1/* vi: set sw=4 ts=4: */
2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3
4   Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5   which also acknowledges contributions by Mike Burrows, David Wheeler,
6   Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7   Robert Sedgewick, and Jon L. Bentley.
8
9   Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
10*/
11
12/*
13	Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
14
15	More efficient reading of Huffman codes, a streamlined read_bunzip()
16	function, and various other tweaks.  In (limited) tests, approximately
17	20% faster than bzcat on x86 and about 10% faster on arm.
18
19	Note that about 2/3 of the time is spent in read_unzip() reversing
20	the Burrows-Wheeler transformation.  Much of that time is delay
21	resulting from cache misses.
22
23	I would ask that anyone benefiting from this work, especially those
24	using it in commercial products, consider making a donation to my local
25	non-profit hospice organization (www.hospiceacadiana.com) in the name of
26	the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
27
28	Manuel
29 */
30
31#include "libbb.h"
32#include "unarchive.h"
33
34/* Constants for Huffman coding */
35#define MAX_GROUPS          6
36#define GROUP_SIZE          50      /* 64 would have been more efficient */
37#define MAX_HUFCODE_BITS    20      /* Longest Huffman code allowed */
38#define MAX_SYMBOLS         258     /* 256 literals + RUNA + RUNB */
39#define SYMBOL_RUNA         0
40#define SYMBOL_RUNB         1
41
42/* Status return values */
43#define RETVAL_OK                       0
44#define RETVAL_LAST_BLOCK               (-1)
45#define RETVAL_NOT_BZIP_DATA            (-2)
46#define RETVAL_UNEXPECTED_INPUT_EOF     (-3)
47#define RETVAL_UNEXPECTED_OUTPUT_EOF    (-4)
48#define RETVAL_DATA_ERROR               (-5)
49#define RETVAL_OUT_OF_MEMORY            (-6)
50#define RETVAL_OBSOLETE_INPUT           (-7)
51
52/* Other housekeeping constants */
53#define IOBUF_SIZE          4096
54
55/* This is what we know about each Huffman coding group */
56struct group_data {
57	/* We have an extra slot at the end of limit[] for a sentinal value. */
58	int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
59	int minLen, maxLen;
60};
61
62/* Structure holding all the housekeeping data, including IO buffers and
63   memory that persists between calls to bunzip */
64
65struct bunzip_data {
66	/* State for interrupting output loop */
67	int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
68
69	/* I/O tracking data (file handles, buffers, positions, etc.) */
70	int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/;
71	unsigned char *inbuf /*,*outbuf*/;
72	unsigned inbufBitCount, inbufBits;
73
74	/* The CRC values stored in the block header and calculated from the data */
75	uint32_t headerCRC, totalCRC, writeCRC;
76
77	/* Intermediate buffer and its size (in bytes) */
78	unsigned *dbuf, dbufSize;
79
80	/* For I/O error handling */
81	jmp_buf jmpbuf;
82
83	/* Big things go last (register-relative addressing can be larger for big offsets */
84	uint32_t crc32Table[256];
85	unsigned char selectors[32768];			/* nSelectors=15 bits */
86	struct group_data groups[MAX_GROUPS];	/* Huffman coding tables */
87};
88/* typedef struct bunzip_data bunzip_data; -- done in .h file */
89
90
91/* Return the next nnn bits of input.  All reads from the compressed input
92   are done through this function.  All reads are big endian */
93
94static unsigned get_bits(bunzip_data *bd, char bits_wanted)
95{
96	unsigned bits = 0;
97
98	/* If we need to get more data from the byte buffer, do so.  (Loop getting
99	   one byte at a time to enforce endianness and avoid unaligned access.) */
100
101	while (bd->inbufBitCount < bits_wanted) {
102
103		/* If we need to read more data from file into byte buffer, do so */
104
105		if (bd->inbufPos == bd->inbufCount) {
106			/* if "no input fd" case: in_fd == -1, read fails, we jump */
107			bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE);
108			if (bd->inbufCount <= 0)
109				longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF);
110			bd->inbufPos = 0;
111		}
112
113		/* Avoid 32-bit overflow (dump bit buffer to top of output) */
114
115		if (bd->inbufBitCount >= 24) {
116			bits = bd->inbufBits & ((1 << bd->inbufBitCount) - 1);
117			bits_wanted -= bd->inbufBitCount;
118			bits <<= bits_wanted;
119			bd->inbufBitCount = 0;
120		}
121
122		/* Grab next 8 bits of input from buffer. */
123
124		bd->inbufBits = (bd->inbufBits<<8) | bd->inbuf[bd->inbufPos++];
125		bd->inbufBitCount += 8;
126	}
127
128	/* Calculate result */
129
130	bd->inbufBitCount -= bits_wanted;
131	bits |= (bd->inbufBits >> bd->inbufBitCount) & ((1 << bits_wanted) - 1);
132
133	return bits;
134}
135
136/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
137
138static int get_next_block(bunzip_data *bd)
139{
140	struct group_data *hufGroup;
141	int dbufCount, nextSym, dbufSize, groupCount, *base, *limit, selector,
142		i, j, k, t, runPos, symCount, symTotal, nSelectors, byteCount[256];
143	unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
144	unsigned *dbuf, origPtr;
145
146	dbuf = bd->dbuf;
147	dbufSize = bd->dbufSize;
148	selectors = bd->selectors;
149
150	/* Reset longjmp I/O error handling */
151
152	i = setjmp(bd->jmpbuf);
153	if (i) return i;
154
155	/* Read in header signature and CRC, then validate signature.
156	   (last block signature means CRC is for whole file, return now) */
157
158	i = get_bits(bd, 24);
159	j = get_bits(bd, 24);
160	bd->headerCRC = get_bits(bd, 32);
161	if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
162	if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
163
164	/* We can add support for blockRandomised if anybody complains.  There was
165	   some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
166	   it didn't actually work. */
167
168	if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT;
169	origPtr = get_bits(bd, 24);
170	if (origPtr > dbufSize) return RETVAL_DATA_ERROR;
171
172	/* mapping table: if some byte values are never used (encoding things
173	   like ascii text), the compression code removes the gaps to have fewer
174	   symbols to deal with, and writes a sparse bitfield indicating which
175	   values were present.  We make a translation table to convert the symbols
176	   back to the corresponding bytes. */
177
178	t = get_bits(bd, 16);
179	symTotal = 0;
180	for (i = 0; i < 16; i++) {
181		if (t & (1 << (15-i))) {
182			k = get_bits(bd, 16);
183			for (j = 0; j < 16; j++)
184				if (k & (1 << (15-j)))
185					symToByte[symTotal++] = (16*i) + j;
186		}
187	}
188
189	/* How many different Huffman coding groups does this block use? */
190
191	groupCount = get_bits(bd, 3);
192	if (groupCount < 2 || groupCount > MAX_GROUPS)
193		return RETVAL_DATA_ERROR;
194
195	/* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
196	   group.  Read in the group selector list, which is stored as MTF encoded
197	   bit runs.  (MTF=Move To Front, as each value is used it's moved to the
198	   start of the list.) */
199
200	nSelectors = get_bits(bd, 15);
201	if (!nSelectors) return RETVAL_DATA_ERROR;
202	for (i = 0; i < groupCount; i++) mtfSymbol[i] = i;
203	for (i = 0; i < nSelectors; i++) {
204
205		/* Get next value */
206
207		for (j = 0; get_bits(bd, 1); j++)
208			if (j>=groupCount) return RETVAL_DATA_ERROR;
209
210		/* Decode MTF to get the next selector */
211
212		uc = mtfSymbol[j];
213		for (;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
214		mtfSymbol[0] = selectors[i] = uc;
215	}
216
217	/* Read the Huffman coding tables for each group, which code for symTotal
218	   literal symbols, plus two run symbols (RUNA, RUNB) */
219
220	symCount = symTotal + 2;
221	for (j = 0; j < groupCount; j++) {
222		unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
223		int minLen, maxLen, pp;
224
225		/* Read Huffman code lengths for each symbol.  They're stored in
226		   a way similar to mtf; record a starting value for the first symbol,
227		   and an offset from the previous value for everys symbol after that.
228		   (Subtracting 1 before the loop and then adding it back at the end is
229		   an optimization that makes the test inside the loop simpler: symbol
230		   length 0 becomes negative, so an unsigned inequality catches it.) */
231
232		t = get_bits(bd, 5) - 1;
233		for (i = 0; i < symCount; i++) {
234			for (;;) {
235				if ((unsigned)t > (MAX_HUFCODE_BITS-1))
236					return RETVAL_DATA_ERROR;
237
238				/* If first bit is 0, stop.  Else second bit indicates whether
239				   to increment or decrement the value.  Optimization: grab 2
240				   bits and unget the second if the first was 0. */
241
242				k = get_bits(bd, 2);
243				if (k < 2) {
244					bd->inbufBitCount++;
245					break;
246				}
247
248				/* Add one if second bit 1, else subtract 1.  Avoids if/else */
249
250				t += (((k+1) & 2) - 1);
251			}
252
253			/* Correct for the initial -1, to get the final symbol length */
254
255			length[i] = t + 1;
256		}
257
258		/* Find largest and smallest lengths in this group */
259
260		minLen = maxLen = length[0];
261		for (i = 1; i < symCount; i++) {
262			if (length[i] > maxLen) maxLen = length[i];
263			else if (length[i] < minLen) minLen = length[i];
264		}
265
266		/* Calculate permute[], base[], and limit[] tables from length[].
267		 *
268		 * permute[] is the lookup table for converting Huffman coded symbols
269		 * into decoded symbols.  base[] is the amount to subtract from the
270		 * value of a Huffman symbol of a given length when using permute[].
271		 *
272		 * limit[] indicates the largest numerical value a symbol with a given
273		 * number of bits can have.  This is how the Huffman codes can vary in
274		 * length: each code with a value>limit[length] needs another bit.
275		 */
276
277		hufGroup = bd->groups + j;
278		hufGroup->minLen = minLen;
279		hufGroup->maxLen = maxLen;
280
281		/* Note that minLen can't be smaller than 1, so we adjust the base
282		   and limit array pointers so we're not always wasting the first
283		   entry.  We do this again when using them (during symbol decoding).*/
284
285		base = hufGroup->base - 1;
286		limit = hufGroup->limit - 1;
287
288		/* Calculate permute[].  Concurently, initialize temp[] and limit[]. */
289
290		pp = 0;
291		for (i = minLen; i <= maxLen; i++) {
292			temp[i] = limit[i] = 0;
293			for (t = 0; t < symCount; t++)
294				if (length[t] == i)
295					hufGroup->permute[pp++] = t;
296		}
297
298		/* Count symbols coded for at each bit length */
299
300		for (i = 0; i < symCount; i++) temp[length[i]]++;
301
302		/* Calculate limit[] (the largest symbol-coding value at each bit
303		 * length, which is (previous limit<<1)+symbols at this level), and
304		 * base[] (number of symbols to ignore at each bit length, which is
305		 * limit minus the cumulative count of symbols coded for already). */
306
307		pp = t = 0;
308		for (i = minLen; i < maxLen; i++) {
309			pp += temp[i];
310
311			/* We read the largest possible symbol size and then unget bits
312			   after determining how many we need, and those extra bits could
313			   be set to anything.  (They're noise from future symbols.)  At
314			   each level we're really only interested in the first few bits,
315			   so here we set all the trailing to-be-ignored bits to 1 so they
316			   don't affect the value>limit[length] comparison. */
317
318			limit[i] = (pp << (maxLen - i)) - 1;
319			pp <<= 1;
320			t += temp[i];
321			base[i+1] = pp - t;
322		}
323		limit[maxLen+1] = INT_MAX; /* Sentinal value for reading next sym. */
324		limit[maxLen] = pp + temp[maxLen] - 1;
325		base[minLen] = 0;
326	}
327
328	/* We've finished reading and digesting the block header.  Now read this
329	   block's Huffman coded symbols from the file and undo the Huffman coding
330	   and run length encoding, saving the result into dbuf[dbufCount++]=uc */
331
332	/* Initialize symbol occurrence counters and symbol Move To Front table */
333
334	for (i = 0; i < 256; i++) {
335		byteCount[i] = 0;
336		mtfSymbol[i] = (unsigned char)i;
337	}
338
339	/* Loop through compressed symbols. */
340
341	runPos = dbufCount = selector = 0;
342	for (;;) {
343
344		/* fetch next Huffman coding group from list. */
345
346		symCount = GROUP_SIZE - 1;
347		if (selector >= nSelectors) return RETVAL_DATA_ERROR;
348		hufGroup = bd->groups + selectors[selector++];
349		base = hufGroup->base - 1;
350		limit = hufGroup->limit - 1;
351 continue_this_group:
352
353		/* Read next Huffman-coded symbol. */
354
355		/* Note: It is far cheaper to read maxLen bits and back up than it is
356		   to read minLen bits and then an additional bit at a time, testing
357		   as we go.  Because there is a trailing last block (with file CRC),
358		   there is no danger of the overread causing an unexpected EOF for a
359		   valid compressed file.  As a further optimization, we do the read
360		   inline (falling back to a call to get_bits if the buffer runs
361		   dry).  The following (up to got_huff_bits:) is equivalent to
362		   j = get_bits(bd, hufGroup->maxLen);
363		 */
364
365		while (bd->inbufBitCount < hufGroup->maxLen) {
366			if (bd->inbufPos == bd->inbufCount) {
367				j = get_bits(bd, hufGroup->maxLen);
368				goto got_huff_bits;
369			}
370			bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
371			bd->inbufBitCount += 8;
372		};
373		bd->inbufBitCount -= hufGroup->maxLen;
374		j = (bd->inbufBits >> bd->inbufBitCount) & ((1 << hufGroup->maxLen) - 1);
375
376 got_huff_bits:
377
378		/* Figure how how many bits are in next symbol and unget extras */
379
380		i = hufGroup->minLen;
381		while (j > limit[i]) ++i;
382		bd->inbufBitCount += (hufGroup->maxLen - i);
383
384		/* Huffman decode value to get nextSym (with bounds checking) */
385
386		if (i > hufGroup->maxLen)
387			return RETVAL_DATA_ERROR;
388		j = (j >> (hufGroup->maxLen - i)) - base[i];
389		if ((unsigned)j >= MAX_SYMBOLS)
390			return RETVAL_DATA_ERROR;
391		nextSym = hufGroup->permute[j];
392
393		/* We have now decoded the symbol, which indicates either a new literal
394		   byte, or a repeated run of the most recent literal byte.  First,
395		   check if nextSym indicates a repeated run, and if so loop collecting
396		   how many times to repeat the last literal. */
397
398		if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */
399
400			/* If this is the start of a new run, zero out counter */
401
402			if (!runPos) {
403				runPos = 1;
404				t = 0;
405			}
406
407			/* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
408			   each bit position, add 1 or 2 instead.  For example,
409			   1011 is 1<<0 + 1<<1 + 2<<2.  1010 is 2<<0 + 2<<1 + 1<<2.
410			   You can make any bit pattern that way using 1 less symbol than
411			   the basic or 0/1 method (except all bits 0, which would use no
412			   symbols, but a run of length 0 doesn't mean anything in this
413			   context).  Thus space is saved. */
414
415			t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
416			if (runPos < dbufSize) runPos <<= 1;
417			goto end_of_huffman_loop;
418		}
419
420		/* When we hit the first non-run symbol after a run, we now know
421		   how many times to repeat the last literal, so append that many
422		   copies to our buffer of decoded symbols (dbuf) now.  (The last
423		   literal used is the one at the head of the mtfSymbol array.) */
424
425		if (runPos) {
426			runPos = 0;
427			if (dbufCount + t >= dbufSize) return RETVAL_DATA_ERROR;
428
429			uc = symToByte[mtfSymbol[0]];
430			byteCount[uc] += t;
431			while (t--) dbuf[dbufCount++] = uc;
432		}
433
434		/* Is this the terminating symbol? */
435
436		if (nextSym > symTotal) break;
437
438		/* At this point, nextSym indicates a new literal character.  Subtract
439		   one to get the position in the MTF array at which this literal is
440		   currently to be found.  (Note that the result can't be -1 or 0,
441		   because 0 and 1 are RUNA and RUNB.  But another instance of the
442		   first symbol in the mtf array, position 0, would have been handled
443		   as part of a run above.  Therefore 1 unused mtf position minus
444		   2 non-literal nextSym values equals -1.) */
445
446		if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR;
447		i = nextSym - 1;
448		uc = mtfSymbol[i];
449
450		/* Adjust the MTF array.  Since we typically expect to move only a
451		 * small number of symbols, and are bound by 256 in any case, using
452		 * memmove here would typically be bigger and slower due to function
453		 * call overhead and other assorted setup costs. */
454
455		do {
456			mtfSymbol[i] = mtfSymbol[i-1];
457		} while (--i);
458		mtfSymbol[0] = uc;
459		uc = symToByte[uc];
460
461		/* We have our literal byte.  Save it into dbuf. */
462
463		byteCount[uc]++;
464		dbuf[dbufCount++] = (unsigned)uc;
465
466		/* Skip group initialization if we're not done with this group.  Done
467		 * this way to avoid compiler warning. */
468
469 end_of_huffman_loop:
470		if (symCount--) goto continue_this_group;
471	}
472
473	/* At this point, we've read all the Huffman-coded symbols (and repeated
474	   runs) for this block from the input stream, and decoded them into the
475	   intermediate buffer.  There are dbufCount many decoded bytes in dbuf[].
476	   Now undo the Burrows-Wheeler transform on dbuf.
477	   See http://dogma.net/markn/articles/bwt/bwt.htm
478	 */
479
480	/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
481
482	j = 0;
483	for (i = 0; i < 256; i++) {
484		k = j + byteCount[i];
485		byteCount[i] = j;
486		j = k;
487	}
488
489	/* Figure out what order dbuf would be in if we sorted it. */
490
491	for (i = 0; i < dbufCount; i++) {
492		uc = (unsigned char)(dbuf[i] & 0xff);
493		dbuf[byteCount[uc]] |= (i << 8);
494		byteCount[uc]++;
495	}
496
497	/* Decode first byte by hand to initialize "previous" byte.  Note that it
498	   doesn't get output, and if the first three characters are identical
499	   it doesn't qualify as a run (hence writeRunCountdown=5). */
500
501	if (dbufCount) {
502		if (origPtr >= dbufCount) return RETVAL_DATA_ERROR;
503		bd->writePos = dbuf[origPtr];
504	    bd->writeCurrent = (unsigned char)(bd->writePos & 0xff);
505		bd->writePos >>= 8;
506		bd->writeRunCountdown = 5;
507	}
508	bd->writeCount = dbufCount;
509
510	return RETVAL_OK;
511}
512
513/* Undo burrows-wheeler transform on intermediate buffer to produce output.
514   If start_bunzip was initialized with out_fd=-1, then up to len bytes of
515   data are written to outbuf.  Return value is number of bytes written or
516   error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
517   are ignored, data is written to out_fd and return is RETVAL_OK or error.
518*/
519
520int read_bunzip(bunzip_data *bd, char *outbuf, int len)
521{
522	const unsigned *dbuf;
523	int pos, current, previous, gotcount;
524
525	/* If last read was short due to end of file, return last block now */
526	if (bd->writeCount < 0) return bd->writeCount;
527
528	gotcount = 0;
529	dbuf = bd->dbuf;
530	pos = bd->writePos;
531	current = bd->writeCurrent;
532
533	/* We will always have pending decoded data to write into the output
534	   buffer unless this is the very first call (in which case we haven't
535	   Huffman-decoded a block into the intermediate buffer yet). */
536
537	if (bd->writeCopies) {
538
539		/* Inside the loop, writeCopies means extra copies (beyond 1) */
540
541		--bd->writeCopies;
542
543		/* Loop outputting bytes */
544
545		for (;;) {
546
547			/* If the output buffer is full, snapshot state and return */
548
549			if (gotcount >= len) {
550				bd->writePos  =pos;
551				bd->writeCurrent = current;
552				bd->writeCopies++;
553				return len;
554			}
555
556			/* Write next byte into output buffer, updating CRC */
557
558			outbuf[gotcount++] = current;
559			bd->writeCRC = (bd->writeCRC << 8)
560						  ^ bd->crc32Table[(bd->writeCRC >> 24) ^ current];
561
562			/* Loop now if we're outputting multiple copies of this byte */
563
564			if (bd->writeCopies) {
565				--bd->writeCopies;
566				continue;
567			}
568 decode_next_byte:
569			if (!bd->writeCount--) break;
570			/* Follow sequence vector to undo Burrows-Wheeler transform */
571			previous = current;
572			pos = dbuf[pos];
573			current = pos & 0xff;
574			pos >>= 8;
575
576			/* After 3 consecutive copies of the same byte, the 4th is a repeat
577			   count.  We count down from 4 instead
578			 * of counting up because testing for non-zero is faster */
579
580			if (--bd->writeRunCountdown) {
581				if (current != previous)
582					bd->writeRunCountdown = 4;
583			} else {
584
585				/* We have a repeated run, this byte indicates the count */
586
587				bd->writeCopies = current;
588				current = previous;
589				bd->writeRunCountdown = 5;
590
591				/* Sometimes there are just 3 bytes (run length 0) */
592
593				if (!bd->writeCopies) goto decode_next_byte;
594
595				/* Subtract the 1 copy we'd output anyway to get extras */
596
597				--bd->writeCopies;
598			}
599		}
600
601		/* Decompression of this block completed successfully */
602
603		bd->writeCRC = ~bd->writeCRC;
604		bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bd->writeCRC;
605
606		/* If this block had a CRC error, force file level CRC error. */
607
608		if (bd->writeCRC != bd->headerCRC) {
609			bd->totalCRC = bd->headerCRC+1;
610			return RETVAL_LAST_BLOCK;
611		}
612	}
613
614	/* Refill the intermediate buffer by Huffman-decoding next block of input */
615	/* (previous is just a convenient unused temp variable here) */
616
617	previous = get_next_block(bd);
618	if (previous) {
619		bd->writeCount = previous;
620		return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
621	}
622	bd->writeCRC = ~0;
623	pos = bd->writePos;
624	current = bd->writeCurrent;
625	goto decode_next_byte;
626}
627
628
629/* Allocate the structure, read file header.  If in_fd==-1, inbuf must contain
630   a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
631   ignored, and data is read from file handle into temporary buffer. */
632
633/* Because bunzip2 is used for help text unpacking, and because bb_show_usage()
634   should work for NOFORK applets too, we must be extremely careful to not leak
635   any allocations! */
636
637int start_bunzip(bunzip_data **bdp, int in_fd, const unsigned char *inbuf,
638						int len)
639{
640	bunzip_data *bd;
641	unsigned i;
642	enum {
643		BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0'
644	};
645
646	/* Figure out how much data to allocate */
647
648	i = sizeof(bunzip_data);
649	if (in_fd != -1) i += IOBUF_SIZE;
650
651	/* Allocate bunzip_data.  Most fields initialize to zero. */
652
653	bd = *bdp = xzalloc(i);
654
655	/* Setup input buffer */
656
657	bd->in_fd = in_fd;
658	if (-1 == in_fd) {
659		/* in this case, bd->inbuf is read-only */
660		bd->inbuf = (void*)inbuf; /* cast away const-ness */
661		bd->inbufCount = len;
662	} else
663		bd->inbuf = (unsigned char *)(bd + 1);
664
665	/* Init the CRC32 table (big endian) */
666
667	crc32_filltable(bd->crc32Table, 1);
668
669	/* Setup for I/O error handling via longjmp */
670
671	i = setjmp(bd->jmpbuf);
672	if (i) return i;
673
674	/* Ensure that file starts with "BZh['1'-'9']." */
675
676	i = get_bits(bd, 32);
677	if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA;
678
679	/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
680	   uncompressed data.  Allocate intermediate buffer for block. */
681
682	bd->dbufSize = 100000 * (i - BZh0);
683
684	/* Cannot use xmalloc - may leak bd in NOFORK case! */
685	bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(int));
686	if (!bd->dbuf) {
687		free(bd);
688		xfunc_die();
689	}
690	return RETVAL_OK;
691}
692
693void dealloc_bunzip(bunzip_data *bd)
694{
695	free(bd->dbuf);
696	free(bd);
697}
698
699
700/* Decompress src_fd to dst_fd.  Stops at end of bzip data, not end of file. */
701
702USE_DESKTOP(long long) int
703unpack_bz2_stream(int src_fd, int dst_fd)
704{
705	USE_DESKTOP(long long total_written = 0;)
706	char *outbuf;
707	bunzip_data *bd;
708	int i;
709
710	outbuf = xmalloc(IOBUF_SIZE);
711	i = start_bunzip(&bd, src_fd, NULL, 0);
712	if (!i) {
713		for (;;) {
714			i = read_bunzip(bd, outbuf, IOBUF_SIZE);
715			if (i <= 0) break;
716			if (i != safe_write(dst_fd, outbuf, i)) {
717				i = RETVAL_UNEXPECTED_OUTPUT_EOF;
718				break;
719			}
720			USE_DESKTOP(total_written += i;)
721		}
722	}
723
724	/* Check CRC and release memory */
725
726	if (i == RETVAL_LAST_BLOCK) {
727		if (bd->headerCRC != bd->totalCRC) {
728			bb_error_msg("data integrity error when decompressing");
729		} else {
730			i = RETVAL_OK;
731		}
732	} else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
733		bb_error_msg("compressed file ends unexpectedly");
734	} else {
735		bb_error_msg("decompression failed");
736	}
737	dealloc_bunzip(bd);
738	free(outbuf);
739
740	return i ? i : USE_DESKTOP(total_written) + 0;
741}
742
743#ifdef TESTING
744
745static char *const bunzip_errors[] = {
746	NULL, "Bad file checksum", "Not bzip data",
747	"Unexpected input EOF", "Unexpected output EOF", "Data error",
748	"Out of memory", "Obsolete (pre 0.9.5) bzip format not supported"
749};
750
751/* Dumb little test thing, decompress stdin to stdout */
752int main(int argc, char **argv)
753{
754	int i = unpack_bz2_stream(0, 1);
755	char c;
756
757	if (i < 0)
758		fprintf(stderr,"%s\n", bunzip_errors[-i]);
759	else if (read(0, &c, 1))
760		fprintf(stderr,"Trailing garbage ignored\n");
761	return -i;
762}
763#endif
764