1/*
2 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
3 * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
4 * Code was from the public domain, copyright abandoned.  Code was
5 * subsequently included in the kernel, thus was re-licensed under the
6 * GNU GPL v2.
7 *
8 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
9 * Same crc32 function was used in 5 other places in the kernel.
10 * I made one version, and deleted the others.
11 * There are various incantations of crc32().  Some use a seed of 0 or ~0.
12 * Some xor at the end with ~0.  The generic crc32() function takes
13 * seed as an argument, and doesn't xor at the end.  Then individual
14 * users can do whatever they need.
15 *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16 *   fs/jffs2 uses seed 0, doesn't xor with ~0.
17 *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
18 *
19 * This source code is licensed under the GNU General Public License,
20 * Version 2.  See the file COPYING for more details.
21 */
22
23#include <linux/crc32.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/compiler.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/init.h>
30#include <asm/atomic.h>
31#include "crc32defs.h"
32#if CRC_LE_BITS == 8
33#define tole(x) __constant_cpu_to_le32(x)
34#define tobe(x) __constant_cpu_to_be32(x)
35#else
36#define tole(x) (x)
37#define tobe(x) (x)
38#endif
39#include "crc32table.h"
40
41MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
42MODULE_DESCRIPTION("Ethernet CRC32 calculations");
43MODULE_LICENSE("GPL");
44
45/**
46 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
47 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
48 *	other uses, or the previous crc32 value if computing incrementally.
49 * @p: pointer to buffer over which CRC is run
50 * @len: length of buffer @p
51 */
52u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len);
53
54#if CRC_LE_BITS == 1
55/*
56 * In fact, the table-based code will work in this case, but it can be
57 * simplified by inlining the table in ?: form.
58 */
59
60u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
61{
62	int i;
63	while (len--) {
64		crc ^= *p++;
65		for (i = 0; i < 8; i++)
66			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
67	}
68	return crc;
69}
70#else				/* Table-based approach */
71
72u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
73{
74# if CRC_LE_BITS == 8
75	const u32      *b =(u32 *)p;
76	const u32      *tab = crc32table_le;
77
78# ifdef __LITTLE_ENDIAN
79#  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
80# else
81#  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
82# endif
83
84	crc = __cpu_to_le32(crc);
85	/* Align it */
86	if(unlikely(((long)b)&3 && len)){
87		do {
88			u8 *p = (u8 *)b;
89			DO_CRC(*p++);
90			b = (void *)p;
91		} while ((--len) && ((long)b)&3 );
92	}
93	if(likely(len >= 4)){
94		/* load data 32 bits wide, xor data 32 bits wide. */
95		size_t save_len = len & 3;
96	        len = len >> 2;
97		--b; /* use pre increment below(*++b) for speed */
98		do {
99			crc ^= *++b;
100			DO_CRC(0);
101			DO_CRC(0);
102			DO_CRC(0);
103			DO_CRC(0);
104		} while (--len);
105		b++; /* point to next byte(s) */
106		len = save_len;
107	}
108	/* And the last few bytes */
109	if(len){
110		do {
111			u8 *p = (u8 *)b;
112			DO_CRC(*p++);
113			b = (void *)p;
114		} while (--len);
115	}
116
117	return __le32_to_cpu(crc);
118#undef ENDIAN_SHIFT
119#undef DO_CRC
120
121# elif CRC_LE_BITS == 4
122	while (len--) {
123		crc ^= *p++;
124		crc = (crc >> 4) ^ crc32table_le[crc & 15];
125		crc = (crc >> 4) ^ crc32table_le[crc & 15];
126	}
127	return crc;
128# elif CRC_LE_BITS == 2
129	while (len--) {
130		crc ^= *p++;
131		crc = (crc >> 2) ^ crc32table_le[crc & 3];
132		crc = (crc >> 2) ^ crc32table_le[crc & 3];
133		crc = (crc >> 2) ^ crc32table_le[crc & 3];
134		crc = (crc >> 2) ^ crc32table_le[crc & 3];
135	}
136	return crc;
137# endif
138}
139#endif
140
141/**
142 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
143 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
144 *	other uses, or the previous crc32 value if computing incrementally.
145 * @p: pointer to buffer over which CRC is run
146 * @len: length of buffer @p
147 */
148u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len);
149
150#if CRC_BE_BITS == 1
151/*
152 * In fact, the table-based code will work in this case, but it can be
153 * simplified by inlining the table in ?: form.
154 */
155
156u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
157{
158	int i;
159	while (len--) {
160		crc ^= *p++ << 24;
161		for (i = 0; i < 8; i++)
162			crc =
163			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
164					  0);
165	}
166	return crc;
167}
168
169#else				/* Table-based approach */
170u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
171{
172# if CRC_BE_BITS == 8
173	const u32      *b =(u32 *)p;
174	const u32      *tab = crc32table_be;
175
176# ifdef __LITTLE_ENDIAN
177#  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
178# else
179#  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
180# endif
181
182	crc = __cpu_to_be32(crc);
183	/* Align it */
184	if(unlikely(((long)b)&3 && len)){
185		do {
186			u8 *p = (u8 *)b;
187			DO_CRC(*p++);
188			b = (u32 *)p;
189		} while ((--len) && ((long)b)&3 );
190	}
191	if(likely(len >= 4)){
192		/* load data 32 bits wide, xor data 32 bits wide. */
193		size_t save_len = len & 3;
194	        len = len >> 2;
195		--b; /* use pre increment below(*++b) for speed */
196		do {
197			crc ^= *++b;
198			DO_CRC(0);
199			DO_CRC(0);
200			DO_CRC(0);
201			DO_CRC(0);
202		} while (--len);
203		b++; /* point to next byte(s) */
204		len = save_len;
205	}
206	/* And the last few bytes */
207	if(len){
208		do {
209			u8 *p = (u8 *)b;
210			DO_CRC(*p++);
211			b = (void *)p;
212		} while (--len);
213	}
214	return __be32_to_cpu(crc);
215#undef ENDIAN_SHIFT
216#undef DO_CRC
217
218# elif CRC_BE_BITS == 4
219	while (len--) {
220		crc ^= *p++ << 24;
221		crc = (crc << 4) ^ crc32table_be[crc >> 28];
222		crc = (crc << 4) ^ crc32table_be[crc >> 28];
223	}
224	return crc;
225# elif CRC_BE_BITS == 2
226	while (len--) {
227		crc ^= *p++ << 24;
228		crc = (crc << 2) ^ crc32table_be[crc >> 30];
229		crc = (crc << 2) ^ crc32table_be[crc >> 30];
230		crc = (crc << 2) ^ crc32table_be[crc >> 30];
231		crc = (crc << 2) ^ crc32table_be[crc >> 30];
232	}
233	return crc;
234# endif
235}
236#endif
237
238EXPORT_SYMBOL(crc32_le);
239EXPORT_SYMBOL(crc32_be);
240
241/*
242 * A brief CRC tutorial.
243 *
244 * A CRC is a long-division remainder.  You add the CRC to the message,
245 * and the whole thing (message+CRC) is a multiple of the given
246 * CRC polynomial.  To check the CRC, you can either check that the
247 * CRC matches the recomputed value, *or* you can check that the
248 * remainder computed on the message+CRC is 0.  This latter approach
249 * is used by a lot of hardware implementations, and is why so many
250 * protocols put the end-of-frame flag after the CRC.
251 *
252 * It's actually the same long division you learned in school, except that
253 * - We're working in binary, so the digits are only 0 and 1, and
254 * - When dividing polynomials, there are no carries.  Rather than add and
255 *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
256 *   the difference between adding and subtracting.
257 *
258 * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
259 * 33 bits long, bit 32 is always going to be set, so usually the CRC
260 * is written in hex with the most significant bit omitted.  (If you're
261 * familiar with the IEEE 754 floating-point format, it's the same idea.)
262 *
263 * Note that a CRC is computed over a string of *bits*, so you have
264 * to decide on the endianness of the bits within each byte.  To get
265 * the best error-detecting properties, this should correspond to the
266 * order they're actually sent.  For example, standard RS-232 serial is
267 * little-endian; the most significant bit (sometimes used for parity)
268 * is sent last.  And when appending a CRC word to a message, you should
269 * do it in the right order, matching the endianness.
270 *
271 * Just like with ordinary division, the remainder is always smaller than
272 * the divisor (the CRC polynomial) you're dividing by.  Each step of the
273 * division, you take one more digit (bit) of the dividend and append it
274 * to the current remainder.  Then you figure out the appropriate multiple
275 * of the divisor to subtract to being the remainder back into range.
276 * In binary, it's easy - it has to be either 0 or 1, and to make the
277 * XOR cancel, it's just a copy of bit 32 of the remainder.
278 *
279 * When computing a CRC, we don't care about the quotient, so we can
280 * throw the quotient bit away, but subtract the appropriate multiple of
281 * the polynomial from the remainder and we're back to where we started,
282 * ready to process the next bit.
283 *
284 * A big-endian CRC written this way would be coded like:
285 * for (i = 0; i < input_bits; i++) {
286 * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0;
287 * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple;
288 * }
289 * Notice how, to get at bit 32 of the shifted remainder, we look
290 * at bit 31 of the remainder *before* shifting it.
291 *
292 * But also notice how the next_input_bit() bits we're shifting into
293 * the remainder don't actually affect any decision-making until
294 * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
295 * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
296 * the end, so we have to add 32 extra cycles shifting in zeros at the
297 * end of every message,
298 *
299 * So the standard trick is to rearrage merging in the next_input_bit()
300 * until the moment it's needed.  Then the first 32 cycles can be precomputed,
301 * and merging in the final 32 zero bits to make room for the CRC can be
302 * skipped entirely.
303 * This changes the code to:
304 * for (i = 0; i < input_bits; i++) {
305 *      remainder ^= next_input_bit() << 31;
306 * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
307 * 	remainder = (remainder << 1) ^ multiple;
308 * }
309 * With this optimization, the little-endian code is simpler:
310 * for (i = 0; i < input_bits; i++) {
311 *      remainder ^= next_input_bit();
312 * 	multiple = (remainder & 1) ? CRCPOLY : 0;
313 * 	remainder = (remainder >> 1) ^ multiple;
314 * }
315 *
316 * Note that the other details of endianness have been hidden in CRCPOLY
317 * (which must be bit-reversed) and next_input_bit().
318 *
319 * However, as long as next_input_bit is returning the bits in a sensible
320 * order, we can actually do the merging 8 or more bits at a time rather
321 * than one bit at a time:
322 * for (i = 0; i < input_bytes; i++) {
323 * 	remainder ^= next_input_byte() << 24;
324 * 	for (j = 0; j < 8; j++) {
325 * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
326 * 		remainder = (remainder << 1) ^ multiple;
327 * 	}
328 * }
329 * Or in little-endian:
330 * for (i = 0; i < input_bytes; i++) {
331 * 	remainder ^= next_input_byte();
332 * 	for (j = 0; j < 8; j++) {
333 * 		multiple = (remainder & 1) ? CRCPOLY : 0;
334 * 		remainder = (remainder << 1) ^ multiple;
335 * 	}
336 * }
337 * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
338 * word at a time and increase the inner loop count to 32.
339 *
340 * You can also mix and match the two loop styles, for example doing the
341 * bulk of a message byte-at-a-time and adding bit-at-a-time processing
342 * for any fractional bytes at the end.
343 *
344 * The only remaining optimization is to the byte-at-a-time table method.
345 * Here, rather than just shifting one bit of the remainder to decide
346 * in the correct multiple to subtract, we can shift a byte at a time.
347 * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
348 * but again the multiple of the polynomial to subtract depends only on
349 * the high bits, the high 8 bits in this case.
350 *
351 * The multile we need in that case is the low 32 bits of a 40-bit
352 * value whose high 8 bits are given, and which is a multiple of the
353 * generator polynomial.  This is simply the CRC-32 of the given
354 * one-byte message.
355 *
356 * Two more details: normally, appending zero bits to a message which
357 * is already a multiple of a polynomial produces a larger multiple of that
358 * polynomial.  To enable a CRC to detect this condition, it's common to
359 * invert the CRC before appending it.  This makes the remainder of the
360 * message+crc come out not as zero, but some fixed non-zero value.
361 *
362 * The same problem applies to zero bits prepended to the message, and
363 * a similar solution is used.  Instead of starting with a remainder of
364 * 0, an initial remainder of all ones is used.  As long as you start
365 * the same way on decoding, it doesn't make a difference.
366 */
367
368#ifdef UNITTEST
369
370#include <stdlib.h>
371#include <stdio.h>
372
373
374static void bytereverse(unsigned char *buf, size_t len)
375{
376	while (len--) {
377		unsigned char x = bitrev8(*buf);
378		*buf++ = x;
379	}
380}
381
382static void random_garbage(unsigned char *buf, size_t len)
383{
384	while (len--)
385		*buf++ = (unsigned char) random();
386}
387
388
389static void store_be(u32 x, unsigned char *buf)
390{
391	buf[0] = (unsigned char) (x >> 24);
392	buf[1] = (unsigned char) (x >> 16);
393	buf[2] = (unsigned char) (x >> 8);
394	buf[3] = (unsigned char) x;
395}
396
397/*
398 * This checks that CRC(buf + CRC(buf)) = 0, and that
399 * CRC commutes with bit-reversal.  This has the side effect
400 * of bytewise bit-reversing the input buffer, and returns
401 * the CRC of the reversed buffer.
402 */
403static u32 test_step(u32 init, unsigned char *buf, size_t len)
404{
405	u32 crc1, crc2;
406	size_t i;
407
408	crc1 = crc32_be(init, buf, len);
409	store_be(crc1, buf + len);
410	crc2 = crc32_be(init, buf, len + 4);
411	if (crc2)
412		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
413		       crc2);
414
415	for (i = 0; i <= len + 4; i++) {
416		crc2 = crc32_be(init, buf, i);
417		crc2 = crc32_be(crc2, buf + i, len + 4 - i);
418		if (crc2)
419			printf("\nCRC split fail: 0x%08x\n", crc2);
420	}
421
422	/* Now swap it around for the other test */
423
424	bytereverse(buf, len + 4);
425	init = bitrev32(init);
426	crc2 = bitrev32(crc1);
427	if (crc1 != bitrev32(crc2))
428		printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
429		       crc1, crc2, bitrev32(crc2));
430	crc1 = crc32_le(init, buf, len);
431	if (crc1 != crc2)
432		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
433		       crc2);
434	crc2 = crc32_le(init, buf, len + 4);
435	if (crc2)
436		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
437		       crc2);
438
439	for (i = 0; i <= len + 4; i++) {
440		crc2 = crc32_le(init, buf, i);
441		crc2 = crc32_le(crc2, buf + i, len + 4 - i);
442		if (crc2)
443			printf("\nCRC split fail: 0x%08x\n", crc2);
444	}
445
446	return crc1;
447}
448
449#define SIZE 64
450#define INIT1 0
451#define INIT2 0
452
453int main(void)
454{
455	unsigned char buf1[SIZE + 4];
456	unsigned char buf2[SIZE + 4];
457	unsigned char buf3[SIZE + 4];
458	int i, j;
459	u32 crc1, crc2, crc3;
460
461	for (i = 0; i <= SIZE; i++) {
462		printf("\rTesting length %d...", i);
463		fflush(stdout);
464		random_garbage(buf1, i);
465		random_garbage(buf2, i);
466		for (j = 0; j < i; j++)
467			buf3[j] = buf1[j] ^ buf2[j];
468
469		crc1 = test_step(INIT1, buf1, i);
470		crc2 = test_step(INIT2, buf2, i);
471		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
472		crc3 = test_step(INIT1 ^ INIT2, buf3, i);
473		if (crc3 != (crc1 ^ crc2))
474			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
475			       crc3, crc1, crc2);
476	}
477	printf("\nAll test complete.  No failures expected.\n");
478	return 0;
479}
480
481#endif				/* UNITTEST */
482