1#ifndef __PARISC_SYSTEM_H
2#define __PARISC_SYSTEM_H
3
4#include <asm/psw.h>
5
6/* The program status word as bitfields.  */
7struct pa_psw {
8	unsigned int y:1;
9	unsigned int z:1;
10	unsigned int rv:2;
11	unsigned int w:1;
12	unsigned int e:1;
13	unsigned int s:1;
14	unsigned int t:1;
15
16	unsigned int h:1;
17	unsigned int l:1;
18	unsigned int n:1;
19	unsigned int x:1;
20	unsigned int b:1;
21	unsigned int c:1;
22	unsigned int v:1;
23	unsigned int m:1;
24
25	unsigned int cb:8;
26
27	unsigned int o:1;
28	unsigned int g:1;
29	unsigned int f:1;
30	unsigned int r:1;
31	unsigned int q:1;
32	unsigned int p:1;
33	unsigned int d:1;
34	unsigned int i:1;
35};
36
37#ifdef CONFIG_64BIT
38#define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW + 4))
39#else
40#define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW))
41#endif
42
43struct task_struct;
44
45extern struct task_struct *_switch_to(struct task_struct *, struct task_struct *);
46
47#define switch_to(prev, next, last) do {			\
48	(last) = _switch_to(prev, next);			\
49} while(0)
50
51/*
52 * On SMP systems, when the scheduler does migration-cost autodetection,
53 * it needs a way to flush as much of the CPU's caches as possible.
54 *
55 * TODO: fill this in!
56 */
57static inline void sched_cacheflush(void)
58{
59}
60
61
62/* interrupt control */
63#define local_save_flags(x)	__asm__ __volatile__("ssm 0, %0" : "=r" (x) : : "memory")
64#define local_irq_disable()	__asm__ __volatile__("rsm %0,%%r0\n" : : "i" (PSW_I) : "memory" )
65#define local_irq_enable()	__asm__ __volatile__("ssm %0,%%r0\n" : : "i" (PSW_I) : "memory" )
66
67#define local_irq_save(x) \
68	__asm__ __volatile__("rsm %1,%0" : "=r" (x) :"i" (PSW_I) : "memory" )
69#define local_irq_restore(x) \
70	__asm__ __volatile__("mtsm %0" : : "r" (x) : "memory" )
71
72#define irqs_disabled()			\
73({					\
74	unsigned long flags;		\
75	local_save_flags(flags);	\
76	(flags & PSW_I) == 0;		\
77})
78
79#define mfctl(reg)	({		\
80	unsigned long cr;		\
81	__asm__ __volatile__(		\
82		"mfctl " #reg ",%0" :	\
83		 "=r" (cr)		\
84	);				\
85	cr;				\
86})
87
88#define mtctl(gr, cr) \
89	__asm__ __volatile__("mtctl %0,%1" \
90		: /* no outputs */ \
91		: "r" (gr), "i" (cr) : "memory")
92
93/* these are here to de-mystefy the calling code, and to provide hooks */
94/* which I needed for debugging EIEM problems -PB */
95#define get_eiem() mfctl(15)
96static inline void set_eiem(unsigned long val)
97{
98	mtctl(val, 15);
99}
100
101#define mfsp(reg)	({		\
102	unsigned long cr;		\
103	__asm__ __volatile__(		\
104		"mfsp " #reg ",%0" :	\
105		 "=r" (cr)		\
106	);				\
107	cr;				\
108})
109
110#define mtsp(gr, cr) \
111	__asm__ __volatile__("mtsp %0,%1" \
112		: /* no outputs */ \
113		: "r" (gr), "i" (cr) : "memory")
114
115
116/*
117** This is simply the barrier() macro from linux/kernel.h but when serial.c
118** uses tqueue.h uses smp_mb() defined using barrier(), linux/kernel.h
119** hasn't yet been included yet so it fails, thus repeating the macro here.
120**
121** PA-RISC architecture allows for weakly ordered memory accesses although
122** none of the processors use it. There is a strong ordered bit that is
123** set in the O-bit of the page directory entry. Operating systems that
124** can not tolerate out of order accesses should set this bit when mapping
125** pages. The O-bit of the PSW should also be set to 1 (I don't believe any
126** of the processor implemented the PSW O-bit). The PCX-W ERS states that
127** the TLB O-bit is not implemented so the page directory does not need to
128** have the O-bit set when mapping pages (section 3.1). This section also
129** states that the PSW Y, Z, G, and O bits are not implemented.
130** So it looks like nothing needs to be done for parisc-linux (yet).
131** (thanks to chada for the above comment -ggg)
132**
133** The __asm__ op below simple prevents gcc/ld from reordering
134** instructions across the mb() "call".
135*/
136#define mb()		__asm__ __volatile__("":::"memory")	/* barrier() */
137#define rmb()		mb()
138#define wmb()		mb()
139#define smp_mb()	mb()
140#define smp_rmb()	mb()
141#define smp_wmb()	mb()
142#define smp_read_barrier_depends()	do { } while(0)
143#define read_barrier_depends()		do { } while(0)
144
145#define set_mb(var, value)		do { var = value; mb(); } while (0)
146
147#ifndef CONFIG_PA20
148/* Because kmalloc only guarantees 8-byte alignment for kmalloc'd data,
149   and GCC only guarantees 8-byte alignment for stack locals, we can't
150   be assured of 16-byte alignment for atomic lock data even if we
151   specify "__attribute ((aligned(16)))" in the type declaration.  So,
152   we use a struct containing an array of four ints for the atomic lock
153   type and dynamically select the 16-byte aligned int from the array
154   for the semaphore.  */
155
156#define __PA_LDCW_ALIGNMENT	16
157#define __ldcw_align(a) ({					\
158	unsigned long __ret = (unsigned long) &(a)->lock[0];	\
159	__ret = (__ret + __PA_LDCW_ALIGNMENT - 1)		\
160		& ~(__PA_LDCW_ALIGNMENT - 1);			\
161	(volatile unsigned int *) __ret;			\
162})
163#define __LDCW	"ldcw"
164
165#else /*CONFIG_PA20*/
166/* From: "Jim Hull" <jim.hull of hp.com>
167   I've attached a summary of the change, but basically, for PA 2.0, as
168   long as the ",CO" (coherent operation) completer is specified, then the
169   16-byte alignment requirement for ldcw and ldcd is relaxed, and instead
170   they only require "natural" alignment (4-byte for ldcw, 8-byte for
171   ldcd). */
172
173#define __PA_LDCW_ALIGNMENT	4
174#define __ldcw_align(a) ((volatile unsigned int *)a)
175#define __LDCW	"ldcw,co"
176
177#endif /*!CONFIG_PA20*/
178
179/* LDCW, the only atomic read-write operation PA-RISC has. *sigh*.  */
180#define __ldcw(a) ({						\
181	unsigned __ret;						\
182	__asm__ __volatile__(__LDCW " 0(%1),%0"			\
183		: "=r" (__ret) : "r" (a));			\
184	__ret;							\
185})
186
187#ifdef CONFIG_SMP
188# define __lock_aligned __attribute__((__section__(".data.lock_aligned")))
189#endif
190
191#define arch_align_stack(x) (x)
192
193#endif
194