1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 *   David Woodhouse <dwmw2@infradead.org>
12 *   Andrew Morton <andrewm@uow.edu.au>
13 *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 *   Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
30#include <linux/hardirq.h>
31#include <linux/mempolicy.h>
32#include <linux/freezer.h>
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
35
36/*
37 * The per-CPU workqueue (if single thread, we always use the first
38 * possible cpu).
39 */
40struct cpu_workqueue_struct {
41
42	spinlock_t lock;
43
44	struct list_head worklist;
45	wait_queue_head_t more_work;
46	struct work_struct *current_work;
47
48	struct workqueue_struct *wq;
49	struct task_struct *thread;
50
51	int run_depth;		/* Detect run_workqueue() recursion depth */
52} ____cacheline_aligned;
53
54/*
55 * The externally visible workqueue abstraction is an array of
56 * per-CPU workqueues:
57 */
58struct workqueue_struct {
59	struct cpu_workqueue_struct *cpu_wq;
60	struct list_head list;
61	const char *name;
62	int singlethread;
63	int freezeable;		/* Freeze threads during suspend */
64};
65
66/* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
67   threads to each one as cpus come/go. */
68static DEFINE_MUTEX(workqueue_mutex);
69static LIST_HEAD(workqueues);
70
71static int singlethread_cpu __read_mostly;
72static cpumask_t cpu_singlethread_map __read_mostly;
73/*
74 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
75 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
76 * which comes in between can't use for_each_online_cpu(). We could
77 * use cpu_possible_map, the cpumask below is more a documentation
78 * than optimization.
79 */
80static cpumask_t cpu_populated_map __read_mostly;
81
82/* If it's single threaded, it isn't in the list of workqueues. */
83static inline int is_single_threaded(struct workqueue_struct *wq)
84{
85	return wq->singlethread;
86}
87
88static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
89{
90	return is_single_threaded(wq)
91		? &cpu_singlethread_map : &cpu_populated_map;
92}
93
94static
95struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
96{
97	if (unlikely(is_single_threaded(wq)))
98		cpu = singlethread_cpu;
99	return per_cpu_ptr(wq->cpu_wq, cpu);
100}
101
102/*
103 * Set the workqueue on which a work item is to be run
104 * - Must *only* be called if the pending flag is set
105 */
106static inline void set_wq_data(struct work_struct *work,
107				struct cpu_workqueue_struct *cwq)
108{
109	unsigned long new;
110
111	BUG_ON(!work_pending(work));
112
113	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
114	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
115	atomic_long_set(&work->data, new);
116}
117
118static inline
119struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
120{
121	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
122}
123
124static void insert_work(struct cpu_workqueue_struct *cwq,
125				struct work_struct *work, int tail)
126{
127	set_wq_data(work, cwq);
128	/*
129	 * Ensure that we get the right work->data if we see the
130	 * result of list_add() below, see try_to_grab_pending().
131	 */
132	smp_wmb();
133	if (tail)
134		list_add_tail(&work->entry, &cwq->worklist);
135	else
136		list_add(&work->entry, &cwq->worklist);
137	wake_up(&cwq->more_work);
138}
139
140/* Preempt must be disabled. */
141static void __queue_work(struct cpu_workqueue_struct *cwq,
142			 struct work_struct *work)
143{
144	unsigned long flags;
145
146	spin_lock_irqsave(&cwq->lock, flags);
147	insert_work(cwq, work, 1);
148	spin_unlock_irqrestore(&cwq->lock, flags);
149}
150
151/**
152 * queue_work - queue work on a workqueue
153 * @wq: workqueue to use
154 * @work: work to queue
155 *
156 * Returns 0 if @work was already on a queue, non-zero otherwise.
157 *
158 * We queue the work to the CPU it was submitted, but there is no
159 * guarantee that it will be processed by that CPU.
160 */
161int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
162{
163	int ret = 0;
164
165	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
166		BUG_ON(!list_empty(&work->entry));
167		__queue_work(wq_per_cpu(wq, get_cpu()), work);
168		put_cpu();
169		ret = 1;
170	}
171	return ret;
172}
173EXPORT_SYMBOL_GPL(queue_work);
174
175void delayed_work_timer_fn(unsigned long __data)
176{
177	struct delayed_work *dwork = (struct delayed_work *)__data;
178	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
179	struct workqueue_struct *wq = cwq->wq;
180
181	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
182}
183
184/**
185 * queue_delayed_work - queue work on a workqueue after delay
186 * @wq: workqueue to use
187 * @dwork: delayable work to queue
188 * @delay: number of jiffies to wait before queueing
189 *
190 * Returns 0 if @work was already on a queue, non-zero otherwise.
191 */
192int fastcall queue_delayed_work(struct workqueue_struct *wq,
193			struct delayed_work *dwork, unsigned long delay)
194{
195	timer_stats_timer_set_start_info(&dwork->timer);
196	if (delay == 0)
197		return queue_work(wq, &dwork->work);
198
199	return queue_delayed_work_on(-1, wq, dwork, delay);
200}
201EXPORT_SYMBOL_GPL(queue_delayed_work);
202
203/**
204 * queue_delayed_work_on - queue work on specific CPU after delay
205 * @cpu: CPU number to execute work on
206 * @wq: workqueue to use
207 * @dwork: work to queue
208 * @delay: number of jiffies to wait before queueing
209 *
210 * Returns 0 if @work was already on a queue, non-zero otherwise.
211 */
212int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
213			struct delayed_work *dwork, unsigned long delay)
214{
215	int ret = 0;
216	struct timer_list *timer = &dwork->timer;
217	struct work_struct *work = &dwork->work;
218
219	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
220		BUG_ON(timer_pending(timer));
221		BUG_ON(!list_empty(&work->entry));
222
223		/* This stores cwq for the moment, for the timer_fn */
224		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
225		timer->expires = jiffies + delay;
226		timer->data = (unsigned long)dwork;
227		timer->function = delayed_work_timer_fn;
228
229		if (unlikely(cpu >= 0))
230			add_timer_on(timer, cpu);
231		else
232			add_timer(timer);
233		ret = 1;
234	}
235	return ret;
236}
237EXPORT_SYMBOL_GPL(queue_delayed_work_on);
238
239static void run_workqueue(struct cpu_workqueue_struct *cwq)
240{
241	spin_lock_irq(&cwq->lock);
242	cwq->run_depth++;
243	if (cwq->run_depth > 3) {
244		/* morton gets to eat his hat */
245		printk("%s: recursion depth exceeded: %d\n",
246			__FUNCTION__, cwq->run_depth);
247		dump_stack();
248	}
249	while (!list_empty(&cwq->worklist)) {
250		struct work_struct *work = list_entry(cwq->worklist.next,
251						struct work_struct, entry);
252		work_func_t f = work->func;
253
254		cwq->current_work = work;
255		list_del_init(cwq->worklist.next);
256		spin_unlock_irq(&cwq->lock);
257
258		BUG_ON(get_wq_data(work) != cwq);
259		work_clear_pending(work);
260		f(work);
261
262		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
263			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
264					"%s/0x%08x/%d\n",
265					current->comm, preempt_count(),
266				       	current->pid);
267			printk(KERN_ERR "    last function: ");
268			print_symbol("%s\n", (unsigned long)f);
269			debug_show_held_locks(current);
270			dump_stack();
271		}
272
273		spin_lock_irq(&cwq->lock);
274		cwq->current_work = NULL;
275	}
276	cwq->run_depth--;
277	spin_unlock_irq(&cwq->lock);
278}
279
280static int worker_thread(void *__cwq)
281{
282	struct cpu_workqueue_struct *cwq = __cwq;
283	DEFINE_WAIT(wait);
284
285	if (!cwq->wq->freezeable)
286		current->flags |= PF_NOFREEZE;
287
288	set_user_nice(current, -5);
289
290	for (;;) {
291		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
292		if (!freezing(current) &&
293		    !kthread_should_stop() &&
294		    list_empty(&cwq->worklist))
295			schedule();
296		finish_wait(&cwq->more_work, &wait);
297
298		try_to_freeze();
299
300		if (kthread_should_stop())
301			break;
302
303		run_workqueue(cwq);
304	}
305
306	return 0;
307}
308
309struct wq_barrier {
310	struct work_struct	work;
311	struct completion	done;
312};
313
314static void wq_barrier_func(struct work_struct *work)
315{
316	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
317	complete(&barr->done);
318}
319
320static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
321					struct wq_barrier *barr, int tail)
322{
323	INIT_WORK(&barr->work, wq_barrier_func);
324	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
325
326	init_completion(&barr->done);
327
328	insert_work(cwq, &barr->work, tail);
329}
330
331static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
332{
333	int active;
334
335	if (cwq->thread == current) {
336		/*
337		 * Probably keventd trying to flush its own queue. So simply run
338		 * it by hand rather than deadlocking.
339		 */
340		run_workqueue(cwq);
341		active = 1;
342	} else {
343		struct wq_barrier barr;
344
345		active = 0;
346		spin_lock_irq(&cwq->lock);
347		if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
348			insert_wq_barrier(cwq, &barr, 1);
349			active = 1;
350		}
351		spin_unlock_irq(&cwq->lock);
352
353		if (active)
354			wait_for_completion(&barr.done);
355	}
356
357	return active;
358}
359
360/**
361 * flush_workqueue - ensure that any scheduled work has run to completion.
362 * @wq: workqueue to flush
363 *
364 * Forces execution of the workqueue and blocks until its completion.
365 * This is typically used in driver shutdown handlers.
366 *
367 * We sleep until all works which were queued on entry have been handled,
368 * but we are not livelocked by new incoming ones.
369 *
370 * This function used to run the workqueues itself.  Now we just wait for the
371 * helper threads to do it.
372 */
373void fastcall flush_workqueue(struct workqueue_struct *wq)
374{
375	const cpumask_t *cpu_map = wq_cpu_map(wq);
376	int cpu;
377
378	might_sleep();
379	for_each_cpu_mask(cpu, *cpu_map)
380		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
381}
382EXPORT_SYMBOL_GPL(flush_workqueue);
383
384/*
385 * Upon a successful return, the caller "owns" WORK_STRUCT_PENDING bit,
386 * so this work can't be re-armed in any way.
387 */
388static int try_to_grab_pending(struct work_struct *work)
389{
390	struct cpu_workqueue_struct *cwq;
391	int ret = 0;
392
393	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
394		return 1;
395
396	/*
397	 * The queueing is in progress, or it is already queued. Try to
398	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
399	 */
400
401	cwq = get_wq_data(work);
402	if (!cwq)
403		return ret;
404
405	spin_lock_irq(&cwq->lock);
406	if (!list_empty(&work->entry)) {
407		/*
408		 * This work is queued, but perhaps we locked the wrong cwq.
409		 * In that case we must see the new value after rmb(), see
410		 * insert_work()->wmb().
411		 */
412		smp_rmb();
413		if (cwq == get_wq_data(work)) {
414			list_del_init(&work->entry);
415			ret = 1;
416		}
417	}
418	spin_unlock_irq(&cwq->lock);
419
420	return ret;
421}
422
423static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
424				struct work_struct *work)
425{
426	struct wq_barrier barr;
427	int running = 0;
428
429	spin_lock_irq(&cwq->lock);
430	if (unlikely(cwq->current_work == work)) {
431		insert_wq_barrier(cwq, &barr, 0);
432		running = 1;
433	}
434	spin_unlock_irq(&cwq->lock);
435
436	if (unlikely(running))
437		wait_for_completion(&barr.done);
438}
439
440static void wait_on_work(struct work_struct *work)
441{
442	struct cpu_workqueue_struct *cwq;
443	struct workqueue_struct *wq;
444	const cpumask_t *cpu_map;
445	int cpu;
446
447	might_sleep();
448
449	cwq = get_wq_data(work);
450	if (!cwq)
451		return;
452
453	wq = cwq->wq;
454	cpu_map = wq_cpu_map(wq);
455
456	for_each_cpu_mask(cpu, *cpu_map)
457		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
458}
459
460/**
461 * cancel_work_sync - block until a work_struct's callback has terminated
462 * @work: the work which is to be flushed
463 *
464 * cancel_work_sync() will cancel the work if it is queued. If the work's
465 * callback appears to be running, cancel_work_sync() will block until it
466 * has completed.
467 *
468 * It is possible to use this function if the work re-queues itself. It can
469 * cancel the work even if it migrates to another workqueue, however in that
470 * case it only guarantees that work->func() has completed on the last queued
471 * workqueue.
472 *
473 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
474 * pending, otherwise it goes into a busy-wait loop until the timer expires.
475 *
476 * The caller must ensure that workqueue_struct on which this work was last
477 * queued can't be destroyed before this function returns.
478 */
479void cancel_work_sync(struct work_struct *work)
480{
481	while (!try_to_grab_pending(work))
482		cpu_relax();
483	wait_on_work(work);
484	work_clear_pending(work);
485}
486EXPORT_SYMBOL_GPL(cancel_work_sync);
487
488/**
489 * cancel_rearming_delayed_work - reliably kill off a delayed work.
490 * @dwork: the delayed work struct
491 *
492 * It is possible to use this function if @dwork rearms itself via queue_work()
493 * or queue_delayed_work(). See also the comment for cancel_work_sync().
494 */
495void cancel_rearming_delayed_work(struct delayed_work *dwork)
496{
497	while (!del_timer(&dwork->timer) &&
498	       !try_to_grab_pending(&dwork->work))
499		cpu_relax();
500	wait_on_work(&dwork->work);
501	work_clear_pending(&dwork->work);
502}
503EXPORT_SYMBOL(cancel_rearming_delayed_work);
504
505static struct workqueue_struct *keventd_wq __read_mostly;
506
507/**
508 * schedule_work - put work task in global workqueue
509 * @work: job to be done
510 *
511 * This puts a job in the kernel-global workqueue.
512 */
513int fastcall schedule_work(struct work_struct *work)
514{
515	return queue_work(keventd_wq, work);
516}
517EXPORT_SYMBOL(schedule_work);
518
519/**
520 * schedule_delayed_work - put work task in global workqueue after delay
521 * @dwork: job to be done
522 * @delay: number of jiffies to wait or 0 for immediate execution
523 *
524 * After waiting for a given time this puts a job in the kernel-global
525 * workqueue.
526 */
527int fastcall schedule_delayed_work(struct delayed_work *dwork,
528					unsigned long delay)
529{
530	timer_stats_timer_set_start_info(&dwork->timer);
531	return queue_delayed_work(keventd_wq, dwork, delay);
532}
533EXPORT_SYMBOL(schedule_delayed_work);
534
535/**
536 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
537 * @cpu: cpu to use
538 * @dwork: job to be done
539 * @delay: number of jiffies to wait
540 *
541 * After waiting for a given time this puts a job in the kernel-global
542 * workqueue on the specified CPU.
543 */
544int schedule_delayed_work_on(int cpu,
545			struct delayed_work *dwork, unsigned long delay)
546{
547	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
548}
549EXPORT_SYMBOL(schedule_delayed_work_on);
550
551/**
552 * schedule_on_each_cpu - call a function on each online CPU from keventd
553 * @func: the function to call
554 *
555 * Returns zero on success.
556 * Returns -ve errno on failure.
557 *
558 * Appears to be racy against CPU hotplug.
559 *
560 * schedule_on_each_cpu() is very slow.
561 */
562int schedule_on_each_cpu(work_func_t func)
563{
564	int cpu;
565	struct work_struct *works;
566
567	works = alloc_percpu(struct work_struct);
568	if (!works)
569		return -ENOMEM;
570
571	preempt_disable();		/* CPU hotplug */
572	for_each_online_cpu(cpu) {
573		struct work_struct *work = per_cpu_ptr(works, cpu);
574
575		INIT_WORK(work, func);
576		set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
577		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
578	}
579	preempt_enable();
580	flush_workqueue(keventd_wq);
581	free_percpu(works);
582	return 0;
583}
584
585void flush_scheduled_work(void)
586{
587	flush_workqueue(keventd_wq);
588}
589EXPORT_SYMBOL(flush_scheduled_work);
590
591/**
592 * execute_in_process_context - reliably execute the routine with user context
593 * @fn:		the function to execute
594 * @ew:		guaranteed storage for the execute work structure (must
595 *		be available when the work executes)
596 *
597 * Executes the function immediately if process context is available,
598 * otherwise schedules the function for delayed execution.
599 *
600 * Returns:	0 - function was executed
601 *		1 - function was scheduled for execution
602 */
603int execute_in_process_context(work_func_t fn, struct execute_work *ew)
604{
605	if (!in_interrupt()) {
606		fn(&ew->work);
607		return 0;
608	}
609
610	INIT_WORK(&ew->work, fn);
611	schedule_work(&ew->work);
612
613	return 1;
614}
615EXPORT_SYMBOL_GPL(execute_in_process_context);
616
617int keventd_up(void)
618{
619	return keventd_wq != NULL;
620}
621
622int current_is_keventd(void)
623{
624	struct cpu_workqueue_struct *cwq;
625	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
626	int ret = 0;
627
628	BUG_ON(!keventd_wq);
629
630	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
631	if (current == cwq->thread)
632		ret = 1;
633
634	return ret;
635
636}
637
638static struct cpu_workqueue_struct *
639init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
640{
641	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
642
643	cwq->wq = wq;
644	spin_lock_init(&cwq->lock);
645	INIT_LIST_HEAD(&cwq->worklist);
646	init_waitqueue_head(&cwq->more_work);
647
648	return cwq;
649}
650
651static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
652{
653	struct workqueue_struct *wq = cwq->wq;
654	const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
655	struct task_struct *p;
656
657	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
658	/*
659	 * Nobody can add the work_struct to this cwq,
660	 *	if (caller is __create_workqueue)
661	 *		nobody should see this wq
662	 *	else // caller is CPU_UP_PREPARE
663	 *		cpu is not on cpu_online_map
664	 * so we can abort safely.
665	 */
666	if (IS_ERR(p))
667		return PTR_ERR(p);
668
669	cwq->thread = p;
670
671	return 0;
672}
673
674static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
675{
676	struct task_struct *p = cwq->thread;
677
678	if (p != NULL) {
679		if (cpu >= 0)
680			kthread_bind(p, cpu);
681		wake_up_process(p);
682	}
683}
684
685struct workqueue_struct *__create_workqueue(const char *name,
686					    int singlethread, int freezeable)
687{
688	struct workqueue_struct *wq;
689	struct cpu_workqueue_struct *cwq;
690	int err = 0, cpu;
691
692	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
693	if (!wq)
694		return NULL;
695
696	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
697	if (!wq->cpu_wq) {
698		kfree(wq);
699		return NULL;
700	}
701
702	wq->name = name;
703	wq->singlethread = singlethread;
704	wq->freezeable = freezeable;
705	INIT_LIST_HEAD(&wq->list);
706
707	if (singlethread) {
708		cwq = init_cpu_workqueue(wq, singlethread_cpu);
709		err = create_workqueue_thread(cwq, singlethread_cpu);
710		start_workqueue_thread(cwq, -1);
711	} else {
712		mutex_lock(&workqueue_mutex);
713		list_add(&wq->list, &workqueues);
714
715		for_each_possible_cpu(cpu) {
716			cwq = init_cpu_workqueue(wq, cpu);
717			if (err || !cpu_online(cpu))
718				continue;
719			err = create_workqueue_thread(cwq, cpu);
720			start_workqueue_thread(cwq, cpu);
721		}
722		mutex_unlock(&workqueue_mutex);
723	}
724
725	if (err) {
726		destroy_workqueue(wq);
727		wq = NULL;
728	}
729	return wq;
730}
731EXPORT_SYMBOL_GPL(__create_workqueue);
732
733static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
734{
735	/*
736	 * Our caller is either destroy_workqueue() or CPU_DEAD,
737	 * workqueue_mutex protects cwq->thread
738	 */
739	if (cwq->thread == NULL)
740		return;
741
742	/*
743	 * If the caller is CPU_DEAD the single flush_cpu_workqueue()
744	 * is not enough, a concurrent flush_workqueue() can insert a
745	 * barrier after us.
746	 * When ->worklist becomes empty it is safe to exit because no
747	 * more work_structs can be queued on this cwq: flush_workqueue
748	 * checks list_empty(), and a "normal" queue_work() can't use
749	 * a dead CPU.
750	 */
751	while (flush_cpu_workqueue(cwq))
752		;
753
754	kthread_stop(cwq->thread);
755	cwq->thread = NULL;
756}
757
758/**
759 * destroy_workqueue - safely terminate a workqueue
760 * @wq: target workqueue
761 *
762 * Safely destroy a workqueue. All work currently pending will be done first.
763 */
764void destroy_workqueue(struct workqueue_struct *wq)
765{
766	const cpumask_t *cpu_map = wq_cpu_map(wq);
767	struct cpu_workqueue_struct *cwq;
768	int cpu;
769
770	mutex_lock(&workqueue_mutex);
771	list_del(&wq->list);
772	mutex_unlock(&workqueue_mutex);
773
774	for_each_cpu_mask(cpu, *cpu_map) {
775		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
776		cleanup_workqueue_thread(cwq, cpu);
777	}
778
779	free_percpu(wq->cpu_wq);
780	kfree(wq);
781}
782EXPORT_SYMBOL_GPL(destroy_workqueue);
783
784static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
785						unsigned long action,
786						void *hcpu)
787{
788	unsigned int cpu = (unsigned long)hcpu;
789	struct cpu_workqueue_struct *cwq;
790	struct workqueue_struct *wq;
791
792	action &= ~CPU_TASKS_FROZEN;
793
794	switch (action) {
795	case CPU_LOCK_ACQUIRE:
796		mutex_lock(&workqueue_mutex);
797		return NOTIFY_OK;
798
799	case CPU_LOCK_RELEASE:
800		mutex_unlock(&workqueue_mutex);
801		return NOTIFY_OK;
802
803	case CPU_UP_PREPARE:
804		cpu_set(cpu, cpu_populated_map);
805	}
806
807	list_for_each_entry(wq, &workqueues, list) {
808		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
809
810		switch (action) {
811		case CPU_UP_PREPARE:
812			if (!create_workqueue_thread(cwq, cpu))
813				break;
814			printk(KERN_ERR "workqueue for %i failed\n", cpu);
815			return NOTIFY_BAD;
816
817		case CPU_ONLINE:
818			start_workqueue_thread(cwq, cpu);
819			break;
820
821		case CPU_UP_CANCELED:
822			start_workqueue_thread(cwq, -1);
823		case CPU_DEAD:
824			cleanup_workqueue_thread(cwq, cpu);
825			break;
826		}
827	}
828
829	return NOTIFY_OK;
830}
831
832void __init init_workqueues(void)
833{
834	cpu_populated_map = cpu_online_map;
835	singlethread_cpu = first_cpu(cpu_possible_map);
836	cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
837	hotcpu_notifier(workqueue_cpu_callback, 0);
838	keventd_wq = create_workqueue("events");
839	BUG_ON(!keventd_wq);
840}
841