1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Definitions for the AF_INET socket handler.
7 *
8 * Version:	@(#)sock.h	1.0.4	05/13/93
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 *		Alan Cox	:	Volatiles in skbuff pointers. See
17 *					skbuff comments. May be overdone,
18 *					better to prove they can be removed
19 *					than the reverse.
20 *		Alan Cox	:	Added a zapped field for tcp to note
21 *					a socket is reset and must stay shut up
22 *		Alan Cox	:	New fields for options
23 *	Pauline Middelink	:	identd support
24 *		Alan Cox	:	Eliminate low level recv/recvfrom
25 *		David S. Miller	:	New socket lookup architecture.
26 *              Steve Whitehouse:       Default routines for sock_ops
27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28 *              			protinfo be just a void pointer, as the
29 *              			protocol specific parts were moved to
30 *              			respective headers and ipv4/v6, etc now
31 *              			use private slabcaches for its socks
32 *              Pedro Hortas	:	New flags field for socket options
33 *
34 *
35 *		This program is free software; you can redistribute it and/or
36 *		modify it under the terms of the GNU General Public License
37 *		as published by the Free Software Foundation; either version
38 *		2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/list.h>
44#include <linux/timer.h>
45#include <linux/cache.h>
46#include <linux/module.h>
47#include <linux/lockdep.h>
48#include <linux/netdevice.h>
49#include <linux/skbuff.h>	/* struct sk_buff */
50#include <linux/mm.h>
51#include <linux/security.h>
52
53#include <linux/filter.h>
54
55#include <asm/atomic.h>
56#include <net/dst.h>
57#include <net/checksum.h>
58
59/*
60 * This structure really needs to be cleaned up.
61 * Most of it is for TCP, and not used by any of
62 * the other protocols.
63 */
64
65/* Define this to get the SOCK_DBG debugging facility. */
66#define SOCK_DEBUGGING
67#ifdef SOCK_DEBUGGING
68#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
69					printk(KERN_DEBUG msg); } while (0)
70#else
71#define SOCK_DEBUG(sk, msg...) do { } while (0)
72#endif
73
74/* This is the per-socket lock.  The spinlock provides a synchronization
75 * between user contexts and software interrupt processing, whereas the
76 * mini-semaphore synchronizes multiple users amongst themselves.
77 */
78struct sock_iocb;
79typedef struct {
80	spinlock_t		slock;
81	struct sock_iocb	*owner;
82	wait_queue_head_t	wq;
83	/*
84	 * We express the mutex-alike socket_lock semantics
85	 * to the lock validator by explicitly managing
86	 * the slock as a lock variant (in addition to
87	 * the slock itself):
88	 */
89#ifdef CONFIG_DEBUG_LOCK_ALLOC
90	struct lockdep_map dep_map;
91#endif
92} socket_lock_t;
93
94struct sock;
95struct proto;
96
97/**
98 *	struct sock_common - minimal network layer representation of sockets
99 *	@skc_family: network address family
100 *	@skc_state: Connection state
101 *	@skc_reuse: %SO_REUSEADDR setting
102 *	@skc_bound_dev_if: bound device index if != 0
103 *	@skc_node: main hash linkage for various protocol lookup tables
104 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
105 *	@skc_refcnt: reference count
106 *	@skc_hash: hash value used with various protocol lookup tables
107 *	@skc_prot: protocol handlers inside a network family
108 *
109 *	This is the minimal network layer representation of sockets, the header
110 *	for struct sock and struct inet_timewait_sock.
111 */
112struct sock_common {
113	unsigned short		skc_family;
114	volatile unsigned char	skc_state;
115	unsigned char		skc_reuse;
116	int			skc_bound_dev_if;
117	struct hlist_node	skc_node;
118	struct hlist_node	skc_bind_node;
119	atomic_t		skc_refcnt;
120	unsigned int		skc_hash;
121	struct proto		*skc_prot;
122};
123
124/**
125  *	struct sock - network layer representation of sockets
126  *	@__sk_common: shared layout with inet_timewait_sock
127  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
128  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
129  *	@sk_lock:	synchronizer
130  *	@sk_rcvbuf: size of receive buffer in bytes
131  *	@sk_sleep: sock wait queue
132  *	@sk_dst_cache: destination cache
133  *	@sk_dst_lock: destination cache lock
134  *	@sk_policy: flow policy
135  *	@sk_rmem_alloc: receive queue bytes committed
136  *	@sk_receive_queue: incoming packets
137  *	@sk_wmem_alloc: transmit queue bytes committed
138  *	@sk_write_queue: Packet sending queue
139  *	@sk_async_wait_queue: DMA copied packets
140  *	@sk_omem_alloc: "o" is "option" or "other"
141  *	@sk_wmem_queued: persistent queue size
142  *	@sk_forward_alloc: space allocated forward
143  *	@sk_allocation: allocation mode
144  *	@sk_sndbuf: size of send buffer in bytes
145  *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
146  *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
147  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
148  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
149  *	@sk_lingertime: %SO_LINGER l_linger setting
150  *	@sk_backlog: always used with the per-socket spinlock held
151  *	@sk_callback_lock: used with the callbacks in the end of this struct
152  *	@sk_error_queue: rarely used
153  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
154  *	@sk_err: last error
155  *	@sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
156  *	@sk_ack_backlog: current listen backlog
157  *	@sk_max_ack_backlog: listen backlog set in listen()
158  *	@sk_priority: %SO_PRIORITY setting
159  *	@sk_type: socket type (%SOCK_STREAM, etc)
160  *	@sk_protocol: which protocol this socket belongs in this network family
161  *	@sk_peercred: %SO_PEERCRED setting
162  *	@sk_rcvlowat: %SO_RCVLOWAT setting
163  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
164  *	@sk_sndtimeo: %SO_SNDTIMEO setting
165  *	@sk_filter: socket filtering instructions
166  *	@sk_protinfo: private area, net family specific, when not using slab
167  *	@sk_timer: sock cleanup timer
168  *	@sk_stamp: time stamp of last packet received
169  *	@sk_socket: Identd and reporting IO signals
170  *	@sk_user_data: RPC layer private data
171  *	@sk_sndmsg_page: cached page for sendmsg
172  *	@sk_sndmsg_off: cached offset for sendmsg
173  *	@sk_send_head: front of stuff to transmit
174  *	@sk_security: used by security modules
175  *	@sk_write_pending: a write to stream socket waits to start
176  *	@sk_state_change: callback to indicate change in the state of the sock
177  *	@sk_data_ready: callback to indicate there is data to be processed
178  *	@sk_write_space: callback to indicate there is bf sending space available
179  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
180  *	@sk_backlog_rcv: callback to process the backlog
181  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
182 */
183struct sock {
184	/*
185	 * Now struct inet_timewait_sock also uses sock_common, so please just
186	 * don't add nothing before this first member (__sk_common) --acme
187	 */
188	struct sock_common	__sk_common;
189#define sk_family		__sk_common.skc_family
190#define sk_state		__sk_common.skc_state
191#define sk_reuse		__sk_common.skc_reuse
192#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
193#define sk_node			__sk_common.skc_node
194#define sk_bind_node		__sk_common.skc_bind_node
195#define sk_refcnt		__sk_common.skc_refcnt
196#define sk_hash			__sk_common.skc_hash
197#define sk_prot			__sk_common.skc_prot
198	unsigned char		sk_shutdown : 2,
199				sk_no_check : 2,
200				sk_userlocks : 4;
201	unsigned char		sk_protocol;
202	unsigned short		sk_type;
203	int			sk_rcvbuf;
204	socket_lock_t		sk_lock;
205	/*
206	 * The backlog queue is special, it is always used with
207	 * the per-socket spinlock held and requires low latency
208	 * access. Therefore we special case it's implementation.
209	 */
210	struct {
211		struct sk_buff *head;
212		struct sk_buff *tail;
213	} sk_backlog;
214	wait_queue_head_t	*sk_sleep;
215	struct dst_entry	*sk_dst_cache;
216	struct xfrm_policy	*sk_policy[2];
217	rwlock_t		sk_dst_lock;
218	atomic_t		sk_rmem_alloc;
219	atomic_t		sk_wmem_alloc;
220	atomic_t		sk_omem_alloc;
221	int			sk_sndbuf;
222	struct sk_buff_head	sk_receive_queue;
223	struct sk_buff_head	sk_write_queue;
224	struct sk_buff_head	sk_async_wait_queue;
225	int			sk_wmem_queued;
226	int			sk_forward_alloc;
227	gfp_t			sk_allocation;
228	int			sk_route_caps;
229	int			sk_gso_type;
230	int			sk_rcvlowat;
231	unsigned long 		sk_flags;
232	unsigned long	        sk_lingertime;
233	struct sk_buff_head	sk_error_queue;
234	struct proto		*sk_prot_creator;
235	rwlock_t		sk_callback_lock;
236	int			sk_err,
237				sk_err_soft;
238	unsigned short		sk_ack_backlog;
239	unsigned short		sk_max_ack_backlog;
240	__u32			sk_priority;
241	struct ucred		sk_peercred;
242	long			sk_rcvtimeo;
243	long			sk_sndtimeo;
244	struct sk_filter      	*sk_filter;
245	void			*sk_protinfo;
246	struct timer_list	sk_timer;
247	ktime_t			sk_stamp;
248	struct socket		*sk_socket;
249	void			*sk_user_data;
250	struct page		*sk_sndmsg_page;
251	struct sk_buff		*sk_send_head;
252	__u32			sk_sndmsg_off;
253	int			sk_write_pending;
254	void			*sk_security;
255	void			(*sk_state_change)(struct sock *sk);
256	void			(*sk_data_ready)(struct sock *sk, int bytes);
257	void			(*sk_write_space)(struct sock *sk);
258	void			(*sk_error_report)(struct sock *sk);
259  	int			(*sk_backlog_rcv)(struct sock *sk,
260						  struct sk_buff *skb);
261	void                    (*sk_destruct)(struct sock *sk);
262};
263
264/*
265 * Hashed lists helper routines
266 */
267static inline struct sock *__sk_head(const struct hlist_head *head)
268{
269	return hlist_entry(head->first, struct sock, sk_node);
270}
271
272static inline struct sock *sk_head(const struct hlist_head *head)
273{
274	return hlist_empty(head) ? NULL : __sk_head(head);
275}
276
277static inline struct sock *sk_next(const struct sock *sk)
278{
279	return sk->sk_node.next ?
280		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
281}
282
283static inline int sk_unhashed(const struct sock *sk)
284{
285	return hlist_unhashed(&sk->sk_node);
286}
287
288static inline int sk_hashed(const struct sock *sk)
289{
290	return !sk_unhashed(sk);
291}
292
293static __inline__ void sk_node_init(struct hlist_node *node)
294{
295	node->pprev = NULL;
296}
297
298static __inline__ void __sk_del_node(struct sock *sk)
299{
300	__hlist_del(&sk->sk_node);
301}
302
303static __inline__ int __sk_del_node_init(struct sock *sk)
304{
305	if (sk_hashed(sk)) {
306		__sk_del_node(sk);
307		sk_node_init(&sk->sk_node);
308		return 1;
309	}
310	return 0;
311}
312
313/* Grab socket reference count. This operation is valid only
314   when sk is ALREADY grabbed f.e. it is found in hash table
315   or a list and the lookup is made under lock preventing hash table
316   modifications.
317 */
318
319static inline void sock_hold(struct sock *sk)
320{
321	atomic_inc(&sk->sk_refcnt);
322}
323
324/* Ungrab socket in the context, which assumes that socket refcnt
325   cannot hit zero, f.e. it is true in context of any socketcall.
326 */
327static inline void __sock_put(struct sock *sk)
328{
329	atomic_dec(&sk->sk_refcnt);
330}
331
332static __inline__ int sk_del_node_init(struct sock *sk)
333{
334	int rc = __sk_del_node_init(sk);
335
336	if (rc) {
337		/* paranoid for a while -acme */
338		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
339		__sock_put(sk);
340	}
341	return rc;
342}
343
344static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
345{
346	hlist_add_head(&sk->sk_node, list);
347}
348
349static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
350{
351	sock_hold(sk);
352	__sk_add_node(sk, list);
353}
354
355static __inline__ void __sk_del_bind_node(struct sock *sk)
356{
357	__hlist_del(&sk->sk_bind_node);
358}
359
360static __inline__ void sk_add_bind_node(struct sock *sk,
361					struct hlist_head *list)
362{
363	hlist_add_head(&sk->sk_bind_node, list);
364}
365
366#define sk_for_each(__sk, node, list) \
367	hlist_for_each_entry(__sk, node, list, sk_node)
368#define sk_for_each_from(__sk, node) \
369	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
370		hlist_for_each_entry_from(__sk, node, sk_node)
371#define sk_for_each_continue(__sk, node) \
372	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
373		hlist_for_each_entry_continue(__sk, node, sk_node)
374#define sk_for_each_safe(__sk, node, tmp, list) \
375	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
376#define sk_for_each_bound(__sk, node, list) \
377	hlist_for_each_entry(__sk, node, list, sk_bind_node)
378
379/* Sock flags */
380enum sock_flags {
381	SOCK_DEAD,
382	SOCK_DONE,
383	SOCK_URGINLINE,
384	SOCK_KEEPOPEN,
385	SOCK_LINGER,
386	SOCK_DESTROY,
387	SOCK_BROADCAST,
388	SOCK_TIMESTAMP,
389	SOCK_ZAPPED,
390	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
391	SOCK_DBG, /* %SO_DEBUG setting */
392	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
393	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
394	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
395	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
396};
397
398static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
399{
400	nsk->sk_flags = osk->sk_flags;
401}
402
403static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
404{
405	__set_bit(flag, &sk->sk_flags);
406}
407
408static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
409{
410	__clear_bit(flag, &sk->sk_flags);
411}
412
413static inline int sock_flag(struct sock *sk, enum sock_flags flag)
414{
415	return test_bit(flag, &sk->sk_flags);
416}
417
418static inline void sk_acceptq_removed(struct sock *sk)
419{
420	sk->sk_ack_backlog--;
421}
422
423static inline void sk_acceptq_added(struct sock *sk)
424{
425	sk->sk_ack_backlog++;
426}
427
428static inline int sk_acceptq_is_full(struct sock *sk)
429{
430	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
431}
432
433/*
434 * Compute minimal free write space needed to queue new packets.
435 */
436static inline int sk_stream_min_wspace(struct sock *sk)
437{
438	return sk->sk_wmem_queued / 2;
439}
440
441static inline int sk_stream_wspace(struct sock *sk)
442{
443	return sk->sk_sndbuf - sk->sk_wmem_queued;
444}
445
446extern void sk_stream_write_space(struct sock *sk);
447
448static inline int sk_stream_memory_free(struct sock *sk)
449{
450	return sk->sk_wmem_queued < sk->sk_sndbuf;
451}
452
453extern void sk_stream_rfree(struct sk_buff *skb);
454
455static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
456{
457	skb->sk = sk;
458	skb->destructor = sk_stream_rfree;
459	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
460	sk->sk_forward_alloc -= skb->truesize;
461}
462
463static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
464{
465	skb_truesize_check(skb);
466	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
467	sk->sk_wmem_queued   -= skb->truesize;
468	sk->sk_forward_alloc += skb->truesize;
469	__kfree_skb(skb);
470}
471
472/* The per-socket spinlock must be held here. */
473static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
474{
475	if (!sk->sk_backlog.tail) {
476		sk->sk_backlog.head = sk->sk_backlog.tail = skb;
477	} else {
478		sk->sk_backlog.tail->next = skb;
479		sk->sk_backlog.tail = skb;
480	}
481	skb->next = NULL;
482}
483
484#define sk_wait_event(__sk, __timeo, __condition)		\
485({	int rc;							\
486	release_sock(__sk);					\
487	rc = __condition;					\
488	if (!rc) {						\
489		*(__timeo) = schedule_timeout(*(__timeo));	\
490	}							\
491	lock_sock(__sk);					\
492	rc = __condition;					\
493	rc;							\
494})
495
496extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
497extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
498extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
499extern int sk_stream_error(struct sock *sk, int flags, int err);
500extern void sk_stream_kill_queues(struct sock *sk);
501
502extern int sk_wait_data(struct sock *sk, long *timeo);
503
504struct request_sock_ops;
505struct timewait_sock_ops;
506
507/* Networking protocol blocks we attach to sockets.
508 * socket layer -> transport layer interface
509 * transport -> network interface is defined by struct inet_proto
510 */
511struct proto {
512	void			(*close)(struct sock *sk,
513					long timeout);
514	int			(*connect)(struct sock *sk,
515				        struct sockaddr *uaddr,
516					int addr_len);
517	int			(*disconnect)(struct sock *sk, int flags);
518
519	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
520
521	int			(*ioctl)(struct sock *sk, int cmd,
522					 unsigned long arg);
523	int			(*init)(struct sock *sk);
524	int			(*destroy)(struct sock *sk);
525	void			(*shutdown)(struct sock *sk, int how);
526	int			(*setsockopt)(struct sock *sk, int level,
527					int optname, char __user *optval,
528					int optlen);
529	int			(*getsockopt)(struct sock *sk, int level,
530					int optname, char __user *optval,
531					int __user *option);
532	int			(*compat_setsockopt)(struct sock *sk,
533					int level,
534					int optname, char __user *optval,
535					int optlen);
536	int			(*compat_getsockopt)(struct sock *sk,
537					int level,
538					int optname, char __user *optval,
539					int __user *option);
540	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
541					   struct msghdr *msg, size_t len);
542	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
543					   struct msghdr *msg,
544					size_t len, int noblock, int flags,
545					int *addr_len);
546	int			(*sendpage)(struct sock *sk, struct page *page,
547					int offset, size_t size, int flags);
548	int			(*bind)(struct sock *sk,
549					struct sockaddr *uaddr, int addr_len);
550
551	int			(*backlog_rcv) (struct sock *sk,
552						struct sk_buff *skb);
553
554	/* Keeping track of sk's, looking them up, and port selection methods. */
555	void			(*hash)(struct sock *sk);
556	void			(*unhash)(struct sock *sk);
557	int			(*get_port)(struct sock *sk, unsigned short snum);
558
559	/* Memory pressure */
560	void			(*enter_memory_pressure)(void);
561	atomic_t		*memory_allocated;	/* Current allocated memory. */
562	atomic_t		*sockets_allocated;	/* Current number of sockets. */
563	/*
564	 * Pressure flag: try to collapse.
565	 * Technical note: it is used by multiple contexts non atomically.
566	 * All the sk_stream_mem_schedule() is of this nature: accounting
567	 * is strict, actions are advisory and have some latency.
568	 */
569	int			*memory_pressure;
570	int			*sysctl_mem;
571	int			*sysctl_wmem;
572	int			*sysctl_rmem;
573	int			max_header;
574
575	struct kmem_cache		*slab;
576	unsigned int		obj_size;
577
578	atomic_t		*orphan_count;
579
580	struct request_sock_ops	*rsk_prot;
581	struct timewait_sock_ops *twsk_prot;
582
583	struct module		*owner;
584
585	char			name[32];
586
587	struct list_head	node;
588#ifdef SOCK_REFCNT_DEBUG
589	atomic_t		socks;
590#endif
591	struct {
592		int inuse;
593		u8  __pad[SMP_CACHE_BYTES - sizeof(int)];
594	} stats[NR_CPUS];
595};
596
597extern int proto_register(struct proto *prot, int alloc_slab);
598extern void proto_unregister(struct proto *prot);
599
600#ifdef SOCK_REFCNT_DEBUG
601static inline void sk_refcnt_debug_inc(struct sock *sk)
602{
603	atomic_inc(&sk->sk_prot->socks);
604}
605
606static inline void sk_refcnt_debug_dec(struct sock *sk)
607{
608	atomic_dec(&sk->sk_prot->socks);
609	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
610	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
611}
612
613static inline void sk_refcnt_debug_release(const struct sock *sk)
614{
615	if (atomic_read(&sk->sk_refcnt) != 1)
616		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
617		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
618}
619#else /* SOCK_REFCNT_DEBUG */
620#define sk_refcnt_debug_inc(sk) do { } while (0)
621#define sk_refcnt_debug_dec(sk) do { } while (0)
622#define sk_refcnt_debug_release(sk) do { } while (0)
623#endif /* SOCK_REFCNT_DEBUG */
624
625/* Called with local bh disabled */
626static __inline__ void sock_prot_inc_use(struct proto *prot)
627{
628	prot->stats[smp_processor_id()].inuse++;
629}
630
631static __inline__ void sock_prot_dec_use(struct proto *prot)
632{
633	prot->stats[smp_processor_id()].inuse--;
634}
635
636/* With per-bucket locks this operation is not-atomic, so that
637 * this version is not worse.
638 */
639static inline void __sk_prot_rehash(struct sock *sk)
640{
641	sk->sk_prot->unhash(sk);
642	sk->sk_prot->hash(sk);
643}
644
645/* About 10 seconds */
646#define SOCK_DESTROY_TIME (10*HZ)
647
648/* Sockets 0-1023 can't be bound to unless you are superuser */
649#define PROT_SOCK	1024
650
651#define SHUTDOWN_MASK	3
652#define RCV_SHUTDOWN	1
653#define SEND_SHUTDOWN	2
654
655#define SOCK_SNDBUF_LOCK	1
656#define SOCK_RCVBUF_LOCK	2
657#define SOCK_BINDADDR_LOCK	4
658#define SOCK_BINDPORT_LOCK	8
659
660/* sock_iocb: used to kick off async processing of socket ios */
661struct sock_iocb {
662	struct list_head	list;
663
664	int			flags;
665	int			size;
666	struct socket		*sock;
667	struct sock		*sk;
668	struct scm_cookie	*scm;
669	struct msghdr		*msg, async_msg;
670	struct kiocb		*kiocb;
671};
672
673static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
674{
675	return (struct sock_iocb *)iocb->private;
676}
677
678static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
679{
680	return si->kiocb;
681}
682
683struct socket_alloc {
684	struct socket socket;
685	struct inode vfs_inode;
686};
687
688static inline struct socket *SOCKET_I(struct inode *inode)
689{
690	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
691}
692
693static inline struct inode *SOCK_INODE(struct socket *socket)
694{
695	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
696}
697
698extern void __sk_stream_mem_reclaim(struct sock *sk);
699extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
700
701#define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
702
703static inline int sk_stream_pages(int amt)
704{
705	return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
706}
707
708static inline void sk_stream_mem_reclaim(struct sock *sk)
709{
710	if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
711		__sk_stream_mem_reclaim(sk);
712}
713
714static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
715{
716	return (int)skb->truesize <= sk->sk_forward_alloc ||
717		sk_stream_mem_schedule(sk, skb->truesize, 1);
718}
719
720static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
721{
722	return size <= sk->sk_forward_alloc ||
723	       sk_stream_mem_schedule(sk, size, 0);
724}
725
726/* Used by processes to "lock" a socket state, so that
727 * interrupts and bottom half handlers won't change it
728 * from under us. It essentially blocks any incoming
729 * packets, so that we won't get any new data or any
730 * packets that change the state of the socket.
731 *
732 * While locked, BH processing will add new packets to
733 * the backlog queue.  This queue is processed by the
734 * owner of the socket lock right before it is released.
735 *
736 * Since ~2.3.5 it is also exclusive sleep lock serializing
737 * accesses from user process context.
738 */
739#define sock_owned_by_user(sk)	((sk)->sk_lock.owner)
740
741/*
742 * Macro so as to not evaluate some arguments when
743 * lockdep is not enabled.
744 *
745 * Mark both the sk_lock and the sk_lock.slock as a
746 * per-address-family lock class.
747 */
748#define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
749do {									\
750	sk->sk_lock.owner = NULL;					\
751	init_waitqueue_head(&sk->sk_lock.wq);				\
752	spin_lock_init(&(sk)->sk_lock.slock);				\
753	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
754			sizeof((sk)->sk_lock));				\
755	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
756		       	(skey), (sname));				\
757	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
758} while (0)
759
760extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass));
761
762static inline void lock_sock(struct sock *sk)
763{
764	lock_sock_nested(sk, 0);
765}
766
767extern void FASTCALL(release_sock(struct sock *sk));
768
769/* BH context may only use the following locking interface. */
770#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
771#define bh_lock_sock_nested(__sk) \
772				spin_lock_nested(&((__sk)->sk_lock.slock), \
773				SINGLE_DEPTH_NESTING)
774#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
775
776extern struct sock		*sk_alloc(int family,
777					  gfp_t priority,
778					  struct proto *prot, int zero_it);
779extern void			sk_free(struct sock *sk);
780extern struct sock		*sk_clone(const struct sock *sk,
781					  const gfp_t priority);
782
783extern struct sk_buff		*sock_wmalloc(struct sock *sk,
784					      unsigned long size, int force,
785					      gfp_t priority);
786extern struct sk_buff		*sock_rmalloc(struct sock *sk,
787					      unsigned long size, int force,
788					      gfp_t priority);
789extern void			sock_wfree(struct sk_buff *skb);
790extern void			sock_rfree(struct sk_buff *skb);
791
792extern int			sock_setsockopt(struct socket *sock, int level,
793						int op, char __user *optval,
794						int optlen);
795
796extern int			sock_getsockopt(struct socket *sock, int level,
797						int op, char __user *optval,
798						int __user *optlen);
799extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
800						     unsigned long size,
801						     int noblock,
802						     int *errcode);
803extern void *sock_kmalloc(struct sock *sk, int size,
804			  gfp_t priority);
805extern void sock_kfree_s(struct sock *sk, void *mem, int size);
806extern void sk_send_sigurg(struct sock *sk);
807
808/*
809 * Functions to fill in entries in struct proto_ops when a protocol
810 * does not implement a particular function.
811 */
812extern int                      sock_no_bind(struct socket *,
813					     struct sockaddr *, int);
814extern int                      sock_no_connect(struct socket *,
815						struct sockaddr *, int, int);
816extern int                      sock_no_socketpair(struct socket *,
817						   struct socket *);
818extern int                      sock_no_accept(struct socket *,
819					       struct socket *, int);
820extern int                      sock_no_getname(struct socket *,
821						struct sockaddr *, int *, int);
822extern unsigned int             sock_no_poll(struct file *, struct socket *,
823					     struct poll_table_struct *);
824extern int                      sock_no_ioctl(struct socket *, unsigned int,
825					      unsigned long);
826extern int			sock_no_listen(struct socket *, int);
827extern int                      sock_no_shutdown(struct socket *, int);
828extern int			sock_no_getsockopt(struct socket *, int , int,
829						   char __user *, int __user *);
830extern int			sock_no_setsockopt(struct socket *, int, int,
831						   char __user *, int);
832extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
833						struct msghdr *, size_t);
834extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
835						struct msghdr *, size_t, int);
836extern int			sock_no_mmap(struct file *file,
837					     struct socket *sock,
838					     struct vm_area_struct *vma);
839extern ssize_t			sock_no_sendpage(struct socket *sock,
840						struct page *page,
841						int offset, size_t size,
842						int flags);
843
844/*
845 * Functions to fill in entries in struct proto_ops when a protocol
846 * uses the inet style.
847 */
848extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
849				  char __user *optval, int __user *optlen);
850extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
851			       struct msghdr *msg, size_t size, int flags);
852extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
853				  char __user *optval, int optlen);
854extern int compat_sock_common_getsockopt(struct socket *sock, int level,
855		int optname, char __user *optval, int __user *optlen);
856extern int compat_sock_common_setsockopt(struct socket *sock, int level,
857		int optname, char __user *optval, int optlen);
858
859extern void sk_common_release(struct sock *sk);
860
861/*
862 *	Default socket callbacks and setup code
863 */
864
865/* Initialise core socket variables */
866extern void sock_init_data(struct socket *sock, struct sock *sk);
867
868/**
869 *	sk_filter - run a packet through a socket filter
870 *	@sk: sock associated with &sk_buff
871 *	@skb: buffer to filter
872 *	@needlock: set to 1 if the sock is not locked by caller.
873 *
874 * Run the filter code and then cut skb->data to correct size returned by
875 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
876 * than pkt_len we keep whole skb->data. This is the socket level
877 * wrapper to sk_run_filter. It returns 0 if the packet should
878 * be accepted or -EPERM if the packet should be tossed.
879 *
880 */
881
882static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
883{
884	int err;
885	struct sk_filter *filter;
886
887	err = security_sock_rcv_skb(sk, skb);
888	if (err)
889		return err;
890
891	rcu_read_lock_bh();
892	filter = sk->sk_filter;
893	if (filter) {
894		unsigned int pkt_len = sk_run_filter(skb, filter->insns,
895				filter->len);
896		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
897	}
898 	rcu_read_unlock_bh();
899
900	return err;
901}
902
903/**
904 * 	sk_filter_rcu_free: Free a socket filter
905 *	@rcu: rcu_head that contains the sk_filter to free
906 */
907static inline void sk_filter_rcu_free(struct rcu_head *rcu)
908{
909	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
910	kfree(fp);
911}
912
913/**
914 *	sk_filter_release: Release a socket filter
915 *	@sk: socket
916 *	@fp: filter to remove
917 *
918 *	Remove a filter from a socket and release its resources.
919 */
920
921static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
922{
923	unsigned int size = sk_filter_len(fp);
924
925	atomic_sub(size, &sk->sk_omem_alloc);
926
927	if (atomic_dec_and_test(&fp->refcnt))
928		call_rcu_bh(&fp->rcu, sk_filter_rcu_free);
929}
930
931static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
932{
933	atomic_inc(&fp->refcnt);
934	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
935}
936
937/*
938 * Socket reference counting postulates.
939 *
940 * * Each user of socket SHOULD hold a reference count.
941 * * Each access point to socket (an hash table bucket, reference from a list,
942 *   running timer, skb in flight MUST hold a reference count.
943 * * When reference count hits 0, it means it will never increase back.
944 * * When reference count hits 0, it means that no references from
945 *   outside exist to this socket and current process on current CPU
946 *   is last user and may/should destroy this socket.
947 * * sk_free is called from any context: process, BH, IRQ. When
948 *   it is called, socket has no references from outside -> sk_free
949 *   may release descendant resources allocated by the socket, but
950 *   to the time when it is called, socket is NOT referenced by any
951 *   hash tables, lists etc.
952 * * Packets, delivered from outside (from network or from another process)
953 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
954 *   when they sit in queue. Otherwise, packets will leak to hole, when
955 *   socket is looked up by one cpu and unhasing is made by another CPU.
956 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
957 *   (leak to backlog). Packet socket does all the processing inside
958 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
959 *   use separate SMP lock, so that they are prone too.
960 */
961
962/* Ungrab socket and destroy it, if it was the last reference. */
963static inline void sock_put(struct sock *sk)
964{
965	if (atomic_dec_and_test(&sk->sk_refcnt))
966		sk_free(sk);
967}
968
969extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
970			  const int nested);
971
972/* Detach socket from process context.
973 * Announce socket dead, detach it from wait queue and inode.
974 * Note that parent inode held reference count on this struct sock,
975 * we do not release it in this function, because protocol
976 * probably wants some additional cleanups or even continuing
977 * to work with this socket (TCP).
978 */
979static inline void sock_orphan(struct sock *sk)
980{
981	write_lock_bh(&sk->sk_callback_lock);
982	sock_set_flag(sk, SOCK_DEAD);
983	sk->sk_socket = NULL;
984	sk->sk_sleep  = NULL;
985	write_unlock_bh(&sk->sk_callback_lock);
986}
987
988static inline void sock_graft(struct sock *sk, struct socket *parent)
989{
990	write_lock_bh(&sk->sk_callback_lock);
991	sk->sk_sleep = &parent->wait;
992	parent->sk = sk;
993	sk->sk_socket = parent;
994	security_sock_graft(sk, parent);
995	write_unlock_bh(&sk->sk_callback_lock);
996}
997
998static inline void sock_copy(struct sock *nsk, const struct sock *osk)
999{
1000#ifdef CONFIG_SECURITY_NETWORK
1001	void *sptr = nsk->sk_security;
1002#endif
1003
1004	memcpy(nsk, osk, osk->sk_prot->obj_size);
1005#ifdef CONFIG_SECURITY_NETWORK
1006	nsk->sk_security = sptr;
1007	security_sk_clone(osk, nsk);
1008#endif
1009}
1010
1011extern int sock_i_uid(struct sock *sk);
1012extern unsigned long sock_i_ino(struct sock *sk);
1013
1014static inline struct dst_entry *
1015__sk_dst_get(struct sock *sk)
1016{
1017	return sk->sk_dst_cache;
1018}
1019
1020static inline struct dst_entry *
1021sk_dst_get(struct sock *sk)
1022{
1023	struct dst_entry *dst;
1024
1025	read_lock(&sk->sk_dst_lock);
1026	dst = sk->sk_dst_cache;
1027	if (dst)
1028		dst_hold(dst);
1029	read_unlock(&sk->sk_dst_lock);
1030	return dst;
1031}
1032
1033static inline void
1034__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1035{
1036	struct dst_entry *old_dst;
1037
1038	old_dst = sk->sk_dst_cache;
1039	sk->sk_dst_cache = dst;
1040	dst_release(old_dst);
1041}
1042
1043static inline void
1044sk_dst_set(struct sock *sk, struct dst_entry *dst)
1045{
1046	write_lock(&sk->sk_dst_lock);
1047	__sk_dst_set(sk, dst);
1048	write_unlock(&sk->sk_dst_lock);
1049}
1050
1051static inline void
1052__sk_dst_reset(struct sock *sk)
1053{
1054	struct dst_entry *old_dst;
1055
1056	old_dst = sk->sk_dst_cache;
1057	sk->sk_dst_cache = NULL;
1058	dst_release(old_dst);
1059}
1060
1061static inline void
1062sk_dst_reset(struct sock *sk)
1063{
1064	write_lock(&sk->sk_dst_lock);
1065	__sk_dst_reset(sk);
1066	write_unlock(&sk->sk_dst_lock);
1067}
1068
1069extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1070
1071extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1072
1073static inline int sk_can_gso(const struct sock *sk)
1074{
1075	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1076}
1077
1078extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1079
1080static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1081{
1082	sk->sk_wmem_queued   += skb->truesize;
1083	sk->sk_forward_alloc -= skb->truesize;
1084}
1085
1086static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1087				   struct sk_buff *skb, struct page *page,
1088				   int off, int copy)
1089{
1090	if (skb->ip_summed == CHECKSUM_NONE) {
1091		int err = 0;
1092		__wsum csum = csum_and_copy_from_user(from,
1093						     page_address(page) + off,
1094							    copy, 0, &err);
1095		if (err)
1096			return err;
1097		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1098	} else if (copy_from_user(page_address(page) + off, from, copy))
1099		return -EFAULT;
1100
1101	skb->len	     += copy;
1102	skb->data_len	     += copy;
1103	skb->truesize	     += copy;
1104	sk->sk_wmem_queued   += copy;
1105	sk->sk_forward_alloc -= copy;
1106	return 0;
1107}
1108
1109/*
1110 * 	Queue a received datagram if it will fit. Stream and sequenced
1111 *	protocols can't normally use this as they need to fit buffers in
1112 *	and play with them.
1113 *
1114 * 	Inlined as it's very short and called for pretty much every
1115 *	packet ever received.
1116 */
1117
1118static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1119{
1120	sock_hold(sk);
1121	skb->sk = sk;
1122	skb->destructor = sock_wfree;
1123	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1124}
1125
1126static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1127{
1128	skb->sk = sk;
1129	skb->destructor = sock_rfree;
1130	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1131}
1132
1133extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1134			   unsigned long expires);
1135
1136extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1137
1138extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1139
1140static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1141{
1142	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1143	   number of warnings when compiling with -W --ANK
1144	 */
1145	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1146	    (unsigned)sk->sk_rcvbuf)
1147		return -ENOMEM;
1148	skb_set_owner_r(skb, sk);
1149	skb_queue_tail(&sk->sk_error_queue, skb);
1150	if (!sock_flag(sk, SOCK_DEAD))
1151		sk->sk_data_ready(sk, skb->len);
1152	return 0;
1153}
1154
1155/*
1156 *	Recover an error report and clear atomically
1157 */
1158
1159static inline int sock_error(struct sock *sk)
1160{
1161	int err;
1162	if (likely(!sk->sk_err))
1163		return 0;
1164	err = xchg(&sk->sk_err, 0);
1165	return -err;
1166}
1167
1168static inline unsigned long sock_wspace(struct sock *sk)
1169{
1170	int amt = 0;
1171
1172	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1173		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1174		if (amt < 0)
1175			amt = 0;
1176	}
1177	return amt;
1178}
1179
1180static inline void sk_wake_async(struct sock *sk, int how, int band)
1181{
1182	if (sk->sk_socket && sk->sk_socket->fasync_list)
1183		sock_wake_async(sk->sk_socket, how, band);
1184}
1185
1186#define SOCK_MIN_SNDBUF 2048
1187#define SOCK_MIN_RCVBUF 256
1188
1189static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1190{
1191	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1192		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1193		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1194	}
1195}
1196
1197static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1198						   int size, int mem,
1199						   gfp_t gfp)
1200{
1201	struct sk_buff *skb;
1202	int hdr_len;
1203
1204	hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1205	skb = alloc_skb_fclone(size + hdr_len, gfp);
1206	if (skb) {
1207		skb->truesize += mem;
1208		if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1209			skb_reserve(skb, hdr_len);
1210			return skb;
1211		}
1212		__kfree_skb(skb);
1213	} else {
1214		sk->sk_prot->enter_memory_pressure();
1215		sk_stream_moderate_sndbuf(sk);
1216	}
1217	return NULL;
1218}
1219
1220static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1221						  int size,
1222						  gfp_t gfp)
1223{
1224	return sk_stream_alloc_pskb(sk, size, 0, gfp);
1225}
1226
1227static inline struct page *sk_stream_alloc_page(struct sock *sk)
1228{
1229	struct page *page = NULL;
1230
1231	page = alloc_pages(sk->sk_allocation, 0);
1232	if (!page) {
1233		sk->sk_prot->enter_memory_pressure();
1234		sk_stream_moderate_sndbuf(sk);
1235	}
1236	return page;
1237}
1238
1239/*
1240 *	Default write policy as shown to user space via poll/select/SIGIO
1241 */
1242static inline int sock_writeable(const struct sock *sk)
1243{
1244	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1245}
1246
1247static inline gfp_t gfp_any(void)
1248{
1249	return in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
1250}
1251
1252static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1253{
1254	return noblock ? 0 : sk->sk_rcvtimeo;
1255}
1256
1257static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1258{
1259	return noblock ? 0 : sk->sk_sndtimeo;
1260}
1261
1262static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1263{
1264	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1265}
1266
1267/* Alas, with timeout socket operations are not restartable.
1268 * Compare this to poll().
1269 */
1270static inline int sock_intr_errno(long timeo)
1271{
1272	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1273}
1274
1275extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1276	struct sk_buff *skb);
1277
1278static __inline__ void
1279sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1280{
1281	ktime_t kt = skb->tstamp;
1282
1283	if (sock_flag(sk, SOCK_RCVTSTAMP))
1284		__sock_recv_timestamp(msg, sk, skb);
1285	else
1286		sk->sk_stamp = kt;
1287}
1288
1289/**
1290 * sk_eat_skb - Release a skb if it is no longer needed
1291 * @sk: socket to eat this skb from
1292 * @skb: socket buffer to eat
1293 * @copied_early: flag indicating whether DMA operations copied this data early
1294 *
1295 * This routine must be called with interrupts disabled or with the socket
1296 * locked so that the sk_buff queue operation is ok.
1297*/
1298#ifdef CONFIG_NET_DMA
1299static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1300{
1301	__skb_unlink(skb, &sk->sk_receive_queue);
1302	if (!copied_early)
1303		__kfree_skb(skb);
1304	else
1305		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1306}
1307#else
1308static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1309{
1310	__skb_unlink(skb, &sk->sk_receive_queue);
1311	__kfree_skb(skb);
1312}
1313#endif
1314
1315extern void sock_enable_timestamp(struct sock *sk);
1316extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1317extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1318
1319/*
1320 *	Enable debug/info messages
1321 */
1322extern int net_msg_warn;
1323#define NETDEBUG(fmt, args...) \
1324	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1325
1326#define LIMIT_NETDEBUG(fmt, args...) \
1327	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1328
1329/*
1330 * Macros for sleeping on a socket. Use them like this:
1331 *
1332 * SOCK_SLEEP_PRE(sk)
1333 * if (condition)
1334 * 	schedule();
1335 * SOCK_SLEEP_POST(sk)
1336 *
1337 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1338 * and when the last use of them in DECnet has gone, I'm intending to
1339 * remove them.
1340 */
1341
1342#define SOCK_SLEEP_PRE(sk) 	{ struct task_struct *tsk = current; \
1343				DECLARE_WAITQUEUE(wait, tsk); \
1344				tsk->state = TASK_INTERRUPTIBLE; \
1345				add_wait_queue((sk)->sk_sleep, &wait); \
1346				release_sock(sk);
1347
1348#define SOCK_SLEEP_POST(sk)	tsk->state = TASK_RUNNING; \
1349				remove_wait_queue((sk)->sk_sleep, &wait); \
1350				lock_sock(sk); \
1351				}
1352
1353static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1354{
1355	if (valbool)
1356		sock_set_flag(sk, bit);
1357	else
1358		sock_reset_flag(sk, bit);
1359}
1360
1361extern __u32 sysctl_wmem_max;
1362extern __u32 sysctl_rmem_max;
1363
1364extern void sk_init(void);
1365
1366#ifdef CONFIG_SYSCTL
1367extern struct ctl_table core_table[];
1368#endif
1369
1370extern int sysctl_optmem_max;
1371
1372extern __u32 sysctl_wmem_default;
1373extern __u32 sysctl_rmem_default;
1374
1375#endif	/* _SOCK_H */
1376