1#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#include <linux/mod_devicetable.h>
5#include <linux/usb/ch9.h>
6
7#define USB_MAJOR			180
8#define USB_DEVICE_MAJOR		189
9
10
11#ifdef __KERNEL__
12
13#include <linux/errno.h>        /* for -ENODEV */
14#include <linux/delay.h>	/* for mdelay() */
15#include <linux/interrupt.h>	/* for in_interrupt() */
16#include <linux/list.h>		/* for struct list_head */
17#include <linux/kref.h>		/* for struct kref */
18#include <linux/device.h>	/* for struct device */
19#include <linux/fs.h>		/* for struct file_operations */
20#include <linux/completion.h>	/* for struct completion */
21#include <linux/sched.h>	/* for current && schedule_timeout */
22#include <linux/mutex.h>	/* for struct mutex */
23
24struct usb_device;
25struct usb_driver;
26
27/*-------------------------------------------------------------------------*/
28
29/*
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices.  Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
33 *
34 *  - devices have one (usually) or more configs;
35 *  - configs have one (often) or more interfaces;
36 *  - interfaces have one (usually) or more settings;
37 *  - each interface setting has zero or (usually) more endpoints.
38 *
39 * And there might be other descriptors mixed in with those.
40 *
41 * Devices may also have class-specific or vendor-specific descriptors.
42 */
43
44struct ep_device;
45
46/**
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 *	with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
55 *
56 * USB requests are always queued to a given endpoint, identified by a
57 * descriptor within an active interface in a given USB configuration.
58 */
59struct usb_host_endpoint {
60	struct usb_endpoint_descriptor	desc;
61	struct list_head		urb_list;
62	void				*hcpriv;
63	struct ep_device 		*ep_dev;	/* For sysfs info */
64
65	unsigned char *extra;   /* Extra descriptors */
66	int extralen;
67#ifdef CONFIG_WL_USBAP
68	int ehci_fastpath_enabled;
69#endif
70};
71
72/* host-side wrapper for one interface setting's parsed descriptors */
73struct usb_host_interface {
74	struct usb_interface_descriptor	desc;
75
76	/* array of desc.bNumEndpoint endpoints associated with this
77	 * interface setting.  these will be in no particular order.
78	 */
79	struct usb_host_endpoint *endpoint;
80
81	char *string;		/* iInterface string, if present */
82	unsigned char *extra;   /* Extra descriptors */
83	int extralen;
84};
85
86enum usb_interface_condition {
87	USB_INTERFACE_UNBOUND = 0,
88	USB_INTERFACE_BINDING,
89	USB_INTERFACE_BOUND,
90	USB_INTERFACE_UNBINDING,
91};
92
93/**
94 * struct usb_interface - what usb device drivers talk to
95 * @altsetting: array of interface structures, one for each alternate
96 * 	setting that may be selected.  Each one includes a set of
97 * 	endpoint configurations.  They will be in no particular order.
98 * @num_altsetting: number of altsettings defined.
99 * @cur_altsetting: the current altsetting.
100 * @driver: the USB driver that is bound to this interface.
101 * @minor: the minor number assigned to this interface, if this
102 *	interface is bound to a driver that uses the USB major number.
103 *	If this interface does not use the USB major, this field should
104 *	be unused.  The driver should set this value in the probe()
105 *	function of the driver, after it has been assigned a minor
106 *	number from the USB core by calling usb_register_dev().
107 * @condition: binding state of the interface: not bound, binding
108 *	(in probe()), bound to a driver, or unbinding (in disconnect())
109 * @is_active: flag set when the interface is bound and not suspended.
110 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
111 *	capability during autosuspend.
112 * @dev: driver model's view of this device
113 * @usb_dev: if an interface is bound to the USB major, this will point
114 *	to the sysfs representation for that device.
115 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
116 *	allowed unless the counter is 0.
117 *
118 * USB device drivers attach to interfaces on a physical device.  Each
119 * interface encapsulates a single high level function, such as feeding
120 * an audio stream to a speaker or reporting a change in a volume control.
121 * Many USB devices only have one interface.  The protocol used to talk to
122 * an interface's endpoints can be defined in a usb "class" specification,
123 * or by a product's vendor.  The (default) control endpoint is part of
124 * every interface, but is never listed among the interface's descriptors.
125 *
126 * The driver that is bound to the interface can use standard driver model
127 * calls such as dev_get_drvdata() on the dev member of this structure.
128 *
129 * Each interface may have alternate settings.  The initial configuration
130 * of a device sets altsetting 0, but the device driver can change
131 * that setting using usb_set_interface().  Alternate settings are often
132 * used to control the use of periodic endpoints, such as by having
133 * different endpoints use different amounts of reserved USB bandwidth.
134 * All standards-conformant USB devices that use isochronous endpoints
135 * will use them in non-default settings.
136 *
137 * The USB specification says that alternate setting numbers must run from
138 * 0 to one less than the total number of alternate settings.  But some
139 * devices manage to mess this up, and the structures aren't necessarily
140 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
141 * look up an alternate setting in the altsetting array based on its number.
142 */
143struct usb_interface {
144	/* array of alternate settings for this interface,
145	 * stored in no particular order */
146	struct usb_host_interface *altsetting;
147
148	struct usb_host_interface *cur_altsetting;	/* the currently
149					 * active alternate setting */
150	unsigned num_altsetting;	/* number of alternate settings */
151
152	int minor;			/* minor number this interface is
153					 * bound to */
154	enum usb_interface_condition condition;		/* state of binding */
155	unsigned is_active:1;		/* the interface is not suspended */
156	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
157
158	struct device dev;		/* interface specific device info */
159	struct device *usb_dev;		/* pointer to the usb class's device, if any */
160	int pm_usage_cnt;		/* usage counter for autosuspend */
161};
162#define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
163#define	interface_to_usbdev(intf) \
164	container_of(intf->dev.parent, struct usb_device, dev)
165
166static inline void *usb_get_intfdata (struct usb_interface *intf)
167{
168	return dev_get_drvdata (&intf->dev);
169}
170
171static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
172{
173	dev_set_drvdata(&intf->dev, data);
174}
175
176struct usb_interface *usb_get_intf(struct usb_interface *intf);
177void usb_put_intf(struct usb_interface *intf);
178
179/* this maximum is arbitrary */
180#define USB_MAXINTERFACES	32
181
182/**
183 * struct usb_interface_cache - long-term representation of a device interface
184 * @num_altsetting: number of altsettings defined.
185 * @ref: reference counter.
186 * @altsetting: variable-length array of interface structures, one for
187 *	each alternate setting that may be selected.  Each one includes a
188 *	set of endpoint configurations.  They will be in no particular order.
189 *
190 * These structures persist for the lifetime of a usb_device, unlike
191 * struct usb_interface (which persists only as long as its configuration
192 * is installed).  The altsetting arrays can be accessed through these
193 * structures at any time, permitting comparison of configurations and
194 * providing support for the /proc/bus/usb/devices pseudo-file.
195 */
196struct usb_interface_cache {
197	unsigned num_altsetting;	/* number of alternate settings */
198	struct kref ref;		/* reference counter */
199
200	/* variable-length array of alternate settings for this interface,
201	 * stored in no particular order */
202	struct usb_host_interface altsetting[0];
203};
204#define	ref_to_usb_interface_cache(r) \
205		container_of(r, struct usb_interface_cache, ref)
206#define	altsetting_to_usb_interface_cache(a) \
207		container_of(a, struct usb_interface_cache, altsetting[0])
208
209/**
210 * struct usb_host_config - representation of a device's configuration
211 * @desc: the device's configuration descriptor.
212 * @string: pointer to the cached version of the iConfiguration string, if
213 *	present for this configuration.
214 * @interface: array of pointers to usb_interface structures, one for each
215 *	interface in the configuration.  The number of interfaces is stored
216 *	in desc.bNumInterfaces.  These pointers are valid only while the
217 *	the configuration is active.
218 * @intf_cache: array of pointers to usb_interface_cache structures, one
219 *	for each interface in the configuration.  These structures exist
220 *	for the entire life of the device.
221 * @extra: pointer to buffer containing all extra descriptors associated
222 *	with this configuration (those preceding the first interface
223 *	descriptor).
224 * @extralen: length of the extra descriptors buffer.
225 *
226 * USB devices may have multiple configurations, but only one can be active
227 * at any time.  Each encapsulates a different operational environment;
228 * for example, a dual-speed device would have separate configurations for
229 * full-speed and high-speed operation.  The number of configurations
230 * available is stored in the device descriptor as bNumConfigurations.
231 *
232 * A configuration can contain multiple interfaces.  Each corresponds to
233 * a different function of the USB device, and all are available whenever
234 * the configuration is active.  The USB standard says that interfaces
235 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
236 * of devices get this wrong.  In addition, the interface array is not
237 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
238 * look up an interface entry based on its number.
239 *
240 * Device drivers should not attempt to activate configurations.  The choice
241 * of which configuration to install is a policy decision based on such
242 * considerations as available power, functionality provided, and the user's
243 * desires (expressed through userspace tools).  However, drivers can call
244 * usb_reset_configuration() to reinitialize the current configuration and
245 * all its interfaces.
246 */
247struct usb_host_config {
248	struct usb_config_descriptor	desc;
249
250	char *string;		/* iConfiguration string, if present */
251	/* the interfaces associated with this configuration,
252	 * stored in no particular order */
253	struct usb_interface *interface[USB_MAXINTERFACES];
254
255	/* Interface information available even when this is not the
256	 * active configuration */
257	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
258
259	unsigned char *extra;   /* Extra descriptors */
260	int extralen;
261};
262
263int __usb_get_extra_descriptor(char *buffer, unsigned size,
264	unsigned char type, void **ptr);
265#define usb_get_extra_descriptor(ifpoint,type,ptr)\
266	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
267		type,(void**)ptr)
268
269/* ----------------------------------------------------------------------- */
270
271/* USB device number allocation bitmap */
272struct usb_devmap {
273	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
274};
275
276/*
277 * Allocated per bus (tree of devices) we have:
278 */
279struct usb_bus {
280	struct device *controller;	/* host/master side hardware */
281	int busnum;			/* Bus number (in order of reg) */
282	char *bus_name;			/* stable id (PCI slot_name etc) */
283	u8 uses_dma;			/* Does the host controller use DMA? */
284	u8 otg_port;			/* 0, or number of OTG/HNP port */
285	unsigned is_b_host:1;		/* true during some HNP roleswitches */
286	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
287
288	int devnum_next;		/* Next open device number in
289					 * round-robin allocation */
290
291	struct usb_devmap devmap;	/* device address allocation map */
292	struct usb_device *root_hub;	/* Root hub */
293	struct list_head bus_list;	/* list of busses */
294
295	int bandwidth_allocated;	/* on this bus: how much of the time
296					 * reserved for periodic (intr/iso)
297					 * requests is used, on average?
298					 * Units: microseconds/frame.
299					 * Limits: Full/low speed reserve 90%,
300					 * while high speed reserves 80%.
301					 */
302	int bandwidth_int_reqs;		/* number of Interrupt requests */
303	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
304
305#ifdef CONFIG_USB_DEVICEFS
306	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
307#endif
308	struct class_device *class_dev;	/* class device for this bus */
309
310#if defined(CONFIG_USB_MON)
311	struct mon_bus *mon_bus;	/* non-null when associated */
312	int monitored;			/* non-zero when monitored */
313#endif
314};
315
316/* ----------------------------------------------------------------------- */
317
318/* This is arbitrary.
319 * From USB 2.0 spec Table 11-13, offset 7, a hub can
320 * have up to 255 ports. The most yet reported is 10.
321 *
322 * Current Wireless USB host hardware (Intel i1480 for example) allows
323 * up to 22 devices to connect. Upcoming hardware might raise that
324 * limit. Because the arrays need to add a bit for hub status data, we
325 * do 31, so plus one evens out to four bytes.
326 */
327#define USB_MAXCHILDREN		(31)
328
329struct usb_tt;
330
331struct usb_device {
332	int		devnum;		/* Address on USB bus */
333	char		devpath [16];	/* Use in messages: /port/port/... */
334	enum usb_device_state	state;	/* configured, not attached, etc */
335	enum usb_device_speed	speed;	/* high/full/low (or error) */
336
337	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
338	int		ttport;		/* device port on that tt hub */
339
340	unsigned int toggle[2];		/* one bit for each endpoint
341					 * ([0] = IN, [1] = OUT) */
342
343	struct usb_device *parent;	/* our hub, unless we're the root */
344	struct usb_bus *bus;		/* Bus we're part of */
345	struct usb_host_endpoint ep0;
346
347	struct device dev;		/* Generic device interface */
348
349	struct usb_device_descriptor descriptor;/* Descriptor */
350	struct usb_host_config *config;	/* All of the configs */
351
352	struct usb_host_config *actconfig;/* the active configuration */
353	struct usb_host_endpoint *ep_in[16];
354	struct usb_host_endpoint *ep_out[16];
355
356	char **rawdescriptors;		/* Raw descriptors for each config */
357
358	unsigned short bus_mA;		/* Current available from the bus */
359	u8 portnum;			/* Parent port number (origin 1) */
360	u8 level;			/* Number of USB hub ancestors */
361
362	unsigned discon_suspended:1;	/* Disconnected while suspended */
363	unsigned have_langid:1;		/* whether string_langid is valid */
364	int string_langid;		/* language ID for strings */
365
366	/* static strings from the device */
367	char *product;			/* iProduct string, if present */
368	char *manufacturer;		/* iManufacturer string, if present */
369	char *serial;			/* iSerialNumber string, if present */
370
371	struct list_head filelist;
372#ifdef CONFIG_USB_DEVICE_CLASS
373	struct device *usb_classdev;
374#endif
375#ifdef CONFIG_USB_DEVICEFS
376	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
377#endif
378	/*
379	 * Child devices - these can be either new devices
380	 * (if this is a hub device), or different instances
381	 * of this same device.
382	 *
383	 * Each instance needs its own set of data structures.
384	 */
385
386	int maxchild;			/* Number of ports if hub */
387	struct usb_device *children[USB_MAXCHILDREN];
388
389	int pm_usage_cnt;		/* usage counter for autosuspend */
390	u32 quirks;			/* quirks of the whole device */
391
392#ifdef CONFIG_PM
393	struct delayed_work autosuspend; /* for delayed autosuspends */
394	struct mutex pm_mutex;		/* protects PM operations */
395
396	unsigned long last_busy;	/* time of last use */
397	int autosuspend_delay;		/* in jiffies */
398
399	unsigned auto_pm:1;		/* autosuspend/resume in progress */
400	unsigned do_remote_wakeup:1;	/* remote wakeup should be enabled */
401	unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
402	unsigned autoresume_disabled:1;  /*  disabled by the user */
403#endif
404};
405#define	to_usb_device(d) container_of(d, struct usb_device, dev)
406
407extern struct usb_device *usb_get_dev(struct usb_device *dev);
408extern void usb_put_dev(struct usb_device *dev);
409
410/* USB device locking */
411#define usb_lock_device(udev)		down(&(udev)->dev.sem)
412#define usb_unlock_device(udev)		up(&(udev)->dev.sem)
413#define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
414extern int usb_lock_device_for_reset(struct usb_device *udev,
415				     const struct usb_interface *iface);
416
417/* USB port reset for device reinitialization */
418extern int usb_reset_device(struct usb_device *dev);
419extern int usb_reset_composite_device(struct usb_device *dev,
420		struct usb_interface *iface);
421
422extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
423
424/* USB autosuspend and autoresume */
425#ifdef CONFIG_USB_SUSPEND
426extern int usb_autopm_set_interface(struct usb_interface *intf);
427extern int usb_autopm_get_interface(struct usb_interface *intf);
428extern void usb_autopm_put_interface(struct usb_interface *intf);
429
430static inline void usb_autopm_enable(struct usb_interface *intf)
431{
432	intf->pm_usage_cnt = 0;
433	usb_autopm_set_interface(intf);
434}
435
436static inline void usb_autopm_disable(struct usb_interface *intf)
437{
438	intf->pm_usage_cnt = 1;
439	usb_autopm_set_interface(intf);
440}
441
442static inline void usb_mark_last_busy(struct usb_device *udev)
443{
444	udev->last_busy = jiffies;
445}
446
447#else
448
449static inline int usb_autopm_set_interface(struct usb_interface *intf)
450{ return 0; }
451
452static inline int usb_autopm_get_interface(struct usb_interface *intf)
453{ return 0; }
454
455static inline void usb_autopm_put_interface(struct usb_interface *intf)
456{ }
457static inline void usb_autopm_enable(struct usb_interface *intf)
458{ }
459static inline void usb_autopm_disable(struct usb_interface *intf)
460{ }
461static inline void usb_mark_last_busy(struct usb_device *udev)
462{ }
463#endif
464
465/*-------------------------------------------------------------------------*/
466
467/* for drivers using iso endpoints */
468extern int usb_get_current_frame_number (struct usb_device *usb_dev);
469
470/* used these for multi-interface device registration */
471extern int usb_driver_claim_interface(struct usb_driver *driver,
472			struct usb_interface *iface, void* priv);
473
474/**
475 * usb_interface_claimed - returns true iff an interface is claimed
476 * @iface: the interface being checked
477 *
478 * Returns true (nonzero) iff the interface is claimed, else false (zero).
479 * Callers must own the driver model's usb bus readlock.  So driver
480 * probe() entries don't need extra locking, but other call contexts
481 * may need to explicitly claim that lock.
482 *
483 */
484static inline int usb_interface_claimed(struct usb_interface *iface) {
485	return (iface->dev.driver != NULL);
486}
487
488extern void usb_driver_release_interface(struct usb_driver *driver,
489			struct usb_interface *iface);
490const struct usb_device_id *usb_match_id(struct usb_interface *interface,
491					 const struct usb_device_id *id);
492extern int usb_match_one_id(struct usb_interface *interface,
493			    const struct usb_device_id *id);
494
495extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
496		int minor);
497extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
498		unsigned ifnum);
499extern struct usb_host_interface *usb_altnum_to_altsetting(
500		const struct usb_interface *intf, unsigned int altnum);
501
502
503/**
504 * usb_make_path - returns stable device path in the usb tree
505 * @dev: the device whose path is being constructed
506 * @buf: where to put the string
507 * @size: how big is "buf"?
508 *
509 * Returns length of the string (> 0) or negative if size was too small.
510 *
511 * This identifier is intended to be "stable", reflecting physical paths in
512 * hardware such as physical bus addresses for host controllers or ports on
513 * USB hubs.  That makes it stay the same until systems are physically
514 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
515 * controllers.  Adding and removing devices, including virtual root hubs
516 * in host controller driver modules, does not change these path identifers;
517 * neither does rebooting or re-enumerating.  These are more useful identifiers
518 * than changeable ("unstable") ones like bus numbers or device addresses.
519 *
520 * With a partial exception for devices connected to USB 2.0 root hubs, these
521 * identifiers are also predictable.  So long as the device tree isn't changed,
522 * plugging any USB device into a given hub port always gives it the same path.
523 * Because of the use of "companion" controllers, devices connected to ports on
524 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
525 * high speed, and a different one if they are full or low speed.
526 */
527static inline int usb_make_path (struct usb_device *dev, char *buf,
528		size_t size)
529{
530	int actual;
531	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
532			dev->devpath);
533	return (actual >= (int)size) ? -1 : actual;
534}
535
536/*-------------------------------------------------------------------------*/
537
538/**
539 * usb_endpoint_dir_in - check if the endpoint has IN direction
540 * @epd: endpoint to be checked
541 *
542 * Returns true if the endpoint is of type IN, otherwise it returns false.
543 */
544static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
545{
546	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
547}
548
549/**
550 * usb_endpoint_dir_out - check if the endpoint has OUT direction
551 * @epd: endpoint to be checked
552 *
553 * Returns true if the endpoint is of type OUT, otherwise it returns false.
554 */
555static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
556{
557	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
558}
559
560/**
561 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
562 * @epd: endpoint to be checked
563 *
564 * Returns true if the endpoint is of type bulk, otherwise it returns false.
565 */
566static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
567{
568	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
569		USB_ENDPOINT_XFER_BULK);
570}
571
572/**
573 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
574 * @epd: endpoint to be checked
575 *
576 * Returns true if the endpoint is of type control, otherwise it returns false.
577 */
578static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
579{
580	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
581		USB_ENDPOINT_XFER_CONTROL);
582}
583
584/**
585 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
586 * @epd: endpoint to be checked
587 *
588 * Returns true if the endpoint is of type interrupt, otherwise it returns
589 * false.
590 */
591static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
592{
593	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
594		USB_ENDPOINT_XFER_INT);
595}
596
597/**
598 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
599 * @epd: endpoint to be checked
600 *
601 * Returns true if the endpoint is of type isochronous, otherwise it returns
602 * false.
603 */
604static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
605{
606	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
607		USB_ENDPOINT_XFER_ISOC);
608}
609
610/**
611 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
612 * @epd: endpoint to be checked
613 *
614 * Returns true if the endpoint has bulk transfer type and IN direction,
615 * otherwise it returns false.
616 */
617static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
618{
619	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
620}
621
622/**
623 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
624 * @epd: endpoint to be checked
625 *
626 * Returns true if the endpoint has bulk transfer type and OUT direction,
627 * otherwise it returns false.
628 */
629static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
630{
631	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
632}
633
634/**
635 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
636 * @epd: endpoint to be checked
637 *
638 * Returns true if the endpoint has interrupt transfer type and IN direction,
639 * otherwise it returns false.
640 */
641static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
642{
643	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
644}
645
646/**
647 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
648 * @epd: endpoint to be checked
649 *
650 * Returns true if the endpoint has interrupt transfer type and OUT direction,
651 * otherwise it returns false.
652 */
653static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
654{
655	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
656}
657
658/**
659 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
660 * @epd: endpoint to be checked
661 *
662 * Returns true if the endpoint has isochronous transfer type and IN direction,
663 * otherwise it returns false.
664 */
665static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
666{
667	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
668}
669
670/**
671 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
672 * @epd: endpoint to be checked
673 *
674 * Returns true if the endpoint has isochronous transfer type and OUT direction,
675 * otherwise it returns false.
676 */
677static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
678{
679	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
680}
681
682/*-------------------------------------------------------------------------*/
683
684#define USB_DEVICE_ID_MATCH_DEVICE \
685		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
686#define USB_DEVICE_ID_MATCH_DEV_RANGE \
687		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
688#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
689		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
690#define USB_DEVICE_ID_MATCH_DEV_INFO \
691		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
692		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
693		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
694#define USB_DEVICE_ID_MATCH_INT_INFO \
695		(USB_DEVICE_ID_MATCH_INT_CLASS | \
696		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
697		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
698
699/**
700 * USB_DEVICE - macro used to describe a specific usb device
701 * @vend: the 16 bit USB Vendor ID
702 * @prod: the 16 bit USB Product ID
703 *
704 * This macro is used to create a struct usb_device_id that matches a
705 * specific device.
706 */
707#define USB_DEVICE(vend,prod) \
708	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
709			.idProduct = (prod)
710/**
711 * USB_DEVICE_VER - macro used to describe a specific usb device with a
712 *		version range
713 * @vend: the 16 bit USB Vendor ID
714 * @prod: the 16 bit USB Product ID
715 * @lo: the bcdDevice_lo value
716 * @hi: the bcdDevice_hi value
717 *
718 * This macro is used to create a struct usb_device_id that matches a
719 * specific device, with a version range.
720 */
721#define USB_DEVICE_VER(vend,prod,lo,hi) \
722	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
723	.idVendor = (vend), .idProduct = (prod), \
724	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
725
726/**
727 * USB_DEVICE_INFO - macro used to describe a class of usb devices
728 * @cl: bDeviceClass value
729 * @sc: bDeviceSubClass value
730 * @pr: bDeviceProtocol value
731 *
732 * This macro is used to create a struct usb_device_id that matches a
733 * specific class of devices.
734 */
735#define USB_DEVICE_INFO(cl,sc,pr) \
736	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
737	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
738
739/**
740 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
741 * @cl: bInterfaceClass value
742 * @sc: bInterfaceSubClass value
743 * @pr: bInterfaceProtocol value
744 *
745 * This macro is used to create a struct usb_device_id that matches a
746 * specific class of interfaces.
747 */
748#define USB_INTERFACE_INFO(cl,sc,pr) \
749	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
750	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
751
752/* ----------------------------------------------------------------------- */
753
754/* Stuff for dynamic usb ids */
755struct usb_dynids {
756	spinlock_t lock;
757	struct list_head list;
758};
759
760struct usb_dynid {
761	struct list_head node;
762	struct usb_device_id id;
763};
764
765extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
766				struct device_driver *driver,
767				const char *buf, size_t count);
768
769/**
770 * struct usbdrv_wrap - wrapper for driver-model structure
771 * @driver: The driver-model core driver structure.
772 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
773 */
774struct usbdrv_wrap {
775	struct device_driver driver;
776	int for_devices;
777};
778
779/**
780 * struct usb_driver - identifies USB interface driver to usbcore
781 * @name: The driver name should be unique among USB drivers,
782 *	and should normally be the same as the module name.
783 * @probe: Called to see if the driver is willing to manage a particular
784 *	interface on a device.  If it is, probe returns zero and uses
785 *	dev_set_drvdata() to associate driver-specific data with the
786 *	interface.  It may also use usb_set_interface() to specify the
787 *	appropriate altsetting.  If unwilling to manage the interface,
788 *	return a negative errno value.
789 * @disconnect: Called when the interface is no longer accessible, usually
790 *	because its device has been (or is being) disconnected or the
791 *	driver module is being unloaded.
792 * @ioctl: Used for drivers that want to talk to userspace through
793 *	the "usbfs" filesystem.  This lets devices provide ways to
794 *	expose information to user space regardless of where they
795 *	do (or don't) show up otherwise in the filesystem.
796 * @suspend: Called when the device is going to be suspended by the system.
797 * @resume: Called when the device is being resumed by the system.
798 * @pre_reset: Called by usb_reset_composite_device() when the device
799 *	is about to be reset.
800 * @post_reset: Called by usb_reset_composite_device() after the device
801 *	has been reset.
802 * @id_table: USB drivers use ID table to support hotplugging.
803 *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
804 *	or your driver's probe function will never get called.
805 * @dynids: used internally to hold the list of dynamically added device
806 *	ids for this driver.
807 * @drvwrap: Driver-model core structure wrapper.
808 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
809 *	added to this driver by preventing the sysfs file from being created.
810 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
811 *	for interfaces bound to this driver.
812 *
813 * USB interface drivers must provide a name, probe() and disconnect()
814 * methods, and an id_table.  Other driver fields are optional.
815 *
816 * The id_table is used in hotplugging.  It holds a set of descriptors,
817 * and specialized data may be associated with each entry.  That table
818 * is used by both user and kernel mode hotplugging support.
819 *
820 * The probe() and disconnect() methods are called in a context where
821 * they can sleep, but they should avoid abusing the privilege.  Most
822 * work to connect to a device should be done when the device is opened,
823 * and undone at the last close.  The disconnect code needs to address
824 * concurrency issues with respect to open() and close() methods, as
825 * well as forcing all pending I/O requests to complete (by unlinking
826 * them as necessary, and blocking until the unlinks complete).
827 */
828struct usb_driver {
829	const char *name;
830
831	int (*probe) (struct usb_interface *intf,
832		      const struct usb_device_id *id);
833
834	void (*disconnect) (struct usb_interface *intf);
835
836	int (*ioctl) (struct usb_interface *intf, unsigned int code,
837			void *buf);
838
839	int (*suspend) (struct usb_interface *intf, pm_message_t message);
840	int (*resume) (struct usb_interface *intf);
841
842	void (*pre_reset) (struct usb_interface *intf);
843	void (*post_reset) (struct usb_interface *intf);
844
845	const struct usb_device_id *id_table;
846
847	struct usb_dynids dynids;
848	struct usbdrv_wrap drvwrap;
849	unsigned int no_dynamic_id:1;
850	unsigned int supports_autosuspend:1;
851};
852#define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
853
854/**
855 * struct usb_device_driver - identifies USB device driver to usbcore
856 * @name: The driver name should be unique among USB drivers,
857 *	and should normally be the same as the module name.
858 * @probe: Called to see if the driver is willing to manage a particular
859 *	device.  If it is, probe returns zero and uses dev_set_drvdata()
860 *	to associate driver-specific data with the device.  If unwilling
861 *	to manage the device, return a negative errno value.
862 * @disconnect: Called when the device is no longer accessible, usually
863 *	because it has been (or is being) disconnected or the driver's
864 *	module is being unloaded.
865 * @suspend: Called when the device is going to be suspended by the system.
866 * @resume: Called when the device is being resumed by the system.
867 * @drvwrap: Driver-model core structure wrapper.
868 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
869 *	for devices bound to this driver.
870 *
871 * USB drivers must provide all the fields listed above except drvwrap.
872 */
873struct usb_device_driver {
874	const char *name;
875
876	int (*probe) (struct usb_device *udev);
877	void (*disconnect) (struct usb_device *udev);
878
879	int (*suspend) (struct usb_device *udev, pm_message_t message);
880	int (*resume) (struct usb_device *udev);
881	struct usbdrv_wrap drvwrap;
882	unsigned int supports_autosuspend:1;
883};
884#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
885		drvwrap.driver)
886
887extern struct bus_type usb_bus_type;
888
889/**
890 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
891 * @name: the usb class device name for this driver.  Will show up in sysfs.
892 * @fops: pointer to the struct file_operations of this driver.
893 * @minor_base: the start of the minor range for this driver.
894 *
895 * This structure is used for the usb_register_dev() and
896 * usb_unregister_dev() functions, to consolidate a number of the
897 * parameters used for them.
898 */
899struct usb_class_driver {
900	char *name;
901	const struct file_operations *fops;
902	int minor_base;
903};
904
905/*
906 * use these in module_init()/module_exit()
907 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
908 */
909extern int usb_register_driver(struct usb_driver *, struct module *,
910			       const char *);
911static inline int usb_register(struct usb_driver *driver)
912{
913	return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
914}
915extern void usb_deregister(struct usb_driver *);
916
917extern int usb_register_device_driver(struct usb_device_driver *,
918			struct module *);
919extern void usb_deregister_device_driver(struct usb_device_driver *);
920
921extern int usb_register_dev(struct usb_interface *intf,
922			    struct usb_class_driver *class_driver);
923extern void usb_deregister_dev(struct usb_interface *intf,
924			       struct usb_class_driver *class_driver);
925
926extern int usb_disabled(void);
927
928/* ----------------------------------------------------------------------- */
929
930/*
931 * URB support, for asynchronous request completions
932 */
933
934/*
935 * urb->transfer_flags:
936 */
937#define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
938#define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
939					 * ignored */
940#define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
941#define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
942#define URB_NO_FSBR		0x0020	/* UHCI-specific */
943#define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
944#define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
945					 * needed */
946#define URB_QTD_CACHED		0x2000	/* For EHCI_QTD_CACHE only! */
947
948//#define EHCI_QTD_CACHE
949//#define EHCI_QTDC_DEBUG
950
951struct usb_iso_packet_descriptor {
952	unsigned int offset;
953	unsigned int length;		/* expected length */
954	unsigned int actual_length;
955	int status;
956};
957
958struct urb;
959
960typedef void (*usb_complete_t)(struct urb *);
961
962/**
963 * struct urb - USB Request Block
964 * @urb_list: For use by current owner of the URB.
965 * @pipe: Holds endpoint number, direction, type, and more.
966 *	Create these values with the eight macros available;
967 *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
968 *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
969 *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
970 *	numbers range from zero to fifteen.  Note that "in" endpoint two
971 *	is a different endpoint (and pipe) from "out" endpoint two.
972 *	The current configuration controls the existence, type, and
973 *	maximum packet size of any given endpoint.
974 * @dev: Identifies the USB device to perform the request.
975 * @status: This is read in non-iso completion functions to get the
976 *	status of the particular request.  ISO requests only use it
977 *	to tell whether the URB was unlinked; detailed status for
978 *	each frame is in the fields of the iso_frame-desc.
979 * @transfer_flags: A variety of flags may be used to affect how URB
980 *	submission, unlinking, or operation are handled.  Different
981 *	kinds of URB can use different flags.
982 * @transfer_buffer:  This identifies the buffer to (or from) which
983 * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
984 *	is set).  This buffer must be suitable for DMA; allocate it with
985 *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
986 *	of this buffer will be modified.  This buffer is used for the data
987 *	stage of control transfers.
988 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
989 *	the device driver is saying that it provided this DMA address,
990 *	which the host controller driver should use in preference to the
991 *	transfer_buffer.
992 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
993 *	be broken up into chunks according to the current maximum packet
994 *	size for the endpoint, which is a function of the configuration
995 *	and is encoded in the pipe.  When the length is zero, neither
996 *	transfer_buffer nor transfer_dma is used.
997 * @actual_length: This is read in non-iso completion functions, and
998 *	it tells how many bytes (out of transfer_buffer_length) were
999 *	transferred.  It will normally be the same as requested, unless
1000 *	either an error was reported or a short read was performed.
1001 *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1002 *	short reads be reported as errors.
1003 * @setup_packet: Only used for control transfers, this points to eight bytes
1004 *	of setup data.  Control transfers always start by sending this data
1005 *	to the device.  Then transfer_buffer is read or written, if needed.
1006 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1007 *	device driver has provided this DMA address for the setup packet.
1008 *	The host controller driver should use this in preference to
1009 *	setup_packet.
1010 * @start_frame: Returns the initial frame for isochronous transfers.
1011 * @number_of_packets: Lists the number of ISO transfer buffers.
1012 * @interval: Specifies the polling interval for interrupt or isochronous
1013 *	transfers.  The units are frames (milliseconds) for for full and low
1014 *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
1015 * @error_count: Returns the number of ISO transfers that reported errors.
1016 * @context: For use in completion functions.  This normally points to
1017 *	request-specific driver context.
1018 * @complete: Completion handler. This URB is passed as the parameter to the
1019 *	completion function.  The completion function may then do what
1020 *	it likes with the URB, including resubmitting or freeing it.
1021 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1022 *	collect the transfer status for each buffer.
1023 *
1024 * This structure identifies USB transfer requests.  URBs must be allocated by
1025 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1026 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1027 * are submitted using usb_submit_urb(), and pending requests may be canceled
1028 * using usb_unlink_urb() or usb_kill_urb().
1029 *
1030 * Data Transfer Buffers:
1031 *
1032 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1033 * taken from the general page pool.  That is provided by transfer_buffer
1034 * (control requests also use setup_packet), and host controller drivers
1035 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1036 * mapping operations can be expensive on some platforms (perhaps using a dma
1037 * bounce buffer or talking to an IOMMU),
1038 * although they're cheap on commodity x86 and ppc hardware.
1039 *
1040 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1041 * which tell the host controller driver that no such mapping is needed since
1042 * the device driver is DMA-aware.  For example, a device driver might
1043 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1044 * When these transfer flags are provided, host controller drivers will
1045 * attempt to use the dma addresses found in the transfer_dma and/or
1046 * setup_dma fields rather than determining a dma address themselves.  (Note
1047 * that transfer_buffer and setup_packet must still be set because not all
1048 * host controllers use DMA, nor do virtual root hubs).
1049 *
1050 * Initialization:
1051 *
1052 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1053 * zero), and complete fields.  All URBs must also initialize
1054 * transfer_buffer and transfer_buffer_length.  They may provide the
1055 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1056 * to be treated as errors; that flag is invalid for write requests.
1057 *
1058 * Bulk URBs may
1059 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1060 * should always terminate with a short packet, even if it means adding an
1061 * extra zero length packet.
1062 *
1063 * Control URBs must provide a setup_packet.  The setup_packet and
1064 * transfer_buffer may each be mapped for DMA or not, independently of
1065 * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1066 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1067 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1068 *
1069 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1070 * or, for highspeed devices, 125 microsecond units)
1071 * to poll for transfers.  After the URB has been submitted, the interval
1072 * field reflects how the transfer was actually scheduled.
1073 * The polling interval may be more frequent than requested.
1074 * For example, some controllers have a maximum interval of 32 milliseconds,
1075 * while others support intervals of up to 1024 milliseconds.
1076 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1077 * endpoints, as well as high speed interrupt endpoints, the encoding of
1078 * the transfer interval in the endpoint descriptor is logarithmic.
1079 * Device drivers must convert that value to linear units themselves.)
1080 *
1081 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1082 * the host controller to schedule the transfer as soon as bandwidth
1083 * utilization allows, and then set start_frame to reflect the actual frame
1084 * selected during submission.  Otherwise drivers must specify the start_frame
1085 * and handle the case where the transfer can't begin then.  However, drivers
1086 * won't know how bandwidth is currently allocated, and while they can
1087 * find the current frame using usb_get_current_frame_number () they can't
1088 * know the range for that frame number.  (Ranges for frame counter values
1089 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1090 *
1091 * Isochronous URBs have a different data transfer model, in part because
1092 * the quality of service is only "best effort".  Callers provide specially
1093 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1094 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1095 * URBs are normally queued, submitted by drivers to arrange that
1096 * transfers are at least double buffered, and then explicitly resubmitted
1097 * in completion handlers, so
1098 * that data (such as audio or video) streams at as constant a rate as the
1099 * host controller scheduler can support.
1100 *
1101 * Completion Callbacks:
1102 *
1103 * The completion callback is made in_interrupt(), and one of the first
1104 * things that a completion handler should do is check the status field.
1105 * The status field is provided for all URBs.  It is used to report
1106 * unlinked URBs, and status for all non-ISO transfers.  It should not
1107 * be examined before the URB is returned to the completion handler.
1108 *
1109 * The context field is normally used to link URBs back to the relevant
1110 * driver or request state.
1111 *
1112 * When the completion callback is invoked for non-isochronous URBs, the
1113 * actual_length field tells how many bytes were transferred.  This field
1114 * is updated even when the URB terminated with an error or was unlinked.
1115 *
1116 * ISO transfer status is reported in the status and actual_length fields
1117 * of the iso_frame_desc array, and the number of errors is reported in
1118 * error_count.  Completion callbacks for ISO transfers will normally
1119 * (re)submit URBs to ensure a constant transfer rate.
1120 *
1121 * Note that even fields marked "public" should not be touched by the driver
1122 * when the urb is owned by the hcd, that is, since the call to
1123 * usb_submit_urb() till the entry into the completion routine.
1124 */
1125struct urb
1126{
1127	/* private: usb core and host controller only fields in the urb */
1128	struct kref kref;		/* reference count of the URB */
1129	spinlock_t lock;		/* lock for the URB */
1130	void *hcpriv;			/* private data for host controller */
1131	atomic_t use_count;		/* concurrent submissions counter */
1132	u8 reject;			/* submissions will fail */
1133
1134	/* public: documented fields in the urb that can be used by drivers */
1135	struct list_head urb_list;	/* list head for use by the urb's
1136					 * current owner */
1137	struct usb_device *dev; 	/* (in) pointer to associated device */
1138	unsigned int pipe;		/* (in) pipe information */
1139	int status;			/* (return) non-ISO status */
1140	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1141	void *transfer_buffer;		/* (in) associated data buffer */
1142	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1143	int transfer_buffer_length;	/* (in) data buffer length */
1144	int actual_length;		/* (return) actual transfer length */
1145	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1146	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1147	int start_frame;		/* (modify) start frame (ISO) */
1148	int number_of_packets;		/* (in) number of ISO packets */
1149	int interval;			/* (modify) transfer interval
1150					 * (INT/ISO) */
1151	int error_count;		/* (return) number of ISO errors */
1152	void *context;			/* (in) context for completion */
1153	usb_complete_t complete;	/* (in) completion routine */
1154	struct usb_iso_packet_descriptor iso_frame_desc[0];
1155					/* (in) ISO ONLY */
1156};
1157
1158/* ----------------------------------------------------------------------- */
1159
1160/**
1161 * usb_fill_control_urb - initializes a control urb
1162 * @urb: pointer to the urb to initialize.
1163 * @dev: pointer to the struct usb_device for this urb.
1164 * @pipe: the endpoint pipe
1165 * @setup_packet: pointer to the setup_packet buffer
1166 * @transfer_buffer: pointer to the transfer buffer
1167 * @buffer_length: length of the transfer buffer
1168 * @complete_fn: pointer to the usb_complete_t function
1169 * @context: what to set the urb context to.
1170 *
1171 * Initializes a control urb with the proper information needed to submit
1172 * it to a device.
1173 */
1174static inline void usb_fill_control_urb (struct urb *urb,
1175					 struct usb_device *dev,
1176					 unsigned int pipe,
1177					 unsigned char *setup_packet,
1178					 void *transfer_buffer,
1179					 int buffer_length,
1180					 usb_complete_t complete_fn,
1181					 void *context)
1182{
1183	spin_lock_init(&urb->lock);
1184	urb->dev = dev;
1185	urb->pipe = pipe;
1186	urb->setup_packet = setup_packet;
1187	urb->transfer_buffer = transfer_buffer;
1188	urb->transfer_buffer_length = buffer_length;
1189	urb->complete = complete_fn;
1190	urb->context = context;
1191}
1192
1193/**
1194 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1195 * @urb: pointer to the urb to initialize.
1196 * @dev: pointer to the struct usb_device for this urb.
1197 * @pipe: the endpoint pipe
1198 * @transfer_buffer: pointer to the transfer buffer
1199 * @buffer_length: length of the transfer buffer
1200 * @complete_fn: pointer to the usb_complete_t function
1201 * @context: what to set the urb context to.
1202 *
1203 * Initializes a bulk urb with the proper information needed to submit it
1204 * to a device.
1205 */
1206static inline void usb_fill_bulk_urb (struct urb *urb,
1207				      struct usb_device *dev,
1208				      unsigned int pipe,
1209				      void *transfer_buffer,
1210				      int buffer_length,
1211				      usb_complete_t complete_fn,
1212				      void *context)
1213{
1214	spin_lock_init(&urb->lock);
1215	urb->dev = dev;
1216	urb->pipe = pipe;
1217	urb->transfer_buffer = transfer_buffer;
1218	urb->transfer_buffer_length = buffer_length;
1219	urb->complete = complete_fn;
1220	urb->context = context;
1221}
1222
1223/**
1224 * usb_fill_int_urb - macro to help initialize a interrupt urb
1225 * @urb: pointer to the urb to initialize.
1226 * @dev: pointer to the struct usb_device for this urb.
1227 * @pipe: the endpoint pipe
1228 * @transfer_buffer: pointer to the transfer buffer
1229 * @buffer_length: length of the transfer buffer
1230 * @complete_fn: pointer to the usb_complete_t function
1231 * @context: what to set the urb context to.
1232 * @interval: what to set the urb interval to, encoded like
1233 *	the endpoint descriptor's bInterval value.
1234 *
1235 * Initializes a interrupt urb with the proper information needed to submit
1236 * it to a device.
1237 * Note that high speed interrupt endpoints use a logarithmic encoding of
1238 * the endpoint interval, and express polling intervals in microframes
1239 * (eight per millisecond) rather than in frames (one per millisecond).
1240 */
1241static inline void usb_fill_int_urb (struct urb *urb,
1242				     struct usb_device *dev,
1243				     unsigned int pipe,
1244				     void *transfer_buffer,
1245				     int buffer_length,
1246				     usb_complete_t complete_fn,
1247				     void *context,
1248				     int interval)
1249{
1250	spin_lock_init(&urb->lock);
1251	urb->dev = dev;
1252	urb->pipe = pipe;
1253	urb->transfer_buffer = transfer_buffer;
1254	urb->transfer_buffer_length = buffer_length;
1255	urb->complete = complete_fn;
1256	urb->context = context;
1257	if (dev->speed == USB_SPEED_HIGH)
1258		urb->interval = 1 << (interval - 1);
1259	else
1260		urb->interval = interval;
1261	urb->start_frame = -1;
1262}
1263
1264extern void usb_init_urb(struct urb *urb);
1265extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1266extern void usb_free_urb(struct urb *urb);
1267#define usb_put_urb usb_free_urb
1268extern struct urb *usb_get_urb(struct urb *urb);
1269extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1270extern int usb_unlink_urb(struct urb *urb);
1271extern void usb_kill_urb(struct urb *urb);
1272
1273void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1274	gfp_t mem_flags, dma_addr_t *dma);
1275void usb_buffer_free (struct usb_device *dev, size_t size,
1276	void *addr, dma_addr_t dma);
1277
1278
1279struct scatterlist;
1280int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1281		      struct scatterlist *sg, int nents);
1282void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1283			 struct scatterlist *sg, int n_hw_ents);
1284
1285/*-------------------------------------------------------------------*
1286 *                         SYNCHRONOUS CALL SUPPORT                  *
1287 *-------------------------------------------------------------------*/
1288
1289extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1290	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1291	void *data, __u16 size, int timeout);
1292extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1293	void *data, int len, int *actual_length, int timeout);
1294extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1295	void *data, int len, int *actual_length,
1296	int timeout);
1297
1298/* wrappers around usb_control_msg() for the most common standard requests */
1299extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1300	unsigned char descindex, void *buf, int size);
1301extern int usb_get_status(struct usb_device *dev,
1302	int type, int target, void *data);
1303extern int usb_string(struct usb_device *dev, int index,
1304	char *buf, size_t size);
1305
1306/* wrappers that also update important state inside usbcore */
1307extern int usb_clear_halt(struct usb_device *dev, int pipe);
1308extern int usb_reset_configuration(struct usb_device *dev);
1309extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1310
1311/* this request isn't really synchronous, but it belongs with the others */
1312extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1313
1314/*
1315 * timeouts, in milliseconds, used for sending/receiving control messages
1316 * they typically complete within a few frames (msec) after they're issued
1317 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1318 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1319 */
1320#define USB_CTRL_GET_TIMEOUT	5000
1321#define USB_CTRL_SET_TIMEOUT	5000
1322
1323
1324/**
1325 * struct usb_sg_request - support for scatter/gather I/O
1326 * @status: zero indicates success, else negative errno
1327 * @bytes: counts bytes transferred.
1328 *
1329 * These requests are initialized using usb_sg_init(), and then are used
1330 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1331 * members of the request object aren't for driver access.
1332 *
1333 * The status and bytecount values are valid only after usb_sg_wait()
1334 * returns.  If the status is zero, then the bytecount matches the total
1335 * from the request.
1336 *
1337 * After an error completion, drivers may need to clear a halt condition
1338 * on the endpoint.
1339 */
1340struct usb_sg_request {
1341	int			status;
1342	size_t			bytes;
1343
1344	/*
1345	 * members below are private: to usbcore,
1346	 * and are not provided for driver access!
1347	 */
1348	spinlock_t		lock;
1349
1350	struct usb_device	*dev;
1351	int			pipe;
1352	struct scatterlist	*sg;
1353	int			nents;
1354
1355	int			entries;
1356	struct urb		**urbs;
1357
1358	int			count;
1359	struct completion	complete;
1360};
1361
1362int usb_sg_init (
1363	struct usb_sg_request	*io,
1364	struct usb_device	*dev,
1365	unsigned		pipe,
1366	unsigned		period,
1367	struct scatterlist	*sg,
1368	int			nents,
1369	size_t			length,
1370	gfp_t			mem_flags
1371);
1372void usb_sg_cancel (struct usb_sg_request *io);
1373void usb_sg_wait (struct usb_sg_request *io);
1374
1375
1376/* ----------------------------------------------------------------------- */
1377
1378/*
1379 * For various legacy reasons, Linux has a small cookie that's paired with
1380 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1381 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1382 * an unsigned int encoded as:
1383 *
1384 *  - direction:	bit 7		(0 = Host-to-Device [Out],
1385 *					 1 = Device-to-Host [In] ...
1386 *					like endpoint bEndpointAddress)
1387 *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1388 *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1389 *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1390 *					 10 = control, 11 = bulk)
1391 *
1392 * Given the device address and endpoint descriptor, pipes are redundant.
1393 */
1394
1395/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1396/* (yet ... they're the values used by usbfs) */
1397#define PIPE_ISOCHRONOUS		0
1398#define PIPE_INTERRUPT			1
1399#define PIPE_CONTROL			2
1400#define PIPE_BULK			3
1401
1402#define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1403#define usb_pipeout(pipe)	(!usb_pipein(pipe))
1404
1405#define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1406#define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1407
1408#define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1409#define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1410#define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1411#define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1412#define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1413
1414/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1415#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1416#define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1417#define usb_settoggle(dev, ep, out, bit) \
1418		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1419		 ((bit) << (ep)))
1420
1421
1422static inline unsigned int __create_pipe(struct usb_device *dev,
1423		unsigned int endpoint)
1424{
1425	return (dev->devnum << 8) | (endpoint << 15);
1426}
1427
1428/* Create various pipes... */
1429#define usb_sndctrlpipe(dev,endpoint)	\
1430	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1431#define usb_rcvctrlpipe(dev,endpoint)	\
1432	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1433#define usb_sndisocpipe(dev,endpoint)	\
1434	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1435#define usb_rcvisocpipe(dev,endpoint)	\
1436	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1437#define usb_sndbulkpipe(dev,endpoint)	\
1438	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1439#define usb_rcvbulkpipe(dev,endpoint)	\
1440	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1441#define usb_sndintpipe(dev,endpoint)	\
1442	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1443#define usb_rcvintpipe(dev,endpoint)	\
1444	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1445
1446/*-------------------------------------------------------------------------*/
1447
1448static inline __u16
1449usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1450{
1451	struct usb_host_endpoint	*ep;
1452	unsigned			epnum = usb_pipeendpoint(pipe);
1453
1454	if (is_out) {
1455		WARN_ON(usb_pipein(pipe));
1456		ep = udev->ep_out[epnum];
1457	} else {
1458		WARN_ON(usb_pipeout(pipe));
1459		ep = udev->ep_in[epnum];
1460	}
1461	if (!ep)
1462		return 0;
1463
1464	/* NOTE:  only 0x07ff bits are for packet size... */
1465	return le16_to_cpu(ep->desc.wMaxPacketSize);
1466}
1467
1468/* ----------------------------------------------------------------------- */
1469
1470/* Events from the usb core */
1471#define USB_DEVICE_ADD		0x0001
1472#define USB_DEVICE_REMOVE	0x0002
1473#define USB_BUS_ADD		0x0003
1474#define USB_BUS_REMOVE		0x0004
1475extern void usb_register_notify(struct notifier_block *nb);
1476extern void usb_unregister_notify(struct notifier_block *nb);
1477
1478#ifdef DEBUG
1479#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1480	__FILE__ , ## arg)
1481#else
1482#define dbg(format, arg...) do {} while (0)
1483#endif
1484
1485#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1486	__FILE__ , ## arg)
1487#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1488	__FILE__ , ## arg)
1489#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1490	__FILE__ , ## arg)
1491
1492
1493#endif  /* __KERNEL__ */
1494
1495#endif
1496