1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/seq_file.h>
99#include	<linux/notifier.h>
100#include	<linux/kallsyms.h>
101#include	<linux/cpu.h>
102#include	<linux/sysctl.h>
103#include	<linux/module.h>
104#include	<linux/rcupdate.h>
105#include	<linux/string.h>
106#include	<linux/uaccess.h>
107#include	<linux/nodemask.h>
108#include	<linux/mempolicy.h>
109#include	<linux/mutex.h>
110#include	<linux/fault-inject.h>
111#include	<linux/rtmutex.h>
112#include	<linux/reciprocal_div.h>
113
114#include	<asm/cacheflush.h>
115#include	<asm/tlbflush.h>
116#include	<asm/page.h>
117
118/*
119 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 *		  0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS	- 1 to collect stats for /proc/slabinfo.
123 *		  0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define	DEBUG		1
130#define	STATS		1
131#define	FORCED_DEBUG	1
132#else
133#define	DEBUG		0
134#define	STATS		0
135#define	FORCED_DEBUG	0
136#endif
137
138/* Shouldn't this be in a header file somewhere? */
139#define	BYTES_PER_WORD		sizeof(void *)
140#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
141
142#ifndef cache_line_size
143#define cache_line_size()	L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
155 */
156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
176# define CREATE_MASK	(SLAB_RED_ZONE | \
177			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178			 SLAB_CACHE_DMA | \
179			 SLAB_STORE_USER | \
180			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182#else
183# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
184			 SLAB_CACHE_DMA | \
185			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
208typedef unsigned int kmem_bufctl_t;
209#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
211#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
212#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
213
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
222	struct list_head list;
223	unsigned long colouroff;
224	void *s_mem;		/* including colour offset */
225	unsigned int inuse;	/* num of objs active in slab */
226	kmem_bufctl_t free;
227	unsigned short nodeid;
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU.  This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking.  We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
247	struct rcu_head head;
248	struct kmem_cache *cachep;
249	void *addr;
250};
251
252/*
253 * struct array_cache
254 *
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265	unsigned int avail;
266	unsigned int limit;
267	unsigned int batchcount;
268	unsigned int touched;
269	spinlock_t lock;
270	void *entry[0];	/*
271			 * Must have this definition in here for the proper
272			 * alignment of array_cache. Also simplifies accessing
273			 * the entries.
274			 * [0] is for gcc 2.95. It should really be [].
275			 */
276};
277
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
281 */
282#define BOOT_CPUCACHE_ENTRIES	1
283struct arraycache_init {
284	struct array_cache cache;
285	void *entries[BOOT_CPUCACHE_ENTRIES];
286};
287
288/*
289 * The slab lists for all objects.
290 */
291struct kmem_list3 {
292	struct list_head slabs_partial;	/* partial list first, better asm code */
293	struct list_head slabs_full;
294	struct list_head slabs_free;
295	unsigned long free_objects;
296	unsigned int free_limit;
297	unsigned int colour_next;	/* Per-node cache coloring */
298	spinlock_t list_lock;
299	struct array_cache *shared;	/* shared per node */
300	struct array_cache **alien;	/* on other nodes */
301	unsigned long next_reap;	/* updated without locking */
302	int free_touched;		/* updated without locking */
303};
304
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
308#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310#define	CACHE_CACHE 0
311#define	SIZE_AC 1
312#define	SIZE_L3 (1 + MAX_NUMNODES)
313
314static int drain_freelist(struct kmem_cache *cache,
315			struct kmem_list3 *l3, int tofree);
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317			int node);
318static int enable_cpucache(struct kmem_cache *cachep);
319static void cache_reap(struct work_struct *unused);
320
321/*
322 * This function must be completely optimized away if a constant is passed to
323 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
324 */
325static __always_inline int index_of(const size_t size)
326{
327	extern void __bad_size(void);
328
329	if (__builtin_constant_p(size)) {
330		int i = 0;
331
332#define CACHE(x) \
333	if (size <=x) \
334		return i; \
335	else \
336		i++;
337#include "linux/kmalloc_sizes.h"
338#undef CACHE
339		__bad_size();
340	} else
341		__bad_size();
342	return 0;
343}
344
345static int slab_early_init = 1;
346
347#define INDEX_AC index_of(sizeof(struct arraycache_init))
348#define INDEX_L3 index_of(sizeof(struct kmem_list3))
349
350static void kmem_list3_init(struct kmem_list3 *parent)
351{
352	INIT_LIST_HEAD(&parent->slabs_full);
353	INIT_LIST_HEAD(&parent->slabs_partial);
354	INIT_LIST_HEAD(&parent->slabs_free);
355	parent->shared = NULL;
356	parent->alien = NULL;
357	parent->colour_next = 0;
358	spin_lock_init(&parent->list_lock);
359	parent->free_objects = 0;
360	parent->free_touched = 0;
361}
362
363#define MAKE_LIST(cachep, listp, slab, nodeid)				\
364	do {								\
365		INIT_LIST_HEAD(listp);					\
366		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
367	} while (0)
368
369#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
370	do {								\
371	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
372	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
374	} while (0)
375
376/*
377 * struct kmem_cache
378 *
379 * manages a cache.
380 */
381
382struct kmem_cache {
383/* 1) per-cpu data, touched during every alloc/free */
384	struct array_cache *array[NR_CPUS];
385/* 2) Cache tunables. Protected by cache_chain_mutex */
386	unsigned int batchcount;
387	unsigned int limit;
388	unsigned int shared;
389
390	unsigned int buffer_size;
391	u32 reciprocal_buffer_size;
392/* 3) touched by every alloc & free from the backend */
393
394	unsigned int flags;		/* constant flags */
395	unsigned int num;		/* # of objs per slab */
396
397/* 4) cache_grow/shrink */
398	/* order of pgs per slab (2^n) */
399	unsigned int gfporder;
400
401	/* force GFP flags, e.g. GFP_DMA */
402	gfp_t gfpflags;
403
404	size_t colour;			/* cache colouring range */
405	unsigned int colour_off;	/* colour offset */
406	struct kmem_cache *slabp_cache;
407	unsigned int slab_size;
408	unsigned int dflags;		/* dynamic flags */
409
410	/* constructor func */
411	void (*ctor) (void *, struct kmem_cache *, unsigned long);
412
413/* 5) cache creation/removal */
414	const char *name;
415	struct list_head next;
416
417/* 6) statistics */
418#if STATS
419	unsigned long num_active;
420	unsigned long num_allocations;
421	unsigned long high_mark;
422	unsigned long grown;
423	unsigned long reaped;
424	unsigned long errors;
425	unsigned long max_freeable;
426	unsigned long node_allocs;
427	unsigned long node_frees;
428	unsigned long node_overflow;
429	atomic_t allochit;
430	atomic_t allocmiss;
431	atomic_t freehit;
432	atomic_t freemiss;
433#endif
434#if DEBUG
435	/*
436	 * If debugging is enabled, then the allocator can add additional
437	 * fields and/or padding to every object. buffer_size contains the total
438	 * object size including these internal fields, the following two
439	 * variables contain the offset to the user object and its size.
440	 */
441	int obj_offset;
442	int obj_size;
443#endif
444	/*
445	 * We put nodelists[] at the end of kmem_cache, because we want to size
446	 * this array to nr_node_ids slots instead of MAX_NUMNODES
447	 * (see kmem_cache_init())
448	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449	 * is statically defined, so we reserve the max number of nodes.
450	 */
451	struct kmem_list3 *nodelists[MAX_NUMNODES];
452	/*
453	 * Do not add fields after nodelists[]
454	 */
455};
456
457#define CFLGS_OFF_SLAB		(0x80000000UL)
458#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
459
460#define BATCHREFILL_LIMIT	16
461/*
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
464 *
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
467 */
468#define REAPTIMEOUT_CPUC	(2*HZ)
469#define REAPTIMEOUT_LIST3	(4*HZ)
470
471#if STATS
472#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
473#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
474#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
475#define	STATS_INC_GROWN(x)	((x)->grown++)
476#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
477#define	STATS_SET_HIGH(x)						\
478	do {								\
479		if ((x)->num_active > (x)->high_mark)			\
480			(x)->high_mark = (x)->num_active;		\
481	} while (0)
482#define	STATS_INC_ERR(x)	((x)->errors++)
483#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
484#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
485#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
486#define	STATS_SET_FREEABLE(x, i)					\
487	do {								\
488		if ((x)->max_freeable < i)				\
489			(x)->max_freeable = i;				\
490	} while (0)
491#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
492#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
493#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
494#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
495#else
496#define	STATS_INC_ACTIVE(x)	do { } while (0)
497#define	STATS_DEC_ACTIVE(x)	do { } while (0)
498#define	STATS_INC_ALLOCED(x)	do { } while (0)
499#define	STATS_INC_GROWN(x)	do { } while (0)
500#define	STATS_ADD_REAPED(x,y)	do { } while (0)
501#define	STATS_SET_HIGH(x)	do { } while (0)
502#define	STATS_INC_ERR(x)	do { } while (0)
503#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
504#define	STATS_INC_NODEFREES(x)	do { } while (0)
505#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
506#define	STATS_SET_FREEABLE(x, i) do { } while (0)
507#define STATS_INC_ALLOCHIT(x)	do { } while (0)
508#define STATS_INC_ALLOCMISS(x)	do { } while (0)
509#define STATS_INC_FREEHIT(x)	do { } while (0)
510#define STATS_INC_FREEMISS(x)	do { } while (0)
511#endif
512
513#if DEBUG
514
515/*
516 * memory layout of objects:
517 * 0		: objp
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * 		the end of an object is aligned with the end of the real
520 * 		allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * 		redzone word.
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 *					[BYTES_PER_WORD long]
527 */
528static int obj_offset(struct kmem_cache *cachep)
529{
530	return cachep->obj_offset;
531}
532
533static int obj_size(struct kmem_cache *cachep)
534{
535	return cachep->obj_size;
536}
537
538static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
539{
540	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
541	return (unsigned long long*) (objp + obj_offset(cachep) -
542				      sizeof(unsigned long long));
543}
544
545static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
546{
547	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548	if (cachep->flags & SLAB_STORE_USER)
549		return (unsigned long long *)(objp + cachep->buffer_size -
550					      sizeof(unsigned long long) -
551					      REDZONE_ALIGN);
552	return (unsigned long long *) (objp + cachep->buffer_size -
553				       sizeof(unsigned long long));
554}
555
556static void **dbg_userword(struct kmem_cache *cachep, void *objp)
557{
558	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
559	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
560}
561
562#else
563
564#define obj_offset(x)			0
565#define obj_size(cachep)		(cachep->buffer_size)
566#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
567#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
568#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
569
570#endif
571
572/*
573 * Do not go above this order unless 0 objects fit into the slab.
574 */
575#define	BREAK_GFP_ORDER_HI	1
576#define	BREAK_GFP_ORDER_LO	0
577static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
578
579/*
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
582 * these are used to find the cache which an obj belongs to.
583 */
584static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
585{
586	page->lru.next = (struct list_head *)cache;
587}
588
589static inline struct kmem_cache *page_get_cache(struct page *page)
590{
591	page = compound_head(page);
592	BUG_ON(!PageSlab(page));
593	return (struct kmem_cache *)page->lru.next;
594}
595
596static inline void page_set_slab(struct page *page, struct slab *slab)
597{
598	page->lru.prev = (struct list_head *)slab;
599}
600
601static inline struct slab *page_get_slab(struct page *page)
602{
603	BUG_ON(!PageSlab(page));
604	return (struct slab *)page->lru.prev;
605}
606
607static inline struct kmem_cache *virt_to_cache(const void *obj)
608{
609	struct page *page = virt_to_head_page(obj);
610	return page_get_cache(page);
611}
612
613static inline struct slab *virt_to_slab(const void *obj)
614{
615	struct page *page = virt_to_head_page(obj);
616	return page_get_slab(page);
617}
618
619static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
620				 unsigned int idx)
621{
622	return slab->s_mem + cache->buffer_size * idx;
623}
624
625/*
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 *   Using the fact that buffer_size is a constant for a particular cache,
628 *   we can replace (offset / cache->buffer_size) by
629 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 */
631static inline unsigned int obj_to_index(const struct kmem_cache *cache,
632					const struct slab *slab, void *obj)
633{
634	u32 offset = (obj - slab->s_mem);
635	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
636}
637
638/*
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 */
641struct cache_sizes malloc_sizes[] = {
642#define CACHE(x) { .cs_size = (x) },
643#include <linux/kmalloc_sizes.h>
644	CACHE(ULONG_MAX)
645#undef CACHE
646};
647EXPORT_SYMBOL(malloc_sizes);
648
649/* Must match cache_sizes above. Out of line to keep cache footprint low. */
650struct cache_names {
651	char *name;
652	char *name_dma;
653};
654
655static struct cache_names __initdata cache_names[] = {
656#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657#include <linux/kmalloc_sizes.h>
658	{NULL,}
659#undef CACHE
660};
661
662static struct arraycache_init initarray_cache __initdata =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664static struct arraycache_init initarray_generic =
665    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
666
667/* internal cache of cache description objs */
668static struct kmem_cache cache_cache = {
669	.batchcount = 1,
670	.limit = BOOT_CPUCACHE_ENTRIES,
671	.shared = 1,
672	.buffer_size = sizeof(struct kmem_cache),
673	.name = "kmem_cache",
674};
675
676#define BAD_ALIEN_MAGIC 0x01020304ul
677
678#ifdef CONFIG_LOCKDEP
679
680/*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
690 */
691static struct lock_class_key on_slab_l3_key;
692static struct lock_class_key on_slab_alc_key;
693
694static inline void init_lock_keys(void)
695
696{
697	int q;
698	struct cache_sizes *s = malloc_sizes;
699
700	while (s->cs_size != ULONG_MAX) {
701		for_each_node(q) {
702			struct array_cache **alc;
703			int r;
704			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705			if (!l3 || OFF_SLAB(s->cs_cachep))
706				continue;
707			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708			alc = l3->alien;
709			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
710				continue;
711			for_each_node(r) {
712				if (alc[r])
713					lockdep_set_class(&alc[r]->lock,
714					     &on_slab_alc_key);
715			}
716		}
717		s++;
718	}
719}
720#else
721static inline void init_lock_keys(void)
722{
723}
724#endif
725
726/*
727 * 1. Guard access to the cache-chain.
728 * 2. Protect sanity of cpu_online_map against cpu hotplug events
729 */
730static DEFINE_MUTEX(cache_chain_mutex);
731static struct list_head cache_chain;
732
733/*
734 * chicken and egg problem: delay the per-cpu array allocation
735 * until the general caches are up.
736 */
737static enum {
738	NONE,
739	PARTIAL_AC,
740	PARTIAL_L3,
741	FULL
742} g_cpucache_up;
743
744/*
745 * used by boot code to determine if it can use slab based allocator
746 */
747int slab_is_available(void)
748{
749	return g_cpucache_up == FULL;
750}
751
752static DEFINE_PER_CPU(struct delayed_work, reap_work);
753
754static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
755{
756	return cachep->array[smp_processor_id()];
757}
758
759static inline struct kmem_cache *__find_general_cachep(size_t size,
760							gfp_t gfpflags)
761{
762	struct cache_sizes *csizep = malloc_sizes;
763
764#if DEBUG
765	/* This happens if someone tries to call
766	 * kmem_cache_create(), or __kmalloc(), before
767	 * the generic caches are initialized.
768	 */
769	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
770#endif
771	while (size > csizep->cs_size)
772		csizep++;
773
774	/*
775	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
776	 * has cs_{dma,}cachep==NULL. Thus no special case
777	 * for large kmalloc calls required.
778	 */
779#ifdef CONFIG_ZONE_DMA
780	if (unlikely(gfpflags & GFP_DMA))
781		return csizep->cs_dmacachep;
782#endif
783	return csizep->cs_cachep;
784}
785
786static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
787{
788	return __find_general_cachep(size, gfpflags);
789}
790
791static size_t slab_mgmt_size(size_t nr_objs, size_t align)
792{
793	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
794}
795
796/*
797 * Calculate the number of objects and left-over bytes for a given buffer size.
798 */
799static void cache_estimate(unsigned long gfporder, size_t buffer_size,
800			   size_t align, int flags, size_t *left_over,
801			   unsigned int *num)
802{
803	int nr_objs;
804	size_t mgmt_size;
805	size_t slab_size = PAGE_SIZE << gfporder;
806
807	/*
808	 * The slab management structure can be either off the slab or
809	 * on it. For the latter case, the memory allocated for a
810	 * slab is used for:
811	 *
812	 * - The struct slab
813	 * - One kmem_bufctl_t for each object
814	 * - Padding to respect alignment of @align
815	 * - @buffer_size bytes for each object
816	 *
817	 * If the slab management structure is off the slab, then the
818	 * alignment will already be calculated into the size. Because
819	 * the slabs are all pages aligned, the objects will be at the
820	 * correct alignment when allocated.
821	 */
822	if (flags & CFLGS_OFF_SLAB) {
823		mgmt_size = 0;
824		nr_objs = slab_size / buffer_size;
825
826		if (nr_objs > SLAB_LIMIT)
827			nr_objs = SLAB_LIMIT;
828	} else {
829		/*
830		 * Ignore padding for the initial guess. The padding
831		 * is at most @align-1 bytes, and @buffer_size is at
832		 * least @align. In the worst case, this result will
833		 * be one greater than the number of objects that fit
834		 * into the memory allocation when taking the padding
835		 * into account.
836		 */
837		nr_objs = (slab_size - sizeof(struct slab)) /
838			  (buffer_size + sizeof(kmem_bufctl_t));
839
840		/*
841		 * This calculated number will be either the right
842		 * amount, or one greater than what we want.
843		 */
844		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
845		       > slab_size)
846			nr_objs--;
847
848		if (nr_objs > SLAB_LIMIT)
849			nr_objs = SLAB_LIMIT;
850
851		mgmt_size = slab_mgmt_size(nr_objs, align);
852	}
853	*num = nr_objs;
854	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
855}
856
857#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
858
859static void __slab_error(const char *function, struct kmem_cache *cachep,
860			char *msg)
861{
862	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
863	       function, cachep->name, msg);
864	dump_stack();
865}
866
867/*
868 * By default on NUMA we use alien caches to stage the freeing of
869 * objects allocated from other nodes. This causes massive memory
870 * inefficiencies when using fake NUMA setup to split memory into a
871 * large number of small nodes, so it can be disabled on the command
872 * line
873  */
874
875static int use_alien_caches __read_mostly = 1;
876static int __init noaliencache_setup(char *s)
877{
878	use_alien_caches = 0;
879	return 1;
880}
881__setup("noaliencache", noaliencache_setup);
882
883#ifdef CONFIG_NUMA
884/*
885 * Special reaping functions for NUMA systems called from cache_reap().
886 * These take care of doing round robin flushing of alien caches (containing
887 * objects freed on different nodes from which they were allocated) and the
888 * flushing of remote pcps by calling drain_node_pages.
889 */
890static DEFINE_PER_CPU(unsigned long, reap_node);
891
892static void init_reap_node(int cpu)
893{
894	int node;
895
896	node = next_node(cpu_to_node(cpu), node_online_map);
897	if (node == MAX_NUMNODES)
898		node = first_node(node_online_map);
899
900	per_cpu(reap_node, cpu) = node;
901}
902
903static void next_reap_node(void)
904{
905	int node = __get_cpu_var(reap_node);
906
907	node = next_node(node, node_online_map);
908	if (unlikely(node >= MAX_NUMNODES))
909		node = first_node(node_online_map);
910	__get_cpu_var(reap_node) = node;
911}
912
913#else
914#define init_reap_node(cpu) do { } while (0)
915#define next_reap_node(void) do { } while (0)
916#endif
917
918/*
919 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
920 * via the workqueue/eventd.
921 * Add the CPU number into the expiration time to minimize the possibility of
922 * the CPUs getting into lockstep and contending for the global cache chain
923 * lock.
924 */
925static void __devinit start_cpu_timer(int cpu)
926{
927	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
928
929	/*
930	 * When this gets called from do_initcalls via cpucache_init(),
931	 * init_workqueues() has already run, so keventd will be setup
932	 * at that time.
933	 */
934	if (keventd_up() && reap_work->work.func == NULL) {
935		init_reap_node(cpu);
936		INIT_DELAYED_WORK(reap_work, cache_reap);
937		schedule_delayed_work_on(cpu, reap_work,
938					__round_jiffies_relative(HZ, cpu));
939	}
940}
941
942static struct array_cache *alloc_arraycache(int node, int entries,
943					    int batchcount)
944{
945	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
946	struct array_cache *nc = NULL;
947
948	nc = kmalloc_node(memsize, GFP_KERNEL, node);
949	if (nc) {
950		nc->avail = 0;
951		nc->limit = entries;
952		nc->batchcount = batchcount;
953		nc->touched = 0;
954		spin_lock_init(&nc->lock);
955	}
956	return nc;
957}
958
959/*
960 * Transfer objects in one arraycache to another.
961 * Locking must be handled by the caller.
962 *
963 * Return the number of entries transferred.
964 */
965static int transfer_objects(struct array_cache *to,
966		struct array_cache *from, unsigned int max)
967{
968	/* Figure out how many entries to transfer */
969	int nr = min(min(from->avail, max), to->limit - to->avail);
970
971	if (!nr)
972		return 0;
973
974	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
975			sizeof(void *) *nr);
976
977	from->avail -= nr;
978	to->avail += nr;
979	to->touched = 1;
980	return nr;
981}
982
983#ifndef CONFIG_NUMA
984
985#define drain_alien_cache(cachep, alien) do { } while (0)
986#define reap_alien(cachep, l3) do { } while (0)
987
988static inline struct array_cache **alloc_alien_cache(int node, int limit)
989{
990	return (struct array_cache **)BAD_ALIEN_MAGIC;
991}
992
993static inline void free_alien_cache(struct array_cache **ac_ptr)
994{
995}
996
997static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
998{
999	return 0;
1000}
1001
1002static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1003		gfp_t flags)
1004{
1005	return NULL;
1006}
1007
1008static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1009		 gfp_t flags, int nodeid)
1010{
1011	return NULL;
1012}
1013
1014#else	/* CONFIG_NUMA */
1015
1016static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1017static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1018
1019static struct array_cache **alloc_alien_cache(int node, int limit)
1020{
1021	struct array_cache **ac_ptr;
1022	int memsize = sizeof(void *) * nr_node_ids;
1023	int i;
1024
1025	if (limit > 1)
1026		limit = 12;
1027	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1028	if (ac_ptr) {
1029		for_each_node(i) {
1030			if (i == node || !node_online(i)) {
1031				ac_ptr[i] = NULL;
1032				continue;
1033			}
1034			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1035			if (!ac_ptr[i]) {
1036				for (i--; i <= 0; i--)
1037					kfree(ac_ptr[i]);
1038				kfree(ac_ptr);
1039				return NULL;
1040			}
1041		}
1042	}
1043	return ac_ptr;
1044}
1045
1046static void free_alien_cache(struct array_cache **ac_ptr)
1047{
1048	int i;
1049
1050	if (!ac_ptr)
1051		return;
1052	for_each_node(i)
1053	    kfree(ac_ptr[i]);
1054	kfree(ac_ptr);
1055}
1056
1057static void __drain_alien_cache(struct kmem_cache *cachep,
1058				struct array_cache *ac, int node)
1059{
1060	struct kmem_list3 *rl3 = cachep->nodelists[node];
1061
1062	if (ac->avail) {
1063		spin_lock(&rl3->list_lock);
1064		/*
1065		 * Stuff objects into the remote nodes shared array first.
1066		 * That way we could avoid the overhead of putting the objects
1067		 * into the free lists and getting them back later.
1068		 */
1069		if (rl3->shared)
1070			transfer_objects(rl3->shared, ac, ac->limit);
1071
1072		free_block(cachep, ac->entry, ac->avail, node);
1073		ac->avail = 0;
1074		spin_unlock(&rl3->list_lock);
1075	}
1076}
1077
1078/*
1079 * Called from cache_reap() to regularly drain alien caches round robin.
1080 */
1081static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1082{
1083	int node = __get_cpu_var(reap_node);
1084
1085	if (l3->alien) {
1086		struct array_cache *ac = l3->alien[node];
1087
1088		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1089			__drain_alien_cache(cachep, ac, node);
1090			spin_unlock_irq(&ac->lock);
1091		}
1092	}
1093}
1094
1095static void drain_alien_cache(struct kmem_cache *cachep,
1096				struct array_cache **alien)
1097{
1098	int i = 0;
1099	struct array_cache *ac;
1100	unsigned long flags;
1101
1102	for_each_online_node(i) {
1103		ac = alien[i];
1104		if (ac) {
1105			spin_lock_irqsave(&ac->lock, flags);
1106			__drain_alien_cache(cachep, ac, i);
1107			spin_unlock_irqrestore(&ac->lock, flags);
1108		}
1109	}
1110}
1111
1112static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1113{
1114	struct slab *slabp = virt_to_slab(objp);
1115	int nodeid = slabp->nodeid;
1116	struct kmem_list3 *l3;
1117	struct array_cache *alien = NULL;
1118	int node;
1119
1120	node = numa_node_id();
1121
1122	/*
1123	 * Make sure we are not freeing a object from another node to the array
1124	 * cache on this cpu.
1125	 */
1126	if (likely(slabp->nodeid == node))
1127		return 0;
1128
1129	l3 = cachep->nodelists[node];
1130	STATS_INC_NODEFREES(cachep);
1131	if (l3->alien && l3->alien[nodeid]) {
1132		alien = l3->alien[nodeid];
1133		spin_lock(&alien->lock);
1134		if (unlikely(alien->avail == alien->limit)) {
1135			STATS_INC_ACOVERFLOW(cachep);
1136			__drain_alien_cache(cachep, alien, nodeid);
1137		}
1138		alien->entry[alien->avail++] = objp;
1139		spin_unlock(&alien->lock);
1140	} else {
1141		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1142		free_block(cachep, &objp, 1, nodeid);
1143		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1144	}
1145	return 1;
1146}
1147#endif
1148
1149static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1150				    unsigned long action, void *hcpu)
1151{
1152	long cpu = (long)hcpu;
1153	struct kmem_cache *cachep;
1154	struct kmem_list3 *l3 = NULL;
1155	int node = cpu_to_node(cpu);
1156	int memsize = sizeof(struct kmem_list3);
1157
1158	switch (action) {
1159	case CPU_LOCK_ACQUIRE:
1160		mutex_lock(&cache_chain_mutex);
1161		break;
1162	case CPU_UP_PREPARE:
1163	case CPU_UP_PREPARE_FROZEN:
1164		/*
1165		 * We need to do this right in the beginning since
1166		 * alloc_arraycache's are going to use this list.
1167		 * kmalloc_node allows us to add the slab to the right
1168		 * kmem_list3 and not this cpu's kmem_list3
1169		 */
1170
1171		list_for_each_entry(cachep, &cache_chain, next) {
1172			/*
1173			 * Set up the size64 kmemlist for cpu before we can
1174			 * begin anything. Make sure some other cpu on this
1175			 * node has not already allocated this
1176			 */
1177			if (!cachep->nodelists[node]) {
1178				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1179				if (!l3)
1180					goto bad;
1181				kmem_list3_init(l3);
1182				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1183				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1184
1185				/*
1186				 * The l3s don't come and go as CPUs come and
1187				 * go.  cache_chain_mutex is sufficient
1188				 * protection here.
1189				 */
1190				cachep->nodelists[node] = l3;
1191			}
1192
1193			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1194			cachep->nodelists[node]->free_limit =
1195				(1 + nr_cpus_node(node)) *
1196				cachep->batchcount + cachep->num;
1197			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1198		}
1199
1200		/*
1201		 * Now we can go ahead with allocating the shared arrays and
1202		 * array caches
1203		 */
1204		list_for_each_entry(cachep, &cache_chain, next) {
1205			struct array_cache *nc;
1206			struct array_cache *shared = NULL;
1207			struct array_cache **alien = NULL;
1208
1209			nc = alloc_arraycache(node, cachep->limit,
1210						cachep->batchcount);
1211			if (!nc)
1212				goto bad;
1213			if (cachep->shared) {
1214				shared = alloc_arraycache(node,
1215					cachep->shared * cachep->batchcount,
1216					0xbaadf00d);
1217				if (!shared)
1218					goto bad;
1219			}
1220			if (use_alien_caches) {
1221                                alien = alloc_alien_cache(node, cachep->limit);
1222                                if (!alien)
1223                                        goto bad;
1224                        }
1225			cachep->array[cpu] = nc;
1226			l3 = cachep->nodelists[node];
1227			BUG_ON(!l3);
1228
1229			spin_lock_irq(&l3->list_lock);
1230			if (!l3->shared) {
1231				/*
1232				 * We are serialised from CPU_DEAD or
1233				 * CPU_UP_CANCELLED by the cpucontrol lock
1234				 */
1235				l3->shared = shared;
1236				shared = NULL;
1237			}
1238#ifdef CONFIG_NUMA
1239			if (!l3->alien) {
1240				l3->alien = alien;
1241				alien = NULL;
1242			}
1243#endif
1244			spin_unlock_irq(&l3->list_lock);
1245			kfree(shared);
1246			free_alien_cache(alien);
1247		}
1248		break;
1249	case CPU_ONLINE:
1250	case CPU_ONLINE_FROZEN:
1251		start_cpu_timer(cpu);
1252		break;
1253#ifdef CONFIG_HOTPLUG_CPU
1254  	case CPU_DOWN_PREPARE:
1255  	case CPU_DOWN_PREPARE_FROZEN:
1256		/*
1257		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1258		 * held so that if cache_reap() is invoked it cannot do
1259		 * anything expensive but will only modify reap_work
1260		 * and reschedule the timer.
1261		*/
1262		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1263		/* Now the cache_reaper is guaranteed to be not running. */
1264		per_cpu(reap_work, cpu).work.func = NULL;
1265  		break;
1266  	case CPU_DOWN_FAILED:
1267  	case CPU_DOWN_FAILED_FROZEN:
1268		start_cpu_timer(cpu);
1269  		break;
1270	case CPU_DEAD:
1271	case CPU_DEAD_FROZEN:
1272		/*
1273		 * Even if all the cpus of a node are down, we don't free the
1274		 * kmem_list3 of any cache. This to avoid a race between
1275		 * cpu_down, and a kmalloc allocation from another cpu for
1276		 * memory from the node of the cpu going down.  The list3
1277		 * structure is usually allocated from kmem_cache_create() and
1278		 * gets destroyed at kmem_cache_destroy().
1279		 */
1280		/* fall thru */
1281#endif
1282	case CPU_UP_CANCELED:
1283	case CPU_UP_CANCELED_FROZEN:
1284		list_for_each_entry(cachep, &cache_chain, next) {
1285			struct array_cache *nc;
1286			struct array_cache *shared;
1287			struct array_cache **alien;
1288			cpumask_t mask;
1289
1290			mask = node_to_cpumask(node);
1291			/* cpu is dead; no one can alloc from it. */
1292			nc = cachep->array[cpu];
1293			cachep->array[cpu] = NULL;
1294			l3 = cachep->nodelists[node];
1295
1296			if (!l3)
1297				goto free_array_cache;
1298
1299			spin_lock_irq(&l3->list_lock);
1300
1301			/* Free limit for this kmem_list3 */
1302			l3->free_limit -= cachep->batchcount;
1303			if (nc)
1304				free_block(cachep, nc->entry, nc->avail, node);
1305
1306			if (!cpus_empty(mask)) {
1307				spin_unlock_irq(&l3->list_lock);
1308				goto free_array_cache;
1309			}
1310
1311			shared = l3->shared;
1312			if (shared) {
1313				free_block(cachep, shared->entry,
1314					   shared->avail, node);
1315				l3->shared = NULL;
1316			}
1317
1318			alien = l3->alien;
1319			l3->alien = NULL;
1320
1321			spin_unlock_irq(&l3->list_lock);
1322
1323			kfree(shared);
1324			if (alien) {
1325				drain_alien_cache(cachep, alien);
1326				free_alien_cache(alien);
1327			}
1328free_array_cache:
1329			kfree(nc);
1330		}
1331		/*
1332		 * In the previous loop, all the objects were freed to
1333		 * the respective cache's slabs,  now we can go ahead and
1334		 * shrink each nodelist to its limit.
1335		 */
1336		list_for_each_entry(cachep, &cache_chain, next) {
1337			l3 = cachep->nodelists[node];
1338			if (!l3)
1339				continue;
1340			drain_freelist(cachep, l3, l3->free_objects);
1341		}
1342		break;
1343	case CPU_LOCK_RELEASE:
1344		mutex_unlock(&cache_chain_mutex);
1345		break;
1346	}
1347	return NOTIFY_OK;
1348bad:
1349	return NOTIFY_BAD;
1350}
1351
1352static struct notifier_block __cpuinitdata cpucache_notifier = {
1353	&cpuup_callback, NULL, 0
1354};
1355
1356/*
1357 * swap the static kmem_list3 with kmalloced memory
1358 */
1359static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1360			int nodeid)
1361{
1362	struct kmem_list3 *ptr;
1363
1364	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1365	BUG_ON(!ptr);
1366
1367	local_irq_disable();
1368	memcpy(ptr, list, sizeof(struct kmem_list3));
1369	/*
1370	 * Do not assume that spinlocks can be initialized via memcpy:
1371	 */
1372	spin_lock_init(&ptr->list_lock);
1373
1374	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1375	cachep->nodelists[nodeid] = ptr;
1376	local_irq_enable();
1377}
1378
1379/*
1380 * Initialisation.  Called after the page allocator have been initialised and
1381 * before smp_init().
1382 */
1383void __init kmem_cache_init(void)
1384{
1385	size_t left_over;
1386	struct cache_sizes *sizes;
1387	struct cache_names *names;
1388	int i;
1389	int order;
1390	int node;
1391
1392	if (num_possible_nodes() == 1)
1393		use_alien_caches = 0;
1394
1395	for (i = 0; i < NUM_INIT_LISTS; i++) {
1396		kmem_list3_init(&initkmem_list3[i]);
1397		if (i < MAX_NUMNODES)
1398			cache_cache.nodelists[i] = NULL;
1399	}
1400
1401	/*
1402	 * Fragmentation resistance on low memory - only use bigger
1403	 * page orders on machines with more than 32MB of memory.
1404	 */
1405	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1406		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1407
1408	/* Bootstrap is tricky, because several objects are allocated
1409	 * from caches that do not exist yet:
1410	 * 1) initialize the cache_cache cache: it contains the struct
1411	 *    kmem_cache structures of all caches, except cache_cache itself:
1412	 *    cache_cache is statically allocated.
1413	 *    Initially an __init data area is used for the head array and the
1414	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1415	 *    array at the end of the bootstrap.
1416	 * 2) Create the first kmalloc cache.
1417	 *    The struct kmem_cache for the new cache is allocated normally.
1418	 *    An __init data area is used for the head array.
1419	 * 3) Create the remaining kmalloc caches, with minimally sized
1420	 *    head arrays.
1421	 * 4) Replace the __init data head arrays for cache_cache and the first
1422	 *    kmalloc cache with kmalloc allocated arrays.
1423	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1424	 *    the other cache's with kmalloc allocated memory.
1425	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1426	 */
1427
1428	node = numa_node_id();
1429
1430	/* 1) create the cache_cache */
1431	INIT_LIST_HEAD(&cache_chain);
1432	list_add(&cache_cache.next, &cache_chain);
1433	cache_cache.colour_off = cache_line_size();
1434	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1435	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1436
1437	/*
1438	 * struct kmem_cache size depends on nr_node_ids, which
1439	 * can be less than MAX_NUMNODES.
1440	 */
1441	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1442				 nr_node_ids * sizeof(struct kmem_list3 *);
1443#if DEBUG
1444	cache_cache.obj_size = cache_cache.buffer_size;
1445#endif
1446	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1447					cache_line_size());
1448	cache_cache.reciprocal_buffer_size =
1449		reciprocal_value(cache_cache.buffer_size);
1450
1451	for (order = 0; order < MAX_ORDER; order++) {
1452		cache_estimate(order, cache_cache.buffer_size,
1453			cache_line_size(), 0, &left_over, &cache_cache.num);
1454		if (cache_cache.num)
1455			break;
1456	}
1457	BUG_ON(!cache_cache.num);
1458	cache_cache.gfporder = order;
1459	cache_cache.colour = left_over / cache_cache.colour_off;
1460	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1461				      sizeof(struct slab), cache_line_size());
1462
1463	/* 2+3) create the kmalloc caches */
1464	sizes = malloc_sizes;
1465	names = cache_names;
1466
1467	/*
1468	 * Initialize the caches that provide memory for the array cache and the
1469	 * kmem_list3 structures first.  Without this, further allocations will
1470	 * bug.
1471	 */
1472
1473	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1474					sizes[INDEX_AC].cs_size,
1475					ARCH_KMALLOC_MINALIGN,
1476					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1477					NULL, NULL);
1478
1479	if (INDEX_AC != INDEX_L3) {
1480		sizes[INDEX_L3].cs_cachep =
1481			kmem_cache_create(names[INDEX_L3].name,
1482				sizes[INDEX_L3].cs_size,
1483				ARCH_KMALLOC_MINALIGN,
1484				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1485				NULL, NULL);
1486	}
1487
1488	slab_early_init = 0;
1489
1490	while (sizes->cs_size != ULONG_MAX) {
1491		/*
1492		 * For performance, all the general caches are L1 aligned.
1493		 * This should be particularly beneficial on SMP boxes, as it
1494		 * eliminates "false sharing".
1495		 * Note for systems short on memory removing the alignment will
1496		 * allow tighter packing of the smaller caches.
1497		 */
1498		if (!sizes->cs_cachep) {
1499			sizes->cs_cachep = kmem_cache_create(names->name,
1500					sizes->cs_size,
1501					ARCH_KMALLOC_MINALIGN,
1502					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1503					NULL, NULL);
1504		}
1505#ifdef CONFIG_ZONE_DMA
1506		sizes->cs_dmacachep = kmem_cache_create(
1507					names->name_dma,
1508					sizes->cs_size,
1509					ARCH_KMALLOC_MINALIGN,
1510					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1511						SLAB_PANIC,
1512					NULL, NULL);
1513#endif
1514		sizes++;
1515		names++;
1516	}
1517	/* 4) Replace the bootstrap head arrays */
1518	{
1519		struct array_cache *ptr;
1520
1521		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1522
1523		local_irq_disable();
1524		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1525		memcpy(ptr, cpu_cache_get(&cache_cache),
1526		       sizeof(struct arraycache_init));
1527		/*
1528		 * Do not assume that spinlocks can be initialized via memcpy:
1529		 */
1530		spin_lock_init(&ptr->lock);
1531
1532		cache_cache.array[smp_processor_id()] = ptr;
1533		local_irq_enable();
1534
1535		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1536
1537		local_irq_disable();
1538		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1539		       != &initarray_generic.cache);
1540		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1541		       sizeof(struct arraycache_init));
1542		/*
1543		 * Do not assume that spinlocks can be initialized via memcpy:
1544		 */
1545		spin_lock_init(&ptr->lock);
1546
1547		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1548		    ptr;
1549		local_irq_enable();
1550	}
1551	/* 5) Replace the bootstrap kmem_list3's */
1552	{
1553		int nid;
1554
1555		/* Replace the static kmem_list3 structures for the boot cpu */
1556		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1557
1558		for_each_online_node(nid) {
1559			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1560				  &initkmem_list3[SIZE_AC + nid], nid);
1561
1562			if (INDEX_AC != INDEX_L3) {
1563				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1564					  &initkmem_list3[SIZE_L3 + nid], nid);
1565			}
1566		}
1567	}
1568
1569	/* 6) resize the head arrays to their final sizes */
1570	{
1571		struct kmem_cache *cachep;
1572		mutex_lock(&cache_chain_mutex);
1573		list_for_each_entry(cachep, &cache_chain, next)
1574			if (enable_cpucache(cachep))
1575				BUG();
1576		mutex_unlock(&cache_chain_mutex);
1577	}
1578
1579	/* Annotate slab for lockdep -- annotate the malloc caches */
1580	init_lock_keys();
1581
1582
1583	/* Done! */
1584	g_cpucache_up = FULL;
1585
1586	/*
1587	 * Register a cpu startup notifier callback that initializes
1588	 * cpu_cache_get for all new cpus
1589	 */
1590	register_cpu_notifier(&cpucache_notifier);
1591
1592	/*
1593	 * The reap timers are started later, with a module init call: That part
1594	 * of the kernel is not yet operational.
1595	 */
1596}
1597
1598static int __init cpucache_init(void)
1599{
1600	int cpu;
1601
1602	/*
1603	 * Register the timers that return unneeded pages to the page allocator
1604	 */
1605	for_each_online_cpu(cpu)
1606		start_cpu_timer(cpu);
1607	return 0;
1608}
1609__initcall(cpucache_init);
1610
1611/*
1612 * Interface to system's page allocator. No need to hold the cache-lock.
1613 *
1614 * If we requested dmaable memory, we will get it. Even if we
1615 * did not request dmaable memory, we might get it, but that
1616 * would be relatively rare and ignorable.
1617 */
1618static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1619{
1620	struct page *page;
1621	int nr_pages;
1622	int i;
1623
1624#ifndef CONFIG_MMU
1625	/*
1626	 * Nommu uses slab's for process anonymous memory allocations, and thus
1627	 * requires __GFP_COMP to properly refcount higher order allocations
1628	 */
1629	flags |= __GFP_COMP;
1630#endif
1631
1632	flags |= cachep->gfpflags;
1633
1634	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1635	if (!page)
1636		return NULL;
1637
1638	nr_pages = (1 << cachep->gfporder);
1639	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1640		add_zone_page_state(page_zone(page),
1641			NR_SLAB_RECLAIMABLE, nr_pages);
1642	else
1643		add_zone_page_state(page_zone(page),
1644			NR_SLAB_UNRECLAIMABLE, nr_pages);
1645	for (i = 0; i < nr_pages; i++)
1646		__SetPageSlab(page + i);
1647	return page_address(page);
1648}
1649
1650/*
1651 * Interface to system's page release.
1652 */
1653static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1654{
1655	unsigned long i = (1 << cachep->gfporder);
1656	struct page *page = virt_to_page(addr);
1657	const unsigned long nr_freed = i;
1658
1659	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1660		sub_zone_page_state(page_zone(page),
1661				NR_SLAB_RECLAIMABLE, nr_freed);
1662	else
1663		sub_zone_page_state(page_zone(page),
1664				NR_SLAB_UNRECLAIMABLE, nr_freed);
1665	while (i--) {
1666		BUG_ON(!PageSlab(page));
1667		__ClearPageSlab(page);
1668		page++;
1669	}
1670	if (current->reclaim_state)
1671		current->reclaim_state->reclaimed_slab += nr_freed;
1672	free_pages((unsigned long)addr, cachep->gfporder);
1673}
1674
1675static void kmem_rcu_free(struct rcu_head *head)
1676{
1677	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1678	struct kmem_cache *cachep = slab_rcu->cachep;
1679
1680	kmem_freepages(cachep, slab_rcu->addr);
1681	if (OFF_SLAB(cachep))
1682		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1683}
1684
1685#if DEBUG
1686
1687#ifdef CONFIG_DEBUG_PAGEALLOC
1688static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1689			    unsigned long caller)
1690{
1691	int size = obj_size(cachep);
1692
1693	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1694
1695	if (size < 5 * sizeof(unsigned long))
1696		return;
1697
1698	*addr++ = 0x12345678;
1699	*addr++ = caller;
1700	*addr++ = smp_processor_id();
1701	size -= 3 * sizeof(unsigned long);
1702	{
1703		unsigned long *sptr = &caller;
1704		unsigned long svalue;
1705
1706		while (!kstack_end(sptr)) {
1707			svalue = *sptr++;
1708			if (kernel_text_address(svalue)) {
1709				*addr++ = svalue;
1710				size -= sizeof(unsigned long);
1711				if (size <= sizeof(unsigned long))
1712					break;
1713			}
1714		}
1715
1716	}
1717	*addr++ = 0x87654321;
1718}
1719#endif
1720
1721static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1722{
1723	int size = obj_size(cachep);
1724	addr = &((char *)addr)[obj_offset(cachep)];
1725
1726	memset(addr, val, size);
1727	*(unsigned char *)(addr + size - 1) = POISON_END;
1728}
1729
1730static void dump_line(char *data, int offset, int limit)
1731{
1732	int i;
1733	unsigned char error = 0;
1734	int bad_count = 0;
1735
1736	printk(KERN_ERR "%03x:", offset);
1737	for (i = 0; i < limit; i++) {
1738		if (data[offset + i] != POISON_FREE) {
1739			error = data[offset + i];
1740			bad_count++;
1741		}
1742		printk(" %02x", (unsigned char)data[offset + i]);
1743	}
1744	printk("\n");
1745
1746	if (bad_count == 1) {
1747		error ^= POISON_FREE;
1748		if (!(error & (error - 1))) {
1749			printk(KERN_ERR "Single bit error detected. Probably "
1750					"bad RAM.\n");
1751#ifdef CONFIG_X86
1752			printk(KERN_ERR "Run memtest86+ or a similar memory "
1753					"test tool.\n");
1754#else
1755			printk(KERN_ERR "Run a memory test tool.\n");
1756#endif
1757		}
1758	}
1759}
1760#endif
1761
1762#if DEBUG
1763
1764static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1765{
1766	int i, size;
1767	char *realobj;
1768
1769	if (cachep->flags & SLAB_RED_ZONE) {
1770		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1771			*dbg_redzone1(cachep, objp),
1772			*dbg_redzone2(cachep, objp));
1773	}
1774
1775	if (cachep->flags & SLAB_STORE_USER) {
1776		printk(KERN_ERR "Last user: [<%p>]",
1777			*dbg_userword(cachep, objp));
1778		print_symbol("(%s)",
1779				(unsigned long)*dbg_userword(cachep, objp));
1780		printk("\n");
1781	}
1782	realobj = (char *)objp + obj_offset(cachep);
1783	size = obj_size(cachep);
1784	for (i = 0; i < size && lines; i += 16, lines--) {
1785		int limit;
1786		limit = 16;
1787		if (i + limit > size)
1788			limit = size - i;
1789		dump_line(realobj, i, limit);
1790	}
1791}
1792
1793static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1794{
1795	char *realobj;
1796	int size, i;
1797	int lines = 0;
1798
1799	realobj = (char *)objp + obj_offset(cachep);
1800	size = obj_size(cachep);
1801
1802	for (i = 0; i < size; i++) {
1803		char exp = POISON_FREE;
1804		if (i == size - 1)
1805			exp = POISON_END;
1806		if (realobj[i] != exp) {
1807			int limit;
1808			/* Mismatch ! */
1809			/* Print header */
1810			if (lines == 0) {
1811				printk(KERN_ERR
1812					"Slab corruption: %s start=%p, len=%d\n",
1813					cachep->name, realobj, size);
1814				print_objinfo(cachep, objp, 0);
1815			}
1816			/* Hexdump the affected line */
1817			i = (i / 16) * 16;
1818			limit = 16;
1819			if (i + limit > size)
1820				limit = size - i;
1821			dump_line(realobj, i, limit);
1822			i += 16;
1823			lines++;
1824			/* Limit to 5 lines */
1825			if (lines > 5)
1826				break;
1827		}
1828	}
1829	if (lines != 0) {
1830		/* Print some data about the neighboring objects, if they
1831		 * exist:
1832		 */
1833		struct slab *slabp = virt_to_slab(objp);
1834		unsigned int objnr;
1835
1836		objnr = obj_to_index(cachep, slabp, objp);
1837		if (objnr) {
1838			objp = index_to_obj(cachep, slabp, objnr - 1);
1839			realobj = (char *)objp + obj_offset(cachep);
1840			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1841			       realobj, size);
1842			print_objinfo(cachep, objp, 2);
1843		}
1844		if (objnr + 1 < cachep->num) {
1845			objp = index_to_obj(cachep, slabp, objnr + 1);
1846			realobj = (char *)objp + obj_offset(cachep);
1847			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1848			       realobj, size);
1849			print_objinfo(cachep, objp, 2);
1850		}
1851	}
1852}
1853#endif
1854
1855#if DEBUG
1856/**
1857 * slab_destroy_objs - destroy a slab and its objects
1858 * @cachep: cache pointer being destroyed
1859 * @slabp: slab pointer being destroyed
1860 *
1861 * Call the registered destructor for each object in a slab that is being
1862 * destroyed.
1863 */
1864static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1865{
1866	int i;
1867	for (i = 0; i < cachep->num; i++) {
1868		void *objp = index_to_obj(cachep, slabp, i);
1869
1870		if (cachep->flags & SLAB_POISON) {
1871#ifdef CONFIG_DEBUG_PAGEALLOC
1872			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1873					OFF_SLAB(cachep))
1874				kernel_map_pages(virt_to_page(objp),
1875					cachep->buffer_size / PAGE_SIZE, 1);
1876			else
1877				check_poison_obj(cachep, objp);
1878#else
1879			check_poison_obj(cachep, objp);
1880#endif
1881		}
1882		if (cachep->flags & SLAB_RED_ZONE) {
1883			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1884				slab_error(cachep, "start of a freed object "
1885					   "was overwritten");
1886			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1887				slab_error(cachep, "end of a freed object "
1888					   "was overwritten");
1889		}
1890	}
1891}
1892#else
1893static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1894{
1895}
1896#endif
1897
1898/**
1899 * slab_destroy - destroy and release all objects in a slab
1900 * @cachep: cache pointer being destroyed
1901 * @slabp: slab pointer being destroyed
1902 *
1903 * Destroy all the objs in a slab, and release the mem back to the system.
1904 * Before calling the slab must have been unlinked from the cache.  The
1905 * cache-lock is not held/needed.
1906 */
1907static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1908{
1909	void *addr = slabp->s_mem - slabp->colouroff;
1910
1911	slab_destroy_objs(cachep, slabp);
1912	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1913		struct slab_rcu *slab_rcu;
1914
1915		slab_rcu = (struct slab_rcu *)slabp;
1916		slab_rcu->cachep = cachep;
1917		slab_rcu->addr = addr;
1918		call_rcu(&slab_rcu->head, kmem_rcu_free);
1919	} else {
1920		kmem_freepages(cachep, addr);
1921		if (OFF_SLAB(cachep))
1922			kmem_cache_free(cachep->slabp_cache, slabp);
1923	}
1924}
1925
1926/*
1927 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1928 * size of kmem_list3.
1929 */
1930static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1931{
1932	int node;
1933
1934	for_each_online_node(node) {
1935		cachep->nodelists[node] = &initkmem_list3[index + node];
1936		cachep->nodelists[node]->next_reap = jiffies +
1937		    REAPTIMEOUT_LIST3 +
1938		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1939	}
1940}
1941
1942static void __kmem_cache_destroy(struct kmem_cache *cachep)
1943{
1944	int i;
1945	struct kmem_list3 *l3;
1946
1947	for_each_online_cpu(i)
1948	    kfree(cachep->array[i]);
1949
1950	/* NUMA: free the list3 structures */
1951	for_each_online_node(i) {
1952		l3 = cachep->nodelists[i];
1953		if (l3) {
1954			kfree(l3->shared);
1955			free_alien_cache(l3->alien);
1956			kfree(l3);
1957		}
1958	}
1959	kmem_cache_free(&cache_cache, cachep);
1960}
1961
1962
1963/**
1964 * calculate_slab_order - calculate size (page order) of slabs
1965 * @cachep: pointer to the cache that is being created
1966 * @size: size of objects to be created in this cache.
1967 * @align: required alignment for the objects.
1968 * @flags: slab allocation flags
1969 *
1970 * Also calculates the number of objects per slab.
1971 *
1972 * This could be made much more intelligent.  For now, try to avoid using
1973 * high order pages for slabs.  When the gfp() functions are more friendly
1974 * towards high-order requests, this should be changed.
1975 */
1976static size_t calculate_slab_order(struct kmem_cache *cachep,
1977			size_t size, size_t align, unsigned long flags)
1978{
1979	unsigned long offslab_limit;
1980	size_t left_over = 0;
1981	int gfporder;
1982
1983	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1984		unsigned int num;
1985		size_t remainder;
1986
1987		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1988		if (!num)
1989			continue;
1990
1991		if (flags & CFLGS_OFF_SLAB) {
1992			/*
1993			 * Max number of objs-per-slab for caches which
1994			 * use off-slab slabs. Needed to avoid a possible
1995			 * looping condition in cache_grow().
1996			 */
1997			offslab_limit = size - sizeof(struct slab);
1998			offslab_limit /= sizeof(kmem_bufctl_t);
1999
2000 			if (num > offslab_limit)
2001				break;
2002		}
2003
2004		/* Found something acceptable - save it away */
2005		cachep->num = num;
2006		cachep->gfporder = gfporder;
2007		left_over = remainder;
2008
2009		/*
2010		 * A VFS-reclaimable slab tends to have most allocations
2011		 * as GFP_NOFS and we really don't want to have to be allocating
2012		 * higher-order pages when we are unable to shrink dcache.
2013		 */
2014		if (flags & SLAB_RECLAIM_ACCOUNT)
2015			break;
2016
2017		/*
2018		 * Large number of objects is good, but very large slabs are
2019		 * currently bad for the gfp()s.
2020		 */
2021		if (gfporder >= slab_break_gfp_order)
2022			break;
2023
2024		/*
2025		 * Acceptable internal fragmentation?
2026		 */
2027		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2028			break;
2029	}
2030	return left_over;
2031}
2032
2033static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2034{
2035	if (g_cpucache_up == FULL)
2036		return enable_cpucache(cachep);
2037
2038	if (g_cpucache_up == NONE) {
2039		/*
2040		 * Note: the first kmem_cache_create must create the cache
2041		 * that's used by kmalloc(24), otherwise the creation of
2042		 * further caches will BUG().
2043		 */
2044		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2045
2046		/*
2047		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2048		 * the first cache, then we need to set up all its list3s,
2049		 * otherwise the creation of further caches will BUG().
2050		 */
2051		set_up_list3s(cachep, SIZE_AC);
2052		if (INDEX_AC == INDEX_L3)
2053			g_cpucache_up = PARTIAL_L3;
2054		else
2055			g_cpucache_up = PARTIAL_AC;
2056	} else {
2057		cachep->array[smp_processor_id()] =
2058			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2059
2060		if (g_cpucache_up == PARTIAL_AC) {
2061			set_up_list3s(cachep, SIZE_L3);
2062			g_cpucache_up = PARTIAL_L3;
2063		} else {
2064			int node;
2065			for_each_online_node(node) {
2066				cachep->nodelists[node] =
2067				    kmalloc_node(sizeof(struct kmem_list3),
2068						GFP_KERNEL, node);
2069				BUG_ON(!cachep->nodelists[node]);
2070				kmem_list3_init(cachep->nodelists[node]);
2071			}
2072		}
2073	}
2074	cachep->nodelists[numa_node_id()]->next_reap =
2075			jiffies + REAPTIMEOUT_LIST3 +
2076			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2077
2078	cpu_cache_get(cachep)->avail = 0;
2079	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2080	cpu_cache_get(cachep)->batchcount = 1;
2081	cpu_cache_get(cachep)->touched = 0;
2082	cachep->batchcount = 1;
2083	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2084	return 0;
2085}
2086
2087/**
2088 * kmem_cache_create - Create a cache.
2089 * @name: A string which is used in /proc/slabinfo to identify this cache.
2090 * @size: The size of objects to be created in this cache.
2091 * @align: The required alignment for the objects.
2092 * @flags: SLAB flags
2093 * @ctor: A constructor for the objects.
2094 * @dtor: A destructor for the objects (not implemented anymore).
2095 *
2096 * Returns a ptr to the cache on success, NULL on failure.
2097 * Cannot be called within a int, but can be interrupted.
2098 * The @ctor is run when new pages are allocated by the cache
2099 * and the @dtor is run before the pages are handed back.
2100 *
2101 * @name must be valid until the cache is destroyed. This implies that
2102 * the module calling this has to destroy the cache before getting unloaded.
2103 *
2104 * The flags are
2105 *
2106 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2107 * to catch references to uninitialised memory.
2108 *
2109 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2110 * for buffer overruns.
2111 *
2112 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2113 * cacheline.  This can be beneficial if you're counting cycles as closely
2114 * as davem.
2115 */
2116struct kmem_cache *
2117kmem_cache_create (const char *name, size_t size, size_t align,
2118	unsigned long flags,
2119	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2120	void (*dtor)(void*, struct kmem_cache *, unsigned long))
2121{
2122	size_t left_over, slab_size, ralign;
2123	struct kmem_cache *cachep = NULL, *pc;
2124
2125	/*
2126	 * Sanity checks... these are all serious usage bugs.
2127	 */
2128	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2129	    size > KMALLOC_MAX_SIZE || dtor) {
2130		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2131				name);
2132		BUG();
2133	}
2134
2135	/*
2136	 * We use cache_chain_mutex to ensure a consistent view of
2137	 * cpu_online_map as well.  Please see cpuup_callback
2138	 */
2139	mutex_lock(&cache_chain_mutex);
2140
2141	list_for_each_entry(pc, &cache_chain, next) {
2142		char tmp;
2143		int res;
2144
2145		/*
2146		 * This happens when the module gets unloaded and doesn't
2147		 * destroy its slab cache and no-one else reuses the vmalloc
2148		 * area of the module.  Print a warning.
2149		 */
2150		res = probe_kernel_address(pc->name, tmp);
2151		if (res) {
2152			printk(KERN_ERR
2153			       "SLAB: cache with size %d has lost its name\n",
2154			       pc->buffer_size);
2155			continue;
2156		}
2157
2158		if (!strcmp(pc->name, name)) {
2159			printk(KERN_ERR
2160			       "kmem_cache_create: duplicate cache %s\n", name);
2161			dump_stack();
2162			goto oops;
2163		}
2164	}
2165
2166#if DEBUG
2167	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2168#if FORCED_DEBUG
2169	/*
2170	 * Enable redzoning and last user accounting, except for caches with
2171	 * large objects, if the increased size would increase the object size
2172	 * above the next power of two: caches with object sizes just above a
2173	 * power of two have a significant amount of internal fragmentation.
2174	 */
2175	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2176						2 * sizeof(unsigned long long)))
2177		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2178	if (!(flags & SLAB_DESTROY_BY_RCU))
2179		flags |= SLAB_POISON;
2180#endif
2181	if (flags & SLAB_DESTROY_BY_RCU)
2182		BUG_ON(flags & SLAB_POISON);
2183#endif
2184	/*
2185	 * Always checks flags, a caller might be expecting debug support which
2186	 * isn't available.
2187	 */
2188	BUG_ON(flags & ~CREATE_MASK);
2189
2190	/*
2191	 * Check that size is in terms of words.  This is needed to avoid
2192	 * unaligned accesses for some archs when redzoning is used, and makes
2193	 * sure any on-slab bufctl's are also correctly aligned.
2194	 */
2195	if (size & (BYTES_PER_WORD - 1)) {
2196		size += (BYTES_PER_WORD - 1);
2197		size &= ~(BYTES_PER_WORD - 1);
2198	}
2199
2200	/* calculate the final buffer alignment: */
2201
2202	/* 1) arch recommendation: can be overridden for debug */
2203	if (flags & SLAB_HWCACHE_ALIGN) {
2204		/*
2205		 * Default alignment: as specified by the arch code.  Except if
2206		 * an object is really small, then squeeze multiple objects into
2207		 * one cacheline.
2208		 */
2209		ralign = cache_line_size();
2210		while (size <= ralign / 2)
2211			ralign /= 2;
2212	} else {
2213		ralign = BYTES_PER_WORD;
2214	}
2215
2216	/*
2217	 * Redzoning and user store require word alignment or possibly larger.
2218	 * Note this will be overridden by architecture or caller mandated
2219	 * alignment if either is greater than BYTES_PER_WORD.
2220	 */
2221	if (flags & SLAB_STORE_USER)
2222		ralign = BYTES_PER_WORD;
2223
2224	if (flags & SLAB_RED_ZONE) {
2225		ralign = REDZONE_ALIGN;
2226		/* If redzoning, ensure that the second redzone is suitably
2227		 * aligned, by adjusting the object size accordingly. */
2228		size += REDZONE_ALIGN - 1;
2229		size &= ~(REDZONE_ALIGN - 1);
2230	}
2231
2232	/* 2) arch mandated alignment */
2233	if (ralign < ARCH_SLAB_MINALIGN) {
2234		ralign = ARCH_SLAB_MINALIGN;
2235	}
2236	/* 3) caller mandated alignment */
2237	if (ralign < align) {
2238		ralign = align;
2239	}
2240	/* disable debug if necessary */
2241	if (ralign > __alignof__(unsigned long long))
2242		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2243	/*
2244	 * 4) Store it.
2245	 */
2246	align = ralign;
2247
2248	/* Get cache's description obj. */
2249	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2250	if (!cachep)
2251		goto oops;
2252
2253#if DEBUG
2254	cachep->obj_size = size;
2255
2256	/*
2257	 * Both debugging options require word-alignment which is calculated
2258	 * into align above.
2259	 */
2260	if (flags & SLAB_RED_ZONE) {
2261		/* add space for red zone words */
2262		cachep->obj_offset += sizeof(unsigned long long);
2263		size += 2 * sizeof(unsigned long long);
2264	}
2265	if (flags & SLAB_STORE_USER) {
2266		/* user store requires one word storage behind the end of
2267		 * the real object. But if the second red zone needs to be
2268		 * aligned to 64 bits, we must allow that much space.
2269		 */
2270		if (flags & SLAB_RED_ZONE)
2271			size += REDZONE_ALIGN;
2272		else
2273			size += BYTES_PER_WORD;
2274	}
2275#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2276	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2277	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2278		cachep->obj_offset += PAGE_SIZE - size;
2279		size = PAGE_SIZE;
2280	}
2281#endif
2282#endif
2283
2284	/*
2285	 * Determine if the slab management is 'on' or 'off' slab.
2286	 * (bootstrapping cannot cope with offslab caches so don't do
2287	 * it too early on.)
2288	 */
2289	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2290		/*
2291		 * Size is large, assume best to place the slab management obj
2292		 * off-slab (should allow better packing of objs).
2293		 */
2294		flags |= CFLGS_OFF_SLAB;
2295
2296	size = ALIGN(size, align);
2297
2298	left_over = calculate_slab_order(cachep, size, align, flags);
2299
2300	if (!cachep->num) {
2301		printk(KERN_ERR
2302		       "kmem_cache_create: couldn't create cache %s.\n", name);
2303		kmem_cache_free(&cache_cache, cachep);
2304		cachep = NULL;
2305		goto oops;
2306	}
2307	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2308			  + sizeof(struct slab), align);
2309
2310	/*
2311	 * If the slab has been placed off-slab, and we have enough space then
2312	 * move it on-slab. This is at the expense of any extra colouring.
2313	 */
2314	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2315		flags &= ~CFLGS_OFF_SLAB;
2316		left_over -= slab_size;
2317	}
2318
2319	if (flags & CFLGS_OFF_SLAB) {
2320		/* really off slab. No need for manual alignment */
2321		slab_size =
2322		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2323	}
2324
2325	cachep->colour_off = cache_line_size();
2326	/* Offset must be a multiple of the alignment. */
2327	if (cachep->colour_off < align)
2328		cachep->colour_off = align;
2329	cachep->colour = left_over / cachep->colour_off;
2330	cachep->slab_size = slab_size;
2331	cachep->flags = flags;
2332	cachep->gfpflags = 0;
2333	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2334		cachep->gfpflags |= GFP_DMA;
2335	cachep->buffer_size = size;
2336	cachep->reciprocal_buffer_size = reciprocal_value(size);
2337
2338	if (flags & CFLGS_OFF_SLAB) {
2339		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2340		/*
2341		 * This is a possibility for one of the malloc_sizes caches.
2342		 * But since we go off slab only for object size greater than
2343		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2344		 * this should not happen at all.
2345		 * But leave a BUG_ON for some lucky dude.
2346		 */
2347		BUG_ON(!cachep->slabp_cache);
2348	}
2349	cachep->ctor = ctor;
2350	cachep->name = name;
2351
2352	if (setup_cpu_cache(cachep)) {
2353		__kmem_cache_destroy(cachep);
2354		cachep = NULL;
2355		goto oops;
2356	}
2357
2358	/* cache setup completed, link it into the list */
2359	list_add(&cachep->next, &cache_chain);
2360oops:
2361	if (!cachep && (flags & SLAB_PANIC))
2362		panic("kmem_cache_create(): failed to create slab `%s'\n",
2363		      name);
2364	mutex_unlock(&cache_chain_mutex);
2365	return cachep;
2366}
2367EXPORT_SYMBOL(kmem_cache_create);
2368
2369#if DEBUG
2370static void check_irq_off(void)
2371{
2372	BUG_ON(!irqs_disabled());
2373}
2374
2375static void check_irq_on(void)
2376{
2377	BUG_ON(irqs_disabled());
2378}
2379
2380static void check_spinlock_acquired(struct kmem_cache *cachep)
2381{
2382#ifdef CONFIG_SMP
2383	check_irq_off();
2384	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2385#endif
2386}
2387
2388static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2389{
2390#ifdef CONFIG_SMP
2391	check_irq_off();
2392	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2393#endif
2394}
2395
2396#else
2397#define check_irq_off()	do { } while(0)
2398#define check_irq_on()	do { } while(0)
2399#define check_spinlock_acquired(x) do { } while(0)
2400#define check_spinlock_acquired_node(x, y) do { } while(0)
2401#endif
2402
2403static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2404			struct array_cache *ac,
2405			int force, int node);
2406
2407static void do_drain(void *arg)
2408{
2409	struct kmem_cache *cachep = arg;
2410	struct array_cache *ac;
2411	int node = numa_node_id();
2412
2413	check_irq_off();
2414	ac = cpu_cache_get(cachep);
2415	spin_lock(&cachep->nodelists[node]->list_lock);
2416	free_block(cachep, ac->entry, ac->avail, node);
2417	spin_unlock(&cachep->nodelists[node]->list_lock);
2418	ac->avail = 0;
2419}
2420
2421static void drain_cpu_caches(struct kmem_cache *cachep)
2422{
2423	struct kmem_list3 *l3;
2424	int node;
2425
2426	on_each_cpu(do_drain, cachep, 1, 1);
2427	check_irq_on();
2428	for_each_online_node(node) {
2429		l3 = cachep->nodelists[node];
2430		if (l3 && l3->alien)
2431			drain_alien_cache(cachep, l3->alien);
2432	}
2433
2434	for_each_online_node(node) {
2435		l3 = cachep->nodelists[node];
2436		if (l3)
2437			drain_array(cachep, l3, l3->shared, 1, node);
2438	}
2439}
2440
2441/*
2442 * Remove slabs from the list of free slabs.
2443 * Specify the number of slabs to drain in tofree.
2444 *
2445 * Returns the actual number of slabs released.
2446 */
2447static int drain_freelist(struct kmem_cache *cache,
2448			struct kmem_list3 *l3, int tofree)
2449{
2450	struct list_head *p;
2451	int nr_freed;
2452	struct slab *slabp;
2453
2454	nr_freed = 0;
2455	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2456
2457		spin_lock_irq(&l3->list_lock);
2458		p = l3->slabs_free.prev;
2459		if (p == &l3->slabs_free) {
2460			spin_unlock_irq(&l3->list_lock);
2461			goto out;
2462		}
2463
2464		slabp = list_entry(p, struct slab, list);
2465#if DEBUG
2466		BUG_ON(slabp->inuse);
2467#endif
2468		list_del(&slabp->list);
2469		/*
2470		 * Safe to drop the lock. The slab is no longer linked
2471		 * to the cache.
2472		 */
2473		l3->free_objects -= cache->num;
2474		spin_unlock_irq(&l3->list_lock);
2475		slab_destroy(cache, slabp);
2476		nr_freed++;
2477	}
2478out:
2479	return nr_freed;
2480}
2481
2482/* Called with cache_chain_mutex held to protect against cpu hotplug */
2483static int __cache_shrink(struct kmem_cache *cachep)
2484{
2485	int ret = 0, i = 0;
2486	struct kmem_list3 *l3;
2487
2488	drain_cpu_caches(cachep);
2489
2490	check_irq_on();
2491	for_each_online_node(i) {
2492		l3 = cachep->nodelists[i];
2493		if (!l3)
2494			continue;
2495
2496		drain_freelist(cachep, l3, l3->free_objects);
2497
2498		ret += !list_empty(&l3->slabs_full) ||
2499			!list_empty(&l3->slabs_partial);
2500	}
2501	return (ret ? 1 : 0);
2502}
2503
2504/**
2505 * kmem_cache_shrink - Shrink a cache.
2506 * @cachep: The cache to shrink.
2507 *
2508 * Releases as many slabs as possible for a cache.
2509 * To help debugging, a zero exit status indicates all slabs were released.
2510 */
2511int kmem_cache_shrink(struct kmem_cache *cachep)
2512{
2513	int ret;
2514	BUG_ON(!cachep || in_interrupt());
2515
2516	mutex_lock(&cache_chain_mutex);
2517	ret = __cache_shrink(cachep);
2518	mutex_unlock(&cache_chain_mutex);
2519	return ret;
2520}
2521EXPORT_SYMBOL(kmem_cache_shrink);
2522
2523/**
2524 * kmem_cache_destroy - delete a cache
2525 * @cachep: the cache to destroy
2526 *
2527 * Remove a &struct kmem_cache object from the slab cache.
2528 *
2529 * It is expected this function will be called by a module when it is
2530 * unloaded.  This will remove the cache completely, and avoid a duplicate
2531 * cache being allocated each time a module is loaded and unloaded, if the
2532 * module doesn't have persistent in-kernel storage across loads and unloads.
2533 *
2534 * The cache must be empty before calling this function.
2535 *
2536 * The caller must guarantee that noone will allocate memory from the cache
2537 * during the kmem_cache_destroy().
2538 */
2539void kmem_cache_destroy(struct kmem_cache *cachep)
2540{
2541	BUG_ON(!cachep || in_interrupt());
2542
2543	/* Find the cache in the chain of caches. */
2544	mutex_lock(&cache_chain_mutex);
2545	/*
2546	 * the chain is never empty, cache_cache is never destroyed
2547	 */
2548	list_del(&cachep->next);
2549	if (__cache_shrink(cachep)) {
2550		slab_error(cachep, "Can't free all objects");
2551		list_add(&cachep->next, &cache_chain);
2552		mutex_unlock(&cache_chain_mutex);
2553		return;
2554	}
2555
2556	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2557		synchronize_rcu();
2558
2559	__kmem_cache_destroy(cachep);
2560	mutex_unlock(&cache_chain_mutex);
2561}
2562EXPORT_SYMBOL(kmem_cache_destroy);
2563
2564/*
2565 * Get the memory for a slab management obj.
2566 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2567 * always come from malloc_sizes caches.  The slab descriptor cannot
2568 * come from the same cache which is getting created because,
2569 * when we are searching for an appropriate cache for these
2570 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2571 * If we are creating a malloc_sizes cache here it would not be visible to
2572 * kmem_find_general_cachep till the initialization is complete.
2573 * Hence we cannot have slabp_cache same as the original cache.
2574 */
2575static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2576				   int colour_off, gfp_t local_flags,
2577				   int nodeid)
2578{
2579	struct slab *slabp;
2580
2581	if (OFF_SLAB(cachep)) {
2582		/* Slab management obj is off-slab. */
2583		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2584					      local_flags & ~GFP_THISNODE, nodeid);
2585		if (!slabp)
2586			return NULL;
2587	} else {
2588		slabp = objp + colour_off;
2589		colour_off += cachep->slab_size;
2590	}
2591	slabp->inuse = 0;
2592	slabp->colouroff = colour_off;
2593	slabp->s_mem = objp + colour_off;
2594	slabp->nodeid = nodeid;
2595	return slabp;
2596}
2597
2598static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2599{
2600	return (kmem_bufctl_t *) (slabp + 1);
2601}
2602
2603static void cache_init_objs(struct kmem_cache *cachep,
2604			    struct slab *slabp)
2605{
2606	int i;
2607
2608	for (i = 0; i < cachep->num; i++) {
2609		void *objp = index_to_obj(cachep, slabp, i);
2610#if DEBUG
2611		/* need to poison the objs? */
2612		if (cachep->flags & SLAB_POISON)
2613			poison_obj(cachep, objp, POISON_FREE);
2614		if (cachep->flags & SLAB_STORE_USER)
2615			*dbg_userword(cachep, objp) = NULL;
2616
2617		if (cachep->flags & SLAB_RED_ZONE) {
2618			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2619			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2620		}
2621		/*
2622		 * Constructors are not allowed to allocate memory from the same
2623		 * cache which they are a constructor for.  Otherwise, deadlock.
2624		 * They must also be threaded.
2625		 */
2626		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2627			cachep->ctor(objp + obj_offset(cachep), cachep,
2628				     0);
2629
2630		if (cachep->flags & SLAB_RED_ZONE) {
2631			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2632				slab_error(cachep, "constructor overwrote the"
2633					   " end of an object");
2634			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2635				slab_error(cachep, "constructor overwrote the"
2636					   " start of an object");
2637		}
2638		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2639			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2640			kernel_map_pages(virt_to_page(objp),
2641					 cachep->buffer_size / PAGE_SIZE, 0);
2642#else
2643		if (cachep->ctor)
2644			cachep->ctor(objp, cachep, 0);
2645#endif
2646		slab_bufctl(slabp)[i] = i + 1;
2647	}
2648	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2649	slabp->free = 0;
2650}
2651
2652static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2653{
2654	if (CONFIG_ZONE_DMA_FLAG) {
2655		if (flags & GFP_DMA)
2656			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2657		else
2658			BUG_ON(cachep->gfpflags & GFP_DMA);
2659	}
2660}
2661
2662static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2663				int nodeid)
2664{
2665	void *objp = index_to_obj(cachep, slabp, slabp->free);
2666	kmem_bufctl_t next;
2667
2668	slabp->inuse++;
2669	next = slab_bufctl(slabp)[slabp->free];
2670#if DEBUG
2671	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2672	WARN_ON(slabp->nodeid != nodeid);
2673#endif
2674	slabp->free = next;
2675
2676	return objp;
2677}
2678
2679static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2680				void *objp, int nodeid)
2681{
2682	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2683
2684#if DEBUG
2685	/* Verify that the slab belongs to the intended node */
2686	WARN_ON(slabp->nodeid != nodeid);
2687
2688	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2689		printk(KERN_ERR "slab: double free detected in cache "
2690				"'%s', objp %p\n", cachep->name, objp);
2691		BUG();
2692	}
2693#endif
2694	slab_bufctl(slabp)[objnr] = slabp->free;
2695	slabp->free = objnr;
2696	slabp->inuse--;
2697}
2698
2699/*
2700 * Map pages beginning at addr to the given cache and slab. This is required
2701 * for the slab allocator to be able to lookup the cache and slab of a
2702 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2703 */
2704static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2705			   void *addr)
2706{
2707	int nr_pages;
2708	struct page *page;
2709
2710	page = virt_to_page(addr);
2711
2712	nr_pages = 1;
2713	if (likely(!PageCompound(page)))
2714		nr_pages <<= cache->gfporder;
2715
2716	do {
2717		page_set_cache(page, cache);
2718		page_set_slab(page, slab);
2719		page++;
2720	} while (--nr_pages);
2721}
2722
2723/*
2724 * Grow (by 1) the number of slabs within a cache.  This is called by
2725 * kmem_cache_alloc() when there are no active objs left in a cache.
2726 */
2727static int cache_grow(struct kmem_cache *cachep,
2728		gfp_t flags, int nodeid, void *objp)
2729{
2730	struct slab *slabp;
2731	size_t offset;
2732	gfp_t local_flags;
2733	struct kmem_list3 *l3;
2734
2735	/*
2736	 * Be lazy and only check for valid flags here,  keeping it out of the
2737	 * critical path in kmem_cache_alloc().
2738	 */
2739	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2740
2741	local_flags = (flags & GFP_LEVEL_MASK);
2742	/* Take the l3 list lock to change the colour_next on this node */
2743	check_irq_off();
2744	l3 = cachep->nodelists[nodeid];
2745	spin_lock(&l3->list_lock);
2746
2747	/* Get colour for the slab, and cal the next value. */
2748	offset = l3->colour_next;
2749	l3->colour_next++;
2750	if (l3->colour_next >= cachep->colour)
2751		l3->colour_next = 0;
2752	spin_unlock(&l3->list_lock);
2753
2754	offset *= cachep->colour_off;
2755
2756	if (local_flags & __GFP_WAIT)
2757		local_irq_enable();
2758
2759	/*
2760	 * The test for missing atomic flag is performed here, rather than
2761	 * the more obvious place, simply to reduce the critical path length
2762	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2763	 * will eventually be caught here (where it matters).
2764	 */
2765	kmem_flagcheck(cachep, flags);
2766
2767	/*
2768	 * Get mem for the objs.  Attempt to allocate a physical page from
2769	 * 'nodeid'.
2770	 */
2771	if (!objp)
2772		objp = kmem_getpages(cachep, flags, nodeid);
2773	if (!objp)
2774		goto failed;
2775
2776	/* Get slab management. */
2777	slabp = alloc_slabmgmt(cachep, objp, offset,
2778			local_flags & ~GFP_THISNODE, nodeid);
2779	if (!slabp)
2780		goto opps1;
2781
2782	slabp->nodeid = nodeid;
2783	slab_map_pages(cachep, slabp, objp);
2784
2785	cache_init_objs(cachep, slabp);
2786
2787	if (local_flags & __GFP_WAIT)
2788		local_irq_disable();
2789	check_irq_off();
2790	spin_lock(&l3->list_lock);
2791
2792	/* Make slab active. */
2793	list_add_tail(&slabp->list, &(l3->slabs_free));
2794	STATS_INC_GROWN(cachep);
2795	l3->free_objects += cachep->num;
2796	spin_unlock(&l3->list_lock);
2797	return 1;
2798opps1:
2799	kmem_freepages(cachep, objp);
2800failed:
2801	if (local_flags & __GFP_WAIT)
2802		local_irq_disable();
2803	return 0;
2804}
2805
2806#if DEBUG
2807
2808/*
2809 * Perform extra freeing checks:
2810 * - detect bad pointers.
2811 * - POISON/RED_ZONE checking
2812 */
2813static void kfree_debugcheck(const void *objp)
2814{
2815	if (!virt_addr_valid(objp)) {
2816		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2817		       (unsigned long)objp);
2818		BUG();
2819	}
2820}
2821
2822static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2823{
2824	unsigned long long redzone1, redzone2;
2825
2826	redzone1 = *dbg_redzone1(cache, obj);
2827	redzone2 = *dbg_redzone2(cache, obj);
2828
2829	/*
2830	 * Redzone is ok.
2831	 */
2832	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2833		return;
2834
2835	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2836		slab_error(cache, "double free detected");
2837	else
2838		slab_error(cache, "memory outside object was overwritten");
2839
2840	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2841			obj, redzone1, redzone2);
2842}
2843
2844static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2845				   void *caller)
2846{
2847	struct page *page;
2848	unsigned int objnr;
2849	struct slab *slabp;
2850
2851	objp -= obj_offset(cachep);
2852	kfree_debugcheck(objp);
2853	page = virt_to_head_page(objp);
2854
2855	slabp = page_get_slab(page);
2856
2857	if (cachep->flags & SLAB_RED_ZONE) {
2858		verify_redzone_free(cachep, objp);
2859		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2860		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2861	}
2862	if (cachep->flags & SLAB_STORE_USER)
2863		*dbg_userword(cachep, objp) = caller;
2864
2865	objnr = obj_to_index(cachep, slabp, objp);
2866
2867	BUG_ON(objnr >= cachep->num);
2868	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2869
2870#ifdef CONFIG_DEBUG_SLAB_LEAK
2871	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2872#endif
2873	if (cachep->flags & SLAB_POISON) {
2874#ifdef CONFIG_DEBUG_PAGEALLOC
2875		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2876			store_stackinfo(cachep, objp, (unsigned long)caller);
2877			kernel_map_pages(virt_to_page(objp),
2878					 cachep->buffer_size / PAGE_SIZE, 0);
2879		} else {
2880			poison_obj(cachep, objp, POISON_FREE);
2881		}
2882#else
2883		poison_obj(cachep, objp, POISON_FREE);
2884#endif
2885	}
2886	return objp;
2887}
2888
2889static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2890{
2891	kmem_bufctl_t i;
2892	int entries = 0;
2893
2894	/* Check slab's freelist to see if this obj is there. */
2895	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2896		entries++;
2897		if (entries > cachep->num || i >= cachep->num)
2898			goto bad;
2899	}
2900	if (entries != cachep->num - slabp->inuse) {
2901bad:
2902		printk(KERN_ERR "slab: Internal list corruption detected in "
2903				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2904			cachep->name, cachep->num, slabp, slabp->inuse);
2905		for (i = 0;
2906		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2907		     i++) {
2908			if (i % 16 == 0)
2909				printk("\n%03x:", i);
2910			printk(" %02x", ((unsigned char *)slabp)[i]);
2911		}
2912		printk("\n");
2913		BUG();
2914	}
2915}
2916#else
2917#define kfree_debugcheck(x) do { } while(0)
2918#define cache_free_debugcheck(x,objp,z) (objp)
2919#define check_slabp(x,y) do { } while(0)
2920#endif
2921
2922static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2923{
2924	int batchcount;
2925	struct kmem_list3 *l3;
2926	struct array_cache *ac;
2927	int node;
2928
2929	node = numa_node_id();
2930
2931	check_irq_off();
2932	ac = cpu_cache_get(cachep);
2933retry:
2934	batchcount = ac->batchcount;
2935	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2936		/*
2937		 * If there was little recent activity on this cache, then
2938		 * perform only a partial refill.  Otherwise we could generate
2939		 * refill bouncing.
2940		 */
2941		batchcount = BATCHREFILL_LIMIT;
2942	}
2943	l3 = cachep->nodelists[node];
2944
2945	BUG_ON(ac->avail > 0 || !l3);
2946	spin_lock(&l3->list_lock);
2947
2948	/* See if we can refill from the shared array */
2949	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2950		goto alloc_done;
2951
2952	while (batchcount > 0) {
2953		struct list_head *entry;
2954		struct slab *slabp;
2955		/* Get slab alloc is to come from. */
2956		entry = l3->slabs_partial.next;
2957		if (entry == &l3->slabs_partial) {
2958			l3->free_touched = 1;
2959			entry = l3->slabs_free.next;
2960			if (entry == &l3->slabs_free)
2961				goto must_grow;
2962		}
2963
2964		slabp = list_entry(entry, struct slab, list);
2965		check_slabp(cachep, slabp);
2966		check_spinlock_acquired(cachep);
2967
2968		/*
2969		 * The slab was either on partial or free list so
2970		 * there must be at least one object available for
2971		 * allocation.
2972		 */
2973		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2974
2975		while (slabp->inuse < cachep->num && batchcount--) {
2976			STATS_INC_ALLOCED(cachep);
2977			STATS_INC_ACTIVE(cachep);
2978			STATS_SET_HIGH(cachep);
2979
2980			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2981							    node);
2982		}
2983		check_slabp(cachep, slabp);
2984
2985		/* move slabp to correct slabp list: */
2986		list_del(&slabp->list);
2987		if (slabp->free == BUFCTL_END)
2988			list_add(&slabp->list, &l3->slabs_full);
2989		else
2990			list_add(&slabp->list, &l3->slabs_partial);
2991	}
2992
2993must_grow:
2994	l3->free_objects -= ac->avail;
2995alloc_done:
2996	spin_unlock(&l3->list_lock);
2997
2998	if (unlikely(!ac->avail)) {
2999		int x;
3000		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3001
3002		/* cache_grow can reenable interrupts, then ac could change. */
3003		ac = cpu_cache_get(cachep);
3004		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3005			return NULL;
3006
3007		if (!ac->avail)		/* objects refilled by interrupt? */
3008			goto retry;
3009	}
3010	ac->touched = 1;
3011	return ac->entry[--ac->avail];
3012}
3013
3014static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3015						gfp_t flags)
3016{
3017	might_sleep_if(flags & __GFP_WAIT);
3018#if DEBUG
3019	kmem_flagcheck(cachep, flags);
3020#endif
3021}
3022
3023#if DEBUG
3024static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3025				gfp_t flags, void *objp, void *caller)
3026{
3027	if (!objp)
3028		return objp;
3029	if (cachep->flags & SLAB_POISON) {
3030#ifdef CONFIG_DEBUG_PAGEALLOC
3031		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3032			kernel_map_pages(virt_to_page(objp),
3033					 cachep->buffer_size / PAGE_SIZE, 1);
3034		else
3035			check_poison_obj(cachep, objp);
3036#else
3037		check_poison_obj(cachep, objp);
3038#endif
3039		poison_obj(cachep, objp, POISON_INUSE);
3040	}
3041	if (cachep->flags & SLAB_STORE_USER)
3042		*dbg_userword(cachep, objp) = caller;
3043
3044	if (cachep->flags & SLAB_RED_ZONE) {
3045		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3046				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3047			slab_error(cachep, "double free, or memory outside"
3048						" object was overwritten");
3049			printk(KERN_ERR
3050				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3051				objp, *dbg_redzone1(cachep, objp),
3052				*dbg_redzone2(cachep, objp));
3053		}
3054		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3055		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3056	}
3057#ifdef CONFIG_DEBUG_SLAB_LEAK
3058	{
3059		struct slab *slabp;
3060		unsigned objnr;
3061
3062		slabp = page_get_slab(virt_to_head_page(objp));
3063		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3064		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3065	}
3066#endif
3067	objp += obj_offset(cachep);
3068	if (cachep->ctor && cachep->flags & SLAB_POISON)
3069		cachep->ctor(objp, cachep, 0);
3070#if ARCH_SLAB_MINALIGN
3071	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3072		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3073		       objp, ARCH_SLAB_MINALIGN);
3074	}
3075#endif
3076	return objp;
3077}
3078#else
3079#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3080#endif
3081
3082#ifdef CONFIG_FAILSLAB
3083
3084static struct failslab_attr {
3085
3086	struct fault_attr attr;
3087
3088	u32 ignore_gfp_wait;
3089#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3090	struct dentry *ignore_gfp_wait_file;
3091#endif
3092
3093} failslab = {
3094	.attr = FAULT_ATTR_INITIALIZER,
3095	.ignore_gfp_wait = 1,
3096};
3097
3098static int __init setup_failslab(char *str)
3099{
3100	return setup_fault_attr(&failslab.attr, str);
3101}
3102__setup("failslab=", setup_failslab);
3103
3104static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3105{
3106	if (cachep == &cache_cache)
3107		return 0;
3108	if (flags & __GFP_NOFAIL)
3109		return 0;
3110	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3111		return 0;
3112
3113	return should_fail(&failslab.attr, obj_size(cachep));
3114}
3115
3116#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3117
3118static int __init failslab_debugfs(void)
3119{
3120	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3121	struct dentry *dir;
3122	int err;
3123
3124	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3125	if (err)
3126		return err;
3127	dir = failslab.attr.dentries.dir;
3128
3129	failslab.ignore_gfp_wait_file =
3130		debugfs_create_bool("ignore-gfp-wait", mode, dir,
3131				      &failslab.ignore_gfp_wait);
3132
3133	if (!failslab.ignore_gfp_wait_file) {
3134		err = -ENOMEM;
3135		debugfs_remove(failslab.ignore_gfp_wait_file);
3136		cleanup_fault_attr_dentries(&failslab.attr);
3137	}
3138
3139	return err;
3140}
3141
3142late_initcall(failslab_debugfs);
3143
3144#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3145
3146#else /* CONFIG_FAILSLAB */
3147
3148static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3149{
3150	return 0;
3151}
3152
3153#endif /* CONFIG_FAILSLAB */
3154
3155static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3156{
3157	void *objp;
3158	struct array_cache *ac;
3159
3160	check_irq_off();
3161
3162	ac = cpu_cache_get(cachep);
3163	if (likely(ac->avail)) {
3164		STATS_INC_ALLOCHIT(cachep);
3165		ac->touched = 1;
3166		objp = ac->entry[--ac->avail];
3167	} else {
3168		STATS_INC_ALLOCMISS(cachep);
3169		objp = cache_alloc_refill(cachep, flags);
3170	}
3171	return objp;
3172}
3173
3174#ifdef CONFIG_NUMA
3175/*
3176 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3177 *
3178 * If we are in_interrupt, then process context, including cpusets and
3179 * mempolicy, may not apply and should not be used for allocation policy.
3180 */
3181static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3182{
3183	int nid_alloc, nid_here;
3184
3185	if (in_interrupt() || (flags & __GFP_THISNODE))
3186		return NULL;
3187	nid_alloc = nid_here = numa_node_id();
3188	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3189		nid_alloc = cpuset_mem_spread_node();
3190	else if (current->mempolicy)
3191		nid_alloc = slab_node(current->mempolicy);
3192	if (nid_alloc != nid_here)
3193		return ____cache_alloc_node(cachep, flags, nid_alloc);
3194	return NULL;
3195}
3196
3197/*
3198 * Fallback function if there was no memory available and no objects on a
3199 * certain node and fall back is permitted. First we scan all the
3200 * available nodelists for available objects. If that fails then we
3201 * perform an allocation without specifying a node. This allows the page
3202 * allocator to do its reclaim / fallback magic. We then insert the
3203 * slab into the proper nodelist and then allocate from it.
3204 */
3205static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3206{
3207	struct zonelist *zonelist;
3208	gfp_t local_flags;
3209	struct zone **z;
3210	void *obj = NULL;
3211	int nid;
3212
3213	if (flags & __GFP_THISNODE)
3214		return NULL;
3215
3216	zonelist = &NODE_DATA(slab_node(current->mempolicy))
3217			->node_zonelists[gfp_zone(flags)];
3218	local_flags = (flags & GFP_LEVEL_MASK);
3219
3220retry:
3221	/*
3222	 * Look through allowed nodes for objects available
3223	 * from existing per node queues.
3224	 */
3225	for (z = zonelist->zones; *z && !obj; z++) {
3226		nid = zone_to_nid(*z);
3227
3228		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3229			cache->nodelists[nid] &&
3230			cache->nodelists[nid]->free_objects)
3231				obj = ____cache_alloc_node(cache,
3232					flags | GFP_THISNODE, nid);
3233	}
3234
3235	if (!obj) {
3236		/*
3237		 * This allocation will be performed within the constraints
3238		 * of the current cpuset / memory policy requirements.
3239		 * We may trigger various forms of reclaim on the allowed
3240		 * set and go into memory reserves if necessary.
3241		 */
3242		if (local_flags & __GFP_WAIT)
3243			local_irq_enable();
3244		kmem_flagcheck(cache, flags);
3245		obj = kmem_getpages(cache, flags, -1);
3246		if (local_flags & __GFP_WAIT)
3247			local_irq_disable();
3248		if (obj) {
3249			/*
3250			 * Insert into the appropriate per node queues
3251			 */
3252			nid = page_to_nid(virt_to_page(obj));
3253			if (cache_grow(cache, flags, nid, obj)) {
3254				obj = ____cache_alloc_node(cache,
3255					flags | GFP_THISNODE, nid);
3256				if (!obj)
3257					/*
3258					 * Another processor may allocate the
3259					 * objects in the slab since we are
3260					 * not holding any locks.
3261					 */
3262					goto retry;
3263			} else {
3264				/* cache_grow already freed obj */
3265				obj = NULL;
3266			}
3267		}
3268	}
3269	return obj;
3270}
3271
3272/*
3273 * A interface to enable slab creation on nodeid
3274 */
3275static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3276				int nodeid)
3277{
3278	struct list_head *entry;
3279	struct slab *slabp;
3280	struct kmem_list3 *l3;
3281	void *obj;
3282	int x;
3283
3284	l3 = cachep->nodelists[nodeid];
3285	BUG_ON(!l3);
3286
3287retry:
3288	check_irq_off();
3289	spin_lock(&l3->list_lock);
3290	entry = l3->slabs_partial.next;
3291	if (entry == &l3->slabs_partial) {
3292		l3->free_touched = 1;
3293		entry = l3->slabs_free.next;
3294		if (entry == &l3->slabs_free)
3295			goto must_grow;
3296	}
3297
3298	slabp = list_entry(entry, struct slab, list);
3299	check_spinlock_acquired_node(cachep, nodeid);
3300	check_slabp(cachep, slabp);
3301
3302	STATS_INC_NODEALLOCS(cachep);
3303	STATS_INC_ACTIVE(cachep);
3304	STATS_SET_HIGH(cachep);
3305
3306	BUG_ON(slabp->inuse == cachep->num);
3307
3308	obj = slab_get_obj(cachep, slabp, nodeid);
3309	check_slabp(cachep, slabp);
3310	l3->free_objects--;
3311	/* move slabp to correct slabp list: */
3312	list_del(&slabp->list);
3313
3314	if (slabp->free == BUFCTL_END)
3315		list_add(&slabp->list, &l3->slabs_full);
3316	else
3317		list_add(&slabp->list, &l3->slabs_partial);
3318
3319	spin_unlock(&l3->list_lock);
3320	goto done;
3321
3322must_grow:
3323	spin_unlock(&l3->list_lock);
3324	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3325	if (x)
3326		goto retry;
3327
3328	return fallback_alloc(cachep, flags);
3329
3330done:
3331	return obj;
3332}
3333
3334/**
3335 * kmem_cache_alloc_node - Allocate an object on the specified node
3336 * @cachep: The cache to allocate from.
3337 * @flags: See kmalloc().
3338 * @nodeid: node number of the target node.
3339 * @caller: return address of caller, used for debug information
3340 *
3341 * Identical to kmem_cache_alloc but it will allocate memory on the given
3342 * node, which can improve the performance for cpu bound structures.
3343 *
3344 * Fallback to other node is possible if __GFP_THISNODE is not set.
3345 */
3346static __always_inline void *
3347__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3348		   void *caller)
3349{
3350	unsigned long save_flags;
3351	void *ptr;
3352
3353	if (should_failslab(cachep, flags))
3354		return NULL;
3355
3356	cache_alloc_debugcheck_before(cachep, flags);
3357	local_irq_save(save_flags);
3358
3359	if (unlikely(nodeid == -1))
3360		nodeid = numa_node_id();
3361
3362	if (unlikely(!cachep->nodelists[nodeid])) {
3363		/* Node not bootstrapped yet */
3364		ptr = fallback_alloc(cachep, flags);
3365		goto out;
3366	}
3367
3368	if (nodeid == numa_node_id()) {
3369		/*
3370		 * Use the locally cached objects if possible.
3371		 * However ____cache_alloc does not allow fallback
3372		 * to other nodes. It may fail while we still have
3373		 * objects on other nodes available.
3374		 */
3375		ptr = ____cache_alloc(cachep, flags);
3376		if (ptr)
3377			goto out;
3378	}
3379	/* ___cache_alloc_node can fall back to other nodes */
3380	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3381  out:
3382	local_irq_restore(save_flags);
3383	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3384
3385	return ptr;
3386}
3387
3388static __always_inline void *
3389__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3390{
3391	void *objp;
3392
3393	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3394		objp = alternate_node_alloc(cache, flags);
3395		if (objp)
3396			goto out;
3397	}
3398	objp = ____cache_alloc(cache, flags);
3399
3400	/*
3401	 * We may just have run out of memory on the local node.
3402	 * ____cache_alloc_node() knows how to locate memory on other nodes
3403	 */
3404 	if (!objp)
3405 		objp = ____cache_alloc_node(cache, flags, numa_node_id());
3406
3407  out:
3408	return objp;
3409}
3410#else
3411
3412static __always_inline void *
3413__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3414{
3415	return ____cache_alloc(cachep, flags);
3416}
3417
3418#endif /* CONFIG_NUMA */
3419
3420static __always_inline void *
3421__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3422{
3423	unsigned long save_flags;
3424	void *objp;
3425
3426	if (should_failslab(cachep, flags))
3427		return NULL;
3428
3429	cache_alloc_debugcheck_before(cachep, flags);
3430	local_irq_save(save_flags);
3431	objp = __do_cache_alloc(cachep, flags);
3432	local_irq_restore(save_flags);
3433	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3434	prefetchw(objp);
3435
3436	return objp;
3437}
3438
3439/*
3440 * Caller needs to acquire correct kmem_list's list_lock
3441 */
3442static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3443		       int node)
3444{
3445	int i;
3446	struct kmem_list3 *l3;
3447
3448	for (i = 0; i < nr_objects; i++) {
3449		void *objp = objpp[i];
3450		struct slab *slabp;
3451
3452		slabp = virt_to_slab(objp);
3453		l3 = cachep->nodelists[node];
3454		list_del(&slabp->list);
3455		check_spinlock_acquired_node(cachep, node);
3456		check_slabp(cachep, slabp);
3457		slab_put_obj(cachep, slabp, objp, node);
3458		STATS_DEC_ACTIVE(cachep);
3459		l3->free_objects++;
3460		check_slabp(cachep, slabp);
3461
3462		/* fixup slab chains */
3463		if (slabp->inuse == 0) {
3464			if (l3->free_objects > l3->free_limit) {
3465				l3->free_objects -= cachep->num;
3466				/* No need to drop any previously held
3467				 * lock here, even if we have a off-slab slab
3468				 * descriptor it is guaranteed to come from
3469				 * a different cache, refer to comments before
3470				 * alloc_slabmgmt.
3471				 */
3472				slab_destroy(cachep, slabp);
3473			} else {
3474				list_add(&slabp->list, &l3->slabs_free);
3475			}
3476		} else {
3477			/* Unconditionally move a slab to the end of the
3478			 * partial list on free - maximum time for the
3479			 * other objects to be freed, too.
3480			 */
3481			list_add_tail(&slabp->list, &l3->slabs_partial);
3482		}
3483	}
3484}
3485
3486static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3487{
3488	int batchcount;
3489	struct kmem_list3 *l3;
3490	int node = numa_node_id();
3491
3492	batchcount = ac->batchcount;
3493#if DEBUG
3494	BUG_ON(!batchcount || batchcount > ac->avail);
3495#endif
3496	check_irq_off();
3497	l3 = cachep->nodelists[node];
3498	spin_lock(&l3->list_lock);
3499	if (l3->shared) {
3500		struct array_cache *shared_array = l3->shared;
3501		int max = shared_array->limit - shared_array->avail;
3502		if (max) {
3503			if (batchcount > max)
3504				batchcount = max;
3505			memcpy(&(shared_array->entry[shared_array->avail]),
3506			       ac->entry, sizeof(void *) * batchcount);
3507			shared_array->avail += batchcount;
3508			goto free_done;
3509		}
3510	}
3511
3512	free_block(cachep, ac->entry, batchcount, node);
3513free_done:
3514#if STATS
3515	{
3516		int i = 0;
3517		struct list_head *p;
3518
3519		p = l3->slabs_free.next;
3520		while (p != &(l3->slabs_free)) {
3521			struct slab *slabp;
3522
3523			slabp = list_entry(p, struct slab, list);
3524			BUG_ON(slabp->inuse);
3525
3526			i++;
3527			p = p->next;
3528		}
3529		STATS_SET_FREEABLE(cachep, i);
3530	}
3531#endif
3532	spin_unlock(&l3->list_lock);
3533	ac->avail -= batchcount;
3534	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3535}
3536
3537/*
3538 * Release an obj back to its cache. If the obj has a constructed state, it must
3539 * be in this state _before_ it is released.  Called with disabled ints.
3540 */
3541static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3542{
3543	struct array_cache *ac = cpu_cache_get(cachep);
3544
3545	check_irq_off();
3546	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3547
3548	if (cache_free_alien(cachep, objp))
3549		return;
3550
3551	if (likely(ac->avail < ac->limit)) {
3552		STATS_INC_FREEHIT(cachep);
3553		ac->entry[ac->avail++] = objp;
3554		return;
3555	} else {
3556		STATS_INC_FREEMISS(cachep);
3557		cache_flusharray(cachep, ac);
3558		ac->entry[ac->avail++] = objp;
3559	}
3560}
3561
3562/**
3563 * kmem_cache_alloc - Allocate an object
3564 * @cachep: The cache to allocate from.
3565 * @flags: See kmalloc().
3566 *
3567 * Allocate an object from this cache.  The flags are only relevant
3568 * if the cache has no available objects.
3569 */
3570void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3571{
3572	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3573}
3574EXPORT_SYMBOL(kmem_cache_alloc);
3575
3576/**
3577 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3578 * @cache: The cache to allocate from.
3579 * @flags: See kmalloc().
3580 *
3581 * Allocate an object from this cache and set the allocated memory to zero.
3582 * The flags are only relevant if the cache has no available objects.
3583 */
3584void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3585{
3586	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3587	if (ret)
3588		memset(ret, 0, obj_size(cache));
3589	return ret;
3590}
3591EXPORT_SYMBOL(kmem_cache_zalloc);
3592
3593/**
3594 * kmem_ptr_validate - check if an untrusted pointer might
3595 *	be a slab entry.
3596 * @cachep: the cache we're checking against
3597 * @ptr: pointer to validate
3598 *
3599 * This verifies that the untrusted pointer looks sane:
3600 * it is _not_ a guarantee that the pointer is actually
3601 * part of the slab cache in question, but it at least
3602 * validates that the pointer can be dereferenced and
3603 * looks half-way sane.
3604 *
3605 * Currently only used for dentry validation.
3606 */
3607int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3608{
3609	unsigned long addr = (unsigned long)ptr;
3610	unsigned long min_addr = PAGE_OFFSET;
3611	unsigned long align_mask = BYTES_PER_WORD - 1;
3612	unsigned long size = cachep->buffer_size;
3613	struct page *page;
3614
3615	if (unlikely(addr < min_addr))
3616		goto out;
3617	if (unlikely(addr > (unsigned long)high_memory - size))
3618		goto out;
3619	if (unlikely(addr & align_mask))
3620		goto out;
3621	if (unlikely(!kern_addr_valid(addr)))
3622		goto out;
3623	if (unlikely(!kern_addr_valid(addr + size - 1)))
3624		goto out;
3625	page = virt_to_page(ptr);
3626	if (unlikely(!PageSlab(page)))
3627		goto out;
3628	if (unlikely(page_get_cache(page) != cachep))
3629		goto out;
3630	return 1;
3631out:
3632	return 0;
3633}
3634
3635#ifdef CONFIG_NUMA
3636void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3637{
3638	return __cache_alloc_node(cachep, flags, nodeid,
3639			__builtin_return_address(0));
3640}
3641EXPORT_SYMBOL(kmem_cache_alloc_node);
3642
3643static __always_inline void *
3644__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3645{
3646	struct kmem_cache *cachep;
3647
3648	cachep = kmem_find_general_cachep(size, flags);
3649	if (unlikely(cachep == NULL))
3650		return NULL;
3651	return kmem_cache_alloc_node(cachep, flags, node);
3652}
3653
3654#ifdef CONFIG_DEBUG_SLAB
3655void *__kmalloc_node(size_t size, gfp_t flags, int node)
3656{
3657	return __do_kmalloc_node(size, flags, node,
3658			__builtin_return_address(0));
3659}
3660EXPORT_SYMBOL(__kmalloc_node);
3661
3662void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3663		int node, void *caller)
3664{
3665	return __do_kmalloc_node(size, flags, node, caller);
3666}
3667EXPORT_SYMBOL(__kmalloc_node_track_caller);
3668#else
3669void *__kmalloc_node(size_t size, gfp_t flags, int node)
3670{
3671	return __do_kmalloc_node(size, flags, node, NULL);
3672}
3673EXPORT_SYMBOL(__kmalloc_node);
3674#endif /* CONFIG_DEBUG_SLAB */
3675#endif /* CONFIG_NUMA */
3676
3677/**
3678 * __do_kmalloc - allocate memory
3679 * @size: how many bytes of memory are required.
3680 * @flags: the type of memory to allocate (see kmalloc).
3681 * @caller: function caller for debug tracking of the caller
3682 */
3683static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3684					  void *caller)
3685{
3686	struct kmem_cache *cachep;
3687
3688	/* If you want to save a few bytes .text space: replace
3689	 * __ with kmem_.
3690	 * Then kmalloc uses the uninlined functions instead of the inline
3691	 * functions.
3692	 */
3693	cachep = __find_general_cachep(size, flags);
3694	if (unlikely(cachep == NULL))
3695		return NULL;
3696	return __cache_alloc(cachep, flags, caller);
3697}
3698
3699
3700#ifdef CONFIG_DEBUG_SLAB
3701void *__kmalloc(size_t size, gfp_t flags)
3702{
3703	return __do_kmalloc(size, flags, __builtin_return_address(0));
3704}
3705EXPORT_SYMBOL(__kmalloc);
3706
3707void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3708{
3709	return __do_kmalloc(size, flags, caller);
3710}
3711EXPORT_SYMBOL(__kmalloc_track_caller);
3712
3713#else
3714void *__kmalloc(size_t size, gfp_t flags)
3715{
3716	return __do_kmalloc(size, flags, NULL);
3717}
3718EXPORT_SYMBOL(__kmalloc);
3719#endif
3720
3721/**
3722 * krealloc - reallocate memory. The contents will remain unchanged.
3723 * @p: object to reallocate memory for.
3724 * @new_size: how many bytes of memory are required.
3725 * @flags: the type of memory to allocate.
3726 *
3727 * The contents of the object pointed to are preserved up to the
3728 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
3729 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
3730 * %NULL pointer, the object pointed to is freed.
3731 */
3732void *krealloc(const void *p, size_t new_size, gfp_t flags)
3733{
3734	struct kmem_cache *cache, *new_cache;
3735	void *ret;
3736
3737	if (unlikely(!p))
3738		return kmalloc_track_caller(new_size, flags);
3739
3740	if (unlikely(!new_size)) {
3741		kfree(p);
3742		return NULL;
3743	}
3744
3745	cache = virt_to_cache(p);
3746	new_cache = __find_general_cachep(new_size, flags);
3747
3748	/*
3749 	 * If new size fits in the current cache, bail out.
3750 	 */
3751	if (likely(cache == new_cache))
3752		return (void *)p;
3753
3754	/*
3755 	 * We are on the slow-path here so do not use __cache_alloc
3756 	 * because it bloats kernel text.
3757 	 */
3758	ret = kmalloc_track_caller(new_size, flags);
3759	if (ret) {
3760		memcpy(ret, p, min(new_size, ksize(p)));
3761		kfree(p);
3762	}
3763	return ret;
3764}
3765EXPORT_SYMBOL(krealloc);
3766
3767/**
3768 * kmem_cache_free - Deallocate an object
3769 * @cachep: The cache the allocation was from.
3770 * @objp: The previously allocated object.
3771 *
3772 * Free an object which was previously allocated from this
3773 * cache.
3774 */
3775void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3776{
3777	unsigned long flags;
3778
3779	BUG_ON(virt_to_cache(objp) != cachep);
3780
3781	local_irq_save(flags);
3782	debug_check_no_locks_freed(objp, obj_size(cachep));
3783	__cache_free(cachep, objp);
3784	local_irq_restore(flags);
3785}
3786EXPORT_SYMBOL(kmem_cache_free);
3787
3788/**
3789 * kfree - free previously allocated memory
3790 * @objp: pointer returned by kmalloc.
3791 *
3792 * If @objp is NULL, no operation is performed.
3793 *
3794 * Don't free memory not originally allocated by kmalloc()
3795 * or you will run into trouble.
3796 */
3797void kfree(const void *objp)
3798{
3799	struct kmem_cache *c;
3800	unsigned long flags;
3801
3802	if (unlikely(!objp))
3803		return;
3804	local_irq_save(flags);
3805	kfree_debugcheck(objp);
3806	c = virt_to_cache(objp);
3807	debug_check_no_locks_freed(objp, obj_size(c));
3808	__cache_free(c, (void *)objp);
3809	local_irq_restore(flags);
3810}
3811EXPORT_SYMBOL(kfree);
3812
3813unsigned int kmem_cache_size(struct kmem_cache *cachep)
3814{
3815	return obj_size(cachep);
3816}
3817EXPORT_SYMBOL(kmem_cache_size);
3818
3819const char *kmem_cache_name(struct kmem_cache *cachep)
3820{
3821	return cachep->name;
3822}
3823EXPORT_SYMBOL_GPL(kmem_cache_name);
3824
3825/*
3826 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3827 */
3828static int alloc_kmemlist(struct kmem_cache *cachep)
3829{
3830	int node;
3831	struct kmem_list3 *l3;
3832	struct array_cache *new_shared;
3833	struct array_cache **new_alien = NULL;
3834
3835	for_each_online_node(node) {
3836
3837                if (use_alien_caches) {
3838                        new_alien = alloc_alien_cache(node, cachep->limit);
3839                        if (!new_alien)
3840                                goto fail;
3841                }
3842
3843		new_shared = NULL;
3844		if (cachep->shared) {
3845			new_shared = alloc_arraycache(node,
3846				cachep->shared*cachep->batchcount,
3847					0xbaadf00d);
3848			if (!new_shared) {
3849				free_alien_cache(new_alien);
3850				goto fail;
3851			}
3852		}
3853
3854		l3 = cachep->nodelists[node];
3855		if (l3) {
3856			struct array_cache *shared = l3->shared;
3857
3858			spin_lock_irq(&l3->list_lock);
3859
3860			if (shared)
3861				free_block(cachep, shared->entry,
3862						shared->avail, node);
3863
3864			l3->shared = new_shared;
3865			if (!l3->alien) {
3866				l3->alien = new_alien;
3867				new_alien = NULL;
3868			}
3869			l3->free_limit = (1 + nr_cpus_node(node)) *
3870					cachep->batchcount + cachep->num;
3871			spin_unlock_irq(&l3->list_lock);
3872			kfree(shared);
3873			free_alien_cache(new_alien);
3874			continue;
3875		}
3876		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3877		if (!l3) {
3878			free_alien_cache(new_alien);
3879			kfree(new_shared);
3880			goto fail;
3881		}
3882
3883		kmem_list3_init(l3);
3884		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3885				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3886		l3->shared = new_shared;
3887		l3->alien = new_alien;
3888		l3->free_limit = (1 + nr_cpus_node(node)) *
3889					cachep->batchcount + cachep->num;
3890		cachep->nodelists[node] = l3;
3891	}
3892	return 0;
3893
3894fail:
3895	if (!cachep->next.next) {
3896		/* Cache is not active yet. Roll back what we did */
3897		node--;
3898		while (node >= 0) {
3899			if (cachep->nodelists[node]) {
3900				l3 = cachep->nodelists[node];
3901
3902				kfree(l3->shared);
3903				free_alien_cache(l3->alien);
3904				kfree(l3);
3905				cachep->nodelists[node] = NULL;
3906			}
3907			node--;
3908		}
3909	}
3910	return -ENOMEM;
3911}
3912
3913struct ccupdate_struct {
3914	struct kmem_cache *cachep;
3915	struct array_cache *new[NR_CPUS];
3916};
3917
3918static void do_ccupdate_local(void *info)
3919{
3920	struct ccupdate_struct *new = info;
3921	struct array_cache *old;
3922
3923	check_irq_off();
3924	old = cpu_cache_get(new->cachep);
3925
3926	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3927	new->new[smp_processor_id()] = old;
3928}
3929
3930/* Always called with the cache_chain_mutex held */
3931static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3932				int batchcount, int shared)
3933{
3934	struct ccupdate_struct *new;
3935	int i;
3936
3937	new = kzalloc(sizeof(*new), GFP_KERNEL);
3938	if (!new)
3939		return -ENOMEM;
3940
3941	for_each_online_cpu(i) {
3942		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3943						batchcount);
3944		if (!new->new[i]) {
3945			for (i--; i >= 0; i--)
3946				kfree(new->new[i]);
3947			kfree(new);
3948			return -ENOMEM;
3949		}
3950	}
3951	new->cachep = cachep;
3952
3953	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3954
3955	check_irq_on();
3956	cachep->batchcount = batchcount;
3957	cachep->limit = limit;
3958	cachep->shared = shared;
3959
3960	for_each_online_cpu(i) {
3961		struct array_cache *ccold = new->new[i];
3962		if (!ccold)
3963			continue;
3964		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3965		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3966		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3967		kfree(ccold);
3968	}
3969	kfree(new);
3970	return alloc_kmemlist(cachep);
3971}
3972
3973/* Called with cache_chain_mutex held always */
3974static int enable_cpucache(struct kmem_cache *cachep)
3975{
3976	int err;
3977	int limit, shared;
3978
3979	/*
3980	 * The head array serves three purposes:
3981	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3982	 * - reduce the number of spinlock operations.
3983	 * - reduce the number of linked list operations on the slab and
3984	 *   bufctl chains: array operations are cheaper.
3985	 * The numbers are guessed, we should auto-tune as described by
3986	 * Bonwick.
3987	 */
3988	if (cachep->buffer_size > 131072)
3989		limit = 1;
3990	else if (cachep->buffer_size > PAGE_SIZE)
3991		limit = 8;
3992	else if (cachep->buffer_size > 1024)
3993		limit = 24;
3994	else if (cachep->buffer_size > 256)
3995		limit = 54;
3996	else
3997		limit = 120;
3998
3999	/*
4000	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4001	 * allocation behaviour: Most allocs on one cpu, most free operations
4002	 * on another cpu. For these cases, an efficient object passing between
4003	 * cpus is necessary. This is provided by a shared array. The array
4004	 * replaces Bonwick's magazine layer.
4005	 * On uniprocessor, it's functionally equivalent (but less efficient)
4006	 * to a larger limit. Thus disabled by default.
4007	 */
4008	shared = 0;
4009	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4010		shared = 8;
4011
4012#if DEBUG
4013	/*
4014	 * With debugging enabled, large batchcount lead to excessively long
4015	 * periods with disabled local interrupts. Limit the batchcount
4016	 */
4017	if (limit > 32)
4018		limit = 32;
4019#endif
4020	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4021	if (err)
4022		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4023		       cachep->name, -err);
4024	return err;
4025}
4026
4027/*
4028 * Drain an array if it contains any elements taking the l3 lock only if
4029 * necessary. Note that the l3 listlock also protects the array_cache
4030 * if drain_array() is used on the shared array.
4031 */
4032void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4033			 struct array_cache *ac, int force, int node)
4034{
4035	int tofree;
4036
4037	if (!ac || !ac->avail)
4038		return;
4039	if (ac->touched && !force) {
4040		ac->touched = 0;
4041	} else {
4042		spin_lock_irq(&l3->list_lock);
4043		if (ac->avail) {
4044			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4045			if (tofree > ac->avail)
4046				tofree = (ac->avail + 1) / 2;
4047			free_block(cachep, ac->entry, tofree, node);
4048			ac->avail -= tofree;
4049			memmove(ac->entry, &(ac->entry[tofree]),
4050				sizeof(void *) * ac->avail);
4051		}
4052		spin_unlock_irq(&l3->list_lock);
4053	}
4054}
4055
4056/**
4057 * cache_reap - Reclaim memory from caches.
4058 * @w: work descriptor
4059 *
4060 * Called from workqueue/eventd every few seconds.
4061 * Purpose:
4062 * - clear the per-cpu caches for this CPU.
4063 * - return freeable pages to the main free memory pool.
4064 *
4065 * If we cannot acquire the cache chain mutex then just give up - we'll try
4066 * again on the next iteration.
4067 */
4068static void cache_reap(struct work_struct *w)
4069{
4070	struct kmem_cache *searchp;
4071	struct kmem_list3 *l3;
4072	int node = numa_node_id();
4073	struct delayed_work *work =
4074		container_of(w, struct delayed_work, work);
4075
4076	if (!mutex_trylock(&cache_chain_mutex))
4077		/* Give up. Setup the next iteration. */
4078		goto out;
4079
4080	list_for_each_entry(searchp, &cache_chain, next) {
4081		check_irq_on();
4082
4083		/*
4084		 * We only take the l3 lock if absolutely necessary and we
4085		 * have established with reasonable certainty that
4086		 * we can do some work if the lock was obtained.
4087		 */
4088		l3 = searchp->nodelists[node];
4089
4090		reap_alien(searchp, l3);
4091
4092		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4093
4094		/*
4095		 * These are racy checks but it does not matter
4096		 * if we skip one check or scan twice.
4097		 */
4098		if (time_after(l3->next_reap, jiffies))
4099			goto next;
4100
4101		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4102
4103		drain_array(searchp, l3, l3->shared, 0, node);
4104
4105		if (l3->free_touched)
4106			l3->free_touched = 0;
4107		else {
4108			int freed;
4109
4110			freed = drain_freelist(searchp, l3, (l3->free_limit +
4111				5 * searchp->num - 1) / (5 * searchp->num));
4112			STATS_ADD_REAPED(searchp, freed);
4113		}
4114next:
4115		cond_resched();
4116	}
4117	check_irq_on();
4118	mutex_unlock(&cache_chain_mutex);
4119	next_reap_node();
4120out:
4121	/* Set up the next iteration */
4122	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4123}
4124
4125#ifdef CONFIG_PROC_FS
4126
4127static void print_slabinfo_header(struct seq_file *m)
4128{
4129	/*
4130	 * Output format version, so at least we can change it
4131	 * without _too_ many complaints.
4132	 */
4133#if STATS
4134	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4135#else
4136	seq_puts(m, "slabinfo - version: 2.1\n");
4137#endif
4138	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4139		 "<objperslab> <pagesperslab>");
4140	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4141	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4142#if STATS
4143	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4144		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4145	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4146#endif
4147	seq_putc(m, '\n');
4148}
4149
4150static void *s_start(struct seq_file *m, loff_t *pos)
4151{
4152	loff_t n = *pos;
4153	struct list_head *p;
4154
4155	mutex_lock(&cache_chain_mutex);
4156	if (!n)
4157		print_slabinfo_header(m);
4158	p = cache_chain.next;
4159	while (n--) {
4160		p = p->next;
4161		if (p == &cache_chain)
4162			return NULL;
4163	}
4164	return list_entry(p, struct kmem_cache, next);
4165}
4166
4167static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4168{
4169	struct kmem_cache *cachep = p;
4170	++*pos;
4171	return cachep->next.next == &cache_chain ?
4172		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4173}
4174
4175static void s_stop(struct seq_file *m, void *p)
4176{
4177	mutex_unlock(&cache_chain_mutex);
4178}
4179
4180static int s_show(struct seq_file *m, void *p)
4181{
4182	struct kmem_cache *cachep = p;
4183	struct slab *slabp;
4184	unsigned long active_objs;
4185	unsigned long num_objs;
4186	unsigned long active_slabs = 0;
4187	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4188	const char *name;
4189	char *error = NULL;
4190	int node;
4191	struct kmem_list3 *l3;
4192
4193	active_objs = 0;
4194	num_slabs = 0;
4195	for_each_online_node(node) {
4196		l3 = cachep->nodelists[node];
4197		if (!l3)
4198			continue;
4199
4200		check_irq_on();
4201		spin_lock_irq(&l3->list_lock);
4202
4203		list_for_each_entry(slabp, &l3->slabs_full, list) {
4204			if (slabp->inuse != cachep->num && !error)
4205				error = "slabs_full accounting error";
4206			active_objs += cachep->num;
4207			active_slabs++;
4208		}
4209		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4210			if (slabp->inuse == cachep->num && !error)
4211				error = "slabs_partial inuse accounting error";
4212			if (!slabp->inuse && !error)
4213				error = "slabs_partial/inuse accounting error";
4214			active_objs += slabp->inuse;
4215			active_slabs++;
4216		}
4217		list_for_each_entry(slabp, &l3->slabs_free, list) {
4218			if (slabp->inuse && !error)
4219				error = "slabs_free/inuse accounting error";
4220			num_slabs++;
4221		}
4222		free_objects += l3->free_objects;
4223		if (l3->shared)
4224			shared_avail += l3->shared->avail;
4225
4226		spin_unlock_irq(&l3->list_lock);
4227	}
4228	num_slabs += active_slabs;
4229	num_objs = num_slabs * cachep->num;
4230	if (num_objs - active_objs != free_objects && !error)
4231		error = "free_objects accounting error";
4232
4233	name = cachep->name;
4234	if (error)
4235		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4236
4237	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4238		   name, active_objs, num_objs, cachep->buffer_size,
4239		   cachep->num, (1 << cachep->gfporder));
4240	seq_printf(m, " : tunables %4u %4u %4u",
4241		   cachep->limit, cachep->batchcount, cachep->shared);
4242	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4243		   active_slabs, num_slabs, shared_avail);
4244#if STATS
4245	{			/* list3 stats */
4246		unsigned long high = cachep->high_mark;
4247		unsigned long allocs = cachep->num_allocations;
4248		unsigned long grown = cachep->grown;
4249		unsigned long reaped = cachep->reaped;
4250		unsigned long errors = cachep->errors;
4251		unsigned long max_freeable = cachep->max_freeable;
4252		unsigned long node_allocs = cachep->node_allocs;
4253		unsigned long node_frees = cachep->node_frees;
4254		unsigned long overflows = cachep->node_overflow;
4255
4256		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4257				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4258				reaped, errors, max_freeable, node_allocs,
4259				node_frees, overflows);
4260	}
4261	/* cpu stats */
4262	{
4263		unsigned long allochit = atomic_read(&cachep->allochit);
4264		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4265		unsigned long freehit = atomic_read(&cachep->freehit);
4266		unsigned long freemiss = atomic_read(&cachep->freemiss);
4267
4268		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4269			   allochit, allocmiss, freehit, freemiss);
4270	}
4271#endif
4272	seq_putc(m, '\n');
4273	return 0;
4274}
4275
4276/*
4277 * slabinfo_op - iterator that generates /proc/slabinfo
4278 *
4279 * Output layout:
4280 * cache-name
4281 * num-active-objs
4282 * total-objs
4283 * object size
4284 * num-active-slabs
4285 * total-slabs
4286 * num-pages-per-slab
4287 * + further values on SMP and with statistics enabled
4288 */
4289
4290const struct seq_operations slabinfo_op = {
4291	.start = s_start,
4292	.next = s_next,
4293	.stop = s_stop,
4294	.show = s_show,
4295};
4296
4297#define MAX_SLABINFO_WRITE 128
4298/**
4299 * slabinfo_write - Tuning for the slab allocator
4300 * @file: unused
4301 * @buffer: user buffer
4302 * @count: data length
4303 * @ppos: unused
4304 */
4305ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4306		       size_t count, loff_t *ppos)
4307{
4308	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4309	int limit, batchcount, shared, res;
4310	struct kmem_cache *cachep;
4311
4312	if (count > MAX_SLABINFO_WRITE)
4313		return -EINVAL;
4314	if (copy_from_user(&kbuf, buffer, count))
4315		return -EFAULT;
4316	kbuf[MAX_SLABINFO_WRITE] = '\0';
4317
4318	tmp = strchr(kbuf, ' ');
4319	if (!tmp)
4320		return -EINVAL;
4321	*tmp = '\0';
4322	tmp++;
4323	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4324		return -EINVAL;
4325
4326	/* Find the cache in the chain of caches. */
4327	mutex_lock(&cache_chain_mutex);
4328	res = -EINVAL;
4329	list_for_each_entry(cachep, &cache_chain, next) {
4330		if (!strcmp(cachep->name, kbuf)) {
4331			if (limit < 1 || batchcount < 1 ||
4332					batchcount > limit || shared < 0) {
4333				res = 0;
4334			} else {
4335				res = do_tune_cpucache(cachep, limit,
4336						       batchcount, shared);
4337			}
4338			break;
4339		}
4340	}
4341	mutex_unlock(&cache_chain_mutex);
4342	if (res >= 0)
4343		res = count;
4344	return res;
4345}
4346
4347#ifdef CONFIG_DEBUG_SLAB_LEAK
4348
4349static void *leaks_start(struct seq_file *m, loff_t *pos)
4350{
4351	loff_t n = *pos;
4352	struct list_head *p;
4353
4354	mutex_lock(&cache_chain_mutex);
4355	p = cache_chain.next;
4356	while (n--) {
4357		p = p->next;
4358		if (p == &cache_chain)
4359			return NULL;
4360	}
4361	return list_entry(p, struct kmem_cache, next);
4362}
4363
4364static inline int add_caller(unsigned long *n, unsigned long v)
4365{
4366	unsigned long *p;
4367	int l;
4368	if (!v)
4369		return 1;
4370	l = n[1];
4371	p = n + 2;
4372	while (l) {
4373		int i = l/2;
4374		unsigned long *q = p + 2 * i;
4375		if (*q == v) {
4376			q[1]++;
4377			return 1;
4378		}
4379		if (*q > v) {
4380			l = i;
4381		} else {
4382			p = q + 2;
4383			l -= i + 1;
4384		}
4385	}
4386	if (++n[1] == n[0])
4387		return 0;
4388	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4389	p[0] = v;
4390	p[1] = 1;
4391	return 1;
4392}
4393
4394static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4395{
4396	void *p;
4397	int i;
4398	if (n[0] == n[1])
4399		return;
4400	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4401		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4402			continue;
4403		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4404			return;
4405	}
4406}
4407
4408static void show_symbol(struct seq_file *m, unsigned long address)
4409{
4410#ifdef CONFIG_KALLSYMS
4411	unsigned long offset, size;
4412	char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4413
4414	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4415		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4416		if (modname[0])
4417			seq_printf(m, " [%s]", modname);
4418		return;
4419	}
4420#endif
4421	seq_printf(m, "%p", (void *)address);
4422}
4423
4424static int leaks_show(struct seq_file *m, void *p)
4425{
4426	struct kmem_cache *cachep = p;
4427	struct slab *slabp;
4428	struct kmem_list3 *l3;
4429	const char *name;
4430	unsigned long *n = m->private;
4431	int node;
4432	int i;
4433
4434	if (!(cachep->flags & SLAB_STORE_USER))
4435		return 0;
4436	if (!(cachep->flags & SLAB_RED_ZONE))
4437		return 0;
4438
4439	/* OK, we can do it */
4440
4441	n[1] = 0;
4442
4443	for_each_online_node(node) {
4444		l3 = cachep->nodelists[node];
4445		if (!l3)
4446			continue;
4447
4448		check_irq_on();
4449		spin_lock_irq(&l3->list_lock);
4450
4451		list_for_each_entry(slabp, &l3->slabs_full, list)
4452			handle_slab(n, cachep, slabp);
4453		list_for_each_entry(slabp, &l3->slabs_partial, list)
4454			handle_slab(n, cachep, slabp);
4455		spin_unlock_irq(&l3->list_lock);
4456	}
4457	name = cachep->name;
4458	if (n[0] == n[1]) {
4459		/* Increase the buffer size */
4460		mutex_unlock(&cache_chain_mutex);
4461		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4462		if (!m->private) {
4463			/* Too bad, we are really out */
4464			m->private = n;
4465			mutex_lock(&cache_chain_mutex);
4466			return -ENOMEM;
4467		}
4468		*(unsigned long *)m->private = n[0] * 2;
4469		kfree(n);
4470		mutex_lock(&cache_chain_mutex);
4471		/* Now make sure this entry will be retried */
4472		m->count = m->size;
4473		return 0;
4474	}
4475	for (i = 0; i < n[1]; i++) {
4476		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4477		show_symbol(m, n[2*i+2]);
4478		seq_putc(m, '\n');
4479	}
4480
4481	return 0;
4482}
4483
4484const struct seq_operations slabstats_op = {
4485	.start = leaks_start,
4486	.next = s_next,
4487	.stop = s_stop,
4488	.show = leaks_show,
4489};
4490#endif
4491#endif
4492
4493/**
4494 * ksize - get the actual amount of memory allocated for a given object
4495 * @objp: Pointer to the object
4496 *
4497 * kmalloc may internally round up allocations and return more memory
4498 * than requested. ksize() can be used to determine the actual amount of
4499 * memory allocated. The caller may use this additional memory, even though
4500 * a smaller amount of memory was initially specified with the kmalloc call.
4501 * The caller must guarantee that objp points to a valid object previously
4502 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4503 * must not be freed during the duration of the call.
4504 */
4505size_t ksize(const void *objp)
4506{
4507	if (unlikely(objp == NULL))
4508		return 0;
4509
4510	return obj_size(virt_to_cache(objp));
4511}
4512