1/* nfa - NFA construction routines */
2
3/*-
4 * Copyright (c) 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Vern Paxson.
9 *
10 * The United States Government has rights in this work pursuant
11 * to contract no. DE-AC03-76SF00098 between the United States
12 * Department of Energy and the University of California.
13 *
14 * Redistribution and use in source and binary forms with or without
15 * modification are permitted provided that: (1) source distributions retain
16 * this entire copyright notice and comment, and (2) distributions including
17 * binaries display the following acknowledgement:  ``This product includes
18 * software developed by the University of California, Berkeley and its
19 * contributors'' in the documentation or other materials provided with the
20 * distribution and in all advertising materials mentioning features or use
21 * of this software.  Neither the name of the University nor the names of
22 * its contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 */
28
29/* $Header: /projects/cvsroot/src/router/flex/nfa.c,v 1.1.1.1 2001/04/08 23:53:37 mhuang Exp $ */
30
31#include "flexdef.h"
32
33
34/* declare functions that have forward references */
35
36int dupmachine PROTO((int));
37void mkxtion PROTO((int, int));
38
39
40/* add_accept - add an accepting state to a machine
41 *
42 * accepting_number becomes mach's accepting number.
43 */
44
45void add_accept( mach, accepting_number )
46int mach, accepting_number;
47	{
48	/* Hang the accepting number off an epsilon state.  if it is associated
49	 * with a state that has a non-epsilon out-transition, then the state
50	 * will accept BEFORE it makes that transition, i.e., one character
51	 * too soon.
52	 */
53
54	if ( transchar[finalst[mach]] == SYM_EPSILON )
55		accptnum[finalst[mach]] = accepting_number;
56
57	else
58		{
59		int astate = mkstate( SYM_EPSILON );
60		accptnum[astate] = accepting_number;
61		(void) link_machines( mach, astate );
62		}
63	}
64
65
66/* copysingl - make a given number of copies of a singleton machine
67 *
68 * synopsis
69 *
70 *   newsng = copysingl( singl, num );
71 *
72 *     newsng - a new singleton composed of num copies of singl
73 *     singl  - a singleton machine
74 *     num    - the number of copies of singl to be present in newsng
75 */
76
77int copysingl( singl, num )
78int singl, num;
79	{
80	int copy, i;
81
82	copy = mkstate( SYM_EPSILON );
83
84	for ( i = 1; i <= num; ++i )
85		copy = link_machines( copy, dupmachine( singl ) );
86
87	return copy;
88	}
89
90
91/* dumpnfa - debugging routine to write out an nfa */
92
93void dumpnfa( state1 )
94int state1;
95
96	{
97	int sym, tsp1, tsp2, anum, ns;
98
99	fprintf( stderr,
100	_( "\n\n********** beginning dump of nfa with start state %d\n" ),
101		state1 );
102
103	/* We probably should loop starting at firstst[state1] and going to
104	 * lastst[state1], but they're not maintained properly when we "or"
105	 * all of the rules together.  So we use our knowledge that the machine
106	 * starts at state 1 and ends at lastnfa.
107	 */
108
109	/* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
110	for ( ns = 1; ns <= lastnfa; ++ns )
111		{
112		fprintf( stderr, _( "state # %4d\t" ), ns );
113
114		sym = transchar[ns];
115		tsp1 = trans1[ns];
116		tsp2 = trans2[ns];
117		anum = accptnum[ns];
118
119		fprintf( stderr, "%3d:  %4d, %4d", sym, tsp1, tsp2 );
120
121		if ( anum != NIL )
122			fprintf( stderr, "  [%d]", anum );
123
124		fprintf( stderr, "\n" );
125		}
126
127	fprintf( stderr, _( "********** end of dump\n" ) );
128	}
129
130
131/* dupmachine - make a duplicate of a given machine
132 *
133 * synopsis
134 *
135 *   copy = dupmachine( mach );
136 *
137 *     copy - holds duplicate of mach
138 *     mach - machine to be duplicated
139 *
140 * note that the copy of mach is NOT an exact duplicate; rather, all the
141 * transition states values are adjusted so that the copy is self-contained,
142 * as the original should have been.
143 *
144 * also note that the original MUST be contiguous, with its low and high
145 * states accessible by the arrays firstst and lastst
146 */
147
148int dupmachine( mach )
149int mach;
150	{
151	int i, init, state_offset;
152	int state = 0;
153	int last = lastst[mach];
154
155	for ( i = firstst[mach]; i <= last; ++i )
156		{
157		state = mkstate( transchar[i] );
158
159		if ( trans1[i] != NO_TRANSITION )
160			{
161			mkxtion( finalst[state], trans1[i] + state - i );
162
163			if ( transchar[i] == SYM_EPSILON &&
164			     trans2[i] != NO_TRANSITION )
165				mkxtion( finalst[state],
166					trans2[i] + state - i );
167			}
168
169		accptnum[state] = accptnum[i];
170		}
171
172	if ( state == 0 )
173		flexfatal( _( "empty machine in dupmachine()" ) );
174
175	state_offset = state - i + 1;
176
177	init = mach + state_offset;
178	firstst[init] = firstst[mach] + state_offset;
179	finalst[init] = finalst[mach] + state_offset;
180	lastst[init] = lastst[mach] + state_offset;
181
182	return init;
183	}
184
185
186/* finish_rule - finish up the processing for a rule
187 *
188 * An accepting number is added to the given machine.  If variable_trail_rule
189 * is true then the rule has trailing context and both the head and trail
190 * are variable size.  Otherwise if headcnt or trailcnt is non-zero then
191 * the machine recognizes a pattern with trailing context and headcnt is
192 * the number of characters in the matched part of the pattern, or zero
193 * if the matched part has variable length.  trailcnt is the number of
194 * trailing context characters in the pattern, or zero if the trailing
195 * context has variable length.
196 */
197
198void finish_rule( mach, variable_trail_rule, headcnt, trailcnt )
199int mach, variable_trail_rule, headcnt, trailcnt;
200	{
201	char action_text[MAXLINE];
202
203	add_accept( mach, num_rules );
204
205	/* We did this in new_rule(), but it often gets the wrong
206	 * number because we do it before we start parsing the current rule.
207	 */
208	rule_linenum[num_rules] = linenum;
209
210	/* If this is a continued action, then the line-number has already
211	 * been updated, giving us the wrong number.
212	 */
213	if ( continued_action )
214		--rule_linenum[num_rules];
215
216	sprintf( action_text, "case %d:\n", num_rules );
217	add_action( action_text );
218
219	if ( variable_trail_rule )
220		{
221		rule_type[num_rules] = RULE_VARIABLE;
222
223		if ( performance_report > 0 )
224			fprintf( stderr,
225			_( "Variable trailing context rule at line %d\n" ),
226				rule_linenum[num_rules] );
227
228		variable_trailing_context_rules = true;
229		}
230
231	else
232		{
233		rule_type[num_rules] = RULE_NORMAL;
234
235		if ( headcnt > 0 || trailcnt > 0 )
236			{
237			/* Do trailing context magic to not match the trailing
238			 * characters.
239			 */
240			char *scanner_cp = "yy_c_buf_p = yy_cp";
241			char *scanner_bp = "yy_bp";
242
243			add_action(
244	"*yy_cp = yy_hold_char; /* undo effects of setting up yytext */\n" );
245
246			if ( headcnt > 0 )
247				{
248				sprintf( action_text, "%s = %s + %d;\n",
249				scanner_cp, scanner_bp, headcnt );
250				add_action( action_text );
251				}
252
253			else
254				{
255				sprintf( action_text, "%s -= %d;\n",
256					scanner_cp, trailcnt );
257				add_action( action_text );
258				}
259
260			add_action(
261			"YY_DO_BEFORE_ACTION; /* set up yytext again */\n" );
262			}
263		}
264
265	/* Okay, in the action code at this point yytext and yyleng have
266	 * their proper final values for this rule, so here's the point
267	 * to do any user action.  But don't do it for continued actions,
268	 * as that'll result in multiple YY_RULE_SETUP's.
269	 */
270	if ( ! continued_action )
271		add_action( "YY_RULE_SETUP\n" );
272
273	line_directive_out( (FILE *) 0, 1 );
274	}
275
276
277/* link_machines - connect two machines together
278 *
279 * synopsis
280 *
281 *   new = link_machines( first, last );
282 *
283 *     new    - a machine constructed by connecting first to last
284 *     first  - the machine whose successor is to be last
285 *     last   - the machine whose predecessor is to be first
286 *
287 * note: this routine concatenates the machine first with the machine
288 *  last to produce a machine new which will pattern-match first first
289 *  and then last, and will fail if either of the sub-patterns fails.
290 *  FIRST is set to new by the operation.  last is unmolested.
291 */
292
293int link_machines( first, last )
294int first, last;
295	{
296	if ( first == NIL )
297		return last;
298
299	else if ( last == NIL )
300		return first;
301
302	else
303		{
304		mkxtion( finalst[first], last );
305		finalst[first] = finalst[last];
306		lastst[first] = MAX( lastst[first], lastst[last] );
307		firstst[first] = MIN( firstst[first], firstst[last] );
308
309		return first;
310		}
311	}
312
313
314/* mark_beginning_as_normal - mark each "beginning" state in a machine
315 *                            as being a "normal" (i.e., not trailing context-
316 *                            associated) states
317 *
318 * The "beginning" states are the epsilon closure of the first state
319 */
320
321void mark_beginning_as_normal( mach )
322register int mach;
323	{
324	switch ( state_type[mach] )
325		{
326		case STATE_NORMAL:
327			/* Oh, we've already visited here. */
328			return;
329
330		case STATE_TRAILING_CONTEXT:
331			state_type[mach] = STATE_NORMAL;
332
333			if ( transchar[mach] == SYM_EPSILON )
334				{
335				if ( trans1[mach] != NO_TRANSITION )
336					mark_beginning_as_normal(
337						trans1[mach] );
338
339				if ( trans2[mach] != NO_TRANSITION )
340					mark_beginning_as_normal(
341						trans2[mach] );
342				}
343			break;
344
345		default:
346			flexerror(
347			_( "bad state type in mark_beginning_as_normal()" ) );
348			break;
349		}
350	}
351
352
353/* mkbranch - make a machine that branches to two machines
354 *
355 * synopsis
356 *
357 *   branch = mkbranch( first, second );
358 *
359 *     branch - a machine which matches either first's pattern or second's
360 *     first, second - machines whose patterns are to be or'ed (the | operator)
361 *
362 * Note that first and second are NEITHER destroyed by the operation.  Also,
363 * the resulting machine CANNOT be used with any other "mk" operation except
364 * more mkbranch's.  Compare with mkor()
365 */
366
367int mkbranch( first, second )
368int first, second;
369	{
370	int eps;
371
372	if ( first == NO_TRANSITION )
373		return second;
374
375	else if ( second == NO_TRANSITION )
376		return first;
377
378	eps = mkstate( SYM_EPSILON );
379
380	mkxtion( eps, first );
381	mkxtion( eps, second );
382
383	return eps;
384	}
385
386
387/* mkclos - convert a machine into a closure
388 *
389 * synopsis
390 *   new = mkclos( state );
391 *
392 * new - a new state which matches the closure of "state"
393 */
394
395int mkclos( state )
396int state;
397	{
398	return mkopt( mkposcl( state ) );
399	}
400
401
402/* mkopt - make a machine optional
403 *
404 * synopsis
405 *
406 *   new = mkopt( mach );
407 *
408 *     new  - a machine which optionally matches whatever mach matched
409 *     mach - the machine to make optional
410 *
411 * notes:
412 *     1. mach must be the last machine created
413 *     2. mach is destroyed by the call
414 */
415
416int mkopt( mach )
417int mach;
418	{
419	int eps;
420
421	if ( ! SUPER_FREE_EPSILON(finalst[mach]) )
422		{
423		eps = mkstate( SYM_EPSILON );
424		mach = link_machines( mach, eps );
425		}
426
427	/* Can't skimp on the following if FREE_EPSILON(mach) is true because
428	 * some state interior to "mach" might point back to the beginning
429	 * for a closure.
430	 */
431	eps = mkstate( SYM_EPSILON );
432	mach = link_machines( eps, mach );
433
434	mkxtion( mach, finalst[mach] );
435
436	return mach;
437	}
438
439
440/* mkor - make a machine that matches either one of two machines
441 *
442 * synopsis
443 *
444 *   new = mkor( first, second );
445 *
446 *     new - a machine which matches either first's pattern or second's
447 *     first, second - machines whose patterns are to be or'ed (the | operator)
448 *
449 * note that first and second are both destroyed by the operation
450 * the code is rather convoluted because an attempt is made to minimize
451 * the number of epsilon states needed
452 */
453
454int mkor( first, second )
455int first, second;
456	{
457	int eps, orend;
458
459	if ( first == NIL )
460		return second;
461
462	else if ( second == NIL )
463		return first;
464
465	else
466		{
467		/* See comment in mkopt() about why we can't use the first
468		 * state of "first" or "second" if they satisfy "FREE_EPSILON".
469		 */
470		eps = mkstate( SYM_EPSILON );
471
472		first = link_machines( eps, first );
473
474		mkxtion( first, second );
475
476		if ( SUPER_FREE_EPSILON(finalst[first]) &&
477		     accptnum[finalst[first]] == NIL )
478			{
479			orend = finalst[first];
480			mkxtion( finalst[second], orend );
481			}
482
483		else if ( SUPER_FREE_EPSILON(finalst[second]) &&
484			  accptnum[finalst[second]] == NIL )
485			{
486			orend = finalst[second];
487			mkxtion( finalst[first], orend );
488			}
489
490		else
491			{
492			eps = mkstate( SYM_EPSILON );
493
494			first = link_machines( first, eps );
495			orend = finalst[first];
496
497			mkxtion( finalst[second], orend );
498			}
499		}
500
501	finalst[first] = orend;
502	return first;
503	}
504
505
506/* mkposcl - convert a machine into a positive closure
507 *
508 * synopsis
509 *   new = mkposcl( state );
510 *
511 *    new - a machine matching the positive closure of "state"
512 */
513
514int mkposcl( state )
515int state;
516	{
517	int eps;
518
519	if ( SUPER_FREE_EPSILON(finalst[state]) )
520		{
521		mkxtion( finalst[state], state );
522		return state;
523		}
524
525	else
526		{
527		eps = mkstate( SYM_EPSILON );
528		mkxtion( eps, state );
529		return link_machines( state, eps );
530		}
531	}
532
533
534/* mkrep - make a replicated machine
535 *
536 * synopsis
537 *   new = mkrep( mach, lb, ub );
538 *
539 *    new - a machine that matches whatever "mach" matched from "lb"
540 *          number of times to "ub" number of times
541 *
542 * note
543 *   if "ub" is INFINITY then "new" matches "lb" or more occurrences of "mach"
544 */
545
546int mkrep( mach, lb, ub )
547int mach, lb, ub;
548	{
549	int base_mach, tail, copy, i;
550
551	base_mach = copysingl( mach, lb - 1 );
552
553	if ( ub == INFINITY )
554		{
555		copy = dupmachine( mach );
556		mach = link_machines( mach,
557		link_machines( base_mach, mkclos( copy ) ) );
558		}
559
560	else
561		{
562		tail = mkstate( SYM_EPSILON );
563
564		for ( i = lb; i < ub; ++i )
565			{
566			copy = dupmachine( mach );
567			tail = mkopt( link_machines( copy, tail ) );
568			}
569
570		mach = link_machines( mach, link_machines( base_mach, tail ) );
571		}
572
573	return mach;
574	}
575
576
577/* mkstate - create a state with a transition on a given symbol
578 *
579 * synopsis
580 *
581 *   state = mkstate( sym );
582 *
583 *     state - a new state matching sym
584 *     sym   - the symbol the new state is to have an out-transition on
585 *
586 * note that this routine makes new states in ascending order through the
587 * state array (and increments LASTNFA accordingly).  The routine DUPMACHINE
588 * relies on machines being made in ascending order and that they are
589 * CONTIGUOUS.  Change it and you will have to rewrite DUPMACHINE (kludge
590 * that it admittedly is)
591 */
592
593int mkstate( sym )
594int sym;
595	{
596	if ( ++lastnfa >= current_mns )
597		{
598		if ( (current_mns += MNS_INCREMENT) >= MAXIMUM_MNS )
599			lerrif(
600		_( "input rules are too complicated (>= %d NFA states)" ),
601				current_mns );
602
603		++num_reallocs;
604
605		firstst = reallocate_integer_array( firstst, current_mns );
606		lastst = reallocate_integer_array( lastst, current_mns );
607		finalst = reallocate_integer_array( finalst, current_mns );
608		transchar = reallocate_integer_array( transchar, current_mns );
609		trans1 = reallocate_integer_array( trans1, current_mns );
610		trans2 = reallocate_integer_array( trans2, current_mns );
611		accptnum = reallocate_integer_array( accptnum, current_mns );
612		assoc_rule =
613			reallocate_integer_array( assoc_rule, current_mns );
614		state_type =
615			reallocate_integer_array( state_type, current_mns );
616		}
617
618	firstst[lastnfa] = lastnfa;
619	finalst[lastnfa] = lastnfa;
620	lastst[lastnfa] = lastnfa;
621	transchar[lastnfa] = sym;
622	trans1[lastnfa] = NO_TRANSITION;
623	trans2[lastnfa] = NO_TRANSITION;
624	accptnum[lastnfa] = NIL;
625	assoc_rule[lastnfa] = num_rules;
626	state_type[lastnfa] = current_state_type;
627
628	/* Fix up equivalence classes base on this transition.  Note that any
629	 * character which has its own transition gets its own equivalence
630	 * class.  Thus only characters which are only in character classes
631	 * have a chance at being in the same equivalence class.  E.g. "a|b"
632	 * puts 'a' and 'b' into two different equivalence classes.  "[ab]"
633	 * puts them in the same equivalence class (barring other differences
634	 * elsewhere in the input).
635	 */
636
637	if ( sym < 0 )
638		{
639		/* We don't have to update the equivalence classes since
640		 * that was already done when the ccl was created for the
641		 * first time.
642		 */
643		}
644
645	else if ( sym == SYM_EPSILON )
646		++numeps;
647
648	else
649		{
650		check_char( sym );
651
652		if ( useecs )
653			/* Map NUL's to csize. */
654			mkechar( sym ? sym : csize, nextecm, ecgroup );
655		}
656
657	return lastnfa;
658	}
659
660
661/* mkxtion - make a transition from one state to another
662 *
663 * synopsis
664 *
665 *   mkxtion( statefrom, stateto );
666 *
667 *     statefrom - the state from which the transition is to be made
668 *     stateto   - the state to which the transition is to be made
669 */
670
671void mkxtion( statefrom, stateto )
672int statefrom, stateto;
673	{
674	if ( trans1[statefrom] == NO_TRANSITION )
675		trans1[statefrom] = stateto;
676
677	else if ( (transchar[statefrom] != SYM_EPSILON) ||
678		  (trans2[statefrom] != NO_TRANSITION) )
679		flexfatal( _( "found too many transitions in mkxtion()" ) );
680
681	else
682		{ /* second out-transition for an epsilon state */
683		++eps2;
684		trans2[statefrom] = stateto;
685		}
686	}
687
688/* new_rule - initialize for a new rule */
689
690void new_rule()
691	{
692	if ( ++num_rules >= current_max_rules )
693		{
694		++num_reallocs;
695		current_max_rules += MAX_RULES_INCREMENT;
696		rule_type = reallocate_integer_array( rule_type,
697							current_max_rules );
698		rule_linenum = reallocate_integer_array( rule_linenum,
699							current_max_rules );
700		rule_useful = reallocate_integer_array( rule_useful,
701							current_max_rules );
702		}
703
704	if ( num_rules > MAX_RULE )
705		lerrif( _( "too many rules (> %d)!" ), MAX_RULE );
706
707	rule_linenum[num_rules] = linenum;
708	rule_useful[num_rules] = false;
709	}
710