1/* tblcmp - table compression routines */
2
3/*-
4 * Copyright (c) 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Vern Paxson.
9 *
10 * The United States Government has rights in this work pursuant
11 * to contract no. DE-AC03-76SF00098 between the United States
12 * Department of Energy and the University of California.
13 *
14 * Redistribution and use in source and binary forms with or without
15 * modification are permitted provided that: (1) source distributions retain
16 * this entire copyright notice and comment, and (2) distributions including
17 * binaries display the following acknowledgement:  ``This product includes
18 * software developed by the University of California, Berkeley and its
19 * contributors'' in the documentation or other materials provided with the
20 * distribution and in all advertising materials mentioning features or use
21 * of this software.  Neither the name of the University nor the names of
22 * its contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 */
28
29/* $Header: /projects/cvsroot/src/router/flex/tblcmp.c,v 1.1.1.1 2001/04/08 23:53:37 mhuang Exp $ */
30
31#include "flexdef.h"
32
33
34/* declarations for functions that have forward references */
35
36void mkentry PROTO((register int*, int, int, int, int));
37void mkprot PROTO((int[], int, int));
38void mktemplate PROTO((int[], int, int));
39void mv2front PROTO((int));
40int tbldiff PROTO((int[], int, int[]));
41
42
43/* bldtbl - build table entries for dfa state
44 *
45 * synopsis
46 *   int state[numecs], statenum, totaltrans, comstate, comfreq;
47 *   bldtbl( state, statenum, totaltrans, comstate, comfreq );
48 *
49 * State is the statenum'th dfa state.  It is indexed by equivalence class and
50 * gives the number of the state to enter for a given equivalence class.
51 * totaltrans is the total number of transitions out of the state.  Comstate
52 * is that state which is the destination of the most transitions out of State.
53 * Comfreq is how many transitions there are out of State to Comstate.
54 *
55 * A note on terminology:
56 *    "protos" are transition tables which have a high probability of
57 * either being redundant (a state processed later will have an identical
58 * transition table) or nearly redundant (a state processed later will have
59 * many of the same out-transitions).  A "most recently used" queue of
60 * protos is kept around with the hope that most states will find a proto
61 * which is similar enough to be usable, and therefore compacting the
62 * output tables.
63 *    "templates" are a special type of proto.  If a transition table is
64 * homogeneous or nearly homogeneous (all transitions go to the same
65 * destination) then the odds are good that future states will also go
66 * to the same destination state on basically the same character set.
67 * These homogeneous states are so common when dealing with large rule
68 * sets that they merit special attention.  If the transition table were
69 * simply made into a proto, then (typically) each subsequent, similar
70 * state will differ from the proto for two out-transitions.  One of these
71 * out-transitions will be that character on which the proto does not go
72 * to the common destination, and one will be that character on which the
73 * state does not go to the common destination.  Templates, on the other
74 * hand, go to the common state on EVERY transition character, and therefore
75 * cost only one difference.
76 */
77
78void bldtbl( state, statenum, totaltrans, comstate, comfreq )
79int state[], statenum, totaltrans, comstate, comfreq;
80	{
81	int extptr, extrct[2][CSIZE + 1];
82	int mindiff, minprot, i, d;
83
84	/* If extptr is 0 then the first array of extrct holds the result
85	 * of the "best difference" to date, which is those transitions
86	 * which occur in "state" but not in the proto which, to date,
87	 * has the fewest differences between itself and "state".  If
88	 * extptr is 1 then the second array of extrct hold the best
89	 * difference.  The two arrays are toggled between so that the
90	 * best difference to date can be kept around and also a difference
91	 * just created by checking against a candidate "best" proto.
92	 */
93
94	extptr = 0;
95
96	/* If the state has too few out-transitions, don't bother trying to
97	 * compact its tables.
98	 */
99
100	if ( (totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE) )
101		mkentry( state, numecs, statenum, JAMSTATE, totaltrans );
102
103	else
104		{
105		/* "checkcom" is true if we should only check "state" against
106		 * protos which have the same "comstate" value.
107		 */
108		int checkcom =
109			comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE;
110
111		minprot = firstprot;
112		mindiff = totaltrans;
113
114		if ( checkcom )
115			{
116			/* Find first proto which has the same "comstate". */
117			for ( i = firstprot; i != NIL; i = protnext[i] )
118				if ( protcomst[i] == comstate )
119					{
120					minprot = i;
121					mindiff = tbldiff( state, minprot,
122							extrct[extptr] );
123					break;
124					}
125			}
126
127		else
128			{
129			/* Since we've decided that the most common destination
130			 * out of "state" does not occur with a high enough
131			 * frequency, we set the "comstate" to zero, assuring
132			 * that if this state is entered into the proto list,
133			 * it will not be considered a template.
134			 */
135			comstate = 0;
136
137			if ( firstprot != NIL )
138				{
139				minprot = firstprot;
140				mindiff = tbldiff( state, minprot,
141						extrct[extptr] );
142				}
143			}
144
145		/* We now have the first interesting proto in "minprot".  If
146		 * it matches within the tolerances set for the first proto,
147		 * we don't want to bother scanning the rest of the proto list
148		 * to see if we have any other reasonable matches.
149		 */
150
151		if ( mindiff * 100 > totaltrans * FIRST_MATCH_DIFF_PERCENTAGE )
152			{
153			/* Not a good enough match.  Scan the rest of the
154			 * protos.
155			 */
156			for ( i = minprot; i != NIL; i = protnext[i] )
157				{
158				d = tbldiff( state, i, extrct[1 - extptr] );
159				if ( d < mindiff )
160					{
161					extptr = 1 - extptr;
162					mindiff = d;
163					minprot = i;
164					}
165				}
166			}
167
168		/* Check if the proto we've decided on as our best bet is close
169		 * enough to the state we want to match to be usable.
170		 */
171
172		if ( mindiff * 100 > totaltrans * ACCEPTABLE_DIFF_PERCENTAGE )
173			{
174			/* No good.  If the state is homogeneous enough,
175			 * we make a template out of it.  Otherwise, we
176			 * make a proto.
177			 */
178
179			if ( comfreq * 100 >=
180			     totaltrans * TEMPLATE_SAME_PERCENTAGE )
181				mktemplate( state, statenum, comstate );
182
183			else
184				{
185				mkprot( state, statenum, comstate );
186				mkentry( state, numecs, statenum,
187					JAMSTATE, totaltrans );
188				}
189			}
190
191		else
192			{ /* use the proto */
193			mkentry( extrct[extptr], numecs, statenum,
194				prottbl[minprot], mindiff );
195
196			/* If this state was sufficiently different from the
197			 * proto we built it from, make it, too, a proto.
198			 */
199
200			if ( mindiff * 100 >=
201			     totaltrans * NEW_PROTO_DIFF_PERCENTAGE )
202				mkprot( state, statenum, comstate );
203
204			/* Since mkprot added a new proto to the proto queue,
205			 * it's possible that "minprot" is no longer on the
206			 * proto queue (if it happened to have been the last
207			 * entry, it would have been bumped off).  If it's
208			 * not there, then the new proto took its physical
209			 * place (though logically the new proto is at the
210			 * beginning of the queue), so in that case the
211			 * following call will do nothing.
212			 */
213
214			mv2front( minprot );
215			}
216		}
217	}
218
219
220/* cmptmps - compress template table entries
221 *
222 * Template tables are compressed by using the 'template equivalence
223 * classes', which are collections of transition character equivalence
224 * classes which always appear together in templates - really meta-equivalence
225 * classes.
226 */
227
228void cmptmps()
229	{
230	int tmpstorage[CSIZE + 1];
231	register int *tmp = tmpstorage, i, j;
232	int totaltrans, trans;
233
234	peakpairs = numtemps * numecs + tblend;
235
236	if ( usemecs )
237		{
238		/* Create equivalence classes based on data gathered on
239		 * template transitions.
240		 */
241		nummecs = cre8ecs( tecfwd, tecbck, numecs );
242		}
243
244	else
245		nummecs = numecs;
246
247	while ( lastdfa + numtemps + 1 >= current_max_dfas )
248		increase_max_dfas();
249
250	/* Loop through each template. */
251
252	for ( i = 1; i <= numtemps; ++i )
253		{
254		/* Number of non-jam transitions out of this template. */
255		totaltrans = 0;
256
257		for ( j = 1; j <= numecs; ++j )
258			{
259			trans = tnxt[numecs * i + j];
260
261			if ( usemecs )
262				{
263				/* The absolute value of tecbck is the
264				 * meta-equivalence class of a given
265				 * equivalence class, as set up by cre8ecs().
266				 */
267				if ( tecbck[j] > 0 )
268					{
269					tmp[tecbck[j]] = trans;
270
271					if ( trans > 0 )
272						++totaltrans;
273					}
274				}
275
276			else
277				{
278				tmp[j] = trans;
279
280				if ( trans > 0 )
281					++totaltrans;
282				}
283			}
284
285		/* It is assumed (in a rather subtle way) in the skeleton
286		 * that if we're using meta-equivalence classes, the def[]
287		 * entry for all templates is the jam template, i.e.,
288		 * templates never default to other non-jam table entries
289		 * (e.g., another template)
290		 */
291
292		/* Leave room for the jam-state after the last real state. */
293		mkentry( tmp, nummecs, lastdfa + i + 1, JAMSTATE, totaltrans );
294		}
295	}
296
297
298
299/* expand_nxt_chk - expand the next check arrays */
300
301void expand_nxt_chk()
302	{
303	register int old_max = current_max_xpairs;
304
305	current_max_xpairs += MAX_XPAIRS_INCREMENT;
306
307	++num_reallocs;
308
309	nxt = reallocate_integer_array( nxt, current_max_xpairs );
310	chk = reallocate_integer_array( chk, current_max_xpairs );
311
312	zero_out( (char *) (chk + old_max),
313		(size_t) (MAX_XPAIRS_INCREMENT * sizeof( int )) );
314	}
315
316
317/* find_table_space - finds a space in the table for a state to be placed
318 *
319 * synopsis
320 *     int *state, numtrans, block_start;
321 *     int find_table_space();
322 *
323 *     block_start = find_table_space( state, numtrans );
324 *
325 * State is the state to be added to the full speed transition table.
326 * Numtrans is the number of out-transitions for the state.
327 *
328 * find_table_space() returns the position of the start of the first block (in
329 * chk) able to accommodate the state
330 *
331 * In determining if a state will or will not fit, find_table_space() must take
332 * into account the fact that an end-of-buffer state will be added at [0],
333 * and an action number will be added in [-1].
334 */
335
336int find_table_space( state, numtrans )
337int *state, numtrans;
338	{
339	/* Firstfree is the position of the first possible occurrence of two
340	 * consecutive unused records in the chk and nxt arrays.
341	 */
342	register int i;
343	register int *state_ptr, *chk_ptr;
344	register int *ptr_to_last_entry_in_state;
345
346	/* If there are too many out-transitions, put the state at the end of
347	 * nxt and chk.
348	 */
349	if ( numtrans > MAX_XTIONS_FULL_INTERIOR_FIT )
350		{
351		/* If table is empty, return the first available spot in
352		 * chk/nxt, which should be 1.
353		 */
354		if ( tblend < 2 )
355			return 1;
356
357		/* Start searching for table space near the end of
358		 * chk/nxt arrays.
359		 */
360		i = tblend - numecs;
361		}
362
363	else
364		/* Start searching for table space from the beginning
365		 * (skipping only the elements which will definitely not
366		 * hold the new state).
367		 */
368		i = firstfree;
369
370	while ( 1 )	/* loops until a space is found */
371		{
372		while ( i + numecs >= current_max_xpairs )
373			expand_nxt_chk();
374
375		/* Loops until space for end-of-buffer and action number
376		 * are found.
377		 */
378		while ( 1 )
379			{
380			/* Check for action number space. */
381			if ( chk[i - 1] == 0 )
382				{
383				/* Check for end-of-buffer space. */
384				if ( chk[i] == 0 )
385					break;
386
387				else
388					/* Since i != 0, there is no use
389					 * checking to see if (++i) - 1 == 0,
390					 * because that's the same as i == 0,
391					 * so we skip a space.
392					 */
393					i += 2;
394				}
395
396			else
397				++i;
398
399			while ( i + numecs >= current_max_xpairs )
400				expand_nxt_chk();
401			}
402
403		/* If we started search from the beginning, store the new
404		 * firstfree for the next call of find_table_space().
405		 */
406		if ( numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT )
407			firstfree = i + 1;
408
409		/* Check to see if all elements in chk (and therefore nxt)
410		 * that are needed for the new state have not yet been taken.
411		 */
412
413		state_ptr = &state[1];
414		ptr_to_last_entry_in_state = &chk[i + numecs + 1];
415
416		for ( chk_ptr = &chk[i + 1];
417		      chk_ptr != ptr_to_last_entry_in_state; ++chk_ptr )
418			if ( *(state_ptr++) != 0 && *chk_ptr != 0 )
419				break;
420
421		if ( chk_ptr == ptr_to_last_entry_in_state )
422			return i;
423
424		else
425		++i;
426		}
427	}
428
429
430/* inittbl - initialize transition tables
431 *
432 * Initializes "firstfree" to be one beyond the end of the table.  Initializes
433 * all "chk" entries to be zero.
434 */
435void inittbl()
436	{
437	register int i;
438
439	zero_out( (char *) chk, (size_t) (current_max_xpairs * sizeof( int )) );
440
441	tblend = 0;
442	firstfree = tblend + 1;
443	numtemps = 0;
444
445	if ( usemecs )
446		{
447		/* Set up doubly-linked meta-equivalence classes; these
448		 * are sets of equivalence classes which all have identical
449		 * transitions out of TEMPLATES.
450		 */
451
452		tecbck[1] = NIL;
453
454		for ( i = 2; i <= numecs; ++i )
455			{
456			tecbck[i] = i - 1;
457			tecfwd[i - 1] = i;
458			}
459
460		tecfwd[numecs] = NIL;
461		}
462	}
463
464
465/* mkdeftbl - make the default, "jam" table entries */
466
467void mkdeftbl()
468	{
469	int i;
470
471	jamstate = lastdfa + 1;
472
473	++tblend; /* room for transition on end-of-buffer character */
474
475	while ( tblend + numecs >= current_max_xpairs )
476		expand_nxt_chk();
477
478	/* Add in default end-of-buffer transition. */
479	nxt[tblend] = end_of_buffer_state;
480	chk[tblend] = jamstate;
481
482	for ( i = 1; i <= numecs; ++i )
483		{
484		nxt[tblend + i] = 0;
485		chk[tblend + i] = jamstate;
486		}
487
488	jambase = tblend;
489
490	base[jamstate] = jambase;
491	def[jamstate] = 0;
492
493	tblend += numecs;
494	++numtemps;
495	}
496
497
498/* mkentry - create base/def and nxt/chk entries for transition array
499 *
500 * synopsis
501 *   int state[numchars + 1], numchars, statenum, deflink, totaltrans;
502 *   mkentry( state, numchars, statenum, deflink, totaltrans );
503 *
504 * "state" is a transition array "numchars" characters in size, "statenum"
505 * is the offset to be used into the base/def tables, and "deflink" is the
506 * entry to put in the "def" table entry.  If "deflink" is equal to
507 * "JAMSTATE", then no attempt will be made to fit zero entries of "state"
508 * (i.e., jam entries) into the table.  It is assumed that by linking to
509 * "JAMSTATE" they will be taken care of.  In any case, entries in "state"
510 * marking transitions to "SAME_TRANS" are treated as though they will be
511 * taken care of by whereever "deflink" points.  "totaltrans" is the total
512 * number of transitions out of the state.  If it is below a certain threshold,
513 * the tables are searched for an interior spot that will accommodate the
514 * state array.
515 */
516
517void mkentry( state, numchars, statenum, deflink, totaltrans )
518register int *state;
519int numchars, statenum, deflink, totaltrans;
520	{
521	register int minec, maxec, i, baseaddr;
522	int tblbase, tbllast;
523
524	if ( totaltrans == 0 )
525		{ /* there are no out-transitions */
526		if ( deflink == JAMSTATE )
527			base[statenum] = JAMSTATE;
528		else
529			base[statenum] = 0;
530
531		def[statenum] = deflink;
532		return;
533		}
534
535	for ( minec = 1; minec <= numchars; ++minec )
536		{
537		if ( state[minec] != SAME_TRANS )
538			if ( state[minec] != 0 || deflink != JAMSTATE )
539				break;
540		}
541
542	if ( totaltrans == 1 )
543		{
544		/* There's only one out-transition.  Save it for later to fill
545		 * in holes in the tables.
546		 */
547		stack1( statenum, minec, state[minec], deflink );
548		return;
549		}
550
551	for ( maxec = numchars; maxec > 0; --maxec )
552		{
553		if ( state[maxec] != SAME_TRANS )
554			if ( state[maxec] != 0 || deflink != JAMSTATE )
555				break;
556		}
557
558	/* Whether we try to fit the state table in the middle of the table
559	 * entries we have already generated, or if we just take the state
560	 * table at the end of the nxt/chk tables, we must make sure that we
561	 * have a valid base address (i.e., non-negative).  Note that
562	 * negative base addresses dangerous at run-time (because indexing
563	 * the nxt array with one and a low-valued character will access
564	 * memory before the start of the array.
565	 */
566
567	/* Find the first transition of state that we need to worry about. */
568	if ( totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE )
569		{
570		/* Attempt to squeeze it into the middle of the tables. */
571		baseaddr = firstfree;
572
573		while ( baseaddr < minec )
574			{
575			/* Using baseaddr would result in a negative base
576			 * address below; find the next free slot.
577			 */
578			for ( ++baseaddr; chk[baseaddr] != 0; ++baseaddr )
579				;
580			}
581
582		while ( baseaddr + maxec - minec + 1 >= current_max_xpairs )
583			expand_nxt_chk();
584
585		for ( i = minec; i <= maxec; ++i )
586			if ( state[i] != SAME_TRANS &&
587			     (state[i] != 0 || deflink != JAMSTATE) &&
588			     chk[baseaddr + i - minec] != 0 )
589				{ /* baseaddr unsuitable - find another */
590				for ( ++baseaddr;
591				      baseaddr < current_max_xpairs &&
592				      chk[baseaddr] != 0; ++baseaddr )
593					;
594
595				while ( baseaddr + maxec - minec + 1 >=
596					current_max_xpairs )
597					expand_nxt_chk();
598
599				/* Reset the loop counter so we'll start all
600				 * over again next time it's incremented.
601				 */
602
603				i = minec - 1;
604				}
605		}
606
607	else
608		{
609		/* Ensure that the base address we eventually generate is
610		 * non-negative.
611		 */
612		baseaddr = MAX( tblend + 1, minec );
613		}
614
615	tblbase = baseaddr - minec;
616	tbllast = tblbase + maxec;
617
618	while ( tbllast + 1 >= current_max_xpairs )
619		expand_nxt_chk();
620
621	base[statenum] = tblbase;
622	def[statenum] = deflink;
623
624	for ( i = minec; i <= maxec; ++i )
625		if ( state[i] != SAME_TRANS )
626			if ( state[i] != 0 || deflink != JAMSTATE )
627				{
628				nxt[tblbase + i] = state[i];
629				chk[tblbase + i] = statenum;
630				}
631
632	if ( baseaddr == firstfree )
633		/* Find next free slot in tables. */
634		for ( ++firstfree; chk[firstfree] != 0; ++firstfree )
635			;
636
637	tblend = MAX( tblend, tbllast );
638	}
639
640
641/* mk1tbl - create table entries for a state (or state fragment) which
642 *            has only one out-transition
643 */
644
645void mk1tbl( state, sym, onenxt, onedef )
646int state, sym, onenxt, onedef;
647	{
648	if ( firstfree < sym )
649		firstfree = sym;
650
651	while ( chk[firstfree] != 0 )
652		if ( ++firstfree >= current_max_xpairs )
653			expand_nxt_chk();
654
655	base[state] = firstfree - sym;
656	def[state] = onedef;
657	chk[firstfree] = state;
658	nxt[firstfree] = onenxt;
659
660	if ( firstfree > tblend )
661		{
662		tblend = firstfree++;
663
664		if ( firstfree >= current_max_xpairs )
665			expand_nxt_chk();
666		}
667	}
668
669
670/* mkprot - create new proto entry */
671
672void mkprot( state, statenum, comstate )
673int state[], statenum, comstate;
674	{
675	int i, slot, tblbase;
676
677	if ( ++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE )
678		{
679		/* Gotta make room for the new proto by dropping last entry in
680		 * the queue.
681		 */
682		slot = lastprot;
683		lastprot = protprev[lastprot];
684		protnext[lastprot] = NIL;
685		}
686
687	else
688		slot = numprots;
689
690	protnext[slot] = firstprot;
691
692	if ( firstprot != NIL )
693		protprev[firstprot] = slot;
694
695	firstprot = slot;
696	prottbl[slot] = statenum;
697	protcomst[slot] = comstate;
698
699	/* Copy state into save area so it can be compared with rapidly. */
700	tblbase = numecs * (slot - 1);
701
702	for ( i = 1; i <= numecs; ++i )
703		protsave[tblbase + i] = state[i];
704	}
705
706
707/* mktemplate - create a template entry based on a state, and connect the state
708 *              to it
709 */
710
711void mktemplate( state, statenum, comstate )
712int state[], statenum, comstate;
713	{
714	int i, numdiff, tmpbase, tmp[CSIZE + 1];
715	Char transset[CSIZE + 1];
716	int tsptr;
717
718	++numtemps;
719
720	tsptr = 0;
721
722	/* Calculate where we will temporarily store the transition table
723	 * of the template in the tnxt[] array.  The final transition table
724	 * gets created by cmptmps().
725	 */
726
727	tmpbase = numtemps * numecs;
728
729	if ( tmpbase + numecs >= current_max_template_xpairs )
730		{
731		current_max_template_xpairs += MAX_TEMPLATE_XPAIRS_INCREMENT;
732
733		++num_reallocs;
734
735		tnxt = reallocate_integer_array( tnxt,
736			current_max_template_xpairs );
737		}
738
739	for ( i = 1; i <= numecs; ++i )
740		if ( state[i] == 0 )
741			tnxt[tmpbase + i] = 0;
742		else
743			{
744			transset[tsptr++] = i;
745			tnxt[tmpbase + i] = comstate;
746			}
747
748	if ( usemecs )
749		mkeccl( transset, tsptr, tecfwd, tecbck, numecs, 0 );
750
751	mkprot( tnxt + tmpbase, -numtemps, comstate );
752
753	/* We rely on the fact that mkprot adds things to the beginning
754	 * of the proto queue.
755	 */
756
757	numdiff = tbldiff( state, firstprot, tmp );
758	mkentry( tmp, numecs, statenum, -numtemps, numdiff );
759	}
760
761
762/* mv2front - move proto queue element to front of queue */
763
764void mv2front( qelm )
765int qelm;
766	{
767	if ( firstprot != qelm )
768		{
769		if ( qelm == lastprot )
770			lastprot = protprev[lastprot];
771
772		protnext[protprev[qelm]] = protnext[qelm];
773
774		if ( protnext[qelm] != NIL )
775			protprev[protnext[qelm]] = protprev[qelm];
776
777		protprev[qelm] = NIL;
778		protnext[qelm] = firstprot;
779		protprev[firstprot] = qelm;
780		firstprot = qelm;
781		}
782	}
783
784
785/* place_state - place a state into full speed transition table
786 *
787 * State is the statenum'th state.  It is indexed by equivalence class and
788 * gives the number of the state to enter for a given equivalence class.
789 * Transnum is the number of out-transitions for the state.
790 */
791
792void place_state( state, statenum, transnum )
793int *state, statenum, transnum;
794	{
795	register int i;
796	register int *state_ptr;
797	int position = find_table_space( state, transnum );
798
799	/* "base" is the table of start positions. */
800	base[statenum] = position;
801
802	/* Put in action number marker; this non-zero number makes sure that
803	 * find_table_space() knows that this position in chk/nxt is taken
804	 * and should not be used for another accepting number in another
805	 * state.
806	 */
807	chk[position - 1] = 1;
808
809	/* Put in end-of-buffer marker; this is for the same purposes as
810	 * above.
811	 */
812	chk[position] = 1;
813
814	/* Place the state into chk and nxt. */
815	state_ptr = &state[1];
816
817	for ( i = 1; i <= numecs; ++i, ++state_ptr )
818		if ( *state_ptr != 0 )
819			{
820			chk[position + i] = i;
821			nxt[position + i] = *state_ptr;
822			}
823
824	if ( position + numecs > tblend )
825		tblend = position + numecs;
826	}
827
828
829/* stack1 - save states with only one out-transition to be processed later
830 *
831 * If there's room for another state on the "one-transition" stack, the
832 * state is pushed onto it, to be processed later by mk1tbl.  If there's
833 * no room, we process the sucker right now.
834 */
835
836void stack1( statenum, sym, nextstate, deflink )
837int statenum, sym, nextstate, deflink;
838	{
839	if ( onesp >= ONE_STACK_SIZE - 1 )
840		mk1tbl( statenum, sym, nextstate, deflink );
841
842	else
843		{
844		++onesp;
845		onestate[onesp] = statenum;
846		onesym[onesp] = sym;
847		onenext[onesp] = nextstate;
848		onedef[onesp] = deflink;
849		}
850	}
851
852
853/* tbldiff - compute differences between two state tables
854 *
855 * "state" is the state array which is to be extracted from the pr'th
856 * proto.  "pr" is both the number of the proto we are extracting from
857 * and an index into the save area where we can find the proto's complete
858 * state table.  Each entry in "state" which differs from the corresponding
859 * entry of "pr" will appear in "ext".
860 *
861 * Entries which are the same in both "state" and "pr" will be marked
862 * as transitions to "SAME_TRANS" in "ext".  The total number of differences
863 * between "state" and "pr" is returned as function value.  Note that this
864 * number is "numecs" minus the number of "SAME_TRANS" entries in "ext".
865 */
866
867int tbldiff( state, pr, ext )
868int state[], pr, ext[];
869	{
870	register int i, *sp = state, *ep = ext, *protp;
871	register int numdiff = 0;
872
873	protp = &protsave[numecs * (pr - 1)];
874
875	for ( i = numecs; i > 0; --i )
876		{
877		if ( *++protp == *++sp )
878			*++ep = SAME_TRANS;
879		else
880			{
881			*++ep = *sp;
882			++numdiff;
883			}
884		}
885
886	return numdiff;
887	}
888