1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 *  Copyright (C) 2006 Esben Nielsen
10 *
11 *  See Documentation/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/timer.h>
17
18#include "rtmutex_common.h"
19
20#ifdef CONFIG_DEBUG_RT_MUTEXES
21# include "rtmutex-debug.h"
22#else
23# include "rtmutex.h"
24#endif
25
26/*
27 * lock->owner state tracking:
28 *
29 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
30 * are used to keep track of the "owner is pending" and "lock has
31 * waiters" state.
32 *
33 * owner	bit1	bit0
34 * NULL		0	0	lock is free (fast acquire possible)
35 * NULL		0	1	invalid state
36 * NULL		1	0	Transitional State*
37 * NULL		1	1	invalid state
38 * taskpointer	0	0	lock is held (fast release possible)
39 * taskpointer	0	1	task is pending owner
40 * taskpointer	1	0	lock is held and has waiters
41 * taskpointer	1	1	task is pending owner and lock has more waiters
42 *
43 * Pending ownership is assigned to the top (highest priority)
44 * waiter of the lock, when the lock is released. The thread is woken
45 * up and can now take the lock. Until the lock is taken (bit 0
46 * cleared) a competing higher priority thread can steal the lock
47 * which puts the woken up thread back on the waiters list.
48 *
49 * The fast atomic compare exchange based acquire and release is only
50 * possible when bit 0 and 1 of lock->owner are 0.
51 *
52 * (*) There's a small time where the owner can be NULL and the
53 * "lock has waiters" bit is set.  This can happen when grabbing the lock.
54 * To prevent a cmpxchg of the owner releasing the lock, we need to set this
55 * bit before looking at the lock, hence the reason this is a transitional
56 * state.
57 */
58
59static void
60rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
61		   unsigned long mask)
62{
63	unsigned long val = (unsigned long)owner | mask;
64
65	if (rt_mutex_has_waiters(lock))
66		val |= RT_MUTEX_HAS_WAITERS;
67
68	lock->owner = (struct task_struct *)val;
69}
70
71static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
72{
73	lock->owner = (struct task_struct *)
74			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
75}
76
77static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
78{
79	if (!rt_mutex_has_waiters(lock))
80		clear_rt_mutex_waiters(lock);
81}
82
83/*
84 * We can speed up the acquire/release, if the architecture
85 * supports cmpxchg and if there's no debugging state to be set up
86 */
87#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
88# define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
89static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
90{
91	unsigned long owner, *p = (unsigned long *) &lock->owner;
92
93	do {
94		owner = *p;
95	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
96}
97#else
98# define rt_mutex_cmpxchg(l,c,n)	(0)
99static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
100{
101	lock->owner = (struct task_struct *)
102			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
103}
104#endif
105
106/*
107 * Calculate task priority from the waiter list priority
108 *
109 * Return task->normal_prio when the waiter list is empty or when
110 * the waiter is not allowed to do priority boosting
111 */
112int rt_mutex_getprio(struct task_struct *task)
113{
114	if (likely(!task_has_pi_waiters(task)))
115		return task->normal_prio;
116
117	return min(task_top_pi_waiter(task)->pi_list_entry.prio,
118		   task->normal_prio);
119}
120
121/*
122 * Adjust the priority of a task, after its pi_waiters got modified.
123 *
124 * This can be both boosting and unboosting. task->pi_lock must be held.
125 */
126static void __rt_mutex_adjust_prio(struct task_struct *task)
127{
128	int prio = rt_mutex_getprio(task);
129
130	if (task->prio != prio)
131		rt_mutex_setprio(task, prio);
132}
133
134/*
135 * Adjust task priority (undo boosting). Called from the exit path of
136 * rt_mutex_slowunlock() and rt_mutex_slowlock().
137 *
138 * (Note: We do this outside of the protection of lock->wait_lock to
139 * allow the lock to be taken while or before we readjust the priority
140 * of task. We do not use the spin_xx_mutex() variants here as we are
141 * outside of the debug path.)
142 */
143static void rt_mutex_adjust_prio(struct task_struct *task)
144{
145	unsigned long flags;
146
147	spin_lock_irqsave(&task->pi_lock, flags);
148	__rt_mutex_adjust_prio(task);
149	spin_unlock_irqrestore(&task->pi_lock, flags);
150}
151
152/*
153 * Max number of times we'll walk the boosting chain:
154 */
155int max_lock_depth = 1024;
156
157/*
158 * Adjust the priority chain. Also used for deadlock detection.
159 * Decreases task's usage by one - may thus free the task.
160 * Returns 0 or -EDEADLK.
161 */
162static int rt_mutex_adjust_prio_chain(struct task_struct *task,
163				      int deadlock_detect,
164				      struct rt_mutex *orig_lock,
165				      struct rt_mutex_waiter *orig_waiter,
166				      struct task_struct *top_task)
167{
168	struct rt_mutex *lock;
169	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
170	int detect_deadlock, ret = 0, depth = 0;
171	unsigned long flags;
172
173	detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
174							 deadlock_detect);
175
176	/*
177	 * The (de)boosting is a step by step approach with a lot of
178	 * pitfalls. We want this to be preemptible and we want hold a
179	 * maximum of two locks per step. So we have to check
180	 * carefully whether things change under us.
181	 */
182 again:
183	if (++depth > max_lock_depth) {
184		static int prev_max;
185
186		/*
187		 * Print this only once. If the admin changes the limit,
188		 * print a new message when reaching the limit again.
189		 */
190		if (prev_max != max_lock_depth) {
191			prev_max = max_lock_depth;
192			printk(KERN_WARNING "Maximum lock depth %d reached "
193			       "task: %s (%d)\n", max_lock_depth,
194			       top_task->comm, top_task->pid);
195		}
196		put_task_struct(task);
197
198		return deadlock_detect ? -EDEADLK : 0;
199	}
200 retry:
201	/*
202	 * Task can not go away as we did a get_task() before !
203	 */
204	spin_lock_irqsave(&task->pi_lock, flags);
205
206	waiter = task->pi_blocked_on;
207	/*
208	 * Check whether the end of the boosting chain has been
209	 * reached or the state of the chain has changed while we
210	 * dropped the locks.
211	 */
212	if (!waiter || !waiter->task)
213		goto out_unlock_pi;
214
215	/*
216	 * Check the orig_waiter state. After we dropped the locks,
217	 * the previous owner of the lock might have released the lock
218	 * and made us the pending owner:
219	 */
220	if (orig_waiter && !orig_waiter->task)
221		goto out_unlock_pi;
222
223	/*
224	 * Drop out, when the task has no waiters. Note,
225	 * top_waiter can be NULL, when we are in the deboosting
226	 * mode!
227	 */
228	if (top_waiter && (!task_has_pi_waiters(task) ||
229			   top_waiter != task_top_pi_waiter(task)))
230		goto out_unlock_pi;
231
232	/*
233	 * When deadlock detection is off then we check, if further
234	 * priority adjustment is necessary.
235	 */
236	if (!detect_deadlock && waiter->list_entry.prio == task->prio)
237		goto out_unlock_pi;
238
239	lock = waiter->lock;
240	if (!spin_trylock(&lock->wait_lock)) {
241		spin_unlock_irqrestore(&task->pi_lock, flags);
242		cpu_relax();
243		goto retry;
244	}
245
246	/* Deadlock detection */
247	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
248		debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
249		spin_unlock(&lock->wait_lock);
250		ret = deadlock_detect ? -EDEADLK : 0;
251		goto out_unlock_pi;
252	}
253
254	top_waiter = rt_mutex_top_waiter(lock);
255
256	/* Requeue the waiter */
257	plist_del(&waiter->list_entry, &lock->wait_list);
258	waiter->list_entry.prio = task->prio;
259	plist_add(&waiter->list_entry, &lock->wait_list);
260
261	/* Release the task */
262	spin_unlock_irqrestore(&task->pi_lock, flags);
263	put_task_struct(task);
264
265	/* Grab the next task */
266	task = rt_mutex_owner(lock);
267	get_task_struct(task);
268	spin_lock_irqsave(&task->pi_lock, flags);
269
270	if (waiter == rt_mutex_top_waiter(lock)) {
271		/* Boost the owner */
272		plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
273		waiter->pi_list_entry.prio = waiter->list_entry.prio;
274		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
275		__rt_mutex_adjust_prio(task);
276
277	} else if (top_waiter == waiter) {
278		/* Deboost the owner */
279		plist_del(&waiter->pi_list_entry, &task->pi_waiters);
280		waiter = rt_mutex_top_waiter(lock);
281		waiter->pi_list_entry.prio = waiter->list_entry.prio;
282		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
283		__rt_mutex_adjust_prio(task);
284	}
285
286	spin_unlock_irqrestore(&task->pi_lock, flags);
287
288	top_waiter = rt_mutex_top_waiter(lock);
289	spin_unlock(&lock->wait_lock);
290
291	if (!detect_deadlock && waiter != top_waiter)
292		goto out_put_task;
293
294	goto again;
295
296 out_unlock_pi:
297	spin_unlock_irqrestore(&task->pi_lock, flags);
298 out_put_task:
299	put_task_struct(task);
300
301	return ret;
302}
303
304/*
305 * Optimization: check if we can steal the lock from the
306 * assigned pending owner [which might not have taken the
307 * lock yet]:
308 */
309static inline int try_to_steal_lock(struct rt_mutex *lock)
310{
311	struct task_struct *pendowner = rt_mutex_owner(lock);
312	struct rt_mutex_waiter *next;
313	unsigned long flags;
314
315	if (!rt_mutex_owner_pending(lock))
316		return 0;
317
318	if (pendowner == current)
319		return 1;
320
321	spin_lock_irqsave(&pendowner->pi_lock, flags);
322	if (current->prio >= pendowner->prio) {
323		spin_unlock_irqrestore(&pendowner->pi_lock, flags);
324		return 0;
325	}
326
327	/*
328	 * Check if a waiter is enqueued on the pending owners
329	 * pi_waiters list. Remove it and readjust pending owners
330	 * priority.
331	 */
332	if (likely(!rt_mutex_has_waiters(lock))) {
333		spin_unlock_irqrestore(&pendowner->pi_lock, flags);
334		return 1;
335	}
336
337	/* No chain handling, pending owner is not blocked on anything: */
338	next = rt_mutex_top_waiter(lock);
339	plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
340	__rt_mutex_adjust_prio(pendowner);
341	spin_unlock_irqrestore(&pendowner->pi_lock, flags);
342
343	/*
344	 * We are going to steal the lock and a waiter was
345	 * enqueued on the pending owners pi_waiters queue. So
346	 * we have to enqueue this waiter into
347	 * current->pi_waiters list. This covers the case,
348	 * where current is boosted because it holds another
349	 * lock and gets unboosted because the booster is
350	 * interrupted, so we would delay a waiter with higher
351	 * priority as current->normal_prio.
352	 *
353	 * Note: in the rare case of a SCHED_OTHER task changing
354	 * its priority and thus stealing the lock, next->task
355	 * might be current:
356	 */
357	if (likely(next->task != current)) {
358		spin_lock_irqsave(&current->pi_lock, flags);
359		plist_add(&next->pi_list_entry, &current->pi_waiters);
360		__rt_mutex_adjust_prio(current);
361		spin_unlock_irqrestore(&current->pi_lock, flags);
362	}
363	return 1;
364}
365
366/*
367 * Try to take an rt-mutex
368 *
369 * This fails
370 * - when the lock has a real owner
371 * - when a different pending owner exists and has higher priority than current
372 *
373 * Must be called with lock->wait_lock held.
374 */
375static int try_to_take_rt_mutex(struct rt_mutex *lock)
376{
377	/*
378	 * We have to be careful here if the atomic speedups are
379	 * enabled, such that, when
380	 *  - no other waiter is on the lock
381	 *  - the lock has been released since we did the cmpxchg
382	 * the lock can be released or taken while we are doing the
383	 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
384	 *
385	 * The atomic acquire/release aware variant of
386	 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
387	 * the WAITERS bit, the atomic release / acquire can not
388	 * happen anymore and lock->wait_lock protects us from the
389	 * non-atomic case.
390	 *
391	 * Note, that this might set lock->owner =
392	 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
393	 * any more. This is fixed up when we take the ownership.
394	 * This is the transitional state explained at the top of this file.
395	 */
396	mark_rt_mutex_waiters(lock);
397
398	if (rt_mutex_owner(lock) && !try_to_steal_lock(lock))
399		return 0;
400
401	/* We got the lock. */
402	debug_rt_mutex_lock(lock);
403
404	rt_mutex_set_owner(lock, current, 0);
405
406	rt_mutex_deadlock_account_lock(lock, current);
407
408	return 1;
409}
410
411/*
412 * Task blocks on lock.
413 *
414 * Prepare waiter and propagate pi chain
415 *
416 * This must be called with lock->wait_lock held.
417 */
418static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
419				   struct rt_mutex_waiter *waiter,
420				   int detect_deadlock)
421{
422	struct task_struct *owner = rt_mutex_owner(lock);
423	struct rt_mutex_waiter *top_waiter = waiter;
424	unsigned long flags;
425	int chain_walk = 0, res;
426
427	spin_lock_irqsave(&current->pi_lock, flags);
428	__rt_mutex_adjust_prio(current);
429	waiter->task = current;
430	waiter->lock = lock;
431	plist_node_init(&waiter->list_entry, current->prio);
432	plist_node_init(&waiter->pi_list_entry, current->prio);
433
434	/* Get the top priority waiter on the lock */
435	if (rt_mutex_has_waiters(lock))
436		top_waiter = rt_mutex_top_waiter(lock);
437	plist_add(&waiter->list_entry, &lock->wait_list);
438
439	current->pi_blocked_on = waiter;
440
441	spin_unlock_irqrestore(&current->pi_lock, flags);
442
443	if (waiter == rt_mutex_top_waiter(lock)) {
444		spin_lock_irqsave(&owner->pi_lock, flags);
445		plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
446		plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
447
448		__rt_mutex_adjust_prio(owner);
449		if (owner->pi_blocked_on)
450			chain_walk = 1;
451		spin_unlock_irqrestore(&owner->pi_lock, flags);
452	}
453	else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
454		chain_walk = 1;
455
456	if (!chain_walk)
457		return 0;
458
459	/*
460	 * The owner can't disappear while holding a lock,
461	 * so the owner struct is protected by wait_lock.
462	 * Gets dropped in rt_mutex_adjust_prio_chain()!
463	 */
464	get_task_struct(owner);
465
466	spin_unlock(&lock->wait_lock);
467
468	res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
469					 current);
470
471	spin_lock(&lock->wait_lock);
472
473	return res;
474}
475
476/*
477 * Wake up the next waiter on the lock.
478 *
479 * Remove the top waiter from the current tasks waiter list and from
480 * the lock waiter list. Set it as pending owner. Then wake it up.
481 *
482 * Called with lock->wait_lock held.
483 */
484static void wakeup_next_waiter(struct rt_mutex *lock)
485{
486	struct rt_mutex_waiter *waiter;
487	struct task_struct *pendowner;
488	unsigned long flags;
489
490	spin_lock_irqsave(&current->pi_lock, flags);
491
492	waiter = rt_mutex_top_waiter(lock);
493	plist_del(&waiter->list_entry, &lock->wait_list);
494
495	/*
496	 * Remove it from current->pi_waiters. We do not adjust a
497	 * possible priority boost right now. We execute wakeup in the
498	 * boosted mode and go back to normal after releasing
499	 * lock->wait_lock.
500	 */
501	plist_del(&waiter->pi_list_entry, &current->pi_waiters);
502	pendowner = waiter->task;
503	waiter->task = NULL;
504
505	rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
506
507	spin_unlock_irqrestore(&current->pi_lock, flags);
508
509	/*
510	 * Clear the pi_blocked_on variable and enqueue a possible
511	 * waiter into the pi_waiters list of the pending owner. This
512	 * prevents that in case the pending owner gets unboosted a
513	 * waiter with higher priority than pending-owner->normal_prio
514	 * is blocked on the unboosted (pending) owner.
515	 */
516	spin_lock_irqsave(&pendowner->pi_lock, flags);
517
518	WARN_ON(!pendowner->pi_blocked_on);
519	WARN_ON(pendowner->pi_blocked_on != waiter);
520	WARN_ON(pendowner->pi_blocked_on->lock != lock);
521
522	pendowner->pi_blocked_on = NULL;
523
524	if (rt_mutex_has_waiters(lock)) {
525		struct rt_mutex_waiter *next;
526
527		next = rt_mutex_top_waiter(lock);
528		plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
529	}
530	spin_unlock_irqrestore(&pendowner->pi_lock, flags);
531
532	wake_up_process(pendowner);
533}
534
535/*
536 * Remove a waiter from a lock
537 *
538 * Must be called with lock->wait_lock held
539 */
540static void remove_waiter(struct rt_mutex *lock,
541			  struct rt_mutex_waiter *waiter)
542{
543	int first = (waiter == rt_mutex_top_waiter(lock));
544	struct task_struct *owner = rt_mutex_owner(lock);
545	unsigned long flags;
546	int chain_walk = 0;
547
548	spin_lock_irqsave(&current->pi_lock, flags);
549	plist_del(&waiter->list_entry, &lock->wait_list);
550	waiter->task = NULL;
551	current->pi_blocked_on = NULL;
552	spin_unlock_irqrestore(&current->pi_lock, flags);
553
554	if (first && owner != current) {
555
556		spin_lock_irqsave(&owner->pi_lock, flags);
557
558		plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
559
560		if (rt_mutex_has_waiters(lock)) {
561			struct rt_mutex_waiter *next;
562
563			next = rt_mutex_top_waiter(lock);
564			plist_add(&next->pi_list_entry, &owner->pi_waiters);
565		}
566		__rt_mutex_adjust_prio(owner);
567
568		if (owner->pi_blocked_on)
569			chain_walk = 1;
570
571		spin_unlock_irqrestore(&owner->pi_lock, flags);
572	}
573
574	WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
575
576	if (!chain_walk)
577		return;
578
579	/* gets dropped in rt_mutex_adjust_prio_chain()! */
580	get_task_struct(owner);
581
582	spin_unlock(&lock->wait_lock);
583
584	rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
585
586	spin_lock(&lock->wait_lock);
587}
588
589/*
590 * Recheck the pi chain, in case we got a priority setting
591 *
592 * Called from sched_setscheduler
593 */
594void rt_mutex_adjust_pi(struct task_struct *task)
595{
596	struct rt_mutex_waiter *waiter;
597	unsigned long flags;
598
599	spin_lock_irqsave(&task->pi_lock, flags);
600
601	waiter = task->pi_blocked_on;
602	if (!waiter || waiter->list_entry.prio == task->prio) {
603		spin_unlock_irqrestore(&task->pi_lock, flags);
604		return;
605	}
606
607	spin_unlock_irqrestore(&task->pi_lock, flags);
608
609	/* gets dropped in rt_mutex_adjust_prio_chain()! */
610	get_task_struct(task);
611	rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
612}
613
614/*
615 * Slow path lock function:
616 */
617static int __sched
618rt_mutex_slowlock(struct rt_mutex *lock, int state,
619		  struct hrtimer_sleeper *timeout,
620		  int detect_deadlock)
621{
622	struct rt_mutex_waiter waiter;
623	int ret = 0;
624
625	debug_rt_mutex_init_waiter(&waiter);
626	waiter.task = NULL;
627
628	spin_lock(&lock->wait_lock);
629
630	/* Try to acquire the lock again: */
631	if (try_to_take_rt_mutex(lock)) {
632		spin_unlock(&lock->wait_lock);
633		return 0;
634	}
635
636	set_current_state(state);
637
638	/* Setup the timer, when timeout != NULL */
639	if (unlikely(timeout))
640		hrtimer_start(&timeout->timer, timeout->timer.expires,
641			      HRTIMER_MODE_ABS);
642
643	for (;;) {
644		/* Try to acquire the lock: */
645		if (try_to_take_rt_mutex(lock))
646			break;
647
648		/*
649		 * TASK_INTERRUPTIBLE checks for signals and
650		 * timeout. Ignored otherwise.
651		 */
652		if (unlikely(state == TASK_INTERRUPTIBLE)) {
653			/* Signal pending? */
654			if (signal_pending(current))
655				ret = -EINTR;
656			if (timeout && !timeout->task)
657				ret = -ETIMEDOUT;
658			if (ret)
659				break;
660		}
661
662		/*
663		 * waiter.task is NULL the first time we come here and
664		 * when we have been woken up by the previous owner
665		 * but the lock got stolen by a higher prio task.
666		 */
667		if (!waiter.task) {
668			ret = task_blocks_on_rt_mutex(lock, &waiter,
669						      detect_deadlock);
670			/*
671			 * If we got woken up by the owner then start loop
672			 * all over without going into schedule to try
673			 * to get the lock now:
674			 */
675			if (unlikely(!waiter.task)) {
676				/*
677				 * Reset the return value. We might
678				 * have returned with -EDEADLK and the
679				 * owner released the lock while we
680				 * were walking the pi chain.
681				 */
682				ret = 0;
683				continue;
684			}
685			if (unlikely(ret))
686				break;
687		}
688
689		spin_unlock(&lock->wait_lock);
690
691		debug_rt_mutex_print_deadlock(&waiter);
692
693		if (waiter.task)
694			schedule_rt_mutex(lock);
695
696		spin_lock(&lock->wait_lock);
697		set_current_state(state);
698	}
699
700	set_current_state(TASK_RUNNING);
701
702	if (unlikely(waiter.task))
703		remove_waiter(lock, &waiter);
704
705	/*
706	 * try_to_take_rt_mutex() sets the waiter bit
707	 * unconditionally. We might have to fix that up.
708	 */
709	fixup_rt_mutex_waiters(lock);
710
711	spin_unlock(&lock->wait_lock);
712
713	/* Remove pending timer: */
714	if (unlikely(timeout))
715		hrtimer_cancel(&timeout->timer);
716
717	/*
718	 * Readjust priority, when we did not get the lock. We might
719	 * have been the pending owner and boosted. Since we did not
720	 * take the lock, the PI boost has to go.
721	 */
722	if (unlikely(ret))
723		rt_mutex_adjust_prio(current);
724
725	debug_rt_mutex_free_waiter(&waiter);
726
727	return ret;
728}
729
730/*
731 * Slow path try-lock function:
732 */
733static inline int
734rt_mutex_slowtrylock(struct rt_mutex *lock)
735{
736	int ret = 0;
737
738	spin_lock(&lock->wait_lock);
739
740	if (likely(rt_mutex_owner(lock) != current)) {
741
742		ret = try_to_take_rt_mutex(lock);
743		/*
744		 * try_to_take_rt_mutex() sets the lock waiters
745		 * bit unconditionally. Clean this up.
746		 */
747		fixup_rt_mutex_waiters(lock);
748	}
749
750	spin_unlock(&lock->wait_lock);
751
752	return ret;
753}
754
755/*
756 * Slow path to release a rt-mutex:
757 */
758static void __sched
759rt_mutex_slowunlock(struct rt_mutex *lock)
760{
761	spin_lock(&lock->wait_lock);
762
763	debug_rt_mutex_unlock(lock);
764
765	rt_mutex_deadlock_account_unlock(current);
766
767	if (!rt_mutex_has_waiters(lock)) {
768		lock->owner = NULL;
769		spin_unlock(&lock->wait_lock);
770		return;
771	}
772
773	wakeup_next_waiter(lock);
774
775	spin_unlock(&lock->wait_lock);
776
777	/* Undo pi boosting if necessary: */
778	rt_mutex_adjust_prio(current);
779}
780
781/*
782 * debug aware fast / slowpath lock,trylock,unlock
783 *
784 * The atomic acquire/release ops are compiled away, when either the
785 * architecture does not support cmpxchg or when debugging is enabled.
786 */
787static inline int
788rt_mutex_fastlock(struct rt_mutex *lock, int state,
789		  int detect_deadlock,
790		  int (*slowfn)(struct rt_mutex *lock, int state,
791				struct hrtimer_sleeper *timeout,
792				int detect_deadlock))
793{
794	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
795		rt_mutex_deadlock_account_lock(lock, current);
796		return 0;
797	} else
798		return slowfn(lock, state, NULL, detect_deadlock);
799}
800
801static inline int
802rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
803			struct hrtimer_sleeper *timeout, int detect_deadlock,
804			int (*slowfn)(struct rt_mutex *lock, int state,
805				      struct hrtimer_sleeper *timeout,
806				      int detect_deadlock))
807{
808	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
809		rt_mutex_deadlock_account_lock(lock, current);
810		return 0;
811	} else
812		return slowfn(lock, state, timeout, detect_deadlock);
813}
814
815static inline int
816rt_mutex_fasttrylock(struct rt_mutex *lock,
817		     int (*slowfn)(struct rt_mutex *lock))
818{
819	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
820		rt_mutex_deadlock_account_lock(lock, current);
821		return 1;
822	}
823	return slowfn(lock);
824}
825
826static inline void
827rt_mutex_fastunlock(struct rt_mutex *lock,
828		    void (*slowfn)(struct rt_mutex *lock))
829{
830	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
831		rt_mutex_deadlock_account_unlock(current);
832	else
833		slowfn(lock);
834}
835
836/**
837 * rt_mutex_lock - lock a rt_mutex
838 *
839 * @lock: the rt_mutex to be locked
840 */
841void __sched rt_mutex_lock(struct rt_mutex *lock)
842{
843	might_sleep();
844
845	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
846}
847EXPORT_SYMBOL_GPL(rt_mutex_lock);
848
849/**
850 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
851 *
852 * @lock: 		the rt_mutex to be locked
853 * @detect_deadlock:	deadlock detection on/off
854 *
855 * Returns:
856 *  0 		on success
857 * -EINTR 	when interrupted by a signal
858 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
859 */
860int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
861						 int detect_deadlock)
862{
863	might_sleep();
864
865	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
866				 detect_deadlock, rt_mutex_slowlock);
867}
868EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
869
870/**
871 * rt_mutex_lock_interruptible_ktime - lock a rt_mutex interruptible
872 *				       the timeout structure is provided
873 *				       by the caller
874 *
875 * @lock: 		the rt_mutex to be locked
876 * @timeout:		timeout structure or NULL (no timeout)
877 * @detect_deadlock:	deadlock detection on/off
878 *
879 * Returns:
880 *  0 		on success
881 * -EINTR 	when interrupted by a signal
882 * -ETIMEOUT	when the timeout expired
883 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
884 */
885int
886rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
887		    int detect_deadlock)
888{
889	might_sleep();
890
891	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
892				       detect_deadlock, rt_mutex_slowlock);
893}
894EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
895
896/**
897 * rt_mutex_trylock - try to lock a rt_mutex
898 *
899 * @lock:	the rt_mutex to be locked
900 *
901 * Returns 1 on success and 0 on contention
902 */
903int __sched rt_mutex_trylock(struct rt_mutex *lock)
904{
905	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
906}
907EXPORT_SYMBOL_GPL(rt_mutex_trylock);
908
909/**
910 * rt_mutex_unlock - unlock a rt_mutex
911 *
912 * @lock: the rt_mutex to be unlocked
913 */
914void __sched rt_mutex_unlock(struct rt_mutex *lock)
915{
916	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
917}
918EXPORT_SYMBOL_GPL(rt_mutex_unlock);
919
920/***
921 * rt_mutex_destroy - mark a mutex unusable
922 * @lock: the mutex to be destroyed
923 *
924 * This function marks the mutex uninitialized, and any subsequent
925 * use of the mutex is forbidden. The mutex must not be locked when
926 * this function is called.
927 */
928void rt_mutex_destroy(struct rt_mutex *lock)
929{
930	WARN_ON(rt_mutex_is_locked(lock));
931#ifdef CONFIG_DEBUG_RT_MUTEXES
932	lock->magic = NULL;
933#endif
934}
935
936EXPORT_SYMBOL_GPL(rt_mutex_destroy);
937
938/**
939 * __rt_mutex_init - initialize the rt lock
940 *
941 * @lock: the rt lock to be initialized
942 *
943 * Initialize the rt lock to unlocked state.
944 *
945 * Initializing of a locked rt lock is not allowed
946 */
947void __rt_mutex_init(struct rt_mutex *lock, const char *name)
948{
949	lock->owner = NULL;
950	spin_lock_init(&lock->wait_lock);
951	plist_head_init(&lock->wait_list, &lock->wait_lock);
952
953	debug_rt_mutex_init(lock, name);
954}
955EXPORT_SYMBOL_GPL(__rt_mutex_init);
956
957/**
958 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
959 *				proxy owner
960 *
961 * @lock: 	the rt_mutex to be locked
962 * @proxy_owner:the task to set as owner
963 *
964 * No locking. Caller has to do serializing itself
965 * Special API call for PI-futex support
966 */
967void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
968				struct task_struct *proxy_owner)
969{
970	__rt_mutex_init(lock, NULL);
971	debug_rt_mutex_proxy_lock(lock, proxy_owner);
972	rt_mutex_set_owner(lock, proxy_owner, 0);
973	rt_mutex_deadlock_account_lock(lock, proxy_owner);
974}
975
976/**
977 * rt_mutex_proxy_unlock - release a lock on behalf of owner
978 *
979 * @lock: 	the rt_mutex to be locked
980 *
981 * No locking. Caller has to do serializing itself
982 * Special API call for PI-futex support
983 */
984void rt_mutex_proxy_unlock(struct rt_mutex *lock,
985			   struct task_struct *proxy_owner)
986{
987	debug_rt_mutex_proxy_unlock(lock);
988	rt_mutex_set_owner(lock, NULL, 0);
989	rt_mutex_deadlock_account_unlock(proxy_owner);
990}
991
992/**
993 * rt_mutex_next_owner - return the next owner of the lock
994 *
995 * @lock: the rt lock query
996 *
997 * Returns the next owner of the lock or NULL
998 *
999 * Caller has to serialize against other accessors to the lock
1000 * itself.
1001 *
1002 * Special API call for PI-futex support
1003 */
1004struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1005{
1006	if (!rt_mutex_has_waiters(lock))
1007		return NULL;
1008
1009	return rt_mutex_top_waiter(lock)->task;
1010}
1011