1/* Software floating-point emulation.
2   Basic one-word fraction declaration and manipulation.
3   Copyright (C) 1997,1998,1999,2006 Free Software Foundation, Inc.
4   This file is part of the GNU C Library.
5   Contributed by Richard Henderson (rth@cygnus.com),
6		  Jakub Jelinek (jj@ultra.linux.cz),
7		  David S. Miller (davem@redhat.com) and
8		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
9
10   The GNU C Library is free software; you can redistribute it and/or
11   modify it under the terms of the GNU Lesser General Public
12   License as published by the Free Software Foundation; either
13   version 2.1 of the License, or (at your option) any later version.
14
15   In addition to the permissions in the GNU Lesser General Public
16   License, the Free Software Foundation gives you unlimited
17   permission to link the compiled version of this file into
18   combinations with other programs, and to distribute those
19   combinations without any restriction coming from the use of this
20   file.  (The Lesser General Public License restrictions do apply in
21   other respects; for example, they cover modification of the file,
22   and distribution when not linked into a combine executable.)
23
24   The GNU C Library is distributed in the hope that it will be useful,
25   but WITHOUT ANY WARRANTY; without even the implied warranty of
26   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27   Lesser General Public License for more details.
28
29   You should have received a copy of the GNU Lesser General Public
30   License along with the GNU C Library; if not, write to the Free
31   Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
32   MA 02110-1301, USA.  */
33
34#define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f
35#define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f)
36#define _FP_FRAC_SET_1(X,I)	(X##_f = I)
37#define _FP_FRAC_HIGH_1(X)	(X##_f)
38#define _FP_FRAC_LOW_1(X)	(X##_f)
39#define _FP_FRAC_WORD_1(X,w)	(X##_f)
40
41#define _FP_FRAC_ADDI_1(X,I)	(X##_f += I)
42#define _FP_FRAC_SLL_1(X,N)			\
43  do {						\
44    if (__builtin_constant_p(N) && (N) == 1)	\
45      X##_f += X##_f;				\
46    else					\
47      X##_f <<= (N);				\
48  } while (0)
49#define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N)
50
51/* Right shift with sticky-lsb.  */
52#define _FP_FRAC_SRST_1(X,S,N,sz)	__FP_FRAC_SRST_1(X##_f, S, N, sz)
53#define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz)
54
55#define __FP_FRAC_SRST_1(X,S,N,sz)			\
56do {							\
57  S = (__builtin_constant_p(N) && (N) == 1		\
58       ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0);	\
59  X = X >> (N);						\
60} while (0)
61
62#define __FP_FRAC_SRS_1(X,N,sz)						\
63   (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\
64		     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
65
66#define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f)
67#define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f)
68#define _FP_FRAC_DEC_1(X,Y)	(X##_f -= Y##_f)
69#define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f)
70
71/* Predicates */
72#define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0)
73#define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
74#define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs)
75#define _FP_FRAC_CLEAR_OVERP_1(fs,X)	(X##_f &= ~_FP_OVERFLOW_##fs)
76#define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
77#define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
78#define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
79
80#define _FP_ZEROFRAC_1		0
81#define _FP_MINFRAC_1		1
82#define _FP_MAXFRAC_1		(~(_FP_WS_TYPE)0)
83
84/*
85 * Unpack the raw bits of a native fp value.  Do not classify or
86 * normalize the data.
87 */
88
89#define _FP_UNPACK_RAW_1(fs, X, val)				\
90  do {								\
91    union _FP_UNION_##fs _flo; _flo.flt = (val);		\
92								\
93    X##_f = _flo.bits.frac;					\
94    X##_e = _flo.bits.exp;					\
95    X##_s = _flo.bits.sign;					\
96  } while (0)
97
98#define _FP_UNPACK_RAW_1_P(fs, X, val)				\
99  do {								\
100    union _FP_UNION_##fs *_flo =				\
101      (union _FP_UNION_##fs *)(val);				\
102								\
103    X##_f = _flo->bits.frac;					\
104    X##_e = _flo->bits.exp;					\
105    X##_s = _flo->bits.sign;					\
106  } while (0)
107
108/*
109 * Repack the raw bits of a native fp value.
110 */
111
112#define _FP_PACK_RAW_1(fs, val, X)				\
113  do {								\
114    union _FP_UNION_##fs _flo;					\
115								\
116    _flo.bits.frac = X##_f;					\
117    _flo.bits.exp  = X##_e;					\
118    _flo.bits.sign = X##_s;					\
119								\
120    (val) = _flo.flt;						\
121  } while (0)
122
123#define _FP_PACK_RAW_1_P(fs, val, X)				\
124  do {								\
125    union _FP_UNION_##fs *_flo =				\
126      (union _FP_UNION_##fs *)(val);				\
127								\
128    _flo->bits.frac = X##_f;					\
129    _flo->bits.exp  = X##_e;					\
130    _flo->bits.sign = X##_s;					\
131  } while (0)
132
133
134/*
135 * Multiplication algorithms:
136 */
137
138/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
139   multiplication immediately.  */
140
141#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\
142  do {									\
143    R##_f = X##_f * Y##_f;						\
144    /* Normalize since we know where the msb of the multiplicands	\
145       were (bit B), we know that the msb of the of the product is	\
146       at either 2B or 2B-1.  */					\
147    _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);			\
148  } while (0)
149
150/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
151
152#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\
153  do {									\
154    _FP_W_TYPE _Z_f0, _Z_f1;						\
155    doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\
156    /* Normalize since we know where the msb of the multiplicands	\
157       were (bit B), we know that the msb of the of the product is	\
158       at either 2B or 2B-1.  */					\
159    _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);			\
160    R##_f = _Z_f0;							\
161  } while (0)
162
163/* Finally, a simple widening multiply algorithm.  What fun!  */
164
165#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)				\
166  do {									\
167    _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\
168									\
169    /* split the words in half */					\
170    _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\
171    _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
172    _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\
173    _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
174									\
175    /* multiply the pieces */						\
176    _z_f0 = _xl * _yl;							\
177    _a_f0 = _xh * _yl;							\
178    _a_f1 = _xl * _yh;							\
179    _z_f1 = _xh * _yh;							\
180									\
181    /* reassemble into two full words */				\
182    if ((_a_f0 += _a_f1) < _a_f1)					\
183      _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\
184    _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\
185    _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\
186    _FP_FRAC_ADD_2(_z, _z, _a);						\
187									\
188    /* normalize */							\
189    _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);			\
190    R##_f = _z_f0;							\
191  } while (0)
192
193
194/*
195 * Division algorithms:
196 */
197
198/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
199   division immediately.  Give this macro either _FP_DIV_HELP_imm for
200   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
201   choose will depend on what the compiler does with divrem4.  */
202
203#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\
204  do {							\
205    _FP_W_TYPE _q, _r;					\
206    X##_f <<= (X##_f < Y##_f				\
207	       ? R##_e--, _FP_WFRACBITS_##fs		\
208	       : _FP_WFRACBITS_##fs - 1);		\
209    doit(_q, _r, X##_f, Y##_f);				\
210    R##_f = _q | (_r != 0);				\
211  } while (0)
212
213/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
214   that may be useful in this situation.  This first is for a primitive
215   that requires normalization, the second for one that does not.  Look
216   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
217
218#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
219  do {									\
220    _FP_W_TYPE _nh, _nl, _q, _r, _y;					\
221									\
222    /* Normalize Y -- i.e. make the most significant bit set.  */	\
223    _y = Y##_f << _FP_WFRACXBITS_##fs;					\
224									\
225    /* Shift X op correspondingly high, that is, up one full word.  */	\
226    if (X##_f < Y##_f)							\
227      {									\
228	R##_e--;							\
229	_nl = 0;							\
230	_nh = X##_f;							\
231      }									\
232    else								\
233      {									\
234	_nl = X##_f << (_FP_W_TYPE_SIZE - 1);				\
235	_nh = X##_f >> 1;						\
236      }									\
237    									\
238    udiv_qrnnd(_q, _r, _nh, _nl, _y);					\
239    R##_f = _q | (_r != 0);						\
240  } while (0)
241
242#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\
243  do {							\
244    _FP_W_TYPE _nh, _nl, _q, _r;			\
245    if (X##_f < Y##_f)					\
246      {							\
247	R##_e--;					\
248	_nl = X##_f << _FP_WFRACBITS_##fs;		\
249	_nh = X##_f >> _FP_WFRACXBITS_##fs;		\
250      }							\
251    else						\
252      {							\
253	_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
254	_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
255      }							\
256    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\
257    R##_f = _q | (_r != 0);				\
258  } while (0)
259
260
261/*
262 * Square root algorithms:
263 * We have just one right now, maybe Newton approximation
264 * should be added for those machines where division is fast.
265 */
266
267#define _FP_SQRT_MEAT_1(R, S, T, X, q)			\
268  do {							\
269    while (q != _FP_WORK_ROUND)				\
270      {							\
271        T##_f = S##_f + q;				\
272        if (T##_f <= X##_f)				\
273          {						\
274            S##_f = T##_f + q;				\
275            X##_f -= T##_f;				\
276            R##_f += q;					\
277          }						\
278        _FP_FRAC_SLL_1(X, 1);				\
279        q >>= 1;					\
280      }							\
281    if (X##_f)						\
282      {							\
283	if (S##_f < X##_f)				\
284	  R##_f |= _FP_WORK_ROUND;			\
285	R##_f |= _FP_WORK_STICKY;			\
286      }							\
287  } while (0)
288
289/*
290 * Assembly/disassembly for converting to/from integral types.
291 * No shifting or overflow handled here.
292 */
293
294#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f)
295#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r)
296
297
298/*
299 * Convert FP values between word sizes
300 */
301
302#define _FP_FRAC_COPY_1_1(D, S)		(D##_f = S##_f)
303