1#ifndef _ASM_POWERPC_IO_H
2#define _ASM_POWERPC_IO_H
3#ifdef __KERNEL__
4
5/*
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12/* Check of existence of legacy devices */
13extern int check_legacy_ioport(unsigned long base_port);
14#define I8042_DATA_REG	0x60
15#define FDC_BASE	0x3f0
16/* only relevant for PReP */
17#define _PIDXR		0x279
18#define _PNPWRP		0xa79
19#define PNPBIOS_BASE	0xf000
20
21#include <linux/compiler.h>
22#include <asm/page.h>
23#include <asm/byteorder.h>
24#include <asm/synch.h>
25#include <asm/delay.h>
26#include <asm/mmu.h>
27
28#include <asm-generic/iomap.h>
29
30#ifdef CONFIG_PPC64
31#include <asm/paca.h>
32#endif
33
34#define SIO_CONFIG_RA	0x398
35#define SIO_CONFIG_RD	0x399
36
37#define SLOW_DOWN_IO
38
39/* 32 bits uses slightly different variables for the various IO
40 * bases. Most of this file only uses _IO_BASE though which we
41 * define properly based on the platform
42 */
43#ifndef CONFIG_PCI
44#define _IO_BASE	0
45#define _ISA_MEM_BASE	0
46#define PCI_DRAM_OFFSET 0
47#elif defined(CONFIG_PPC32)
48#define _IO_BASE	isa_io_base
49#define _ISA_MEM_BASE	isa_mem_base
50#define PCI_DRAM_OFFSET	pci_dram_offset
51#else
52#define _IO_BASE	pci_io_base
53#define _ISA_MEM_BASE	0
54#define PCI_DRAM_OFFSET	0
55#endif
56
57extern unsigned long isa_io_base;
58extern unsigned long isa_mem_base;
59extern unsigned long pci_io_base;
60extern unsigned long pci_dram_offset;
61
62#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
63#error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
64#endif
65
66/*
67 *
68 * Low level MMIO accessors
69 *
70 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
71 * specific and thus shouldn't be used in generic code. The accessors
72 * provided here are:
73 *
74 *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
75 *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
76 *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
77 *
78 * Those operate directly on a kernel virtual address. Note that the prototype
79 * for the out_* accessors has the arguments in opposite order from the usual
80 * linux PCI accessors. Unlike those, they take the address first and the value
81 * next.
82 *
83 * Note: I might drop the _ns suffix on the stream operations soon as it is
84 * simply normal for stream operations to not swap in the first place.
85 *
86 */
87
88#ifdef CONFIG_PPC64
89#define IO_SET_SYNC_FLAG()	do { get_paca()->io_sync = 1; } while(0)
90#else
91#define IO_SET_SYNC_FLAG()
92#endif
93
94#define DEF_MMIO_IN(name, type, insn)					\
95static inline type name(const volatile type __iomem *addr)		\
96{									\
97	type ret;							\
98	__asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync"		\
99 		: "=r" (ret) : "r" (addr), "m" (*addr));		\
100	return ret;							\
101}
102
103#define DEF_MMIO_OUT(name, type, insn)					\
104static inline void name(volatile type __iomem *addr, type val)		\
105{									\
106	__asm__ __volatile__("sync;" insn				\
107 		: "=m" (*addr) : "r" (val), "r" (addr));		\
108	IO_SET_SYNC_FLAG();					\
109}
110
111
112#define DEF_MMIO_IN_BE(name, size, insn) \
113	DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2")
114#define DEF_MMIO_IN_LE(name, size, insn) \
115	DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1")
116
117#define DEF_MMIO_OUT_BE(name, size, insn) \
118	DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0")
119#define DEF_MMIO_OUT_LE(name, size, insn) \
120	DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2")
121
122DEF_MMIO_IN_BE(in_8,     8, lbz);
123DEF_MMIO_IN_BE(in_be16, 16, lhz);
124DEF_MMIO_IN_BE(in_be32, 32, lwz);
125DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
126DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
127
128DEF_MMIO_OUT_BE(out_8,     8, stb);
129DEF_MMIO_OUT_BE(out_be16, 16, sth);
130DEF_MMIO_OUT_BE(out_be32, 32, stw);
131DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
132DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
133
134#ifdef __powerpc64__
135DEF_MMIO_OUT_BE(out_be64, 64, std);
136DEF_MMIO_IN_BE(in_be64, 64, ld);
137
138/* There is no asm instructions for 64 bits reverse loads and stores */
139static inline u64 in_le64(const volatile u64 __iomem *addr)
140{
141	return le64_to_cpu(in_be64(addr));
142}
143
144static inline void out_le64(volatile u64 __iomem *addr, u64 val)
145{
146	out_be64(addr, cpu_to_le64(val));
147}
148#endif /* __powerpc64__ */
149
150/*
151 * Low level IO stream instructions are defined out of line for now
152 */
153extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
154extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
155extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
156extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
157extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
158extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
159
160/* The _ns naming is historical and will be removed. For now, just #define
161 * the non _ns equivalent names
162 */
163#define _insw	_insw_ns
164#define _insl	_insl_ns
165#define _outsw	_outsw_ns
166#define _outsl	_outsl_ns
167
168
169/*
170 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
171 */
172
173extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
174extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
175			   unsigned long n);
176extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
177			 unsigned long n);
178
179/*
180 *
181 * PCI and standard ISA accessors
182 *
183 * Those are globally defined linux accessors for devices on PCI or ISA
184 * busses. They follow the Linux defined semantics. The current implementation
185 * for PowerPC is as close as possible to the x86 version of these, and thus
186 * provides fairly heavy weight barriers for the non-raw versions
187 *
188 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
189 * allowing the platform to provide its own implementation of some or all
190 * of the accessors.
191 */
192
193/*
194 * Include the EEH definitions when EEH is enabled only so they don't get
195 * in the way when building for 32 bits
196 */
197#ifdef CONFIG_EEH
198#include <asm/eeh.h>
199#endif
200
201/* Shortcut to the MMIO argument pointer */
202#define PCI_IO_ADDR	volatile void __iomem *
203
204/* Indirect IO address tokens:
205 *
206 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
207 * on all IOs. (Note that this is all 64 bits only for now)
208 *
209 * To help platforms who may need to differenciate MMIO addresses in
210 * their hooks, a bitfield is reserved for use by the platform near the
211 * top of MMIO addresses (not PIO, those have to cope the hard way).
212 *
213 * This bit field is 12 bits and is at the top of the IO virtual
214 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
215 *
216 * The kernel virtual space is thus:
217 *
218 *  0xD000000000000000		: vmalloc
219 *  0xD000080000000000		: PCI PHB IO space
220 *  0xD000080080000000		: ioremap
221 *  0xD0000fffffffffff		: end of ioremap region
222 *
223 * Since the top 4 bits are reserved as the region ID, we use thus
224 * the next 12 bits and keep 4 bits available for the future if the
225 * virtual address space is ever to be extended.
226 *
227 * The direct IO mapping operations will then mask off those bits
228 * before doing the actual access, though that only happen when
229 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
230 * mechanism
231 */
232
233#ifdef CONFIG_PPC_INDIRECT_IO
234#define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
235#define PCI_IO_IND_TOKEN_SHIFT	48
236#define PCI_FIX_ADDR(addr)						\
237	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
238#define PCI_GET_ADDR_TOKEN(addr)					\
239	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
240		PCI_IO_IND_TOKEN_SHIFT)
241#define PCI_SET_ADDR_TOKEN(addr, token) 				\
242do {									\
243	unsigned long __a = (unsigned long)(addr);			\
244	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
245	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
246	(addr) = (void __iomem *)__a;					\
247} while(0)
248#else
249#define PCI_FIX_ADDR(addr) (addr)
250#endif
251
252
253/*
254 * Non ordered and non-swapping "raw" accessors
255 */
256
257static inline unsigned char __raw_readb(const volatile void __iomem *addr)
258{
259	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
260}
261static inline unsigned short __raw_readw(const volatile void __iomem *addr)
262{
263	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
264}
265static inline unsigned int __raw_readl(const volatile void __iomem *addr)
266{
267	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
268}
269static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
270{
271	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
272}
273static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
274{
275	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
276}
277static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
278{
279	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
280}
281
282#ifdef __powerpc64__
283static inline unsigned long __raw_readq(const volatile void __iomem *addr)
284{
285	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
286}
287static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
288{
289	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
290}
291#endif /* __powerpc64__ */
292
293/*
294 *
295 * PCI PIO and MMIO accessors.
296 *
297 *
298 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
299 * machine checks (which they occasionally do when probing non existing
300 * IO ports on some platforms, like PowerMac and 8xx).
301 * I always found it to be of dubious reliability and I am tempted to get
302 * rid of it one of these days. So if you think it's important to keep it,
303 * please voice up asap. We never had it for 64 bits and I do not intend
304 * to port it over
305 */
306
307#ifdef CONFIG_PPC32
308
309#define __do_in_asm(name, op)				\
310static inline unsigned int name(unsigned int port)	\
311{							\
312	unsigned int x;					\
313	__asm__ __volatile__(				\
314		"sync\n"				\
315		"0:"	op "	%0,0,%1\n"		\
316		"1:	twi	0,%0,0\n"		\
317		"2:	isync\n"			\
318		"3:	nop\n"				\
319		"4:\n"					\
320		".section .fixup,\"ax\"\n"		\
321		"5:	li	%0,-1\n"		\
322		"	b	4b\n"			\
323		".previous\n"				\
324		".section __ex_table,\"a\"\n"		\
325		"	.align	2\n"			\
326		"	.long	0b,5b\n"		\
327		"	.long	1b,5b\n"		\
328		"	.long	2b,5b\n"		\
329		"	.long	3b,5b\n"		\
330		".previous"				\
331		: "=&r" (x)				\
332		: "r" (port + _IO_BASE));		\
333	return x;					\
334}
335
336#define __do_out_asm(name, op)				\
337static inline void name(unsigned int val, unsigned int port) \
338{							\
339	__asm__ __volatile__(				\
340		"sync\n"				\
341		"0:" op " %0,0,%1\n"			\
342		"1:	sync\n"				\
343		"2:\n"					\
344		".section __ex_table,\"a\"\n"		\
345		"	.align	2\n"			\
346		"	.long	0b,2b\n"		\
347		"	.long	1b,2b\n"		\
348		".previous"				\
349		: : "r" (val), "r" (port + _IO_BASE));	\
350}
351
352__do_in_asm(_rec_inb, "lbzx")
353__do_in_asm(_rec_inw, "lhbrx")
354__do_in_asm(_rec_inl, "lwbrx")
355__do_out_asm(_rec_outb, "stbx")
356__do_out_asm(_rec_outw, "sthbrx")
357__do_out_asm(_rec_outl, "stwbrx")
358
359#endif /* CONFIG_PPC32 */
360
361/* The "__do_*" operations below provide the actual "base" implementation
362 * for each of the defined acccessor. Some of them use the out_* functions
363 * directly, some of them still use EEH, though we might change that in the
364 * future. Those macros below provide the necessary argument swapping and
365 * handling of the IO base for PIO.
366 *
367 * They are themselves used by the macros that define the actual accessors
368 * and can be used by the hooks if any.
369 *
370 * Note that PIO operations are always defined in terms of their corresonding
371 * MMIO operations. That allows platforms like iSeries who want to modify the
372 * behaviour of both to only hook on the MMIO version and get both. It's also
373 * possible to hook directly at the toplevel PIO operation if they have to
374 * be handled differently
375 */
376#define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
377#define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
378#define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
379#define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
380#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
381#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
382#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
383
384#ifdef CONFIG_EEH
385#define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
386#define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
387#define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
388#define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
389#define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
390#define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
391#define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
392#else /* CONFIG_EEH */
393#define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
394#define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
395#define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
396#define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
397#define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
398#define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
399#define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
400#endif /* !defined(CONFIG_EEH) */
401
402#ifdef CONFIG_PPC32
403#define __do_outb(val, port)	_rec_outb(val, port)
404#define __do_outw(val, port)	_rec_outw(val, port)
405#define __do_outl(val, port)	_rec_outl(val, port)
406#define __do_inb(port)		_rec_inb(port)
407#define __do_inw(port)		_rec_inw(port)
408#define __do_inl(port)		_rec_inl(port)
409#else /* CONFIG_PPC32 */
410#define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
411#define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
412#define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
413#define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
414#define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
415#define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
416#endif /* !CONFIG_PPC32 */
417
418#ifdef CONFIG_EEH
419#define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
420#define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
421#define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
422#else /* CONFIG_EEH */
423#define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
424#define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
425#define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
426#endif /* !CONFIG_EEH */
427#define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
428#define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
429#define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
430
431#define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
432#define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
433#define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
434#define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
435#define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
436#define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
437
438#define __do_memset_io(addr, c, n)	\
439				_memset_io(PCI_FIX_ADDR(addr), c, n)
440#define __do_memcpy_toio(dst, src, n)	\
441				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
442
443#ifdef CONFIG_EEH
444#define __do_memcpy_fromio(dst, src, n)	\
445				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
446#else /* CONFIG_EEH */
447#define __do_memcpy_fromio(dst, src, n)	\
448				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
449#endif /* !CONFIG_EEH */
450
451#ifdef CONFIG_PPC_INDIRECT_IO
452#define DEF_PCI_HOOK(x)		x
453#else
454#define DEF_PCI_HOOK(x)		NULL
455#endif
456
457/* Structure containing all the hooks */
458extern struct ppc_pci_io {
459
460#define DEF_PCI_AC_RET(name, ret, at, al)	ret (*name) at;
461#define DEF_PCI_AC_NORET(name, at, al)		void (*name) at;
462
463#include <asm/io-defs.h>
464
465#undef DEF_PCI_AC_RET
466#undef DEF_PCI_AC_NORET
467
468} ppc_pci_io;
469
470/* The inline wrappers */
471#define DEF_PCI_AC_RET(name, ret, at, al)			\
472static inline ret name at					\
473{								\
474	if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL)		\
475		return ppc_pci_io.name al;			\
476	return __do_##name al;					\
477}
478
479#define DEF_PCI_AC_NORET(name, at, al)				\
480static inline void name at					\
481{								\
482	if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL)		\
483		ppc_pci_io.name al;				\
484	else							\
485		__do_##name al;					\
486}
487
488#include <asm/io-defs.h>
489
490#undef DEF_PCI_AC_RET
491#undef DEF_PCI_AC_NORET
492
493/* Some drivers check for the presence of readq & writeq with
494 * a #ifdef, so we make them happy here.
495 */
496#ifdef __powerpc64__
497#define readq	readq
498#define writeq	writeq
499#endif
500
501#ifdef CONFIG_NOT_COHERENT_CACHE
502
503#define dma_cache_inv(_start,_size) \
504	invalidate_dcache_range(_start, (_start + _size))
505#define dma_cache_wback(_start,_size) \
506	clean_dcache_range(_start, (_start + _size))
507#define dma_cache_wback_inv(_start,_size) \
508	flush_dcache_range(_start, (_start + _size))
509
510#else /* CONFIG_NOT_COHERENT_CACHE */
511
512#define dma_cache_inv(_start,_size)		do { } while (0)
513#define dma_cache_wback(_start,_size)		do { } while (0)
514#define dma_cache_wback_inv(_start,_size)	do { } while (0)
515
516#endif /* !CONFIG_NOT_COHERENT_CACHE */
517
518/*
519 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
520 * access
521 */
522#define xlate_dev_mem_ptr(p)	__va(p)
523
524/*
525 * Convert a virtual cached pointer to an uncached pointer
526 */
527#define xlate_dev_kmem_ptr(p)	p
528
529/*
530 * We don't do relaxed operations yet, at least not with this semantic
531 */
532#define readb_relaxed(addr) readb(addr)
533#define readw_relaxed(addr) readw(addr)
534#define readl_relaxed(addr) readl(addr)
535#define readq_relaxed(addr) readq(addr)
536
537#ifdef CONFIG_PPC32
538#define mmiowb()
539#else
540/*
541 * Enforce synchronisation of stores vs. spin_unlock
542 * (this does it explicitely, though our implementation of spin_unlock
543 * does it implicitely too)
544 */
545static inline void mmiowb(void)
546{
547	unsigned long tmp;
548
549	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
550	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
551	: "memory");
552}
553#endif /* !CONFIG_PPC32 */
554
555static inline void iosync(void)
556{
557        __asm__ __volatile__ ("sync" : : : "memory");
558}
559
560/* Enforce in-order execution of data I/O.
561 * No distinction between read/write on PPC; use eieio for all three.
562 * Those are fairly week though. They don't provide a barrier between
563 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
564 * they only provide barriers between 2 __raw MMIO operations and
565 * possibly break write combining.
566 */
567#define iobarrier_rw() eieio()
568#define iobarrier_r()  eieio()
569#define iobarrier_w()  eieio()
570
571
572/*
573 * output pause versions need a delay at least for the
574 * w83c105 ide controller in a p610.
575 */
576#define inb_p(port)             inb(port)
577#define outb_p(val, port)       (udelay(1), outb((val), (port)))
578#define inw_p(port)             inw(port)
579#define outw_p(val, port)       (udelay(1), outw((val), (port)))
580#define inl_p(port)             inl(port)
581#define outl_p(val, port)       (udelay(1), outl((val), (port)))
582
583
584#define IO_SPACE_LIMIT ~(0UL)
585
586
587/**
588 * ioremap     -   map bus memory into CPU space
589 * @address:   bus address of the memory
590 * @size:      size of the resource to map
591 *
592 * ioremap performs a platform specific sequence of operations to
593 * make bus memory CPU accessible via the readb/readw/readl/writeb/
594 * writew/writel functions and the other mmio helpers. The returned
595 * address is not guaranteed to be usable directly as a virtual
596 * address.
597 *
598 * We provide a few variations of it:
599 *
600 * * ioremap is the standard one and provides non-cacheable guarded mappings
601 *   and can be hooked by the platform via ppc_md
602 *
603 * * ioremap_flags allows to specify the page flags as an argument and can
604 *   also be hooked by the platform via ppc_md
605 *
606 * * ioremap_nocache is identical to ioremap
607 *
608 * * iounmap undoes such a mapping and can be hooked
609 *
610 * * __ioremap_explicit (and the pending __iounmap_explicit) are low level
611 *   functions to create hand-made mappings for use only by the PCI code
612 *   and cannot currently be hooked.
613 *
614 * * __ioremap is the low level implementation used by ioremap and
615 *   ioremap_flags and cannot be hooked (but can be used by a hook on one
616 *   of the previous ones)
617 *
618 * * __iounmap, is the low level implementation used by iounmap and cannot
619 *   be hooked (but can be used by a hook on iounmap)
620 *
621 */
622extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
623extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size,
624				   unsigned long flags);
625#define ioremap_nocache(addr, size)	ioremap((addr), (size))
626extern void iounmap(volatile void __iomem *addr);
627
628extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
629			       unsigned long flags);
630extern void __iounmap(volatile void __iomem *addr);
631
632extern int __ioremap_explicit(phys_addr_t p_addr, unsigned long v_addr,
633		     	      unsigned long size, unsigned long flags);
634extern int __iounmap_explicit(volatile void __iomem *start,
635			      unsigned long size);
636
637extern void __iomem * reserve_phb_iospace(unsigned long size);
638
639/* Those are more 32 bits only functions */
640extern unsigned long iopa(unsigned long addr);
641extern unsigned long mm_ptov(unsigned long addr) __attribute_const__;
642extern void io_block_mapping(unsigned long virt, phys_addr_t phys,
643			     unsigned int size, int flags);
644
645
646/*
647 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
648 * which needs some additional definitions here. They basically allow PIO
649 * space overall to be 1GB. This will work as long as we never try to use
650 * iomap to map MMIO below 1GB which should be fine on ppc64
651 */
652#define HAVE_ARCH_PIO_SIZE		1
653#define PIO_OFFSET			0x00000000UL
654#define PIO_MASK			0x3fffffffUL
655#define PIO_RESERVED			0x40000000UL
656
657#define mmio_read16be(addr)		readw_be(addr)
658#define mmio_read32be(addr)		readl_be(addr)
659#define mmio_write16be(val, addr)	writew_be(val, addr)
660#define mmio_write32be(val, addr)	writel_be(val, addr)
661#define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
662#define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
663#define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
664#define mmio_outsb(addr, src, count)	writesb(addr, src, count)
665#define mmio_outsw(addr, src, count)	writesw(addr, src, count)
666#define mmio_outsl(addr, src, count)	writesl(addr, src, count)
667
668/**
669 *	virt_to_phys	-	map virtual addresses to physical
670 *	@address: address to remap
671 *
672 *	The returned physical address is the physical (CPU) mapping for
673 *	the memory address given. It is only valid to use this function on
674 *	addresses directly mapped or allocated via kmalloc.
675 *
676 *	This function does not give bus mappings for DMA transfers. In
677 *	almost all conceivable cases a device driver should not be using
678 *	this function
679 */
680static inline unsigned long virt_to_phys(volatile void * address)
681{
682	return __pa((unsigned long)address);
683}
684
685/**
686 *	phys_to_virt	-	map physical address to virtual
687 *	@address: address to remap
688 *
689 *	The returned virtual address is a current CPU mapping for
690 *	the memory address given. It is only valid to use this function on
691 *	addresses that have a kernel mapping
692 *
693 *	This function does not handle bus mappings for DMA transfers. In
694 *	almost all conceivable cases a device driver should not be using
695 *	this function
696 */
697static inline void * phys_to_virt(unsigned long address)
698{
699	return (void *)__va(address);
700}
701
702/*
703 * Change "struct page" to physical address.
704 */
705#define page_to_phys(page)	(page_to_pfn(page) << PAGE_SHIFT)
706
707/* We do NOT want virtual merging, it would put too much pressure on
708 * our iommu allocator. Instead, we want drivers to be smart enough
709 * to coalesce sglists that happen to have been mapped in a contiguous
710 * way by the iommu
711 */
712#define BIO_VMERGE_BOUNDARY	0
713
714/*
715 * 32 bits still uses virt_to_bus() for it's implementation of DMA
716 * mappings se we have to keep it defined here. We also have some old
717 * drivers (shame shame shame) that use bus_to_virt() and haven't been
718 * fixed yet so I need to define it here.
719 */
720#ifdef CONFIG_PPC32
721
722static inline unsigned long virt_to_bus(volatile void * address)
723{
724        if (address == NULL)
725		return 0;
726        return __pa(address) + PCI_DRAM_OFFSET;
727}
728
729static inline void * bus_to_virt(unsigned long address)
730{
731        if (address == 0)
732		return NULL;
733        return __va(address - PCI_DRAM_OFFSET);
734}
735
736#define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
737
738#endif /* CONFIG_PPC32 */
739
740/* access ports */
741#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
742#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
743
744#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
745#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
746
747#endif /* __KERNEL__ */
748
749#endif /* _ASM_POWERPC_IO_H */
750