htab->eq_f = eq_f;
362  htab->del_f = del_f;
363  htab->alloc_arg = alloc_arg;
364  htab->alloc_with_arg_f = alloc_f;
365  htab->free_with_arg_f = free_f;
366}
367
368/* These functions exist solely for backward compatibility.  */
369
370#undef htab_create
371htab_t
372htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
373{
374  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375}
376
377htab_t
378htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
379{
380  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
381}
382
383/* This function frees all memory allocated for given hash table.
384   Naturally the hash table must already exist. */
385
386void
387htab_delete (htab_t htab)
388{
389  size_t size = htab_size (htab);
390  PTR *entries = htab->entries;
391  int i;
392
393  if (htab->del_f)
394    for (i = size - 1; i >= 0; i--)
395      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
396	(*htab->del_f) (entries[i]);
397
398  if (htab->free_f != NULL)
399    {
400      (*htab->free_f) (entries);
401      (*htab->free_f) (htab);
402    }
403  else if (htab->free_with_arg_f != NULL)
404    {
405      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
406      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407    }
408}
409
410/* This function clears all entries in the given hash table.  */
411
412void
413htab_empty (htab_t htab)
414{
415  size_t size = htab_size (htab);
416  PTR *entries = htab->entries;
417  int i;
418
419  if (htab->del_f)
420    for (i = size - 1; i >= 0; i--)
421      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422	(*htab->del_f) (entries[i]);
423
424  memset (entries, 0, size * sizeof (PTR));
425}
426
427/* Similar to htab_find_slot, but without several unwanted side effects:
428    - Does not call htab->eq_f when it finds an existing entry.
429    - Does not change the count of elements/searches/collisions in the
430      hash table.
431   This function also assumes there are no deleted entries in the table.
432   HASH is the hash value for the element to be inserted.  */
433
434static PTR *
435find_empty_slot_for_expand (htab_t htab, hashval_t hash)
436{
437  hashval_t index = htab_mod (hash, htab);
438  size_t size = htab_size (htab);
439  PTR *slot = htab->entries + index;
440  hashval_t hash2;
441
442  if (*slot == HTAB_EMPTY_ENTRY)
443    return slot;
444  else if (*slot == HTAB_DELETED_ENTRY)
445    abort ();
446
447  hash2 = htab_mod_m2 (hash, htab);
448  for (;;)
449    {
450      index += hash2;
451      if (index >= size)
452	index -= size;
453
454      slot = htab->entries + index;
455      if (*slot == HTAB_EMPTY_ENTRY)
456	return slot;
457      else if (*slot == HTAB_DELETED_ENTRY)
458	abort ();
459    }
460}
461
462/* The following function changes size of memory allocated for the
463   entries and repeatedly inserts the table elements.  The occupancy
464   of the table after the call will be about 50%.  Naturally the hash
465   table must already exist.  Remember also that the place of the
466   table entries is changed.  If memory allocation failures are allowed,
467   this function will return zero, indicating that the table could not be
468   expanded.  If all goes well, it will return a non-zero value.  */
469
470static int
471htab_expand (htab_t htab)
472{
473  PTR *oentries;
474  PTR *olimit;
475  PTR *p;
476  PTR *nentries;
477  size_t nsize, osize, elts;
478  unsigned int oindex, nindex;
479
480  oentries = htab->entries;
481  oindex = htab->size_prime_index;
482  osize = htab->size;
483  olimit = oentries + osize;
484  elts = htab_elements (htab);
485
486  /* Resize only when table after removal of unused elements is either
487     too full or too empty.  */
488  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
489    {
490      nindex = higher_prime_index (elts * 2);
491      nsize = prime_tab[nindex].prime;
492    }
493  else
494    {
495      nindex = oindex;
496      nsize = osize;
497    }
498
499  if (htab->alloc_with_arg_f != NULL)
500    nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
501						  sizeof (PTR *));
502  else
503    nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
504  if (nentries == NULL)
505    return 0;
506  htab->entries = nentries;
507  htab->size = nsize;
508  htab->size_prime_index = nindex;
509  htab->n_elements -= htab->n_deleted;
510  htab->n_deleted = 0;
511
512  p = oentries;
513  do
514    {
515      PTR x = *p;
516
517      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
518	{
519	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
520
521	  *q = x;
522	}
523
524      p++;
525    }
526  while (p < olimit);
527
528  if (htab->free_f != NULL)
529    (*htab->free_f) (oentries);
530  else if (htab->free_with_arg_f != NULL)
531    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
532  return 1;
533}
534
535/* This function searches for a hash table entry equal to the given
536   element.  It cannot be used to insert or delete an element.  */
537
538PTR
539htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
540{
541  hashval_t index, hash2;
542  size_t size;
543  PTR entry;
544
545  htab->searches++;
546  size = htab_size (htab);
547  index = htab_mod (hash, htab);
548
549  entry = htab->entries[index];
550  if (entry == HTAB_EMPTY_ENTRY
551      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
552    return entry;
553
554  hash2 = htab_mod_m2 (hash, htab);
555  for (;;)
556    {
557      htab->collisions++;
558      index += hash2;
559      if (index >= size)
560	index -= size;
561
562      entry = htab->entries[index];
563      if (entry == HTAB_EMPTY_ENTRY
564	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
565	return entry;
566    }
567}
568
569/* Like htab_find_slot_with_hash, but compute the hash value from the
570   element.  */
571
572PTR
573htab_find (htab_t htab, const PTR element)
574{
575  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
576}
577
578/* This function searches for a hash table slot containing an entry
579   equal to the given element.  To delete an entry, call this with
580   insert=NO_INSERT, then call htab_clear_slot on the slot returned
581   (possibly after doing some checks).  To insert an entry, call this
582   with insert=INSERT, then write the value you want into the returned
583   slot.  When inserting an entry, NULL may be returned if memory
584   allocation fails.  */
585
586PTR *
587htab_find_slot_with_hash (htab_t htab, const PTR element,
588                          hashval_t hash, enum insert_option insert)
589{
590  PTR *first_deleted_slot;
591  hashval_t index, hash2;
592  size_t size;
593  PTR entry;
594
595  size = htab_size (htab);
596  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
597    {
598      if (htab_expand (htab) == 0)
599	return NULL;
600      size = htab_size (htab);
601    }
602
603  index = htab_mod (hash, htab);
604
605  htab->searches++;
606  first_deleted_slot = NULL;
607
608  entry = htab->entries[index];
609  if (entry == HTAB_EMPTY_ENTRY)
610    goto empty_entry;
611  else if (entry == HTAB_DELETED_ENTRY)
612    first_deleted_slot = &htab->entries[index];
613  else if ((*htab->eq_f) (entry, element))
614    return &htab->entries[index];
615
616  hash2 = htab_mod_m2 (hash, htab);
617  for (;;)
618    {
619      htab->collisions++;
620      index += hash2;
621      if (index >= size)
622	index -= size;
623
624      entry = htab->entries[index];
625      if (entry == HTAB_EMPTY_ENTRY)
626	goto empty_entry;
627      else if (entry == HTAB_DELETED_ENTRY)
628	{
629	  if (!first_deleted_slot)
630	    first_deleted_slot = &htab->entries[index];
631	}
632      else if ((*htab->eq_f) (entry, element))
633	return &htab->entries[index];
634    }
635
636 empty_entry:
637  if (insert == NO_INSERT)
638    return NULL;
639
640  if (first_deleted_slot)
641    {
642      htab->n_deleted--;
643      *first_deleted_slot = HTAB_EMPTY_ENTRY;
644      return first_deleted_slot;
645    }
646
647  htab->n_elements++;
648  return &htab->entries[index];
649}
650
651/* Like htab_find_slot_with_hash, but compute the hash value from the
652   element.  */
653
654PTR *
655htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
656{
657  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
658				   insert);
659}
660
661/* This function deletes an element with the given value from hash
662   table (the hash is computed from the element).  If there is no matching
663   element in the hash table, this function does nothing.  */
664
665void
666htab_remove_elt (htab_t htab, PTR element)
667{
668  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
669}
670
671
672/* This function deletes an element with the given value from hash
673   table.  If there is no matching element in the hash table, this
674   function does nothing.  */
675
676void
677htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
678{
679  PTR *slot;
680
681  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
682  if (*slot == HTAB_EMPTY_ENTRY)
683    return;
684
685  if (htab->del_f)
686    (*htab->del_f) (*slot);
687
688  *slot = HTAB_DELETED_ENTRY;
689  htab->n_deleted++;
690}
691
692/* This function clears a specified slot in a hash table.  It is
693   useful when you've already done the lookup and don't want to do it
694   again.  */
695
696void
697htab_clear_slot (htab_t htab, PTR *slot)
698{
699  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
700      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
701    abort ();
702
703  if (htab->del_f)
704    (*htab->del_f) (*slot);
705
706  *slot = HTAB_DELETED_ENTRY;
707  htab->n_deleted++;
708}
709
710/* This function scans over the entire hash table calling
711   CALLBACK for each live entry.  If CALLBACK returns false,
712   the iteration stops.  INFO is passed as CALLBACK's second
713   argument.  */
714
715void
716htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
717{
718  PTR *slot;
719  PTR *limit;
720
721  slot = htab->entries;
722  limit = slot + htab_size (htab);
723
724  do
725    {
726      PTR x = *slot;
727
728      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
729	if (!(*callback) (slot, info))
730	  break;
731    }
732  while (++slot < limit);
733}
734
735/* Like htab_traverse_noresize, but does resize the table when it is
736   too empty to improve effectivity of subsequent calls.  */
737
738void
739htab_traverse (htab_t htab, htab_trav callback, PTR info)
740{
741  if (htab_elements (htab) * 8 < htab_size (htab))
742    htab_expand (htab);
743
744  htab_traverse_noresize (htab, callback, info);
745}
746
747/* Return the fraction of fixed collisions during all work with given
748   hash table. */
749
750double
751htab_collisions (htab_t htab)
752{
753  if (htab->searches == 0)
754    return 0.0;
755
756  return (double) htab->collisions / (double) htab->searches;
757}
758
759/* Hash P as a null-terminated string.
760
761   Copied from gcc/hashtable.c.  Zack had the following to say with respect
762   to applicability, though note that unlike hashtable.c, this hash table
763   implementation re-hashes rather than chain buckets.
764
765   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
766   From: Zack Weinberg <zackw@panix.com>
767   Date: Fri, 17 Aug 2001 02:15:56 -0400
768
769   I got it by extracting all the identifiers from all the source code
770   I had lying around in mid-1999, and testing many recurrences of
771   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
772   prime numbers or the appropriate identity.  This was the best one.
773   I don't remember exactly what constituted "best", except I was
774   looking at bucket-length distributions mostly.
775
776   So it should be very good at hashing identifiers, but might not be
777   as good at arbitrary strings.
778
779   I'll add that it thoroughly trounces the hash functions recommended
780   for this use at http://burtleburtle.net/bob/hash/index.html, both
781   on speed and bucket distribution.  I haven't tried it against the
782   function they just started using for Perl's hashes.  */
783
784hashval_t
785htab_hash_string (const PTR p)
786{
787  const unsigned char *str = (const unsigned char *) p;
788  hashval_t r = 0;
789  unsigned char c;
790
791  while ((c = *str++) != 0)
792    r = r * 67 + c - 113;
793
794  return r;
795}
796
797/* DERIVED FROM:
798--------------------------------------------------------------------
799lookup2.c, by Bob Jenkins, December 1996, Public Domain.
800hash(), hash2(), hash3, and mix() are externally useful functions.
801Routines to test the hash are included if SELF_TEST is defined.
802You can use this free for any purpose.  It has no warranty.
803--------------------------------------------------------------------
804*/
805
806/*
807--------------------------------------------------------------------
808mix -- mix 3 32-bit values reversibly.
809For every delta with one or two bit set, and the deltas of all three
810  high bits or all three low bits, whether the original value of a,b,c
811  is almost all zero or is uniformly distributed,
812* If mix() is run forward or backward, at least 32 bits in a,b,c
813  have at least 1/4 probability of changing.
814* If mix() is run forward, every bit of c will change between 1/3 and
815  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
816mix() was built out of 36 single-cycle latency instructions in a
817  structure that could supported 2x parallelism, like so:
818      a -= b;
819      a -= c; x = (c>>13);
820      b -= c; a ^= x;
821      b -= a; x = (a<<8);
822      c -= a; b ^= x;
823      c -= b; x = (b>>13);
824      ...
825  Unfortunately, superscalar Pentiums and Sparcs can't take advantage
826  of that parallelism.  They've also turned some of those single-cycle
827  latency instructions into multi-cycle latency instructions.  Still,
828  this is the fastest good hash I could find.  There were about 2^^68
829  to choose from.  I only looked at a billion or so.
830--------------------------------------------------------------------
831*/
832/* same, but slower, works on systems that might have 8 byte hashval_t's */
833#define mix(a,b,c) \
834{ \
835  a -= b; a -= c; a ^= (c>>13); \
836  b -= c; b -= a; b ^= (a<< 8); \
837  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
838  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
839  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
840  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
841  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
842  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
843  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
844}
845
846/*
847--------------------------------------------------------------------
848hash() -- hash a variable-length key into a 32-bit value
849  k     : the key (the unaligned variable-length array of bytes)
850  len   : the length of the key, counting by bytes
851  level : can be any 4-byte value
852Returns a 32-bit value.  Every bit of the key affects every bit of
853the return value.  Every 1-bit and 2-bit delta achieves avalanche.
854About 36+6len instructions.
855
856The best hash table sizes are powers of 2.  There is no need to do
857mod a prime (mod is sooo slow!).  If you need less than 32 bits,
858use a bitmask.  For example, if you need only 10 bits, do
859  h = (h & hashmask(10));
860In which case, the hash table should have hashsize(10) elements.
861
862If you are hashing n strings (ub1 **)k, do it like this:
863  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
864
865By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
866code any way you wish, private, educational, or commercial.  It's free.
867
868See http://burtleburtle.net/bob/hash/evahash.html
869Use for hash table lookup, or anything where one collision in 2^32 is
870acceptable.  Do NOT use for cryptographic purposes.
871--------------------------------------------------------------------
872*/
873
874hashval_t
875iterative_hash (const PTR k_in /* the key */,
876                register size_t  length /* the length of the key */,
877                register hashval_t initval /* the previous hash, or
878                                              an arbitrary value */)
879{
880  register const unsigned char *k = (const unsigned char *)k_in;
881  register hashval_t a,b,c,len;
882
883  /* Set up the internal state */
884  len = length;
885  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
886  c = initval;           /* the previous hash value */
887
888  /*---------------------------------------- handle most of the key */
889#ifndef WORDS_BIGENDIAN
890  /* On a little-endian machine, if the data is 4-byte aligned we can hash
891     by word for better speed.  This gives nondeterministic results on
892     big-endian machines.  */
893  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
894    while (len >= 12)    /* aligned */
895      {
896	a += *(hashval_t *)(k+0);
897	b += *(hashval_t *)(k+4);
898	c += *(hashval_t *)(k+8);
899	mix(a,b,c);
900	k += 12; len -= 12;
901      }
902  else /* unaligned */
903#endif
904    while (len >= 12)
905      {
906	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
907	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
908	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
909	mix(a,b,c);
910	k += 12; len -= 12;
911      }
912
913  /*------------------------------------- handle the last 11 bytes */
914  c += length;
915  switch(len)              /* all the case statements fall through */
916    {
917    case 11: c+=((hashval_t)k[10]<<24);
918    case 10: c+=((hashval_t)k[9]<<16);
919    case 9 : c+=((hashval_t)k[8]<<8);
920      /* the first byte of c is reserved for the length */
921    case 8 : b+=((hashval_t)k[7]<<24);
922    case 7 : b+=((hashval_t)k[6]<<16);
923    case 6 : b+=((hashval_t)k[5]<<8);
924    case 5 : b+=k[4];
925    case 4 : a+=((hashval_t)k[3]<<24);
926    case 3 : a+=((hashval_t)k[2]<<16);
927    case 2 : a+=((hashval_t)k[1]<<8);
928    case 1 : a+=k[0];
929      /* case 0: nothing left to add */
930    }
931  mix(a,b,c);
932  /*-------------------------------------------- report the result */
933  return c;
934}
935