1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		The User Datagram Protocol (UDP).
7 *
8 * Version:	$Id: udp.c,v 1.1.1.1 2007/08/03 18:53:51 Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13 *		Alan Cox, <Alan.Cox@linux.org>
14 *		Hirokazu Takahashi, <taka@valinux.co.jp>
15 *
16 * Fixes:
17 *		Alan Cox	:	verify_area() calls
18 *		Alan Cox	: 	stopped close while in use off icmp
19 *					messages. Not a fix but a botch that
20 *					for udp at least is 'valid'.
21 *		Alan Cox	:	Fixed icmp handling properly
22 *		Alan Cox	: 	Correct error for oversized datagrams
23 *		Alan Cox	:	Tidied select() semantics.
24 *		Alan Cox	:	udp_err() fixed properly, also now
25 *					select and read wake correctly on errors
26 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27 *		Alan Cox	:	UDP can count its memory
28 *		Alan Cox	:	send to an unknown connection causes
29 *					an ECONNREFUSED off the icmp, but
30 *					does NOT close.
31 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33 *					bug no longer crashes it.
34 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35 *		Alan Cox	:	Uses skb_free_datagram
36 *		Alan Cox	:	Added get/set sockopt support.
37 *		Alan Cox	:	Broadcasting without option set returns EACCES.
38 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39 *		Alan Cox	:	Use ip_tos and ip_ttl
40 *		Alan Cox	:	SNMP Mibs
41 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42 *		Matt Dillon	:	UDP length checks.
43 *		Alan Cox	:	Smarter af_inet used properly.
44 *		Alan Cox	:	Use new kernel side addressing.
45 *		Alan Cox	:	Incorrect return on truncated datagram receive.
46 *	Arnt Gulbrandsen 	:	New udp_send and stuff
47 *		Alan Cox	:	Cache last socket
48 *		Alan Cox	:	Route cache
49 *		Jon Peatfield	:	Minor efficiency fix to sendto().
50 *		Mike Shaver	:	RFC1122 checks.
51 *		Alan Cox	:	Nonblocking error fix.
52 *	Willy Konynenberg	:	Transparent proxying support.
53 *		Mike McLagan	:	Routing by source
54 *		David S. Miller	:	New socket lookup architecture.
55 *					Last socket cache retained as it
56 *					does have a high hit rate.
57 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58 *		Andi Kleen	:	Some cleanups, cache destination entry
59 *					for connect.
60 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62 *					return ENOTCONN for unconnected sockets (POSIX)
63 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64 *					bound-to-device socket
65 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66 *					datagrams.
67 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71 *					a single port at the same time.
72 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73 *
74 *
75 *		This program is free software; you can redistribute it and/or
76 *		modify it under the terms of the GNU General Public License
77 *		as published by the Free Software Foundation; either version
78 *		2 of the License, or (at your option) any later version.
79 */
80
81#include <asm/system.h>
82#include <asm/uaccess.h>
83#include <asm/ioctls.h>
84#include <linux/types.h>
85#include <linux/fcntl.h>
86#include <linux/module.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/igmp.h>
90#include <linux/in.h>
91#include <linux/errno.h>
92#include <linux/timer.h>
93#include <linux/mm.h>
94#include <linux/inet.h>
95#include <linux/netdevice.h>
96#include <net/tcp_states.h>
97#include <linux/skbuff.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <net/icmp.h>
101#include <net/route.h>
102#include <net/checksum.h>
103#include <net/xfrm.h>
104#include "udp_impl.h"
105
106/*
107 *	Snmp MIB for the UDP layer
108 */
109
110DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
111
112struct hlist_head udp_hash[UDP_HTABLE_SIZE];
113DEFINE_RWLOCK(udp_hash_lock);
114
115static int udp_port_rover;
116
117static inline int __udp_lib_lport_inuse(__u16 num, struct hlist_head udptable[])
118{
119	struct sock *sk;
120	struct hlist_node *node;
121
122	sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
123		if (sk->sk_hash == num)
124			return 1;
125	return 0;
126}
127
128/**
129 *  __udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
130 *
131 *  @sk:          socket struct in question
132 *  @snum:        port number to look up
133 *  @udptable:    hash list table, must be of UDP_HTABLE_SIZE
134 *  @port_rover:  pointer to record of last unallocated port
135 *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
136 */
137int __udp_lib_get_port(struct sock *sk, unsigned short snum,
138		       struct hlist_head udptable[], int *port_rover,
139		       int (*saddr_comp)(const struct sock *sk1,
140					 const struct sock *sk2 )    )
141{
142	struct hlist_node *node;
143	struct hlist_head *head;
144	struct sock *sk2;
145	int    error = 1;
146
147	write_lock_bh(&udp_hash_lock);
148	if (snum == 0) {
149		int best_size_so_far, best, result, i;
150
151		if (*port_rover > sysctl_local_port_range[1] ||
152		    *port_rover < sysctl_local_port_range[0])
153			*port_rover = sysctl_local_port_range[0];
154		best_size_so_far = 32767;
155		best = result = *port_rover;
156		for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
157			int size;
158
159			head = &udptable[result & (UDP_HTABLE_SIZE - 1)];
160			if (hlist_empty(head)) {
161				if (result > sysctl_local_port_range[1])
162					result = sysctl_local_port_range[0] +
163						((result - sysctl_local_port_range[0]) &
164						 (UDP_HTABLE_SIZE - 1));
165				goto gotit;
166			}
167			size = 0;
168			sk_for_each(sk2, node, head) {
169				if (++size >= best_size_so_far)
170					goto next;
171			}
172			best_size_so_far = size;
173			best = result;
174		next:
175			;
176		}
177		result = best;
178		for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE;
179		     i++, result += UDP_HTABLE_SIZE) {
180			if (result > sysctl_local_port_range[1])
181				result = sysctl_local_port_range[0]
182					+ ((result - sysctl_local_port_range[0]) &
183					   (UDP_HTABLE_SIZE - 1));
184			if (! __udp_lib_lport_inuse(result, udptable))
185				break;
186		}
187		if (i >= (1 << 16) / UDP_HTABLE_SIZE)
188			goto fail;
189gotit:
190		*port_rover = snum = result;
191	} else {
192		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
193
194		sk_for_each(sk2, node, head)
195			if (sk2->sk_hash == snum                             &&
196			    sk2 != sk                                        &&
197			    (!sk2->sk_reuse        || !sk->sk_reuse)         &&
198			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
199			     || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200			    (*saddr_comp)(sk, sk2)                             )
201				goto fail;
202	}
203	inet_sk(sk)->num = snum;
204	sk->sk_hash = snum;
205	if (sk_unhashed(sk)) {
206		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
207		sk_add_node(sk, head);
208		sock_prot_inc_use(sk->sk_prot);
209	}
210	error = 0;
211fail:
212	write_unlock_bh(&udp_hash_lock);
213	return error;
214}
215
216int udp_get_port(struct sock *sk, unsigned short snum,
217			int (*scmp)(const struct sock *, const struct sock *))
218{
219	return  __udp_lib_get_port(sk, snum, udp_hash, &udp_port_rover, scmp);
220}
221
222int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
223{
224	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
225
226	return 	( !ipv6_only_sock(sk2)  &&
227		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
228		   inet1->rcv_saddr == inet2->rcv_saddr      ));
229}
230
231static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
232{
233	return udp_get_port(sk, snum, ipv4_rcv_saddr_equal);
234}
235
236/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
237 * harder than this. -DaveM
238 */
239static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport,
240				      __be32 daddr, __be16 dport,
241				      int dif, struct hlist_head udptable[])
242{
243	struct sock *sk, *result = NULL;
244	struct hlist_node *node;
245	unsigned short hnum = ntohs(dport);
246	int badness = -1;
247
248	read_lock(&udp_hash_lock);
249	sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
250		struct inet_sock *inet = inet_sk(sk);
251
252		if (sk->sk_hash == hnum && !ipv6_only_sock(sk)) {
253			int score = (sk->sk_family == PF_INET ? 1 : 0);
254			if (inet->rcv_saddr) {
255				if (inet->rcv_saddr != daddr)
256					continue;
257				score+=2;
258			}
259			if (inet->daddr) {
260				if (inet->daddr != saddr)
261					continue;
262				score+=2;
263			}
264			if (inet->dport) {
265				if (inet->dport != sport)
266					continue;
267				score+=2;
268			}
269			if (sk->sk_bound_dev_if) {
270				if (sk->sk_bound_dev_if != dif)
271					continue;
272				score+=2;
273			}
274			if (score == 9) {
275				result = sk;
276				break;
277			} else if (score > badness) {
278				result = sk;
279				badness = score;
280			}
281		}
282	}
283	if (result)
284		sock_hold(result);
285	read_unlock(&udp_hash_lock);
286	return result;
287}
288
289static inline struct sock *udp_v4_mcast_next(struct sock *sk,
290					     __be16 loc_port, __be32 loc_addr,
291					     __be16 rmt_port, __be32 rmt_addr,
292					     int dif)
293{
294	struct hlist_node *node;
295	struct sock *s = sk;
296	unsigned short hnum = ntohs(loc_port);
297
298	sk_for_each_from(s, node) {
299		struct inet_sock *inet = inet_sk(s);
300
301		if (s->sk_hash != hnum					||
302		    (inet->daddr && inet->daddr != rmt_addr)		||
303		    (inet->dport != rmt_port && inet->dport)		||
304		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
305		    ipv6_only_sock(s)					||
306		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
307			continue;
308		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
309			continue;
310		goto found;
311	}
312	s = NULL;
313found:
314	return s;
315}
316
317/*
318 * This routine is called by the ICMP module when it gets some
319 * sort of error condition.  If err < 0 then the socket should
320 * be closed and the error returned to the user.  If err > 0
321 * it's just the icmp type << 8 | icmp code.
322 * Header points to the ip header of the error packet. We move
323 * on past this. Then (as it used to claim before adjustment)
324 * header points to the first 8 bytes of the udp header.  We need
325 * to find the appropriate port.
326 */
327
328void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
329{
330	struct inet_sock *inet;
331	struct iphdr *iph = (struct iphdr*)skb->data;
332	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
333	const int type = icmp_hdr(skb)->type;
334	const int code = icmp_hdr(skb)->code;
335	struct sock *sk;
336	int harderr;
337	int err;
338
339	sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source,
340			       skb->dev->ifindex, udptable		    );
341	if (sk == NULL) {
342		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
343		return;	/* No socket for error */
344	}
345
346	err = 0;
347	harderr = 0;
348	inet = inet_sk(sk);
349
350	switch (type) {
351	default:
352	case ICMP_TIME_EXCEEDED:
353		err = EHOSTUNREACH;
354		break;
355	case ICMP_SOURCE_QUENCH:
356		goto out;
357	case ICMP_PARAMETERPROB:
358		err = EPROTO;
359		harderr = 1;
360		break;
361	case ICMP_DEST_UNREACH:
362		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
363			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
364				err = EMSGSIZE;
365				harderr = 1;
366				break;
367			}
368			goto out;
369		}
370		err = EHOSTUNREACH;
371		if (code <= NR_ICMP_UNREACH) {
372			harderr = icmp_err_convert[code].fatal;
373			err = icmp_err_convert[code].errno;
374		}
375		break;
376	}
377
378	/*
379	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
380	 *	4.1.3.3.
381	 */
382	if (!inet->recverr) {
383		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
384			goto out;
385	} else {
386		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
387	}
388	sk->sk_err = err;
389	sk->sk_error_report(sk);
390out:
391	sock_put(sk);
392}
393
394void udp_err(struct sk_buff *skb, u32 info)
395{
396	return __udp4_lib_err(skb, info, udp_hash);
397}
398
399/*
400 * Throw away all pending data and cancel the corking. Socket is locked.
401 */
402static void udp_flush_pending_frames(struct sock *sk)
403{
404	struct udp_sock *up = udp_sk(sk);
405
406	if (up->pending) {
407		up->len = 0;
408		up->pending = 0;
409		ip_flush_pending_frames(sk);
410	}
411}
412
413/**
414 * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
415 * 	@sk: 	socket we are sending on
416 * 	@skb: 	sk_buff containing the filled-in UDP header
417 * 	        (checksum field must be zeroed out)
418 */
419static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
420				 __be32 src, __be32 dst, int len      )
421{
422	unsigned int offset;
423	struct udphdr *uh = udp_hdr(skb);
424	__wsum csum = 0;
425
426	if (skb_queue_len(&sk->sk_write_queue) == 1) {
427		/*
428		 * Only one fragment on the socket.
429		 */
430		skb->csum_start = skb_transport_header(skb) - skb->head;
431		skb->csum_offset = offsetof(struct udphdr, check);
432		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
433	} else {
434		/*
435		 * HW-checksum won't work as there are two or more
436		 * fragments on the socket so that all csums of sk_buffs
437		 * should be together
438		 */
439		offset = skb_transport_offset(skb);
440		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
441
442		skb->ip_summed = CHECKSUM_NONE;
443
444		skb_queue_walk(&sk->sk_write_queue, skb) {
445			csum = csum_add(csum, skb->csum);
446		}
447
448		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
449		if (uh->check == 0)
450			uh->check = CSUM_MANGLED_0;
451	}
452}
453
454/*
455 * Push out all pending data as one UDP datagram. Socket is locked.
456 */
457static int udp_push_pending_frames(struct sock *sk)
458{
459	struct udp_sock  *up = udp_sk(sk);
460	struct inet_sock *inet = inet_sk(sk);
461	struct flowi *fl = &inet->cork.fl;
462	struct sk_buff *skb;
463	struct udphdr *uh;
464	int err = 0;
465	__wsum csum = 0;
466
467	/* Grab the skbuff where UDP header space exists. */
468	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
469		goto out;
470
471	/*
472	 * Create a UDP header
473	 */
474	uh = udp_hdr(skb);
475	uh->source = fl->fl_ip_sport;
476	uh->dest = fl->fl_ip_dport;
477	uh->len = htons(up->len);
478	uh->check = 0;
479
480	if (up->pcflag)  				 /*     UDP-Lite      */
481		csum  = udplite_csum_outgoing(sk, skb);
482
483	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
484
485		skb->ip_summed = CHECKSUM_NONE;
486		goto send;
487
488	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
489
490		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
491		goto send;
492
493	} else						 /*   `normal' UDP    */
494		csum = udp_csum_outgoing(sk, skb);
495
496	/* add protocol-dependent pseudo-header */
497	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
498				      sk->sk_protocol, csum             );
499	if (uh->check == 0)
500		uh->check = CSUM_MANGLED_0;
501
502send:
503	err = ip_push_pending_frames(sk);
504out:
505	up->len = 0;
506	up->pending = 0;
507	return err;
508}
509
510int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
511		size_t len)
512{
513	struct inet_sock *inet = inet_sk(sk);
514	struct udp_sock *up = udp_sk(sk);
515	int ulen = len;
516	struct ipcm_cookie ipc;
517	struct rtable *rt = NULL;
518	int free = 0;
519	int connected = 0;
520	__be32 daddr, faddr, saddr;
521	__be16 dport;
522	u8  tos;
523	int err, is_udplite = up->pcflag;
524	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
525	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
526
527	if (len > 0xFFFF)
528		return -EMSGSIZE;
529
530	/*
531	 *	Check the flags.
532	 */
533
534	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
535		return -EOPNOTSUPP;
536
537	ipc.opt = NULL;
538
539	if (up->pending) {
540		/*
541		 * There are pending frames.
542		 * The socket lock must be held while it's corked.
543		 */
544		lock_sock(sk);
545		if (likely(up->pending)) {
546			if (unlikely(up->pending != AF_INET)) {
547				release_sock(sk);
548				return -EINVAL;
549			}
550			goto do_append_data;
551		}
552		release_sock(sk);
553	}
554	ulen += sizeof(struct udphdr);
555
556	/*
557	 *	Get and verify the address.
558	 */
559	if (msg->msg_name) {
560		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
561		if (msg->msg_namelen < sizeof(*usin))
562			return -EINVAL;
563		if (usin->sin_family != AF_INET) {
564			if (usin->sin_family != AF_UNSPEC)
565				return -EAFNOSUPPORT;
566		}
567
568		daddr = usin->sin_addr.s_addr;
569		dport = usin->sin_port;
570		if (dport == 0)
571			return -EINVAL;
572	} else {
573		if (sk->sk_state != TCP_ESTABLISHED)
574			return -EDESTADDRREQ;
575		daddr = inet->daddr;
576		dport = inet->dport;
577		/* Open fast path for connected socket.
578		   Route will not be used, if at least one option is set.
579		 */
580		connected = 1;
581	}
582	ipc.addr = inet->saddr;
583
584	ipc.oif = sk->sk_bound_dev_if;
585	if (msg->msg_controllen) {
586		err = ip_cmsg_send(msg, &ipc);
587		if (err)
588			return err;
589		if (ipc.opt)
590			free = 1;
591		connected = 0;
592	}
593	if (!ipc.opt)
594		ipc.opt = inet->opt;
595
596	saddr = ipc.addr;
597	ipc.addr = faddr = daddr;
598
599	if (ipc.opt && ipc.opt->srr) {
600		if (!daddr)
601			return -EINVAL;
602		faddr = ipc.opt->faddr;
603		connected = 0;
604	}
605	tos = RT_TOS(inet->tos);
606	if (sock_flag(sk, SOCK_LOCALROUTE) ||
607	    (msg->msg_flags & MSG_DONTROUTE) ||
608	    (ipc.opt && ipc.opt->is_strictroute)) {
609		tos |= RTO_ONLINK;
610		connected = 0;
611	}
612
613	if (MULTICAST(daddr)) {
614		if (!ipc.oif)
615			ipc.oif = inet->mc_index;
616		if (!saddr)
617			saddr = inet->mc_addr;
618		connected = 0;
619	}
620
621	if (connected)
622		rt = (struct rtable*)sk_dst_check(sk, 0);
623
624	if (rt == NULL) {
625		struct flowi fl = { .oif = ipc.oif,
626				    .nl_u = { .ip4_u =
627					      { .daddr = faddr,
628						.saddr = saddr,
629						.tos = tos } },
630				    .proto = sk->sk_protocol,
631				    .uli_u = { .ports =
632					       { .sport = inet->sport,
633						 .dport = dport } } };
634		security_sk_classify_flow(sk, &fl);
635		err = ip_route_output_flow(&rt, &fl, sk, 1);
636		if (err) {
637			if (err == -ENETUNREACH)
638				IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
639			goto out;
640		}
641
642		err = -EACCES;
643		if ((rt->rt_flags & RTCF_BROADCAST) &&
644		    !sock_flag(sk, SOCK_BROADCAST))
645			goto out;
646		if (connected)
647			sk_dst_set(sk, dst_clone(&rt->u.dst));
648	}
649
650	if (msg->msg_flags&MSG_CONFIRM)
651		goto do_confirm;
652back_from_confirm:
653
654	saddr = rt->rt_src;
655	if (!ipc.addr)
656		daddr = ipc.addr = rt->rt_dst;
657
658	lock_sock(sk);
659	if (unlikely(up->pending)) {
660		/* The socket is already corked while preparing it. */
661		/* ... which is an evident application bug. --ANK */
662		release_sock(sk);
663
664		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
665		err = -EINVAL;
666		goto out;
667	}
668	/*
669	 *	Now cork the socket to pend data.
670	 */
671	inet->cork.fl.fl4_dst = daddr;
672	inet->cork.fl.fl_ip_dport = dport;
673	inet->cork.fl.fl4_src = saddr;
674	inet->cork.fl.fl_ip_sport = inet->sport;
675	up->pending = AF_INET;
676
677do_append_data:
678	up->len += ulen;
679	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
680	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
681			sizeof(struct udphdr), &ipc, rt,
682			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
683	if (err)
684		udp_flush_pending_frames(sk);
685	else if (!corkreq)
686		err = udp_push_pending_frames(sk);
687	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
688		up->pending = 0;
689	release_sock(sk);
690
691out:
692	ip_rt_put(rt);
693	if (free)
694		kfree(ipc.opt);
695	if (!err) {
696		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
697		return len;
698	}
699	/*
700	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
701	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
702	 * we don't have a good statistic (IpOutDiscards but it can be too many
703	 * things).  We could add another new stat but at least for now that
704	 * seems like overkill.
705	 */
706	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
707		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
708	}
709	return err;
710
711do_confirm:
712	dst_confirm(&rt->u.dst);
713	if (!(msg->msg_flags&MSG_PROBE) || len)
714		goto back_from_confirm;
715	err = 0;
716	goto out;
717}
718
719int udp_sendpage(struct sock *sk, struct page *page, int offset,
720		 size_t size, int flags)
721{
722	struct udp_sock *up = udp_sk(sk);
723	int ret;
724
725	if (!up->pending) {
726		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
727
728		/* Call udp_sendmsg to specify destination address which
729		 * sendpage interface can't pass.
730		 * This will succeed only when the socket is connected.
731		 */
732		ret = udp_sendmsg(NULL, sk, &msg, 0);
733		if (ret < 0)
734			return ret;
735	}
736
737	lock_sock(sk);
738
739	if (unlikely(!up->pending)) {
740		release_sock(sk);
741
742		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
743		return -EINVAL;
744	}
745
746	ret = ip_append_page(sk, page, offset, size, flags);
747	if (ret == -EOPNOTSUPP) {
748		release_sock(sk);
749		return sock_no_sendpage(sk->sk_socket, page, offset,
750					size, flags);
751	}
752	if (ret < 0) {
753		udp_flush_pending_frames(sk);
754		goto out;
755	}
756
757	up->len += size;
758	if (!(up->corkflag || (flags&MSG_MORE)))
759		ret = udp_push_pending_frames(sk);
760	if (!ret)
761		ret = size;
762out:
763	release_sock(sk);
764	return ret;
765}
766
767/*
768 *	IOCTL requests applicable to the UDP protocol
769 */
770
771int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
772{
773	switch (cmd) {
774	case SIOCOUTQ:
775	{
776		int amount = atomic_read(&sk->sk_wmem_alloc);
777		return put_user(amount, (int __user *)arg);
778	}
779
780	case SIOCINQ:
781	{
782		struct sk_buff *skb;
783		unsigned long amount;
784
785		amount = 0;
786		spin_lock_bh(&sk->sk_receive_queue.lock);
787		skb = skb_peek(&sk->sk_receive_queue);
788		if (skb != NULL) {
789			/*
790			 * We will only return the amount
791			 * of this packet since that is all
792			 * that will be read.
793			 */
794			amount = skb->len - sizeof(struct udphdr);
795		}
796		spin_unlock_bh(&sk->sk_receive_queue.lock);
797		return put_user(amount, (int __user *)arg);
798	}
799
800	default:
801		return -ENOIOCTLCMD;
802	}
803
804	return 0;
805}
806
807/*
808 * 	This should be easy, if there is something there we
809 * 	return it, otherwise we block.
810 */
811
812int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
813		size_t len, int noblock, int flags, int *addr_len)
814{
815	struct inet_sock *inet = inet_sk(sk);
816	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
817	struct sk_buff *skb;
818	unsigned int ulen, copied;
819	int err;
820	int is_udplite = IS_UDPLITE(sk);
821
822	/*
823	 *	Check any passed addresses
824	 */
825	if (addr_len)
826		*addr_len=sizeof(*sin);
827
828	if (flags & MSG_ERRQUEUE)
829		return ip_recv_error(sk, msg, len);
830
831try_again:
832	skb = skb_recv_datagram(sk, flags, noblock, &err);
833	if (!skb)
834		goto out;
835
836	ulen = skb->len - sizeof(struct udphdr);
837	copied = len;
838	if (copied > ulen)
839		copied = ulen;
840	else if (copied < ulen)
841		msg->msg_flags |= MSG_TRUNC;
842
843	/*
844	 * If checksum is needed at all, try to do it while copying the
845	 * data.  If the data is truncated, or if we only want a partial
846	 * coverage checksum (UDP-Lite), do it before the copy.
847	 */
848
849	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
850		if (udp_lib_checksum_complete(skb))
851			goto csum_copy_err;
852	}
853
854	if (skb_csum_unnecessary(skb))
855		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
856					      msg->msg_iov, copied       );
857	else {
858		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
859
860		if (err == -EINVAL)
861			goto csum_copy_err;
862	}
863
864	if (err)
865		goto out_free;
866
867	sock_recv_timestamp(msg, sk, skb);
868
869	/* Copy the address. */
870	if (sin)
871	{
872		sin->sin_family = AF_INET;
873		sin->sin_port = udp_hdr(skb)->source;
874		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
875		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
876	}
877	if (inet->cmsg_flags)
878		ip_cmsg_recv(msg, skb);
879
880	err = copied;
881	if (flags & MSG_TRUNC)
882		err = ulen;
883
884out_free:
885	skb_free_datagram(sk, skb);
886out:
887	return err;
888
889csum_copy_err:
890	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
891
892	skb_kill_datagram(sk, skb, flags);
893
894	if (noblock)
895		return -EAGAIN;
896	goto try_again;
897}
898
899
900int udp_disconnect(struct sock *sk, int flags)
901{
902	struct inet_sock *inet = inet_sk(sk);
903	/*
904	 *	1003.1g - break association.
905	 */
906
907	sk->sk_state = TCP_CLOSE;
908	inet->daddr = 0;
909	inet->dport = 0;
910	sk->sk_bound_dev_if = 0;
911	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
912		inet_reset_saddr(sk);
913
914	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
915		sk->sk_prot->unhash(sk);
916		inet->sport = 0;
917	}
918	sk_dst_reset(sk);
919	return 0;
920}
921
922/* return:
923 * 	1  if the UDP system should process it
924 *	0  if we should drop this packet
925 * 	-1 if it should get processed by xfrm4_rcv_encap
926 */
927static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
928{
929#ifndef CONFIG_XFRM
930	return 1;
931#else
932	struct udp_sock *up = udp_sk(sk);
933	struct udphdr *uh;
934	struct iphdr *iph;
935	int iphlen, len;
936
937	__u8 *udpdata;
938	__be32 *udpdata32;
939	__u16 encap_type = up->encap_type;
940
941	/* if we're overly short, let UDP handle it */
942	len = skb->len - sizeof(struct udphdr);
943	if (len <= 0)
944		return 1;
945
946	/* if this is not encapsulated socket, then just return now */
947	if (!encap_type)
948		return 1;
949
950	/* If this is a paged skb, make sure we pull up
951	 * whatever data we need to look at. */
952	if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
953		return 1;
954
955	/* Now we can get the pointers */
956	uh = udp_hdr(skb);
957	udpdata = (__u8 *)uh + sizeof(struct udphdr);
958	udpdata32 = (__be32 *)udpdata;
959
960	switch (encap_type) {
961	default:
962	case UDP_ENCAP_ESPINUDP:
963		/* Check if this is a keepalive packet.  If so, eat it. */
964		if (len == 1 && udpdata[0] == 0xff) {
965			return 0;
966		} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
967			/* ESP Packet without Non-ESP header */
968			len = sizeof(struct udphdr);
969		} else
970			/* Must be an IKE packet.. pass it through */
971			return 1;
972		break;
973	case UDP_ENCAP_ESPINUDP_NON_IKE:
974		/* Check if this is a keepalive packet.  If so, eat it. */
975		if (len == 1 && udpdata[0] == 0xff) {
976			return 0;
977		} else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
978			   udpdata32[0] == 0 && udpdata32[1] == 0) {
979
980			/* ESP Packet with Non-IKE marker */
981			len = sizeof(struct udphdr) + 2 * sizeof(u32);
982		} else
983			/* Must be an IKE packet.. pass it through */
984			return 1;
985		break;
986	}
987
988	/* At this point we are sure that this is an ESPinUDP packet,
989	 * so we need to remove 'len' bytes from the packet (the UDP
990	 * header and optional ESP marker bytes) and then modify the
991	 * protocol to ESP, and then call into the transform receiver.
992	 */
993	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
994		return 0;
995
996	/* Now we can update and verify the packet length... */
997	iph = ip_hdr(skb);
998	iphlen = iph->ihl << 2;
999	iph->tot_len = htons(ntohs(iph->tot_len) - len);
1000	if (skb->len < iphlen + len) {
1001		/* packet is too small!?! */
1002		return 0;
1003	}
1004
1005	/* pull the data buffer up to the ESP header and set the
1006	 * transport header to point to ESP.  Keep UDP on the stack
1007	 * for later.
1008	 */
1009	__skb_pull(skb, len);
1010	skb_reset_transport_header(skb);
1011
1012	/* modify the protocol (it's ESP!) */
1013	iph->protocol = IPPROTO_ESP;
1014
1015	/* and let the caller know to send this into the ESP processor... */
1016	return -1;
1017#endif
1018}
1019
1020/* returns:
1021 *  -1: error
1022 *   0: success
1023 *  >0: "udp encap" protocol resubmission
1024 *
1025 * Note that in the success and error cases, the skb is assumed to
1026 * have either been requeued or freed.
1027 */
1028int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
1029{
1030	struct udp_sock *up = udp_sk(sk);
1031	int rc;
1032
1033	/*
1034	 *	Charge it to the socket, dropping if the queue is full.
1035	 */
1036	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1037		goto drop;
1038	nf_reset(skb);
1039
1040	if (up->encap_type) {
1041		/*
1042		 * This is an encapsulation socket, so let's see if this is
1043		 * an encapsulated packet.
1044		 * If it's a keepalive packet, then just eat it.
1045		 * If it's an encapsulateed packet, then pass it to the
1046		 * IPsec xfrm input and return the response
1047		 * appropriately.  Otherwise, just fall through and
1048		 * pass this up the UDP socket.
1049		 */
1050		int ret;
1051
1052		ret = udp_encap_rcv(sk, skb);
1053		if (ret == 0) {
1054			/* Eat the packet .. */
1055			kfree_skb(skb);
1056			return 0;
1057		}
1058		if (ret < 0) {
1059			/* process the ESP packet */
1060			ret = xfrm4_rcv_encap(skb, up->encap_type);
1061			UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1062			return -ret;
1063		}
1064		/* FALLTHROUGH -- it's a UDP Packet */
1065	}
1066
1067	/*
1068	 * 	UDP-Lite specific tests, ignored on UDP sockets
1069	 */
1070	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1071
1072		/*
1073		 * MIB statistics other than incrementing the error count are
1074		 * disabled for the following two types of errors: these depend
1075		 * on the application settings, not on the functioning of the
1076		 * protocol stack as such.
1077		 *
1078		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1079		 * way ... to ... at least let the receiving application block
1080		 * delivery of packets with coverage values less than a value
1081		 * provided by the application."
1082		 */
1083		if (up->pcrlen == 0) {          /* full coverage was set  */
1084			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1085				"%d while full coverage %d requested\n",
1086				UDP_SKB_CB(skb)->cscov, skb->len);
1087			goto drop;
1088		}
1089		/* The next case involves violating the min. coverage requested
1090		 * by the receiver. This is subtle: if receiver wants x and x is
1091		 * greater than the buffersize/MTU then receiver will complain
1092		 * that it wants x while sender emits packets of smaller size y.
1093		 * Therefore the above ...()->partial_cov statement is essential.
1094		 */
1095		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1096			LIMIT_NETDEBUG(KERN_WARNING
1097				"UDPLITE: coverage %d too small, need min %d\n",
1098				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1099			goto drop;
1100		}
1101	}
1102
1103	if (sk->sk_filter) {
1104		if (udp_lib_checksum_complete(skb))
1105			goto drop;
1106	}
1107
1108	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1109		/* Note that an ENOMEM error is charged twice */
1110		if (rc == -ENOMEM)
1111			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag);
1112		goto drop;
1113	}
1114
1115	UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1116	return 0;
1117
1118drop:
1119	UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag);
1120	kfree_skb(skb);
1121	return -1;
1122}
1123
1124/*
1125 *	Multicasts and broadcasts go to each listener.
1126 *
1127 *	Note: called only from the BH handler context,
1128 *	so we don't need to lock the hashes.
1129 */
1130static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1131				    struct udphdr  *uh,
1132				    __be32 saddr, __be32 daddr,
1133				    struct hlist_head udptable[])
1134{
1135	struct sock *sk;
1136	int dif;
1137
1138	read_lock(&udp_hash_lock);
1139	sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1140	dif = skb->dev->ifindex;
1141	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1142	if (sk) {
1143		struct sock *sknext = NULL;
1144
1145		do {
1146			struct sk_buff *skb1 = skb;
1147
1148			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1149						   uh->source, saddr, dif);
1150			if (sknext)
1151				skb1 = skb_clone(skb, GFP_ATOMIC);
1152
1153			if (skb1) {
1154				int ret = udp_queue_rcv_skb(sk, skb1);
1155				if (ret > 0)
1156					/* we should probably re-process instead
1157					 * of dropping packets here. */
1158					kfree_skb(skb1);
1159			}
1160			sk = sknext;
1161		} while (sknext);
1162	} else
1163		kfree_skb(skb);
1164	read_unlock(&udp_hash_lock);
1165	return 0;
1166}
1167
1168/* Initialize UDP checksum. If exited with zero value (success),
1169 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1170 * Otherwise, csum completion requires chacksumming packet body,
1171 * including udp header and folding it to skb->csum.
1172 */
1173static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1174				 int proto)
1175{
1176	const struct iphdr *iph;
1177	int err;
1178
1179	UDP_SKB_CB(skb)->partial_cov = 0;
1180	UDP_SKB_CB(skb)->cscov = skb->len;
1181
1182	if (proto == IPPROTO_UDPLITE) {
1183		err = udplite_checksum_init(skb, uh);
1184		if (err)
1185			return err;
1186	}
1187
1188	iph = ip_hdr(skb);
1189	if (uh->check == 0) {
1190		skb->ip_summed = CHECKSUM_UNNECESSARY;
1191	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1192	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1193				      proto, skb->csum))
1194			skb->ip_summed = CHECKSUM_UNNECESSARY;
1195	}
1196	if (!skb_csum_unnecessary(skb))
1197		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1198					       skb->len, proto, 0);
1199	/* Probably, we should checksum udp header (it should be in cache
1200	 * in any case) and data in tiny packets (< rx copybreak).
1201	 */
1202
1203	return 0;
1204}
1205
1206/*
1207 *	All we need to do is get the socket, and then do a checksum.
1208 */
1209
1210int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1211		   int proto)
1212{
1213	struct sock *sk;
1214	struct udphdr *uh = udp_hdr(skb);
1215	unsigned short ulen;
1216	struct rtable *rt = (struct rtable*)skb->dst;
1217	__be32 saddr = ip_hdr(skb)->saddr;
1218	__be32 daddr = ip_hdr(skb)->daddr;
1219
1220	/*
1221	 *  Validate the packet.
1222	 */
1223	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1224		goto drop;		/* No space for header. */
1225
1226	ulen = ntohs(uh->len);
1227	if (ulen > skb->len)
1228		goto short_packet;
1229
1230	if (proto == IPPROTO_UDP) {
1231		/* UDP validates ulen. */
1232		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1233			goto short_packet;
1234		uh = udp_hdr(skb);
1235	}
1236
1237	if (udp4_csum_init(skb, uh, proto))
1238		goto csum_error;
1239
1240	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1241		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1242
1243	sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
1244			       skb->dev->ifindex, udptable        );
1245
1246	if (sk != NULL) {
1247		int ret = udp_queue_rcv_skb(sk, skb);
1248		sock_put(sk);
1249
1250		/* a return value > 0 means to resubmit the input, but
1251		 * it wants the return to be -protocol, or 0
1252		 */
1253		if (ret > 0)
1254			return -ret;
1255		return 0;
1256	}
1257
1258	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1259		goto drop;
1260	nf_reset(skb);
1261
1262	/* No socket. Drop packet silently, if checksum is wrong */
1263	if (udp_lib_checksum_complete(skb))
1264		goto csum_error;
1265
1266	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1267	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1268
1269	/*
1270	 * Hmm.  We got an UDP packet to a port to which we
1271	 * don't wanna listen.  Ignore it.
1272	 */
1273	kfree_skb(skb);
1274	return 0;
1275
1276short_packet:
1277	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1278		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1279		       NIPQUAD(saddr),
1280		       ntohs(uh->source),
1281		       ulen,
1282		       skb->len,
1283		       NIPQUAD(daddr),
1284		       ntohs(uh->dest));
1285	goto drop;
1286
1287csum_error:
1288	/*
1289	 * RFC1122: OK.  Discards the bad packet silently (as far as
1290	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1291	 */
1292	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1293		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1294		       NIPQUAD(saddr),
1295		       ntohs(uh->source),
1296		       NIPQUAD(daddr),
1297		       ntohs(uh->dest),
1298		       ulen);
1299drop:
1300	UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1301	kfree_skb(skb);
1302	return 0;
1303}
1304
1305int udp_rcv(struct sk_buff *skb)
1306{
1307	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1308}
1309
1310int udp_destroy_sock(struct sock *sk)
1311{
1312	lock_sock(sk);
1313	udp_flush_pending_frames(sk);
1314	release_sock(sk);
1315	return 0;
1316}
1317
1318/*
1319 *	Socket option code for UDP
1320 */
1321int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1322		       char __user *optval, int optlen,
1323		       int (*push_pending_frames)(struct sock *))
1324{
1325	struct udp_sock *up = udp_sk(sk);
1326	int val;
1327	int err = 0;
1328
1329	if (optlen<sizeof(int))
1330		return -EINVAL;
1331
1332	if (get_user(val, (int __user *)optval))
1333		return -EFAULT;
1334
1335	switch (optname) {
1336	case UDP_CORK:
1337		if (val != 0) {
1338			up->corkflag = 1;
1339		} else {
1340			up->corkflag = 0;
1341			lock_sock(sk);
1342			(*push_pending_frames)(sk);
1343			release_sock(sk);
1344		}
1345		break;
1346
1347	case UDP_ENCAP:
1348		switch (val) {
1349		case 0:
1350		case UDP_ENCAP_ESPINUDP:
1351		case UDP_ENCAP_ESPINUDP_NON_IKE:
1352			up->encap_type = val;
1353			break;
1354		default:
1355			err = -ENOPROTOOPT;
1356			break;
1357		}
1358		break;
1359
1360	/*
1361	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1362	 */
1363	/* The sender sets actual checksum coverage length via this option.
1364	 * The case coverage > packet length is handled by send module. */
1365	case UDPLITE_SEND_CSCOV:
1366		if (!up->pcflag)         /* Disable the option on UDP sockets */
1367			return -ENOPROTOOPT;
1368		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1369			val = 8;
1370		up->pcslen = val;
1371		up->pcflag |= UDPLITE_SEND_CC;
1372		break;
1373
1374	/* The receiver specifies a minimum checksum coverage value. To make
1375	 * sense, this should be set to at least 8 (as done below). If zero is
1376	 * used, this again means full checksum coverage.                     */
1377	case UDPLITE_RECV_CSCOV:
1378		if (!up->pcflag)         /* Disable the option on UDP sockets */
1379			return -ENOPROTOOPT;
1380		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1381			val = 8;
1382		up->pcrlen = val;
1383		up->pcflag |= UDPLITE_RECV_CC;
1384		break;
1385
1386	default:
1387		err = -ENOPROTOOPT;
1388		break;
1389	}
1390
1391	return err;
1392}
1393
1394int udp_setsockopt(struct sock *sk, int level, int optname,
1395		   char __user *optval, int optlen)
1396{
1397	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1398		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1399					  udp_push_pending_frames);
1400	return ip_setsockopt(sk, level, optname, optval, optlen);
1401}
1402
1403#ifdef CONFIG_COMPAT
1404int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1405			  char __user *optval, int optlen)
1406{
1407	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1408		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1409					  udp_push_pending_frames);
1410	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1411}
1412#endif
1413
1414int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1415		       char __user *optval, int __user *optlen)
1416{
1417	struct udp_sock *up = udp_sk(sk);
1418	int val, len;
1419
1420	if (get_user(len,optlen))
1421		return -EFAULT;
1422
1423	len = min_t(unsigned int, len, sizeof(int));
1424
1425	if (len < 0)
1426		return -EINVAL;
1427
1428	switch (optname) {
1429	case UDP_CORK:
1430		val = up->corkflag;
1431		break;
1432
1433	case UDP_ENCAP:
1434		val = up->encap_type;
1435		break;
1436
1437	/* The following two cannot be changed on UDP sockets, the return is
1438	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1439	case UDPLITE_SEND_CSCOV:
1440		val = up->pcslen;
1441		break;
1442
1443	case UDPLITE_RECV_CSCOV:
1444		val = up->pcrlen;
1445		break;
1446
1447	default:
1448		return -ENOPROTOOPT;
1449	}
1450
1451	if (put_user(len, optlen))
1452		return -EFAULT;
1453	if (copy_to_user(optval, &val,len))
1454		return -EFAULT;
1455	return 0;
1456}
1457
1458int udp_getsockopt(struct sock *sk, int level, int optname,
1459		   char __user *optval, int __user *optlen)
1460{
1461	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1462		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1463	return ip_getsockopt(sk, level, optname, optval, optlen);
1464}
1465
1466#ifdef CONFIG_COMPAT
1467int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1468				 char __user *optval, int __user *optlen)
1469{
1470	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1471		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1472	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1473}
1474#endif
1475unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1476{
1477	unsigned int mask = datagram_poll(file, sock, wait);
1478	struct sock *sk = sock->sk;
1479	int 	is_lite = IS_UDPLITE(sk);
1480
1481	/* Check for false positives due to checksum errors */
1482	if ( (mask & POLLRDNORM) &&
1483	     !(file->f_flags & O_NONBLOCK) &&
1484	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1485		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1486		struct sk_buff *skb;
1487
1488		spin_lock_bh(&rcvq->lock);
1489		while ((skb = skb_peek(rcvq)) != NULL &&
1490		       udp_lib_checksum_complete(skb)) {
1491			UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1492			__skb_unlink(skb, rcvq);
1493			kfree_skb(skb);
1494		}
1495		spin_unlock_bh(&rcvq->lock);
1496
1497		/* nothing to see, move along */
1498		if (skb == NULL)
1499			mask &= ~(POLLIN | POLLRDNORM);
1500	}
1501
1502	return mask;
1503
1504}
1505
1506struct proto udp_prot = {
1507	.name		   = "UDP",
1508	.owner		   = THIS_MODULE,
1509	.close		   = udp_lib_close,
1510	.connect	   = ip4_datagram_connect,
1511	.disconnect	   = udp_disconnect,
1512	.ioctl		   = udp_ioctl,
1513	.destroy	   = udp_destroy_sock,
1514	.setsockopt	   = udp_setsockopt,
1515	.getsockopt	   = udp_getsockopt,
1516	.sendmsg	   = udp_sendmsg,
1517	.recvmsg	   = udp_recvmsg,
1518	.sendpage	   = udp_sendpage,
1519	.backlog_rcv	   = udp_queue_rcv_skb,
1520	.hash		   = udp_lib_hash,
1521	.unhash		   = udp_lib_unhash,
1522	.get_port	   = udp_v4_get_port,
1523	.obj_size	   = sizeof(struct udp_sock),
1524#ifdef CONFIG_COMPAT
1525	.compat_setsockopt = compat_udp_setsockopt,
1526	.compat_getsockopt = compat_udp_getsockopt,
1527#endif
1528};
1529
1530/* ------------------------------------------------------------------------ */
1531#ifdef CONFIG_PROC_FS
1532
1533static struct sock *udp_get_first(struct seq_file *seq)
1534{
1535	struct sock *sk;
1536	struct udp_iter_state *state = seq->private;
1537
1538	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1539		struct hlist_node *node;
1540		sk_for_each(sk, node, state->hashtable + state->bucket) {
1541			if (sk->sk_family == state->family)
1542				goto found;
1543		}
1544	}
1545	sk = NULL;
1546found:
1547	return sk;
1548}
1549
1550static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1551{
1552	struct udp_iter_state *state = seq->private;
1553
1554	do {
1555		sk = sk_next(sk);
1556try_again:
1557		;
1558	} while (sk && sk->sk_family != state->family);
1559
1560	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1561		sk = sk_head(state->hashtable + state->bucket);
1562		goto try_again;
1563	}
1564	return sk;
1565}
1566
1567static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1568{
1569	struct sock *sk = udp_get_first(seq);
1570
1571	if (sk)
1572		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1573			--pos;
1574	return pos ? NULL : sk;
1575}
1576
1577static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1578{
1579	read_lock(&udp_hash_lock);
1580	return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1581}
1582
1583static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1584{
1585	struct sock *sk;
1586
1587	if (v == (void *)1)
1588		sk = udp_get_idx(seq, 0);
1589	else
1590		sk = udp_get_next(seq, v);
1591
1592	++*pos;
1593	return sk;
1594}
1595
1596static void udp_seq_stop(struct seq_file *seq, void *v)
1597{
1598	read_unlock(&udp_hash_lock);
1599}
1600
1601static int udp_seq_open(struct inode *inode, struct file *file)
1602{
1603	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1604	struct seq_file *seq;
1605	int rc = -ENOMEM;
1606	struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1607
1608	if (!s)
1609		goto out;
1610	s->family		= afinfo->family;
1611	s->hashtable		= afinfo->hashtable;
1612	s->seq_ops.start	= udp_seq_start;
1613	s->seq_ops.next		= udp_seq_next;
1614	s->seq_ops.show		= afinfo->seq_show;
1615	s->seq_ops.stop		= udp_seq_stop;
1616
1617	rc = seq_open(file, &s->seq_ops);
1618	if (rc)
1619		goto out_kfree;
1620
1621	seq	     = file->private_data;
1622	seq->private = s;
1623out:
1624	return rc;
1625out_kfree:
1626	kfree(s);
1627	goto out;
1628}
1629
1630/* ------------------------------------------------------------------------ */
1631int udp_proc_register(struct udp_seq_afinfo *afinfo)
1632{
1633	struct proc_dir_entry *p;
1634	int rc = 0;
1635
1636	if (!afinfo)
1637		return -EINVAL;
1638	afinfo->seq_fops->owner		= afinfo->owner;
1639	afinfo->seq_fops->open		= udp_seq_open;
1640	afinfo->seq_fops->read		= seq_read;
1641	afinfo->seq_fops->llseek	= seq_lseek;
1642	afinfo->seq_fops->release	= seq_release_private;
1643
1644	p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1645	if (p)
1646		p->data = afinfo;
1647	else
1648		rc = -ENOMEM;
1649	return rc;
1650}
1651
1652void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1653{
1654	if (!afinfo)
1655		return;
1656	proc_net_remove(afinfo->name);
1657	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1658}
1659
1660/* ------------------------------------------------------------------------ */
1661static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1662{
1663	struct inet_sock *inet = inet_sk(sp);
1664	__be32 dest = inet->daddr;
1665	__be32 src  = inet->rcv_saddr;
1666	__u16 destp	  = ntohs(inet->dport);
1667	__u16 srcp	  = ntohs(inet->sport);
1668
1669	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1670		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1671		bucket, src, srcp, dest, destp, sp->sk_state,
1672		atomic_read(&sp->sk_wmem_alloc),
1673		atomic_read(&sp->sk_rmem_alloc),
1674		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1675		atomic_read(&sp->sk_refcnt), sp);
1676}
1677
1678int udp4_seq_show(struct seq_file *seq, void *v)
1679{
1680	if (v == SEQ_START_TOKEN)
1681		seq_printf(seq, "%-127s\n",
1682			   "  sl  local_address rem_address   st tx_queue "
1683			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1684			   "inode");
1685	else {
1686		char tmpbuf[129];
1687		struct udp_iter_state *state = seq->private;
1688
1689		udp4_format_sock(v, tmpbuf, state->bucket);
1690		seq_printf(seq, "%-127s\n", tmpbuf);
1691	}
1692	return 0;
1693}
1694
1695/* ------------------------------------------------------------------------ */
1696static struct file_operations udp4_seq_fops;
1697static struct udp_seq_afinfo udp4_seq_afinfo = {
1698	.owner		= THIS_MODULE,
1699	.name		= "udp",
1700	.family		= AF_INET,
1701	.hashtable	= udp_hash,
1702	.seq_show	= udp4_seq_show,
1703	.seq_fops	= &udp4_seq_fops,
1704};
1705
1706int __init udp4_proc_init(void)
1707{
1708	return udp_proc_register(&udp4_seq_afinfo);
1709}
1710
1711void udp4_proc_exit(void)
1712{
1713	udp_proc_unregister(&udp4_seq_afinfo);
1714}
1715#endif /* CONFIG_PROC_FS */
1716
1717EXPORT_SYMBOL(udp_disconnect);
1718EXPORT_SYMBOL(udp_hash);
1719EXPORT_SYMBOL(udp_hash_lock);
1720EXPORT_SYMBOL(udp_ioctl);
1721EXPORT_SYMBOL(udp_get_port);
1722EXPORT_SYMBOL(udp_prot);
1723EXPORT_SYMBOL(udp_sendmsg);
1724EXPORT_SYMBOL(udp_lib_getsockopt);
1725EXPORT_SYMBOL(udp_lib_setsockopt);
1726EXPORT_SYMBOL(udp_poll);
1727
1728#ifdef CONFIG_PROC_FS
1729EXPORT_SYMBOL(udp_proc_register);
1730EXPORT_SYMBOL(udp_proc_unregister);
1731#endif
1732